17. k-ARCS ON ELLIPTIC CURVES

As in $\S 16$, the curve \mathscr{C} is a non-singular cubic in $P G(2, q)$ with inflexion 0.

THEOREM 17.1: (Zirilli [22]) If $|\mathscr{C}|=2 k$, then there exists a $\mathrm{k}-\mathrm{arc} \mathrm{K}$ on \mathscr{C}.

Proof. Since \mathscr{C} is an abelian group, the fundamental theorem says that \mathscr{C} is a direct product of cyclic groups of prime power order. By taking a subgroup of order 2^{r-1} in a component of order 2^{r}, we obtain a subgroup G of \mathscr{C} of index 2 . Let $K=\mathscr{C} \backslash G$. Let $P_{1}, P_{2} \in K$. Then $-P_{1} \in K$ and $P_{2}=-P_{1}+Q$ for some Q in G. Hence $P_{1}+P_{2}=Q$ and $P_{1}+P_{2}-Q=0$. Since $-Q$ is in G, no three points of K are collinear.

The remainder of $\S 17$ follows Voloch [19].
The object is now to show that \mathscr{K} can be chosen to be complete. First we construct \mathscr{K} in a different way.

Let $U_{0}=P(1,0,0), U_{1}=P(0,1,0), \quad U_{2}=P(0,0,1)$. Also, with $K=G F(q)$, let $K_{o}=G F(q) \backslash\{0\}$ and $K_{o}^{2}=\left\{t^{2} \mid t \in K_{0}\right\}$.

Now, let \mathscr{C} in $P G(2, q), q$ odd, have equation

$$
y^{2} z=x^{3}+a_{2} x^{2} z+a_{1} x z^{2}+a_{0} z^{3} .
$$

Also suppose it is non-singular with $2 k$ points. The point U_{1} is an inflexion and we take this as the zero of \mathscr{C} as an abelian group. Since $|\mathscr{C}|$ is even, so \mathscr{C} has an element of order 2 , which necessarily is a point of contact of a tangent through U_{1}. Choose the tangent as $x=0$ and the point of contact as U_{2}. Thus $a_{0}=0$ and \mathscr{C} has equation

$$
\begin{equation*}
y^{2} z=x^{3}+a_{2} x^{2} z+a_{1} x^{2} . \tag{17.1}
\end{equation*}
$$

Define

$$
\theta: \mathscr{C} \rightarrow K_{o} / K_{o}^{2} \quad \text { by }
$$

$$
U_{1} \Theta=K_{o}^{2} ; U_{2}^{\theta}=a_{1} K_{o}^{2}, P(x, y, 1) \theta=x K_{o}^{2} \text { for } x \neq 0
$$

Write $K_{o} / K_{o}^{2}=\left\{1, \nu \mid \nu^{2}=1\right\}$.

LEMMA 17.2: θ is a homomorphism.
Proof. If $P=P(x, y, 1)$, then $-P=P(x,-y, 1)$.
So $P \theta=(-P) \theta$, this also holds for U_{1} and U_{2}. Hence, if $P_{1}+P_{2}+P_{3}=0$, then $P_{1}+P_{2}=-P_{3}$ and $\left(P_{1}+P_{2}\right) \theta=\left(-P_{3}\right) \theta=P_{3} \theta=1 /\left(P_{3} \theta\right)$. If it is shown that $\left(P_{1} \theta\right)\left(P_{2} \theta\right)\left(P_{3} \theta\right)=1$, then $\left(P_{1}+P_{2}\right) \theta=\left(P_{1} \theta\right)\left(P_{2} \theta\right)$.

