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I. Introduction

It is a basic result of ring theory that the set of endomorphisms of an abelian group is a
ring under function addition and composition and furthermore every ring is isomorphic to a
subring of a ring of this type. If the group is not abelian then the set of endomorphisms is
no longer closed under addition. This leads one to the study of near-rings. It is the purpose
of this paper to present a survey of some of the more recent results in the area of near-rings
of group mappings. We start with some basic definitions and concepts to be used
throughout the paper. For further details about these concepts and other results in near-ring
theory we refer the rea:ier to the books of Meldrum, [14] and Pilz, [17].

We recall that a pear-ring N := (N,+,) is a set N with binary operations of addition +
and multplication « such that
(i) (N,+)1is a group (not necessarily abelian) with neutral element 0;

(i) (N,)isa semigroup;
(iii) (a+b)c =ac + bc, Va,bc € N.

More precisely we have defined a right near-ring. Using
(iii)' a(b+c)=ab + ac, Va,b,ce N
one gets a left near-ring. Henceforth we consider only right near-rings and refer to them as
"near-rings". Examples of near-rings are abundant. They arise in a natural manner when

one deals with "non-linear” mappings.

Examples: Let (G,+) be a group with neutral element 0, let T be a topological group, V a
vector space and R a commutative ring. With respect to function addition, +, and function

compositon, -, the following are near-rings:
(@) M(@G) :={f:G - G);
(b) My(G) := {fe M(G) | f(0) =0});
(€) M, (T) = {f e M(T) I fis continuous on T};
(d) M(V):={fe M(V)Ifisan affine map on V};
(e) R[x]:={flfisa polynomial over R in a single indeterminant, x].

Further every ring is a near-ring and if we define * on any group (G,+) by a#b = a,
a,be G then we get a near-ring (G,+,%), i.e., every group can be made into a near-ring.



A near-ring N is said to be zero-symmetricifao=0a=0 Vae N. A near-ring N is a
near-ring with identity if 3i € N such thati-a = a-i =2, Va € N. In the sequel all near-
rings will be zero-symmetric with idendty.

Let G be a group, End G the monoid of endomorphisms of G and let S < End G be
any semigroup of endomorphisms of G such that the zero map and identity map are in S.
We discuss two ways of associating near-rings with the pair (G,S).

Distributivelv generated near-rings, Let dg S denote the subgroup of M(G) generated by S.

n
Thusdg S ={f= Z + 0,10, € S). Itis straightforward to verify that dg S is a near-ring,

i=1

zero-symmetric and with idendty. We call dg S the pear-ring distributively generated by S.

Centralizer near-rings, Let Mq(G) = {f € M(G) | fo = of, Vo € S}. Since S contains the
zero map we see that M(G) is a zero-symmetric near-ring with identity. We cail Mg(G) the
i -1 i v

Our main focus in the remainder of this paper will be on various centralizer near-rings
although distributively generated near-rings will reappear.

A pear-field is a near-ring N with the property that (N* := N - (0},") is a group.
Historically near-fields were the first class of near-rings investigated. In 1905, L.E.
Dickson gave the first example of a near-field which is not a field. In 1936, H. Zassenhaus
determined all finite fields. He found that, except for seven isomorphism types, all finite
near-fields can be constructed by a method going back to Dickson.

Subnear-rings and homomorphisms are defined in the usual manner. The ideals of a
near-ring N are defined as kernels of near-ring homomorphisms. This gives rise to the
internal characterization that a subset I of a near-ring N is an ideal of N if

(i) (1,+) is a normal subgroup of (N,+);

(i) Vae I, Vome N, n(a+m) -nm e [;

(i) Vae I, Vne N,ane L

A subset A of N satisfying (i) and (ii) of the above def nition is called a Jeft ideal of N
and a subgroup (B,+) of (N,+) is an N-subgroupifnbe B, Vne N, Vbe B.

We define the ], radical of a near-ring N as the intersection of all ideals of N which are
maximal as N-subgroups and we denote this radical by J,(N). When N is a ring the J,
radical corresponds to the Jacobson radical of the ring.

A near-ring N is simple when the only ideals of N are (0} and N. A near-ring is 2-
semisimple when J,(N) = {0}. When N is finite, J,(N) is the intersection of all maximal
ideals of N and N is 2-semisimple if and only if N is the direct sum of simple near-rings.

The interest in centralizer near-rings stems from the following result which shows that
such near-rings are general in the sense that every near-ring (as usual, zero-symmetric with
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identity) arises as a centralizer near-ring.

Theorem I.1. Let N be a near-ring. Then there exists a group G and a semigroup S of
endomorphisms of G such that N = Mg(G).

Proof. For each a € N the map B,: N — N defined by B,(x) = xa Vx € N is an
endomorphism of (N,+). Then, for S = (B, |2 € N}, one finds N = Mg(N).

