Notes: (1) If $\mathrm{p} \geq 2 \mathrm{~g}-1$, then the canonical system is classical.
(2) This gives a better bound than $\mathrm{S}_{\mathrm{g}}=\mathrm{q}+1+\mathrm{g}[2 \sqrt{\mathrm{q}}]$ when $|\sqrt{q}-g|<\sqrt{g+1}$.

THEOREM 11.7: If X is non-singular and not hyperelliptic, with $\frac{1}{2}(p+3) \geq g \geq 3$, then

$$
\mathrm{N} \leq\left(\frac{2 \mathrm{~g}-3}{\mathrm{~g}-2}\right) \mathrm{q}+\mathrm{g}(\mathrm{q}-2) .
$$

Note : This is better than S_{g} when

$$
\left|\sqrt{q}-\frac{g(g-2)}{g-1}\right|<\left\{(g-2)\left(g^{2}-g-1\right)\right\}^{\frac{1}{2}} /(g-1) .
$$

THEOREM 11.8: If X is non-singular with classical canonical system and a K-rational point, then

$$
N \leq(g-n-2)(g-1)+(2 g-n-2)(q+g-n-1)(g-n-1)^{-1}
$$

for $0 \leq n \leq g-1$.

12. ELLIPTIC CURVES

The number of elements of $a \gamma_{d}^{n}$ on a curve of genus g with $n+1$ coincident points, that is \mathscr{D}-Weierstrass points, is $(n+1)(d+n g-n)$. When $g=1$, this number is $d(n+1)$. If \mathscr{D} consists of all curves of degree r and \mathscr{C} is a plane non-singular cubic, then $n=\frac{1}{2} r(r+3)$, $d=3 r$. The condition for $a \gamma_{d}^{n}$ to exist is, from Theorem 10.6, that $d \geq n /(n+1)+n$. So this only allows γ_{3}^{2} and γ_{6}^{5}, whence $d=n+1$ and the number of \mathscr{D}-Weierstrass points is $(n+1)^{2}$. From the RiemannRoch theorem, as every series is non-special on \mathscr{C}, a complete
series γ_{d}^{n} satisfies $d=n+1$.
For $n=2$, the \mathscr{D}-Weierstrass points are the 9 inflexions. For $n=5$, they are the 9 inflexions (repeated) plus the 27 sextactic points (6-fold contact points of conics $=$ points of contact of tangents through the inflexions).

The above holds for the complex numbers; for finite fields, the result is the following.

THEOREM 12.1: (i) If $\mathrm{p} \dot{Y}(\mathrm{n}+1)$, the \mathscr{D}-W-points have multiplicity one .
(ii) If $p^{k} \mid(n+1), p^{k+1} \nmid(n+1)$ with $k \geq 1$, then one of the following holds:
(a) \mathscr{C} is ordinary and there are $(n+1)^{2} / \mathrm{p}^{\mathrm{k}} \mathscr{D}-W-$ points with multiplicity p^{k};
(b) \mathscr{C} is supersingular and there are $(\mathrm{n}+1)^{2} / \mathrm{p}^{2 \mathrm{k}}$ $\mathscr{D}-\mathrm{W}$-points with multiplicity $\mathrm{p}^{2 \mathrm{k}}$.

THEOREM 12.2: If \mathscr{C} is elliptic with origin 0 and \mathscr{D} is a complete linear system on \mathscr{C}, then
(i) \mathscr{D} is classical;
(ii) \mathscr{D} is Frobenius classical except perhaps when $\mathscr{D}=|(\sqrt{q}+1) 0|$;
(iii) $|(\sqrt{q}+1) 0|$ is Frobenius classical if and only if $N<(\sqrt{q}+1)^{2}$.

13. HYPERELLIPTIC CURVES

As in $\S 5$, if $\mathrm{p} \neq 2$, then \mathscr{C} has homogeneous equation $\mathrm{y}^{2} \mathrm{z}^{\mathrm{d}-2}=\mathrm{z}^{\mathrm{d}} \mathrm{f}(\mathrm{x} / \mathrm{z})$ with $g=\left[\frac{1}{2}(d-1)\right]$. Let $g>1$ and let P_{1}, \ldots, P_{n} be the ramification points of the double cover ($=$ double points of the r_{2}^{1} on \mathscr{C});