Let $P_{i}=P\left(x_{i}, y_{i}, 1\right), i=1,2,3$. Since $P_{1}+P_{2}+P_{3}=0$, so P_{1}, P_{2}, P_{3} are collinear, whence there exist m and c in K such that $y_{i}=m x_{i}+c$, $i=1,2,3$. So

$$
(m x+c)^{2}-\left(x^{3}+a_{2} x^{2}+a_{1} x\right)=\left(x_{1}-x\right)\left(x_{2}-x\right)\left(x_{3}-x\right)
$$

Thus $x_{1} x_{2} x_{3}=c^{2}$ and so $\left(P_{1} \theta\right)\left(P_{2} \theta\right)\left(P_{3} \theta\right)=1$.
If $\left(P_{1}, P_{2}\right)=\left(U_{1}, P_{2}\right)$, then $\left(P_{1}+P_{2}\right) \theta=P_{2} \theta=\left(P_{1} \theta\right)\left(P_{2} \theta\right)$. If $\left(P_{1}, P_{2}\right)=\left(P_{1}, U_{2}\right)$ and $P_{1}=P\left(x_{1}, y_{1}, 1\right)$, then $P_{1}+U_{2}=P\left(x_{2}, y_{2}, 1\right)$ with $\mathrm{x}_{1} \mathrm{x}_{2}=\mathrm{a}_{1}$.

Hence $\left(P_{1}+U_{2}\right) \theta=x_{2}=a_{1} / x_{1}$

$$
=x_{1}^{2}\left(a_{1} / x_{1}\right)=x_{1} a_{1}=\left(P_{1} \theta\right)\left(U_{2} \theta\right)
$$

So the homomorphism is established in all cases.

LEMMA 17.3: Θ is surjective for $q \geq 7$.
Proof. Since $P\left(b x^{2}, y, 1\right) \theta=b x^{2}=b$, it suffices to find a point Q on $\mathscr{C}^{\prime}=V\left(F\left(b x^{2}, y, z\right)\right)$ where $\mathscr{C}=V(F(x, y, z))$. So \mathscr{C}^{\prime} has equation

$$
y^{2} z^{4}=\left(b x^{2}\right)^{3}+a_{2}\left(b x^{2}\right)^{2} z^{2}+a_{1}\left(b x^{2}\right) z^{4} .
$$

However, we require Q not on $V(x z)$. But $V(z) \cap \mathscr{C}^{\prime}=\left\{U_{1}\right\}$ and $V(x) \cap \mathscr{C}^{\prime}=\left\{U_{1}, U_{2}\right\}$. If we put $y=t x$, we see that \mathscr{C}^{\prime} is also elliptic and so has at least $(\sqrt{q}-1)^{2}$ points. Since $(\sqrt{q}-1)^{2}>2$ for $q \geq 7$, there exists the required point Q.

LEMMA 17.4: $\mathscr{K}=\mathscr{C}$, ker θ is a k-arc.
Proof. Let $G=k e r \theta$. Then, from the previous two lemmas, $G<\mathscr{C}$ with $[\mathscr{C}: G]=2$. Then, if $P \in G, P \theta=1$; if $P \in K, P \theta=\nu$. Suppose P_{1}, P_{2}, P_{3} in \mathscr{K} are collinear. So $P_{1}+P_{2}+P_{3}=0$, whence $\left(P_{1}+P_{2}+P_{3}\right) \theta=0 \theta$. So $\left(P_{1} \theta\right)\left(P_{2} \theta\right)\left(P_{3} \theta\right)=1$, whence $v^{3}=1$, whence $v=1$, a contradiction.

This lemma just repeats lemma 17.1 using the homomorphism θ.
THEOREM 17.5: 米 is complete for $\mathrm{q} \geq 311$.
Proof. Let $P_{0} \in P G(2, q) \backslash \not \mathscr{K}^{*}$. It must be shown that $\mathscr{K} \cup\left\{P_{0}\right\}$ is not a $(k+1)-a r c$. There are three cases: (a) $P_{0} \in \mathscr{C} \backslash \mathcal{K},(b) P_{0}=P\left(x_{0}, y_{0}, 1\right)$, (c) $P_{0}=P\left(1, y_{0}, 0\right)$.

Case (a). There are at most four tangents through P_{o} with point of contact Q in \mathscr{K}. Since $k=\frac{1}{2}|\mathscr{C}|>\frac{1}{2}(\sqrt{q}-1)^{2}>4$, there exists Q in \mathscr{K} which is not such a point of contact. So $2 Q \neq-P_{0}$ and $Q \neq-\left(P_{0}+Q\right)$. Also $-\left(P_{0}+Q\right) \in \mathscr{K}$, as otherwise $Q \in G=\mathscr{C} \backslash \mathcal{K}$. So P_{0}, Q, $-\left(P_{0}+Q\right)$ are distinct collinear points of $\mathscr{K} \cup\left\{P_{o}\right\}$.

