17. k-ARCS ON ELLIPTIC CURVES

As in §16, the curve \mathscr{C} is a non-singular cubic in PG(2,q) with inflexion 0.

THEOREM 17.1: (Zirilli [22]) If $|\mathscr{C}| = 2k$, then there exists a k-arc K on C.

Proof. Since & is an abelian group, the fundamental theorem says that ${\mathscr C}$ is a direct product of cyclic groups of prime power order. By taking a subgroup of order 2^{r-1} in a component of order 2^{r} , we obtain a subgroup G of \mathscr{C} of index 2. Let K = $\mathscr{C} \setminus G$. Let $P_1, P_2 \in K$. Then $-P_1 \in K$ and $P_2 = -P_1 + Q$ for some Q in G. Hence $P_1 + P_2 = Q$ and $P_1+P_2-Q=0$. Since -Q is in G, no three points of K are collinear.

The remainder of §17 follows Voloch [19].

The object is now to show that ${\mathscr K}$ can be chosen to be complete. First we construct $\mathscr K$ in a different way.

Let
$$U_0 = P(1,0,0)$$
, $U_1 = P(0,1,0)$, $U_2 = P(0,0,1)$.
Also, with $K = GF(q)$, let $K_0 = GF(q) \setminus \{0\}$ and $K_0^2 = \{t^2 | t \in K_0\}$.

Now, let \mathscr{C} in PG(2,q), q odd, have equation

$$y^{2}z = x^{3} + a_{2}x^{2}z + a_{1}xz^{2} + a_{0}z^{3}$$

Also suppose it is non-singular with 2k points. The point U_1 is an inflexion and we take this as the zero of & as an abelian group. Since $|\mathscr{C}|$ is even, so \mathscr{C} has an element of order 2, which necessarily is a point of contact of a tangent through U₁. Choose the tangent as x=0 and the point of contact as U_2 . Thus $a_0=0$ and 𝒞 has equation €

$$y^{2}z = x^{3} + a_{2}x^{2}z + a_{1}xz^{2}.$$
(17.1)
Define

$$0 : \mathscr{C} \neq K_{0}/K_{0}^{2} \quad by$$

$$U_{1}^{0} = K_{0}^{2} ; U_{2}^{0} = a_{1}K_{0}^{2}, P(x,y,1)^{0} = xK_{0}^{2} \quad for \ x \neq 0.$$
Write $K_{0}/K_{0}^{2} = \{1, v | v^{2} = 1\}.$

LEMMA 17.2: Θ is a homomorphism.

Proof. If P = P(x,y,1), then -P=P(x,-y,1).

So $P \Theta = (-P)\Theta$, this also holds for U_1 and U_2 . Hence, if $P_1 + P_2 + P_3 = 0$, then $P_1 + P_2 = -P_3$ and $(P_1 + P_2)\Theta = (-P_3)\Theta = P_3\Theta = 1/(P_3\Theta)$. If it is shown that $(P_1\Theta)(P_2\Theta)(P_3\Theta)=1$, then $(P_1 + P_2)\Theta = (P_1\Theta)(P_2\Theta)$.

Let $P_i = P(x_i, y_i, 1)$, i=1,2,3. Since $P_1+P_2+P_3=0$, so P_1, P_2, P_3 are collinear, whence there exist m and c in K such that $y_i=mx_i+c$, i=1,2,3. So

)

$$(mx+c)^{2} - (x^{3}+a_{2}x^{2}+a_{1}x) = (x_{1}-x)(x_{2}-x)(x_{3}-x).$$
Thus $x_{1}x_{2}x_{3} = c^{2}$ and so $(P_{1}\Theta)(P_{2}\Theta)(P_{3}\Theta) = 1.$
If $(P_{1},P_{2}) = (U_{1},P_{2})$, then $(P_{1}+P_{2})\Theta = P_{2}\Theta = (P_{1}\Theta)(P_{2}\Theta).$ If $(P_{1},P_{2}) = (P_{1},U_{2})$ and $P_{1} = P(x_{1},y_{1},1)$, then $P_{1}+U_{2}=P(x_{2},y_{2},1)$ with $x_{1}x_{2}=a_{1}.$
Hence $(P_{1}+U_{2})\Theta = x_{2}=a_{1}/x_{1}$
 $= x_{1}^{2}(a_{1}/x_{1}) = x_{1}a_{1} = (P_{1}\Theta)(U_{2}\Theta).$

So the homomorphism is established in all cases.

LEMMA 17.3: Θ is surjective for $q \ge 7$.