Therefore, since Mg(G) is as general as possible, in order to obtain specific structural
results, one must put some restrictions on the pair (G,S). In the next section we indicate

structural results for certain choices of (G,S).

. Structure of the centralizer near-ring Mg(G)

When S is a group of automorphisms of G one can make use of the theory of groups
acting on sets. This situation has received a great deal of attenton. Hence we first consider
(G,A) where A is group of automorphisms of G with zero adjoined.

Recall that in this situation, for each a € G, we have a subgroup st(a) := {ac € Al
o(a)=2}, the A-stabilizer of a. Also for a € G, the orbit Aa of a is defined by Aa := [a(a) |
o € A}. The next result, due to G. Betsch and known as Betsch's Lemma is fundamental
to the study of M, (G).

Lemma IL1, Let A be a group of automorphisms of the group G and let x,y € G. There
exists a function f € M 4(G) such that f(x) = y if and only if st(x) < st(y).

When G is finite several definitive structural results can be given.

Theorem 11,2, [10] Let G be a finite group and A an automorphism group of G.
1. The following are equivalent:
a) M,(G) is a near-field;
b) A acts transitively on G¥* =G - {0);
c) G*is a single orbit under the action of A on G.
2. M,(G) is a simple near-ring if and only if all A-stabilizers of non-zero elements of G

are A-conjugate, i.e., for a,b € G* there exists Y€ A such that st(a) = y st(b)y 1.
3. M4(G) is 2-semisimple if and only if all A-stabilizers of elements in G* are maximal,

ie., for a,b € G*, st(a) < st(b) implies st(a) = st(b).

In particular, if A is a group of fixed point free automorphisms (only the identity of A
has more than one fixed point) then st(a) = {id) for each a € G* so in this case M (G) is
simple.

Much more is known. When G is finite and M, (G) is not 2-semisimple the J, radical




We now consider the case in which G is an infinite group. Recall that a near-ring N is
regular if for every a € N, a = aba for some b € N. In [15], Meldrum and Oswald obtain a
very nice characterization for regular centralizer near-rings.

Theorem 1.3, [15] Let A be a group of automorphisms of a group G. The near-ring
M4 (G) is regular if and only if for a,b € G¥*, st(a) C st(b) implies st(a) = st(b).

We remark that in the finite case regularity coincides with 2-semisimple. Further, if A
is fixed point free then M, (G) is regular. If the pair (G,A) satisfies the condition of
Theorem II.3 then we say (G.A) is regular.

When G is infinite, it seems to be a rather difficult problem to determine in general
whether or not M,(G) is a simple near-ring. If A = {0, id} (recall the groups of
automorphisms have zero adjoined) then it is a classical result of Berman and Silverman
(see [14] or [17]) that Mp(G) is a simple near-ring. The investigation of the general
situation was initiated by Meldrum and Oswald [15] and continued in [16] and [2]. When
dealing with regular pairs, Meldrum and Zeller {16] showed that it suffices to restrict A to
be fixed point free. They prove the following result

A
Theorem 11, 4. [16] If (G,¥) is regular and the stabilizers in A form a single conjugacy
class then there exists a subgroup H of G and a fixed point free group of automorphisms,

B, of H such that Mg(H) = M, (G).

Thus one focuses on fixed point free automorphism groups A. Let {w) 1A € A} bea
complete set of A-orbit representatives in G and define forv e G,
Ay={Ae AlAw; +v g Awy ).

Lemma II.5. [16] Let A be fixed point free on G. If there exists v € G* such that Al =
IAl, then M, (G) is a simple near-ring.

Using this result Meldrum and Zeller then prove

Theorem T1.6, [16] If A isfixed point free en G and Al < IGl then M, (G) is a simple near-
Ting.

Given a function f € M4(G), define the rank of {, rk(f), to be the cardinality of the set
of A-orbits in the range of f. For a nonempty subset B of G, define the rank of B, rk(B), to
be the cardinality of the set of A-orbits in G which intersect B nontrivially. For each

cardinal A/, define Ry = {f € M4(G) ! 1k(f) < N}. It was proven by Meldrum and
Zeller [16] that these sets R, are the only candidates for ideals in M, (G).
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Theorem J1.7, [16] Let A be fixed point free on G, If I 1s an ideal of M (G) then I = R for

some ordinal c.
This result was recendy improved.

[heorem J1.8. [2] Let A be fixed point free on G. Then MA(G) has at most one nontrivial
ideal I. Specifically, I = {f € M,(G) | rk(f) <!Al} is the only possible nontrivial ideal of
M4 (G).

In [2] several conditons on the pair (G,A) are given which force M, (G) to be a simple
near-ring. Moreover it is shown that if a nonsimple near-ring M4 (G) exists then A and G
have rather unusual properties. But that is where the matter now stands. It remains an open

queston if M, (G) is simple.
Question: If A is fixed point free on G, is M4(G) a simple near-ring?

