Notes: (1) If $p \ge 2g-1$, then the canonical system is classical. (2) This gives a better bound than $S_g = q+1 + g[2\sqrt{q}]$ when $|\sqrt{q}-g| < \sqrt{g+1}$.

THEOREM 11.7: If X is non-singular and not hyperelliptic, with $\frac{1}{2}(p+3) \ge g \ge 3$, then

$$N \leq (\frac{2g-3}{g-2})q + g(q-2).$$

Note : This is better than S_g when

$$|\sqrt{q} - \frac{g(g-2)}{g-1}| < \{(g-2)(g^2-g-1)\}^{\frac{1}{2}}/(g-1).$$

THEOREM 11.8: If X is non-singular with classical canonical system and a K-rational point, then

$$N \leq (g-n-2)(g-1)+(2g-n-2)(q+g-n-1)(g-n-1)^{-1}$$

for $0 \leq n \leq g - 1$.

12. ELLIPTIC CURVES

The number of elements of a γ^n_d on a curve of genus g with n+1 coincident points, that is \mathscr{D} -Weierstrass points, is (n+1)(d+ng-n). When g=1, this number is d(n+1). If \mathcal{D} consists of all curves of degree r and \mathscr{C} is a plane non-singular cubic, then $n=\frac{1}{2}r(r+3)$, d = 3r. The condition for a γ_d^n to exist is, from Theorem 10.6, that $d \ge n/(n+1)+n$. So this only allows γ_3^2 and γ_6^5 , whence d=n+1 and the number of \mathscr{D} -Weierstrass points is (n+1)². From the Riemann-Roch theorem, as every series is non-special on & , a complete

series γ_d^n satisfies d = n+1.

For n=2, the \mathscr{D} -Weierstrass points are the 9 inflexions. For n=5, they are the 9 inflexions (repeated) plus the 27 sextactic points (6-fold contact points of conics = points of contact of tangents through the inflexions).

The above holds for the complex numbers; for finite fields, the result is the following.

THEOREM 12.1: (i) If $p \not\mid (n+1)$, the \mathscr{D} -W-points have multiplicity one.

(ii) If
$$p^k|(n+1)$$
, $p^{k+1}(n+1)$ with $k \ge 1$, then one of the following holds:

(a) \mathscr{C} is ordinary and there are $(n+1)^2/p^k \mathscr{D} - W$ -

- 25 -

points with multiplicity p^k;

(b) \mathscr{C} is supersingular and there are $(n+1)^2/p^{2k}$ \mathscr{D} -W-points with multiplicity p^{2k} .

THEOREM 12.2: If 'C is elliptic with origin 0 and \mathscr{D} is a complete linear system on C, then

(i) D is classical;

(ii) \mathscr{D} is Frobenius classical except perhaps when $\mathscr{D} = |(\sqrt{q}+1)0|$; (iii) $|(\sqrt{q}+1)0|$ is Frobenius classical if and only if N< $(\sqrt{q}+1)^2$.

13. HYPERELLIPTIC CURVES

As in §5, if $p \neq 2$, then \mathscr{C} has homogeneous equation $y^2 z^{d-2} = z^d f(x/z)$ with $g = \left[\frac{1}{2}(d-1)\right]$. Let g > 1 and let P_1, \ldots, P_n be the ramification points of the double cover (= double points of the γ_2^1 on \mathscr{C});