Proof. Since $P(bx^2, y, 1)\Theta = bx^2 = b$, it suffices to find a point Q on $\mathscr{C}' = V(F(bx^2, y, z))$ where $\mathscr{C} = V(F(x, y, z))$. So \mathscr{C}' has equation $y^2z^4 = (bx^2)^3 + a_2(bx^2)^2z^2 + a_1(bx^2)z^4$.

However, we require Q not on V(xz). But V(z) $\cap \mathscr{C}' = \{U_1\}$ and V(x) $\cap \mathscr{C}' = \{U_1, U_2\}$. If we put y = tx, we see that \mathscr{C}' is also elliptic and so has at least $(\sqrt{q}-1)^2$ points. Since $(\sqrt{q}-1)^2 > 2$ for $q \ge 7$, there exists the required point Q.

LEMMA 17.4: $\mathcal{H} = \mathcal{C} \setminus \ker \Theta$ is a k-arc.

Proof. Let G = ker Θ . Then, from the previous two lemmas, G<C with [C: G] = 2. Then, if PeG, P Θ = 1; if PeK, P Θ = v. Suppose P₁,P₂,P₃ in \mathscr{K} are collinear. So P₁+P₂+P₃ = 0, whence (P₁+P₂+P₃) Θ =0 Θ .

So $(P_1 \Theta)(P_2 \Theta)(P_3 \Theta) = 1$, whence $v^3 = 1$, whence v = 1, a contradiction. This lemma just repeats lemma 17.1 using the homomorphism Θ .

THEOREM 17.5: \mathscr{K} is complete for q \geq 311.

Proof. Let $P_0 \in PG(2,q) \setminus \mathcal{K}$. It must be shown that $\mathcal{K} \cup \{P_0\}$ is not a (k+1)-arc. There are three cases: (a) $P_0 \in \mathcal{C} \setminus \mathcal{K}$, (b) $P_0 = P(x_0, y_0, 1)$, (c) $P_0 = P(1, y_0, 0)$.

Case (a). There are at most four tangents through P_0 with point of contact Q in \mathcal{K} . Since $k = \frac{1}{2}|\mathscr{C}| > \frac{1}{2}(\sqrt{q}-1)^2 > 4$, there exists Q in \mathcal{K} which is not such a point of contact. So $2Q \neq -P_0$ and $Q \neq -(P_0+Q)$. Also $-(P_0+Q) \in \mathcal{K}$, as otherwise $Q \in G = \mathscr{C} \setminus \mathcal{K}$. So P_0, Q , $-(P_0+Q)$ are distinct collinear points of $\mathcal{K} \cup \{P_0\}$.

Case (b). Let C' be the elliptic curve with affine equation

$$y^{2} = v^{3}x^{4} + v^{2}a_{2}x^{2} + va_{1}$$
 (17.2)

Define the following functions on "":

$$U = vx^{2}, \quad Z = xy, \quad A = (y_{0}-Z)/(x_{0}-U),$$

$$B = A^{2}-a_{2}, \quad C = 2AZ-a_{1}-2A^{2}U,$$

$$D = (U-B)^{2} + 4(C+BU - U^{2}).$$

Then there exists a double cover

.

$$\Psi : \mathcal{D} \rightarrow \mathscr{C}'$$

defined by $W^2 = D$; that is, for any point P(x,y,1) of C', there are two points P(x,y,W,1) of \mathcal{D} . Now, let P(x,y,W,1) be a rational point of \mathscr{D} . Then, from the equation for \mathscr{C}' ,

$$x^{2}y^{2} = v^{3}x^{6} + v^{2}a_{2}x^{4} + va_{1}x^{2}$$

whence

$$Z^2 = U^3 + a_2 U^2 + a_1 U$$
 (17.3)

Hence

(1)
$$P = P(U,Z,1) \in \mathcal{K}$$
;
(2) PP_0 has equation y-Z = A(x-U);
(3) PP_0 meets \mathscr{C} is two points other than P whose x-coordinates
satisfy

$$x^{2} - (B-U)x - (C+BU-U^{2}) = 0$$
 (17.4)

The last follows by substitution from (2) in (17.1), for we have

$$\{Z+A(x-U)\}^2 = x^3 + a_2 x^2 + a_1 x.$$

Then, from (17.3),

$$(U^{3} + a_{2}U^{2} + a_{1}U) - (x^{3} + a_{2}x^{2} + a_{1}x) + 2ZA(x - U) + A^{2}(x - U)^{2} = 0.$$

Cancelling x-U gives (17.4).

Now, let $\mathscr{C} \cap PP_{O} = \{P, Q, R\}$. The discriminant of (17.4) is

$$(B-U)^{2} + 4(C+BU-U^{2}) = D = W^{2}$$
.