We leave the case of automorphisms and return to the situation in which S is a monoid
of endomorphisms with zero. We discuss a partcular situation.

Defiridon I1.8, [12] A semigroup S of endomorphusms of a group G 1s fixed point fre g if

(2) M Keroa = {0};
ae S

(b) VBe S,KerB=Kerp2=..
(c)y Vo, € S, Vae G, if aa=Pa=0 then o = .

It is clear that if S is a group of automorphisms then this concept agrees with the

previous use of fixed point free.

Theorem 11,10, [12] Let N be a finite near-ring. Then N is 2-semisimple near-ring with its
simple summands being non-rings or fields if and only if N = M¢(G) for some finite group
G and S a semigroup of fixed point free endomorphisms of G.

If S is a fixed point free semigroup of endomorphisms of a finite group G then Sis a
completely regular inverse semigroup, [12]. Thus the previous theorem suggests a study of
near-rings of the form Mg(G) where S is a completely regular inverse semigroup. In [12] it
was determined for finite groups when such a near-ring is 2-semisimple. There are also
other isolated results on the structure of Mg(G) when S has certain properties (see e.g.,
(7]). However much more work needs to be done in this area.

We mentioned above that Mg(G) is indeed general. However, one has been able to
characterize those pairs (G,S) such that Mg(G) is a near-field. Not surprisingly, the
discussion breaks into the cases in which S is a group and when it is not.
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[heorem I111, (6] Let A be a group of automorphisms of a group G. The following are
equivalent:

(1) M,(G) is a near-field;

(i) G= {0} v Ax and (G,A) is regular;

(i) G = {0} W Ax and (G,A) satsfies the property (F.C.): If st(x) < st(ax), xe G,

ae A, then st(x) = st{ax).

When G is finite, (F.C.) is always satisfied so we obtain Theorem 1.2, (1). Moreover,
if the action of A on G is fixed point free then regularity is equivalent to (F.C.) and in this
case both conditions hold trivially.

Corollary J1.12, [6] If A is a group of fixed point free automorphisms of G then M (G) is
a near-field if and only if G = {0) U Ax.

We mention here that we know of no example of a group G and a group A of
automorphisms of G such that G = (0} U Ax but (G,S) does not satisfy (F.C.).

Now let S be a semigroup of endomorphisms of G as usual with zero and identity. For

any x € G, x e Sx so we have G =\ Sy, Wecall Y = {y;lie I} a generating set.
iel

Henceforth we take Y = {y; | i € I} as an arbitrary but fixed generating set and we consider

I well ordered by the relaton "<". Hence we consider Y «s an I-sequence {y;}.

For u,v € G define the relation F(u,v) := {(a,f) € SxS | au = Bv}. Further let H =
(I-sequences (x;) I x; € G, F(yyy) < F(x;,x)), i £j). If ; is the i-th projection map then
clearly m;(H) ¢ G. We define another relation R on G* by (x,y) € R if there exists ae S
such that a(x) = y. Let R denote the equivalence relation generated by R. We call the

equivalence classes of R the gonnected components of G and we say G is S-connected
provided G* is a connected component.
Equivantly u,v € G* are S-connected if and only if there exist xy,X,...,x,.; € G*,

O1y--500P1s---.Py € S such that
cu=p;x; 20
OpX) = Paxy # 0

OnXn.1 = PV # 0.

We now introduce a concept needed in the next theorem but also used very much in the

following section.

Definition I1.13, Let G be a group and F = {G, ]} a collection of subgroups of G such that
() (0)GGagG:
(i) UGy =G;
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(i) Gg N Gy = {0} if = f.
Then Fis called a fibration of G and (G, ¥) is called a fibered group.

If F={G,]) isa fibration of G, we say ¢ € S is a F-isomorphism if for each G, € 7,
0(Gy) = {0} or Ker 6 N G = (0} and o(G,) = Gﬁ for some Gg € F. Thusce Sisa F
jsomorphism if and only if for cach G, € ¥, ¢ is the zero map on G, or G is an

isomorphism on G, with image in F. The charactenizauon result is as follows.

Theorem 11,14, [6] Let S be a semigroup of endomorphisms of a group G. Then Mg(G) is

a near-field if and only if
(1) G is S-connected,
(i) G has a fibration, say F = {Hj ljeJ} and each ¢ € S is an F-isomorphism,

(iii) if y; € H;* then m(H) = H,,

III. Geometry and Near-rings

From the time of Descartes, early in the 17th century , mathematicians have been
interested in associating algebraic structures with geometric stuctures and investigated the
ransfer of information. In this section we introduce a geometric structure, associate two
near-rings to the geometry and indicate how the geometry influences the algebra. We start

with a definition due to André, [1].