Case (b). Lat \mathscr{C} ' be the elliptic curve with affine equation

$$
\begin{equation*}
y^{2}=v^{3} x^{4}+v^{2} a_{2} x^{2}+v a_{1} \tag{17.2}
\end{equation*}
$$

Define the following functions on \mathscr{C}^{\prime} :

$$
\begin{aligned}
& U=v x^{2}, \quad Z=x y, \quad A=\left(y_{0}-Z\right) /\left(x_{0}-U\right), \\
& B=A^{2}-a_{2}, \quad C=2 A Z-a_{1}-2 A^{2} U, \\
& D=(U-B)^{2}+4\left(C+B U-U^{2}\right) .
\end{aligned}
$$

Then there exists a double cover

$$
\Psi: \mathscr{D} \rightarrow \mathscr{C}^{\prime}
$$

defined by $W^{2}=D$ that is, for any point $P(x, y, 1)$ of \mathscr{C}^{\prime}, there are two points $P(x, y, W, 1)$ of \mathscr{D}. Now, let $P(x, y, W, 1)$ be a rational point of \mathscr{D}. Then, from the equation for \mathscr{C}^{\prime},

$$
x^{2} y^{2}=v^{3} x^{6}+v^{2} a_{2} x^{4}+v a_{1} x^{2}
$$

whence

$$
\begin{equation*}
z^{2}=U^{3}+a_{2} U^{2}+a_{1} U \tag{17.3}
\end{equation*}
$$

Hence
(1) $\mathrm{P}=\mathrm{P}(\mathrm{U}, \mathrm{Z}, 1) \in \mathscr{K}$;
(2) $P P_{0}$ has equation $y-Z=A(x-U)$;
(3) PP o meets \mathscr{C} is two points other than P whose x-coordinates satisfy

$$
\begin{equation*}
x^{2}-(B-U) x-\left(C+B U-U^{2}\right)=0 \tag{17.4}
\end{equation*}
$$

The last follows by substitution from (2) in (17.1), for we have

$$
\{Z+A(x-U)\}^{2}=x^{3}+a_{2} x^{2}+a_{1} x
$$

Then, from (17.3),

$$
\begin{aligned}
& \left(U^{3}+a_{2} U^{2}+a_{1} U\right)-\left(x^{3}+a_{2} x^{2}+a_{1} x\right) \\
& +2 Z A(x-U)+A^{2}(x-U)^{2}=0
\end{aligned}
$$

Cancelling $x-U$ gives (17.4).
Now, let $\mathscr{C} \cap P P_{0}=\{P, Q, R\}$. The discriminant of (17.4) is

$$
(B-U)^{2}+4\left(C+B U-U^{2}\right)=D=W^{2} .
$$

So Q and R are rational points of \mathscr{C}. Since P, Q, R are collinear $(P \theta)(Q \theta)(R \theta)=1$. As PeK, so $P \theta=\nu$, whence $(Q \theta)(R \theta)=v$. So one of Q a nd R, say Q, is in \mathcal{K}. Hence, if $P \neq Q$, there are three collinear points P, P_{0}, Q of $\mathscr{K} U\left\{P_{0}\right\}$.
it remains to examine the condition that $P \neq Q$. There are at most six tangents to \mathscr{C} through $\mathrm{P}_{\mathrm{o}}([6] \mathrm{p} .252)$. So, if $\mathrm{P}=\mathrm{Q}$ or $\mathrm{P}=\mathrm{R}$, there are at most six choices for P, hence 12 choices for (x, y) and 24 choices for $P(x, y, W, 1)$ on \mathscr{D}. As $|\mathscr{C} \cap \cap V(x)| \leq 2$ and $|\mathscr{C} \cap V(z)|=0$, so $|\mathscr{D} \cap V(x)| \leq 4$ and $|\mathscr{D} \cap V(z)|=0$. So we require that \mathscr{D} has at least $24+4+1=29$ rational points.

