19. AN IMPROVEMENT ON THE BOUND FOR $m'(2,q)$ WHEN q IS PRIME

THEOREM 19.1: (Voloch [20]). For a prime $p \geq 7$,

$$m'(2,p) \leq \frac{44}{45}p + \frac{8}{9}.$$

Proof. A theorem of Segre (see [6], theorem 10.4.4) says that, for q odd with $q \geq 7$, we have $m'(2,q) \leq q - \frac{1}{4}\sqrt{q} + \frac{7}{4}$ and we follow the structure of this proof.

Let \mathcal{X} be a complete k-arc with $k > \frac{44}{45}p + \frac{8}{9}$. Through each point P of \mathcal{X} there are $t = p+2-k$ unisecants. The kt unisecants of \mathcal{X} belong to an algebraic envelope Δ_{2t} of class $2t$, which has a simple component Γ_n with $n \leq 2t$. For $t=1$, the envelope Δ_2 is the dual of a conic, \mathcal{X} is a $(q+1)$-arc and so a conic. When $t \geq 2$, four cases are distinguished.

(i) Γ_n is a regular (rational) linear component.

Here Γ_n is a pencil with vertex Q not in \mathcal{X}. Then $\mathcal{X} \cup \{Q\}$ is a $(k+1)$-arc and \mathcal{X} is not complete.

(ii) Γ_n is regular of class two.

Here Γ_n is the dual of a conic \mathcal{C}, and \mathcal{X} is contained in \mathcal{C}, [6] theorem 10.4.3.

(iii) Γ_n is irregular.

Suppose that Γ_n has M simple lines and d double lines, and let $N=M+d$. Then, by [6] lemma 10.1.1, it follows that $N \leq n^2$. Also by the definition of Δ_{2t} and Γ_n, there are at least $\frac{1}{2}n$ distinct lines of Γ_n through P; so $N \geq \frac{1}{k}kn$. Therefore $k \leq \frac{N}{n} \leq 2n \leq 4t$.
= 4(p+2-k). Thus \(k \leq \frac{4}{5}(p+2) < \frac{44}{45}p + \frac{8}{9} \), a contradiction for \(p \geq 5 \).

(iv) \(\Gamma_n \) is regular with \(n \geq 3 \).

Either \(n=2t < \frac{1}{2}p \) or \(t > \frac{1}{4}p \). When \(t > \frac{1}{4}p \), then \(k=p+2-t < \frac{3}{4}p+2 < \frac{44}{45}p+\frac{8}{9} \) for \(p \geq 5 \).

When \(n \leq \frac{1}{2}p \), then

\[
N \leq \frac{2n}{5}(5(n-2)+p)
\]

for \(n \geq 5 \) by theorem 14.1, note (3); for \(n \geq 3 \) it follows from theorem 11.5 when we note that \(n \leq \frac{1}{2}p \) implies \(v_1 = i \) by theorem 11.4, corollary 1 (ii).

As in (iii), \(N \geq \frac{1}{2}kn \). So

\[
\frac{1}{2}kn \leq N \leq \frac{2n}{5}(5(n-2)+p),
\]

\[
k \leq \frac{4}{5}(5(n-2)+p),
\]

\[
k \leq \frac{4}{5}(5(2t-2)+p).
\]

Substituting \(t = p+2-k \) gives

\[
k \leq \frac{4}{5}(10(p+1-k)+p),
\]

\[
k \leq \frac{4}{45}(11p + 10),
\]

the required contradiction.

COROLLARY: For any prime \(p \geq 311 \),

\[
\frac{1}{2}(p+[2\sqrt{p}]) \leq m'(2,p) \leq \frac{4}{45}(11p+10).
\]
Notes: (1) \(\frac{4}{45} (11p+10) < p - \frac{1}{4}\sqrt{p} + \frac{25}{16} \) for \(p \geq 47 \).

(2) \(\frac{4}{45} (11p+10) < p - \sqrt{p} + 1 \) for \(p \geq 2017 \).

20. k-CAPS IN PG(n,q), \(n \geq 3 \).

A k-cap in PG(n,q) is a set of k points no 3 collinear. Let \(m_2(n,q) \) be the maximum value that k can attain. From §19, \(m(2,q) = m_2(2,q) \). For \(n \geq 3 \), the only values known are as follows:

\[
m_2(3,q) = q^2+1, \quad q \geq 2;
m_2(d,2) = 2^d;
m_2(4,3) = 20;
m_2(5,3) = 56.
\]

See [8] for a survey on these and similar numbers. The sets corresponding to these values for \(m_2(d,q) \) have been classified apart from \((q^2+1)\)-caps for \(q \) even with \(q \geq 16 \).

As for the plane, let \(m_2(n,q) \) be the size of the second largest complete k-cap. Then, from [9], chapter 18,

\[
m_2'(3,2) = 5, \quad m_2'(3,3) = 8.
\]

We now summarize the best known upper bounds for \(m_2'(n,q) \) and \(m_2(n,q) \).

Theorem 20.1: ([7]) For \(q \) odd with \(q \geq 67 \),

\[
m_2'(3,q) \leq q^2 - \frac{1}{4}q\sqrt{q} + 2q.
\]

Theorem 20.2: ([10]) For \(q \) even with \(q > 2 \),