Definiton IIT1, [1] Let £ = (P,L,l I) where Pis a set of points, L a collection of subsets
of P called lines, with the incidence relation "belongs t0", and a parallelism relation J |
defined on L such that

(A1) Every two points in Pdetermine a unique line;

(A2) [Ll=22andforeach Ae L IAlZ22;

(A3) Parallelism is an equivalence relation;

(Ad) Vxe P, VA e L, there exists a unique B € Lsuchthatx e Band B Il A.
Further there exists a one-one map ®: P — Coll £ such that ¢(P) is a point transitive
group of fixed point free collineatons. We say (£,®) is a ranslation suucture. (See [1]
and (4].)

Let (G,F = {G;}) be a fibered group (see Definiton I7.13). By taking AG) = G, L(G)
= {x+G;1Gje F, xe G]) and setting a + G; 11 b + G; if and only if i=j one gets an
incidence structure Z(G) = (KG), L(G), | 1) satisfying (A1) - (A4). Further define ®(G) :
P(G) — Coll £ (G) by ®(G) : a — A, where A, denotes the left translation of G
determined by a € G. We then find we have a translation structure (Z{(G), P(G)).

Conversely, every translation structure arises in this manner. That is, if (Z,P), £ =
(P,L, 1) is a translation structure, then there is a fibered group (G, F) such that P = HKG),
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L = L(G), I'lis as defined above and © = ®(G). Hence a transiation structure may be
considered as a fibered group and we henceforth do so.
If the translation structure (G, 7 = {G;]) has the property that G; + GJ = G for cach

Gi,GJ- € 7, i#j then Fis called a congruence fibration and in this case one obtains the
classical manslation planes.
Thus congruence fibrations tighten the structure of the geometry. We next tighten the

structure in an alternmatve fashion. Let (G, F = (G;}) be a tanslaton structure and let S be a
semigroup of endomorphisms of G such that

(01) The identity map and zero map are in S;

(02) Foreach o e S, foreach G, e ¥, BGJ € Fsuch that o(G) < G,
Then S is called a semigroup of operators for (G, #) and (G,F,S) is a ranslation structure
with operators, TSO. We mention that operators can also be defined in a geometric

manner, ([4]).

We now show how to associate near-rings with TSO's, (G, F,S). First we consider the
set DIl(G,7) = (0 € End G 1 6(G;) € G,, VG, € F]. (Note that the operators play no role
here.) Under function composition Dil(G, F) is a semigroup with zero and identity, called
the semigroup of dilitations of (G,F,S). Our first near-ring is d.g. Dil(G, ) called the
kermnel of (G, ES). For our second associated near-ring we take Mq(G,7F) = {f e My(G) |
f(G) < G,VG,e ¥, fo =0of Vo € S}, a near-ring under funtion addition and

composidon called the centralizer of (G, FS).
We restrict now to the case in which G is a finite group and look at various properties

of these associated near-rings.

NT.A: Kemel of (G,FS).
The structure of Dil(G, F) is well-known, ([3], [9]).

Theorem IT1.2, For a finite fibered group (G,7), Dil(G,FN\[0] is a cyclic group of fixed
point free automorphisms of G.

F_‘roof. To illustrate some of the ideas we show that each 0 # ¢ € DIl(G,F) is a
monomorphism. Hence, since G is finite © is an automorphism. Su"pposc o € DIl(G,F)
and o(x) = 0 for some x € G, say x € G;. Lety € G;, j#i. Then x+y € Gy, i#k#j. Now
o(y) € Gjand o(y) = o(x+y) € G;. Hence a(y) = 0. For any w € G, use w and y to get
o{(w) = 0. Thus o is the zero map.

A classical result states that when Fis a congruence fibration, G is an abelian group,
therefore Dil(G,F) is a finite field. Thus when G is an abelian group dg Dil(G,F) =
Dil(G, ) is a field. We now turn to the non-abelian case.
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Theorem L3, (3] If (G, %) is a finite fibered group with Dil(G,F) # (0,id) then G is a p-
group for some prime p, is of exponent p and of nilpotency class at most 2.

Using this result and the known structure of Dil(G,F) the following rather surprising
result has been obtained.

Theorem [I1.4, [9] If (G, %) is a finite fibered group then dg Dil(G,F) is a commutative
ring. If further, Dil(G, F) # {0,id} then dg Dil(G,¥) is a field.

Clearly if Dil(G,#) = (0,id} then dg Dil(G,F) = Z, where n is the exponent of G. The
above theorem shows that whether or not G is abelian, whenever Dil(G,7) # {0,1d] there
is a field associated with the geomety (G,F) is a natural manner. We also mention that in
the abelian case the field has geometric significance. The significance of the field
dg Dil{G,F) in the non abelian case is still unknown. '

ITI.B, Centralizer of (G, F8S).

