THEOREM 10.6: The generic curve of genus g has a $\gamma^{\,n}_{\,d}$ if and only if

$$d \ge \frac{n}{n+1} g+n$$
.

11. THE ESSENTIAL CONSTRUCTION

Given the curve $\mathscr C$ with its linear system of hyperplanes and with N the number of its GF(q)-rational points, consider the set $\mathscr F=\{P|P\phi\ c\ H_p\}$; compare §4 for the plane. So $Pe\mathscr F \Longleftrightarrow$

$$\det \begin{bmatrix} f_{o}^{q} & \dots & f_{n}^{q} \\ D_{t}^{(j_{o})} f_{o} & \dots & D_{t}^{(j_{o})} f_{n} \\ \vdots & & \vdots \\ D_{t}^{(j_{n-1})} f_{o} & \dots & D_{t}^{(j_{n-1})} f_{n} \end{bmatrix} = 0$$

To give an outline first, take the classical case in which j_i =i. So, let

$$\begin{bmatrix} f_o^q & \dots & f_n^q \\ f_o & \dots & f_n \\ \vdots & \vdots & \vdots \\ D^{(n-1)} f_o \dots & D^{(n-1)} f_n \end{bmatrix}$$

If $W' \neq 0$, then W is a function of degree

$$n(n-1)(g-1) + d(q+n)$$

and the rational points are n-fold zeros of W'. Hence

$$N < (n-1)(g-1) + d(q+n)/n$$
.

Since \mathscr{D} is complete, $d \leq n+g$; hence

$$N \le (n-1)(g-1)+(n+g)(q+n)/n$$

= q + 1 + g(n +q/n).

This has minimum value for $n = \sqrt{q}$, in which case

$$N < q + 1 + 2g\sqrt{q}$$

More carefully, let

$$W_{t}(v,f) = \det \begin{bmatrix} f_{0}^{q} & \dots & f_{n}^{q} \\ D_{t}^{(v_{0})} f_{0} & \dots & D_{t}^{(v_{0})} f_{n} \\ \vdots & \vdots & \vdots \\ D_{t}^{(v_{n-1})} f_{0} & D_{t}^{(v_{n-1})} f_{n} \end{bmatrix}$$

where t is a separating variable on $\mathscr C$ and $v=(v_0,\ldots,v_{n-1})$ with $0 \le v_0 < \ldots < v_{n-1}$.

THEOREM 11.1: (i) There exist integers v_0, \dots, v_{n-1} , such that $0 \le v_0 < \dots < v_{n-1}$ and $W_t(v,f) \ne 0$.

(ii) If v_0, \ldots, v_{n-1} are chosen successively so that v_i is as small as possible to ensure the linear independence of $D^{(v_0)}f, \ldots, D^{(v_i)}f$, then there exists an integer n_0 with $0 \le n_0 \le n$ such that

$$v_i = \varepsilon_i \quad \text{for } i < n_0,$$

$$v_i = \varepsilon_{i+1} \quad \text{for } i \ge n_0,$$

where $\varepsilon_0, \ldots, \varepsilon_n$ are the \mathcal{D} -orders; that is

$$(v_0, \dots, v_{n-1}) = (\varepsilon_0, \dots, \varepsilon_{n_0-1}, \varepsilon_{n_0+1}, \dots, \varepsilon_n).$$

 $(iii) \ \ If \ \ v'=(v'_0,\dots,v'_{n-1}) \ \ and \ \ W_t(v',f) \neq 0, \ then$ $v_i \leq v'_i \ \ for \ all \ i.$

The integers v_i are the <u>Frobenius</u> $\mathscr{D}\text{-}orders$. They and S depend only on \mathscr{D} , where

$$S = \operatorname{div}(W_{t}(v,f)) + \operatorname{div}(\operatorname{dt}) \Sigma v_{i} + (q+n)E,$$

$$\operatorname{deg} S = (2g-2) \Sigma v_{i} + (q+n)d.$$

THEOREM 11.2: If $v \le q$ is a Frobenius \mathscr{D} -order, then each nonnegative integer u such that $\binom{v}{u} \ne 0 \pmod{p}$ is a Frobenius \mathscr{D} -order. In particular, if $v_i < p$, then $v_j = j$ for $j \le i$.

THEOREM 11.3: (i) If P is a GF(q)-rational point of $\mathscr C$, then $m_p(S) \geq {}_i \underline{\Sigma}_1 (j_i - v_{i-1}),$

with equality if and only if det C ≠ 0 (mod p), where

$$C = (c_{ir}) \text{ and } c_{ir} = (v_{r-1}^{j_i}), i, r=1,...,n.$$

(ii) If Pe% but not GF(q)-rational, then

$$m_p(S) \ge \sum_{i=1}^{n-1} (j_i - v_i).$$

If det $C' \equiv 0 \pmod{p}$, the inequality is strict, where

$$C' = (c'_{ir})$$
 and $c'_{ir} = ({}^{j_{i-1}}_{v_{r-1}})$, $i, r=1,...,n$.

