16. ELLIPTIC CURVES: FUNDAMENTAL ASPECTS.

The theory of elliptic curves over an arbitrary field K offers an appealing mixture of geometric and algebraic arguments. Let \mathscr{C} be a non-singular cubic in $\mathrm{PG}(2, q)$. For the projective classification when $K=G F(q)$, see [6] Chapter 11. Although \mathscr{C} may have no inflexion, up to isomorphism it may be assumed to have one, 0 .

THEOREM 16.1: If $\mathscr{C}^{\prime}, \mathscr{C}^{\prime \prime}$ are cubic curves in $\operatorname{PG}(2, K)$ such that the divisors $\mathscr{C} \cdot \mathscr{C}^{\prime}=\sum_{i=1}^{9} P_{i}$ and $\mathscr{C} \cdot \mathscr{C}^{\prime \prime}={ }_{i=1}^{8}{ }_{1} P_{i}+Q$, then $Q=P_{9}$.

Proof. (Outline) Through $\mathrm{P}_{1}, \ldots, \mathrm{P}_{8}$ there is a pencil \mathscr{F} of cubic curves to which $\mathscr{C}, \mathscr{C}^{\prime}, \mathscr{C}^{\prime \prime}$ belong. Any curve of \mathscr{F} has the form $V(F+\lambda G)$ and so contains $V(F) \cap V(G)$. By Bézout's theorem $|V(F) \cap V(G)|=9$. Hence $Q=P_{9}$.

For a detailed proof, see [3], Chapter 5.
Theorem 16.1 is known as the theorem of the nine associated points. It has numerous corollaries of which we give a variety before the important theorem 16.7.

THEOREM 16.2: Any two inflexions of \mathscr{C} are collinear with a third.

Proof. Let P_{1}, P_{2} be inflexions of \mathscr{C} with corresponding tangents ℓ_{1}, ℓ_{2}. Let $\ell=P_{1} P_{2}$ meet \mathscr{C} again at P_{3}, and let ℓ_{3} be the tangent at P_{3} mecting \mathscr{E} again at Q. Then

$$
\begin{gathered}
\mathscr{C} \cdot \ell_{1}=3 \mathrm{P}_{1}, \mathscr{H} \cdot \ell_{2}=3 \mathrm{P}_{2}, \quad \mathscr{C} \cdot \ell_{3}=2 \mathrm{P}_{3}+Q \\
\mathscr{C} . \ell=\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3} .
\end{gathered}
$$

Hence

$$
\begin{aligned}
\mathscr{C} \cdot \ell_{1} \ell_{2} \ell_{3} & =3 P_{1}+3 P_{2}+2 P_{3}+Q \\
\mathscr{C} \cdot \ell^{3} & =3 P_{1}+3 P_{2}+3 P_{3} .
\end{aligned}
$$

By the previous theorem, $Q=P_{3}$; so P_{3} is an inflexion.

THEOREM 16.3. If P_{1} and Q_{1} are any two points of \mathscr{C}, the crossratio of the four tangents through P_{1} is the same as the crossratio of the four tangents through Q_{1}.

Proof. Let $P_{1} Q_{1}$ meet \mathscr{C} again at R_{1}. Let r be a tangent to through R_{1} with point of contact $R_{2}=R_{3}$. Let $P_{1} P_{2} P_{3}$ be any line through P_{1} with P_{2}, P_{3} on \mathscr{C}. Let $R_{2} P_{2}$ meet \mathscr{C} again at Q_{2} and let $\mathrm{R}_{3} \mathrm{P}_{3}$ meet \mathscr{C} again at Q_{3}. We use the previous theorem to show that Q_{1}, Q_{2}, Q_{3} are collinear.

Write $\quad \ell_{i}=P_{i} R_{i} Q_{i}, \quad i=1,2,3 ;$ let $\quad p=P_{1} P_{2} P_{3}, \quad r=R_{1} R_{2}, \quad q=Q_{1} Q_{2} S$ with S the third point of Q on \mathscr{C}.

Then $\mathscr{C} \cdot \ell_{1} \ell_{2}^{\ell}{ }_{3}={ }_{i=1}^{3}\left(P_{i}+Q_{i}+R_{i}\right)$
$\mathscr{C} . \operatorname{prq}=\sum_{i=1}^{3}\left(P_{i}+R_{i}\right)+Q_{1}+Q_{2}+S$.

Again by theorem $16.1, S=Q_{3}$. When. P_{2} and P_{3} coincide, so do Q_{2} and Q_{3}. So there is an algebraic bijection τ from the pencil \mathscr{F} through P_{1} and the pencil G through Q_{1} in which the tangents correspond. Hence τ is projective and the cross-ratios of the tangents are equal.