As above, to obtain definitive structural results one places some restrictions on the
semigroup of operators. One first considers the case where S is a group of automorphisms
(with 0). As one might expect from the previous discussion on centralizer near-rings, the
orbits of the acton and the stabilizers play an impornant role, For results in this situaton
see [8].

Next one considers the situation in which S is a cyclic semigroup, say S = <o> U
{0,1d}. We write M (G, P for Mg(G,F). We are mainly interested as to when My(G,F) is
a simple near-ring. If o is an avtomorphism, using the results in [§], one notes when
M. (G,F) is simple. In other cases we have the following.

[heorem III.3, [8] If S = <a> v (0,id}, o no: invertible and o not nilpotent, then
M, (G, F) is not a simple near-ring.

Proof. Since « is not invertible, Ker a # (0}. Thus there is some fiber, G;, of the fibration
such that G~ Ker a # (0). For f € My(G,F), f Kera N G;)) c Kera m G;so A =
({0): Ker a n G)) is an ideal in M,(G, F). Using the fact that o is not nilpotent one gets A
# (0}, hence Mg(G,F) is not simple.

We henceforth restrict our attention to nilpotent endomorphisms. We recall the concepts
of generating set and connected components as discussed after Corollary II.12.

Lemma IT1.6, There are k-1 connected compaonents of G* where [Ker al = k.
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Proof. Let C; be a connected component and let y € C;. Since « is nilpotent there exists
some s such that a*(y) € Ker o and since af(y) € C, a*(y) € Ker a n C;. Thus there
exists a kernel element in each connected component. Suppose x;,x; € Kera n C. We
then find x; = ak(x,) for some integer k 2 0. If k=0, x; = 0, a contradiction. Thus each

connected component has a unique kernel element.

If we let (O} be a connectec component then we say the number of connected
components is the cardinality of Ker a. In pardcular (G,F) is S-connected if and only if

Ker a = (0,&).
X

Suppose My(G, ) is a simple near-ring. We know there is some fiber G; such that

KeranG; = (0). If Ker a m G; # (0}, i#] then one finds there exists a component with
more than one kemnel element which contradicts the above lemma. This gives the following

result,

Lemma 117, If My (G,F) is simple and « is nilpotent then Ker & is contained in a single
fiber of 7, say Gy.

Lemma II1.8, If M, (G, %) is a simple near-ring and « is nilpotent there is a unique
generadng set Y = G\ Ker an! where " = 0 but an! 0,

When G is S—connected much can be said.

Theorem IT1.G, [8] Let a be a nilpotent operator on (G,F) and let G be S-connected, S =
<> {0,id} with Ker a ¢ G;. Let Y be any generating set for G. The following are
equivalent.

i) YNGy=g,

(1) Mg(G,7) is a near-field,

(i) Mg(G,7F) is a simple near-ring;

(iv) Mg(G,F) is a 2-semisimple near-ring;

(v) MyGH=2Z,.

When G is not S-connected necessary and sufficient conditions, in terms of the
geometry, are known for M (G, F) to be simple, [8]. Instead of stating these we give an

external characterizaton.

Theorem I11,10, [8] Let o be a nilpotent operator on (G,F). Then My (G, F) is a simple
near-ring if and only if My (G,F) = My(Ker o).

In [8] an example is given where G := (F)$, F a finite field F a fibration of Gand a. 2
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nilpotent operator such that Mg(G,7) = Mp(F @ F). Thus simple near-rings, not rings,

actually arise.

IV. Rings and Near-rings

Let R be a ring with identity and let G be a (right) unitary R-module. Then R
determines a semigroup of endomorphisms of G so we have a centralizer near-ring Mg (G)

= {fe Mp(Q) | f(xr) = (fx)r, Vx € G, ¥r € R]. In this section we discuss some of the
interplay between the properties of the ring R, the R-module, Gy, and the near-ring

Mg (G).

We recall that a cover for an R-module G is a collection C= {Gg) of submodules of G

sucht that
@ (0)GGa GG

(i) Ga"j:: GBfor(I:tﬁ;
(i) U Gy =G.

Let R :=2Z and G :=2Z2 and let Cbe a cover by maximal cyclic submodules, Further let

/ 2
submodule we have gecd(x;,x;) =1 so 3hk € Z, hx,; + kx, = 1. But then f can be

X X, | c
f € Mz(Z?) be determined on Gy = [Xlif Zbyf G:;J) = Ll]. Since G4 is a maximal
2 2

cih ¢k

represented on G, by the matrix { : : } i.e,, f/G can be extended to an
Czh C2k a

endomorphism of G. Equivalently, every f € M4(Z?) is piecewise an endomorphism of Z2

in the sense that for each Gy € G 3¢ € Endz(Z?) with /G, = ©.