So Q and R are rational points of \mathscr{C} . Since P,Q,R are collinear (P Θ)(Q Θ)(R Θ) = 1. As P $\epsilon \mathscr{K}$, so P Θ = ν , whence (Q Θ)(R Θ)= ν . So one of Q and R, say Q, is in \mathscr{K} . Hence, if P \neq Q, there are three collinear

points P, P_0, Q of $\mathcal{K} \cup \{P_0\}$.

it remains to examine the condition that P≠Q. There are at most six tangents to \mathscr{C} through P₀ ([6] p.252). So, if P=Q or P=R, there are at most six choices for P, hence 12 choices for (x,y) and 24 choices for P(x,y,W,1) on \mathscr{D} . As $|\mathscr{C}' \cap V(x)| \le 2$ and $|\mathscr{C} \cap V(z)| = 0$, so $|\mathscr{D} \cap V(x)| \le 4$ and $|\mathscr{D} \cap V(z)| = 0$. So we require that \mathscr{D} has at least 24+4+1 = 29 rational points.

By the Hurwitz formula ([5] p.301 or [3] p.215),

$$2g(\mathcal{D}) - 2 = 2 \{ 2g(\mathcal{C}') - 2 \} + \deg E$$
 (17.5)
= deg E.

Here, E is the ramification divisor (cf. §9) and

- 41 -

deg E = # points of ramification = # points with D = 0 = # points such that Q and R have the same x-coordinate.

If $Q = P(x_1, y_1, 1)$ and $R = P(x_1, y_2, 1)$, then $y_2=\pm y_1$; if $y_2 = -y_1$, then Q, R, U_1 are collinear. So either Q=R or Q=-R. If Q = -R, then P = U_1 and this gives at most two points on \mathscr{C}' . If Q=R, then PP₀ is a tangent to \mathscr{C} at Q. Hence there are at most six choices for P and hence at most 12 such points on \mathscr{C}' . Hence $2g(\mathscr{D}) -2 \leq 12 + 2 = 14$, whence $g(\mathscr{D}) \leq 8$. Thus by the corollary to theorem 11.5,

 $|\mathcal{D}| \ge q+1 - 16\sqrt{q}$.

So, when $q+1-16\sqrt{q} \ge 29$, we obtain the desired contradiction; this occurs for $q \ge 311$.

Case (c). This is similar to case (b). Here, among the functions on \mathscr{C} ', one takes A = y_0 .

Notes: (1) The result certainly holds for some but not all k with q < 311.

(2) A similar technique can be applied for q even. Here & is taken in the form

$$(y^{2}+xy)z = x^{3}+a_{1}xz^{2}+a_{0}z^{3}$$
.

Instead of Θ as above, we define Θ : $\mathscr{C} \to K/C_0$ where $C_0 = \{t \in K | T(t) = 0\}$ and $T(t) = t + t^2 + \dots t^{q/2}$; here C_0 in the set of elements of category (= trace) zero. Take $P(x,y,1)\Theta = xC_0$. Then \mathscr{K} is complete for $q \ge 256$.

COROLLARY: In PG(2,q) there exists a complete k-arc with $k=\frac{1}{2}(q+1-t)$ for every t satisfying 16.8 when either (a) q is odd, $q \ge 311$, t is even; or (b) q is even, $q \ge 256$, t is odd.

18. k-ARCS IN PG(2,q).

Let \mathscr{K} be a complete k-arc in PG(2,q); that is, \mathscr{K} has no three points collinear and is not contained in a (k+1)-arc. We define three constants m(2,q), n(2,q), m'(2,q).

$$m(2,q) = \max k = \begin{cases} q+2, q even \\ q+1, q odd, \\ n(2,q) = \min k. \end{cases}$$

If $m(2,q) \neq n(2,q)$, .

m!(2, n) = cocond largest k:

$$m(2,q) = \text{second targest } K$$

if m(2,q) = n(2,q), let m'(2,q) = m(2,q). So, if a k-arc has k > m'(2,q), then it is contained in an m(2,q)-arc. For q odd, every (q+1)-arc is a conic. For q even, the (q+2)-arcs have been classified for $q \le 16$; see [4], [6].

The value of n(2,q) seems to be a difficult problem. By element<u>a</u> ry considerations ([6] p.205).

$$n(2,q) \geq \sqrt{2q}$$
.

Constructions have been given for complete k-arcs with k having the following values (up to an added constant):

$$\frac{1}{2}q$$
, see [6], §9.4;
 $\frac{1}{3}q$, [1];