By the Hurwitz formula ([5] p. 301 or [3] p.215),

$$
\begin{align*}
2 \mathrm{~g}(\mathscr{D})-2 & =2\left\{2 \mathrm{~g}\left(\mathscr{C}^{\prime}\right)-2\right\}+\operatorname{deg} \mathrm{E} \tag{17.5}\\
& =\operatorname{deg} \mathrm{E} .
\end{align*}
$$

Here, E is the ramification divisor (cf. §9) and

$$
\begin{aligned}
\operatorname{deg} E= & \# \text { points of ramification } \\
= & \# \text { points with } D=0 \\
= & \# \text { points such that } Q \text { and } R \text { have } \\
& \text { the same } x \text {-coordinate. }
\end{aligned}
$$

If $Q=P\left(x_{1}, y_{1}, 1\right)$ and $R=P\left(x_{1}, y_{2}, 1\right)$, then $y_{2}= \pm y_{1}$; if $y_{2}=$ $=-y_{1}$, then Q, R, U_{1} are collinear. So either $Q=R$ or $Q=-R$. If $Q=$ $-R$, then $P=U_{1}$ and this gives at most two points on \mathscr{C} '. If $Q=R$, then $P P_{0}$ is a tangent to \mathscr{C} at Q. Hence there are at most six choices for P and hence at most 12 such points on \mathscr{C}^{\prime}. Hence $2 g(\mathscr{D})-2 \leq 12+2=14$, whence $g(\mathscr{D}) \leq 8$. Thus by the corollary to theorem 11.5,

$$
|\mathscr{D}| \geq q+1-16 \sqrt{q} .
$$

So, when $q+1-16 \sqrt{q} \geq 29$, we obtain the desired contradiction; this occurs for $q \geq 311$.

Case (c). This is similar to case (b). Here, among the functions on \mathscr{C}^{\prime}, one takes $A=y_{o}$.

Notes: (1) The result certainly holds for some but not all k with $q<311$.
(2) A similar technique can be applied for q even. Here \mathscr{C} is taken in the form

$$
\left(y^{2}+x y\right) z=x^{3}+a_{1} x z^{2}+a_{0} z^{3}
$$

Instead of θ as above, we define $\theta: \mathscr{C} \rightarrow K / C_{0}$ where $C_{o}=\{t \in K \mid T(t)=0\}$ and $T(t)=t+t^{2}+\ldots t^{q / 2}$; here C_{0} in the set of elements of category $(=t$ trace $)$ zero. Take $P(x, y, 1) \theta=x C_{0}$. Then \mathscr{K} is complete for $q \geq 256$.

COROLLARY: In $P G(2, q)$ there exists a complete $k-a r c$ with $k=\frac{1}{2}(q+1-t)$ for every t satisfying 16.8 when either (a) q is ndd, $q \geq 311$, t is even; or (b) q is even, $q \geq 256, t$ is odd.
18. k-ARCS IN PG(2,q).

Let \mathscr{K} be a complete $k-a r c$ in $P G(2, q)$; that is, \mathcal{K} has no three points collinear and is not contained in a $k+1$)-arc. We define three constants $m(2, q), n(2, q), m^{\prime}(2, q)$.

$$
\begin{aligned}
& m(2, q)=\max k= \begin{cases}q+2, & q \text { even } \\
q+1, & q \text { odd }, \\
n(2, q) & =\min k .\end{cases} \\
&
\end{aligned}
$$

If $m(2, q) \neq n(2, q)$,

$$
m^{\prime}(2, q)=\text { second largest } k ;
$$

if $m(2, q)=n(2, q)$, let $m^{\prime}(2, q)=m(2, q)$. So, if a $k-a r c$ has $k>m^{\prime}(2, q)$, then it is contained in an $m(2, q)-a r c$. For q odd, every $(q+1)-a r c$ is a conic. For q even, the $(q+2)$-arcs have been classified for $q \leq 16$; see [4], [6].

The value of $n(2, q)$ seems to be a difficult problem. By elementa ry considerations ([6] p.205).

$$
n(2, q) \geq \sim \sqrt{2 q} .
$$

Constructions have been given for complete k-arcswith k having the following values (up to an added constant):

$$
\begin{gathered}
\frac{1}{2} q, \text { see }[6], \$ 9.4 ; \\
\frac{1}{3} q, \\
{[1] ;}
\end{gathered}
$$