In general, let C= {G,} be a cover of G by maximal cyclic submodules of G and let
N:={fe Mg(G)I f/Ga can be extended to an endomorphism of G}, a subnear-ring of

Mg (G) which we call the near-ring of piecewise endomorphisms determined by (R,G,().
We ask, "When is N = Mr(G)7". The next example shows that in general, N # Mg(G).

Example IV.1, [5] Let R := Z[x], G := R2 and let C be a cover by maximal cyclic

X
submodules. One verifies that [x+2:[ R e (. Further, 3f € My(G) with
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(11 . 1a X
[1:] T, lf’:bJ f[x_g]r,re R,

[g], otherwise,
1

X
However, there is no ¢ € Endg(G) with ¢ [x+2] = [ IJ' Hence N # Mz (G).

{(2))-

Note that in the above example R is not a PID. For PID's the situation is quite
different. In fact we have the next rather interesting result.

Theorem TV,2, [5) Let G be a finitely generated module over a PID, D, let C= {G,) be a
cover by maximal cyclic submodules and let N = {fe Mp(G) I f/G_ can be extended to an

endomorphism of G}. Then N = Mp(G).

We mention that it is an open question whether or not the requirement that G be finitely

generated can be omitted.
In the next theorem we present some further relationships berween the ring module Gy

and the near-ring Mg (G).

Thegorem V.3, [13] (a) If D is an integral domain, not necessarily commutative then
Mp(D?) is a near-ring, not a ring.
(b) Let R be a commutative ring. Mg(R?2) is a simple near-ring if and only if R is an integral

domain.
(c) Let R be a left Artdnian ring. Then Mg(R?) is 2-semisimple if and only if R is

semisimple.

It should be pointed out that rings do arise as Mg(G). In fact if D is a commutative
integral domain and Q(D) its field of fractons, then Mp(Q(D)) is a ring. Further, if R is a
complete nxn matrix ring over a ring S then for each R-module, G, Mg(G) is a ring, in fact

Mg(G) = Endg(G).

On the other hand if R is the field of real numbers, for G := R, Mg(R) is a ring while
for G := R2, My(R?) is not a ring.

This raises the questions:
(Q1): Which rings R have the property that Mg(G) is & ring for each R-module G ?
(Q2): Which rings R have the property that Mg(G) = Endz (G) ?

For finite rings R the above questions have been shown to be equivalent and those
rings R such that Mg(G) is a ring for each R-module have been characterized, (see [11]).

However the general problem remains open.
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CONGRUENCES ON REGULAR SEMIGROUPS

H. Mitsch

University of Vienna/Austria

1. Generalities.

Let (S,.) be a semigroup; an element a¢ S will be called reguler if there
is some x€ S such that axs = a. S is called regulaer if each element of S

is regular. Notice that if a = axa, then for y = xax we have that

a = aya and y = yay.

for every & €S, dencte V(a) ={ x€ Si a = axa, x = xax}; hence S is regular
iff V(a) £ @ for all a€ S. Furthermore, if a = axa, then clearly ax and
xa are idempotents; denote by EX the set of all idempotents in X for

any subset X of S.

Examples for regular semigroups are:

Idempctent semigroups (bends); groups; unions of groups (completely
regular semilgroups); iNverse semigroups (i.e.lV(a)l: 1 for all a€ S); (T X,o)
the semigroup of all mappings of the set X inte itself with respect to

composition of functions; ( Px,o) the semigroup of all partial mappings

of X into itself; (LV’O) the semigroup of all linear mappings of the
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vector space V into itself; (Mj(F),:) the semigroup of all (nxn)-matrices
over the field F; direct products and homomorphic images of regular semi-
groups, but not subsemigroups (the subsemigroup of all natural numbers of
the additive group of all integers is not regular) ,hence the class of

all regular semigroups does not form s variety.

Not only since appearance of the book of M.Petrich [22] on "Inverse
Semigroups", the theory of reguler semigroups has attracted wide attention.
This is particularly true for the study of congruences. They play a central
role in many of the structure theorems and various considerations of
semigroups in general. The efficient hsndling of the congruences is a

basic prerequisite for their useful application. For this reason, the

most important facts concerning congruences on regular semigroups are
collected here, with particular emphasis on

- the construction of general congruences, and

- the explicite form of special types of congruences.

An equivslence relationpon a semigroup (S,.) is called a congruence if

apb(e,b€8) implies that acpbc and capcb for all c& S.
The set S/p of 8ll congruence classes ap (g€ S) ofpforms & semigroup

with respect to the multiplication

(a p) ¥(b p) = (8b)p

and is a homomorphic image of (S,.). Conversely, every homomorphic image

of (S,.) is obteained by a congruence on (S, .).
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With respect to the partial ordering

p £ 1 1iff ao b implies that at b (a,b€ S),
the set C(S) of all congruences on (S5,.) forms a complete lattice with
least element ¢ , the identity relaticn, and greatest element Jthe
universal relation. It is easily seen that if p,r € €(S) such that p £ 7

then(S/ 1, ¥} 1s a homaomorphic image of (S/O,*).

