16. ELLIPTIC CURVES: FUNDAMENTAL ASPECTS.

The theory of elliptic curves over an arbitrary field K offers an appealing mixture of geometric and algebraic arguments. Let &be a non-singular cubic in PG(2,q). For the projective classification when K = GF(q), see [6] Chapter 11. Although &be may have no inflexion, up to isomorphism it may be assumed to have one, 0.

THEOREM 16.1: If \mathscr{C} , \mathscr{C}'' are cubic curves in PG(2,K) such that the divisors \mathscr{C} . $\mathscr{C}' = \sum_{i=1}^{9} P_i$ and $\mathscr{C} \cdot \mathscr{C}'' = \sum_{i=1}^{8} P_i + Q$, then $Q = P_9$.

Proof. (Outline) Through P_1, \ldots, P_8 there is a pencil \mathscr{F} of cubic curves to which \mathscr{C} , \mathscr{C}' , \mathscr{C}'' belong. Any curve of \mathscr{F} has the form $V(F+\lambda G)$ and so contains $V(F) \cap V(G)$. By Bézout's theorem $|V(F) \cap V(G)| = 9$.

Hence $Q = P_{\mathbf{q}}$.

For a detailed proof, see [3], Chapter 5.

Theorem 16.1 is known as the theorem of the <u>nine associated points</u>. It has numerous corollaries of which we give a variety before the important theorem 16.7.

THEOREM 16.2: Any two inflexions of \mathscr{C} are collinear with a third. Proof. Let P_1, P_2 be inflexions of \mathscr{C} with corresponding tangents l_1, l_2 . Let $l = P_1P_2$ meet \mathscr{C} again at P_3 , and let l_3 be the tangent at P_3 meeting \mathscr{C} again at Q. Then

Hence

$$\mathscr{C.l}^{3} = 3P_{1} + 3P_{2} + 2P_{3} + Q$$

$$\mathscr{C.l}^{3} = 3P_{1} + 3P_{2} + 3P_{3} .$$

By the previous theorem, $Q = P_3$; so P_3 is an inflexion.

THEOREM 16.3. If P_1 and Q_1 are any two points of \mathscr{C} , the cross-ratio of the four tangents through P_1 is the same as the cross-ratio of the four tangents through Q_1 .

Proof. Let P_1Q_1 meet & again at R_1 . Let r be a tangent to through R_1 with point of contact $R_2=R_3$. Let $P_1 P_2 P_3$ be any line through P_1 with P_2, P_3 on \mathscr{C} . Let R_2P_2 meet \mathscr{C} again at Q_2 and let R_3P_3 meet \mathscr{C} again at Q_3 . We use the previous theorem to show that

 Q_1, Q_2, Q_3 are collinear.

Write
$$l_i = P_i R_i Q_i$$
, i=1,2,3; let $p=P_1 P_2 P_3$, $r=R_1 R_2$, $q=Q_1 Q_2 S$
with S the third point of O on \mathscr{C} .

Then $\mathscr{C.l}_{1} \mathscr{L}_{2} \mathscr{L}_{3} = \sum_{i=1}^{3} (P_{i} + Q_{i} + R_{i})$ $\mathscr{C.} prq = \sum_{i=1}^{3} (P_{i} + R_{i}) + Q_{1} + Q_{2} + S.$

Again by theorem 16.1, $S = Q_3$. When P_2 and P_3 coincide, so do Q_2 and Q_3 . So there is an algebraic bijection τ from the pencil \mathscr{F} through P_1 and the pencil G through Q_1 in which the tangents correspond. Hence τ is projective and the cross-ratios of the tangents are equal.

THEOREM 16.4. (Pascal's Theorem)

If $P_1 Q_2 P_3 Q_1 P_2 Q_3$ is a hexagon inscribed in a conic \mathscr{P} , then the intersections of opposite sides, that is R_1, R_2, R_3 , are collinear.

Proof. The two sets of three lines

 $P_1Q_2(P_3Q_1)(P_2Q_3)$ and $(Q_1P_2)(Q_3P_1)(Q_2P_3)$

are cubics through the nine points P_1, Q_1, R_1 , i=1,2,3; there is an irreducible cubic \mathscr{C} in the pencil they determine. Also in the pencil is the cubic consisting of \mathscr{P} and the line R_3R_2 . So, by theorem 16.1, this cubic contains the ninth point R_1 , which cannot lie on \mathscr{P} . So $R_3R_2R_1$ is a line.

THEOREM 16.5: Let $\ell_1, \ell_2, \ell_3, \ell_4$ be the sides of a complete quadrinate of the lateral in an affine plane and let C_i be the circumcircle of the triangle obtained by deleting ℓ_i . Then $C_1 \cap C_2 \cap C_3 \cap C_4 = \{P\}$.

Proof.

There is a pencil of cubics through the vertices of the quadrilateral and the two circular points at infinity. The four cubics $C_i + l_i$, i=1,2,3,4, contain these eight points and therefore the ninth associated point P. As each l_i contains three of the eight initial points, it does not contain P. Hence P lies on each C_i .

Now we show that an elliptic curve & is an abelian group. As above we take 0 as an inflexion.

Definition: For P,Q on C, let C.PQ=P+Q+R and let C.OR=O+R+S; define S = P+Q.

LEMMA 16.6: (i) On *C*, the points 0,P,-P are collinear.

(ii) P,Q,R are collinear on \mathscr{C} if and only if P+Q+R=O.

THEOREM 16.7: Under the additive operation, & is an abelian group.

Proof. The only non-trivial property to verify is the associative law.

Apart from $\mathscr C$, consider the two cubics consisting of three lines given by the rows and columns of the array

Again, by theorem 16.1, X lies on both these cubics. So, $X = -P_1 - (P_2 + P_3) = -(P_1 + P_2) - P_3$; hence, if Y is the third point of \mathscr{C} on OX, then

$$Y = P_1 + (P_2 + P_3) = (P_1 + P_2) + P_3.$$

Note: \mathscr{C} has been drawn as $y^2 = (x-a)(x-b)(x-c)$ with a < b < c, but the point of inflexion natural to this picture is at infinity.

THEOREM 16.8: (Waterhouse [21]). For any integer N=q+1-t with $|t| \leq 2\sqrt{q}$, there exists an elliptic cubic in PG(2,q), q= p^h, with precisely N rational points if and only if one of the following conditions on t and q is satisfied:

(i)
$$(t,p) = 1$$

(ii) $t = 0$
h odd or $p \not\equiv 1 \pmod{4}$
(iii) $t = \pm \sqrt{q}$
(iv) $t = \pm 2\sqrt{q}$
(v) $t = \pm \sqrt{2q}$
(vi) $t = \pm \sqrt{3q}$
h odd and $p = 3$

COROLLARY:
$$N_q(1) = \begin{pmatrix} q + [2\sqrt{q}] & \text{if } p & \text{divides } [2\sqrt{q}], \\ h & \text{is odd and } h \ge 3; \\ q+1+[2\sqrt{q}] & \text{otherwise.} \end{cases}$$