THEOREM 16.4. (Pascal's Theorem)

If $P_{1} Q_{2} P_{3} Q_{1} P_{2} Q_{3}$ is a hexagon inscribed in a conic \mathscr{P}, then the intersections of opposite sides, that is R_{1}, R_{2}, R_{3}, are collinear.

Proof. The two sets of three lines

$$
\left.P_{1} Q_{2}\right)\left(P_{3} Q_{1}\right)\left(P_{2} Q_{3}\right) \quad \text { and } \quad\left(Q_{1} P_{2}\right)\left(Q_{3} P_{1}\right)\left(Q_{2} P_{3}\right)
$$

are cubics through the nine points $P_{i}, Q_{i}, R_{i}, i=1,2,3$; there is an irreducible cubic \mathscr{C} in the pencil they determine. Also in the pencil is the cubic consisting of \mathscr{P} and the line $R_{3} R_{2}$. So, by theorem 16.1, this cubic contains the ninth point R_{1}, which cannot lie on S. So $R_{3} R_{2} R_{1}$ is a line.

THEOREM 16.5: Let $\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}$ be the sides of a complete quadr \underline{i} lateral in an affine plane and let C_{i} be the circumcircle of the triangle obtained by deleting ℓ_{i}. Then $C_{1} \cap C_{2} \cap C_{3} \cap C_{4}=\{P\}$.

Proof.

There is a pencil of cubics through the vertices of the quadrilateral and the two circular points at infinity. The four cubics $C_{i}+l_{i}, i=1,2,3,4$, contain these eight points and therefore the ninth associated point P. As each ℓ_{i} contains three of the eight initial points, it does not contain P. Hence P lies on each C_{i}.

Now we show that an elliptic curve \mathscr{C} is an abelian group. As above we take 0 as an inflexion.

Definition: For P, Q on \mathscr{C}, let $\mathscr{E} . P Q=P+Q+R$ and let $\mathscr{C} . O R=0+R+S$; define $S=P+Q$.

LEMMA 16.6: (i) 0 n \mathscr{C}, the points $0, \mathrm{P},-\mathrm{P}$ are collinear.
(ii) P, Q, R are collinear on \mathscr{C} if and only if $P+Q+R=0$.

THEOREM 16.7: Under the additive operation, \mathscr{C} is an abelian group.

Proof. The only non-trivial property to verify is the associative law.

Apart from \mathscr{C}, consider the two cubics consisting of three lines given by the rows and columns of the array

$$
\begin{array}{ccc}
P_{1} & P_{2} & -P_{1}-P_{2} \\
P_{2}+P_{3} & P_{2}-P_{3} & 0 \\
X & P_{3} & P_{1}+P_{2}
\end{array}
$$

Again, by theorem 16.1, X lies on both these cubics. So, $X=-P_{1}-\left(P_{2}+P_{3}\right)=-\left(P_{1}+P_{2}\right)-P_{3}$; hence, if Y is the third point of \mathscr{C} on $0 x$, then

$$
Y=P_{1}+\left(P_{2}+P_{3}\right)=\left(P_{1}+P_{2}\right)+P_{3} .
$$

Note: \mathscr{C} has been drawn as $y^{2}=(x-a)(x-b)(x-c)$ with $a<b<c$, but the point of inflexion natural to this picture is at infinity.

THEOREM 16.8: (Waterhouse [21]). For any integer $\mathrm{N}=\mathrm{q}+1-\mathrm{t}$ with $|t| \leq 2 \sqrt{q}$, there exists an elliptic cubic in $P G(2, q), q=p^{h}$, with precisely N rational points if and only if one of the following conditions on t and q is satisfied:
(i) $(t, p)=1$
(ii) $\mathrm{t}=0$
h odd or $\mathrm{p} \not \equiv 1(\bmod 4)$
(iii) $\mathrm{t}= \pm \sqrt{\mathrm{q}}$
h even and $\mathrm{p} \not \equiv 1(\bmod 3)$
(iv) $\mathrm{t}= \pm 2 \sqrt{\mathrm{q}}$
h even
(v) $\mathrm{t}= \pm \sqrt{2 \mathrm{q}}$
h odd and $p=2$
(vi) $\mathrm{t}= \pm \sqrt{3 \mathrm{q}}$
h odd and $p=3$

COROLLARY: $N_{q}(1)=\left\{\begin{array}{l}q+[2 \sqrt{q}] \text { if } p \text { divides }[2 \sqrt{q}], \\ h \text { is odd and } h \geq 3 ; \\ q+1+[2 \sqrt{q}] \text { otherwise. }\end{array}\right.$