THEOREM 11.4: Let P be a GF(q)-rational point of $\mathscr C$. If $0 \le m_0 < \dots < m_{n-1}$ and det C" $\ne 0$ (mod p), then $v_i \le m_i$ for all i, where C" = (c_{ir}'') and

$$c_{ir}'' = {j_{i}^{-j}}_{m_{r-1}}$$
, $i, r = 1,...,n$.

COROLLARY 1: (i) If P is a GF(q)-rational point of $\mathscr C$, then $v_i \leq j_{i+1} - j_i \text{ for } i=0,\dots,n-1 \text{ and } m_p(S) \geq nj_1.$

(ii) If (a)
$$\sum_{1 \leq i \leq r \leq n}^{\sum} (j_r - j_i)/(r - i) \not\equiv 0 \pmod{p}$$
,

or (b) $j_i \neq j_r \pmod{p}$ for $i \neq r$, or (c) $p \geq d$, then $v_i = i$ for $i = 0, \dots, n-1$ and $m_p(S) = n + \sum_{i=1}^n (j_i - i)$.

COROLLARY 2: If $v_i \neq \epsilon_i$ for some i < n, then each GF(q)-rational

point of $\mathscr C$ a $\mathscr D$ -Weierstrass point.

COROLLARY 3: If $\mathscr C$ has some GF(q)-rational point, then $v_{i} \le i + d - n$, all i. If also $\mathscr D$ is complete, then $v_i = i$ for i < d - 2g.

THEOREM 11.5: (THE MAIN RESULT) Let X be an irreducible, non-singular, projective, algebraic curve of genus g defined over K = GF(q) with N rational points. If there exists on X a linear system γ_d^n without base points, and with order sequence $\epsilon_0, \ldots, \epsilon_n$ and Frobenius order sequence v_0, \ldots, v_{n-1} , then

$$N \le \frac{1}{n} \{ (2g-2) \sum_{i=0}^{n-1} v_i + (q+n)d \}.$$

If also $v_i = \epsilon_i$ for i < n, then

$$\varepsilon_{n}^{N} + \sum_{p} a_{p} + \sum_{p} b_{p} \le (2g-2) \quad \sum_{p} \varepsilon_{i} + (q+n)d,$$

where P is a K-rational point of X, where P' ϵ X but not K-rational and where

$$a_{p} = \sum_{i \leq n} (j_{i} - \epsilon_{i}), \quad b_{p} = \sum_{i \leq n} (j_{i} - \epsilon_{i})$$

with j_0, \ldots, j_n the (\mathcal{D}, P) -orders.

COROLLARY: $|N-(q+1)| \leq 2g\sqrt{q}$.

THEOREM 11.6: If X is non-singular, $p \ge g \ge 3$ with $q = p^h$, and the canonical system is classical, then

$$N \leq 2q + g(g-1)$$
.

Notes: (1) If $p \ge 2g-1$, then the canonical system is classical.

(2) This gives a better bound than $S_g = q+1 + g[2\sqrt{q}]$ when $|\sqrt{q}-g| < \sqrt{g+1}$.

THEOREM 11.7: If X is non-singular and not hyperelliptic, with $\frac{1}{2}(p+3) \ge g \ge 3$, then

$$N \leq \left(\frac{2g-3}{g-2}\right)q + g(q-2).$$

Note: This is better than S_g when

$$|\sqrt{q} - \frac{g(g-2)}{g-1}| < \{(g-2)(g^2-g-1)\}^{\frac{1}{2}}/(g-1).$$

THEOREM 11.8: If X is non-singular with classical canonical system and a K-rational point, then

$$N \le (g-n-2)(g-1)+(2g-n-2)(q+g-n-1)(g-n-1)^{-1}$$

for $0 \le n \le g - 1$.

12. ELLIPTIC CURVES

The number of elements of a γ_d^n on a curve of genus g with n+1 coincident points, that is $\mathscr{D}\text{-Weierstrass}$ points, is (n+1)(d+ng-n). When g=1, this number is d(n+1). If \mathscr{D} consists of all curves of degree r and \mathscr{C} is a plane non-singular cubic, then $n=\frac{1}{2}r(r+3)$, d=3r. The condition for a γ_d^n to exist is, from Theorem 10.6, that $d\geq n/(n+1)+n$. So this only allows γ_3^2 and γ_6^5 , whence d=n+1 and the number of $\mathscr{D}\text{-Weierstrass}$ points is $(n+1)^2$. From the Riemann-Roch theorem, as every series is non-special on \mathscr{C} , a complete