In general, particular homomorphic images of a given semigroup S
ere of special interest; thus particular congruences on S have to be
found. If ¥ denotes any class of semigroups, then a congruence pis called

a ﬁ—-congruence if the semigroup (S/,. ,%) belongs to the class C. For

example, let €the class of all groups, semilattices, bands,resp.; then a
€ - congruence is called a group congruence, semilattice congruence, band
congruence, respectively. In particular,we will be interested in the
least or the greatest congruence for some given class € (with respect to

the partial order £ above):

B ot the least band congruence

o S the least group congruence

5 (P the least right-group congruence

12 S the least semilattice congruence

Yoo, the least inverse congrueﬁce

N the least semilattice of groups congruence

T o the greatest idempotent-pure congruence (i.e. ayg e, &S, GEES-+aEES)
VR the greatest idempotent separating congruence (i.e. euf,e,feES+ e=f)
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For details see section 3. below. Note that for general semigroups
not all of these congruences exist; but they do exist for any regular
semigroup (see Howie-Lallement (g ).
If, for example, we consider the least group congruence on a semigroup
(S,.) - if exists, then we have for every v ¢(S) satisfying 1z that
(S§/¢,%) is again e group, & homomorphic image of the group (S&j, ¥). Thus,
one can say that the least group congruence cn S gives the greatest group

homomorphic image of S.

A very useful result on congruences on regular semigroups 1s the

following

Lemma 1.1. (Lallement {9}) Let (S,.) be & regular semigroup and p any

congruence on S. If a OES/p is idempotent then there is some e EES such

that ap = ep.

2. General congruences.

Our first aim will be the description of an arbitrary congruence on a
regular semigroup. For this, let us consider first the special case of
a group.

If G is a group then it is known that for every normal subgroup N of G,

the relation Ay on G defined by

a oy b<——>ab_16N

1s a congruence on G, and conversely that for a ccngruence p on G the
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s-class contalning the identity e of G is & normal subgroup N of G such

thatey =p . Furthermore, all of o can be reconstructed from any cone of its
classes, in particulear the class eg = N. For semigroups, such a reconstruction
of a congruence g from a single p-class is not possible, in general. If

S is regular, we have at least the following result:

congruence p on S is uniquely determined by the p-classes containing

idempotents.

Note that this result does not tell us how to reconstruct all of the
congruence p from the set of all idempotent p-classes. Various attempts
have been made to find an analog of the connection between copgruences on groups
and normal subgroups. For inverse semigroups, G.B.Preston asbstractly
characterised the set of all idempotent classes of a congruence on S
and gave a construction of the congruence associated with such a

kernel normal system (see Clifford-Preston | 1]). Meakin [ 14]generalized

this result to regular semigroups:

is called a kernel system on S if

(1) A Ay = @ for all i< j in I
(2) each Ai contains an idempotent of S and each idempotent of S belongs
to some Aj(jEI)i

(3) x A yaA, 4 ¢ implies that XA,y €A, for x,yest,i, 5.

The construction of the unique congruencep having every Aié A as

idempotent p-class, is now the following:
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1

a kernel system on S. Then the unigue congruence on S with all Ai (1€ 1)

as ldempotent classes 1s given by

a p, b a'eV(a), bEV(D): az\bakh,, ba, bbéA, for some i,j€I.
o

This result suffers - as in the inverse case - from the disadvantage
that the conditions imposed on a kernel system are very difficult to
vtilize. For inverse semigroupsanother approach proved very useful: it is
possible to reconstruct any congruence p from the set-thecretical union
of all the idempotent p-classes (the kernel of p) taking into account
the partition on the set of all idempotents induced by p (the trace of p),;
see M.Petrich [ 23] . Following this idea, Pastijn-Petrich [ 18] introduced

the concept of congruence pair for a regular semigroup generalizing the

corresponding notion for inverse semigroups. The exact definitions are

the following:

consider the following two characteristic concepts:

1) t rp =QiES is called the trace of o,

2) kerp ={ ac€S| ape for some e GES]is called the kernel of p .,

Note that trp is the restriction ofp to the subset ES of S and thus

yields & certain partition of E Furthermore, kerp is the set-theoretical

g

union of all i1dempotent p-classes.

It was shown by R.Reigenbaum [A]that every congréencep can be re-
constructed from its trace and kernel. We give this result in the formulation

of Pastijn-Petrich [18] which uses Green s relation Z and &.3recall that
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for a regular semigroup S, adb iff Sa = Sb and ad b iff aS = bS.

with ker p= K and tr p= tcan be described in the following way:

ap b a(XTlTX A RTRTR)b, ab' €K for some (all)b'€ V(b).

Note. It was preved by G. Gomes 5] that © can be obtained also in the

following way:

apbe¢raa'p bb'aa', b'bpb'ba'a, asb'€ K for some (all) a'€ V(a), b'e V(b).
As it was observed above, to every congruence pon S there can be

associated the pair (kerp ,trp ). But the problem is to find conversely

all congruences on S. In general, for a pair (K, v ) with KE€S and =

an equivalence on ES‘ there is not always a congruencepon S such that

K=kerp and = tro. Thus, the pairs (kerp ,trg ), p€ C(S), have to be

characterized abstractly in order to give all pairs (K, 1) by means of

which a congruence on S can be defined.

For inverse semigroups S this attempt was successful in the following way
(Petrich (23] ): if KE€ S, T € C(Eg), then the pair (K,T) is called a

congruence-pair if

1

1) K satisfies: (i) E.<K: (ii) a€ K= a ~ €K, (iii) a_lKaEK Yacs

S

(where a_:L denotes the unique element a'eV(a))

2) Tsatisfies: e Tf, a€ S imply that ateatalsfa
-1
3) ae€ K, a aTe(aéS,eEES}+aeK

4) aa "1 a la for all ags.



Then for sny inverse semigroup S and every congruence p on S the pair
(ker p,trp ) is a congruence pair, and conversely, for every congruence
pair (K,1 ) the relation

-1 - -1
2 0 Ly bera Yo rb b, avtek

= K, trO(K,T ): -

is a congruence on S such that ker P (K1)
v T

For reqular semigroups S5, Pastijn-Petrich [19} found an abstract
characterization of those pairs (K, T) for which a congruence 0 on S can
be defined in an analogous way. The first trivial observation is that K
has to be the kernel of some congruence, which is equiQalent to say that
K = ker Ty wherevK is defined on S by

a Ty b «» xay €K 1is equivalent xby& K(x,y€ Si).

Also, T has to be the trace of some congruence, which is equivalent to
the requirement that T = tr T (where T * denotes the congruence on S

generated by the equivalencet on E.): see Pastijn-Petrich| 19] .

The key to the theory-similar to the inverse case-is the fcollowing concept.

Definition. (Pastijn-Petrich [ 19]). Let S be a reguler semigroup, K £ S,

T an equivalence on ES; then a pair (K, 1) is called a congruence-pair if

(1) K is a normal subset of S(i.e. K is the kernel of some congruence on S)
(11) T 1is a normal equivalence on ES-(i.e.'ris the trace of some congruence on S)
(iii) K S ker (LTXTH A RTR TR )° (where for any equivalence £ on S,

£ © denotes the greatest congruence on S contained in& )

(1) < tI‘TTK.



Note thet in case tha:c S is an inverse semigroup, this definition of

congruence-pair reduces to that given above.

With this concept we are ready for the censtruction of &ll congruences
on a regular semigroup, which is completely analogue to the situation in

the inverse case.

regular semigroup S, then the relstion P(K 1) defined as in Theorem 2.3

is the unigue congruence p on S for which kerp= K, trp=1.

Conversely, if pis a congruence on S then (ker p,tr p) is a congruence pair
of S and P(Ker 0 trg- 0.

An obvious, but very useful consequence is the following

Corollary 2.5. (Pastijn-Petrich [19 ]}. Let (C(S),<) be the lattice

of all congruences and Cp(S) the set of all congruence-pairs of a regular
semigroup S, partially ordered by: (K, 1)< (K, ) iff K& K', 1 £ 1

-

Then the mappings p=*(ker p, tr p), (K,T ) are mutually inverse

TP,
isomorphisms of the lattices C(S) and Cp(S).

The special case of orthodox semigroups is worthy of note. A regular
semigroup (S,.) is celled orthodox if ES forms a subsemigroup of S.

Note that an inverse semigroup S can be characterized as a regular semigroup,
in which all idempotents commute; thus every inverse semigroup 1s orthadox
The concept of congruence-pair reduces in this case to a set of axioms

which is strongly reminiscent to the inverse case.
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Gomes [S]Dalled a peir (K,t ) a congruence-pair of the orthodox

semigroup (5,.) if

1) K satisfies: (i) ES € K; (11) a¢ K= a'€ K for some [all] a'e V(a);
(i1i) a'Ka<K for 8il a3 €5, a' €V(a)
2) T satisfies: e Tf, a €S imply that a'eata'f a (note that a'ea EES

for all a€S5, a'¢cV(a), e EES)
3) sae € K, a'ate (a€ §, eGES)—+ ac K

4) a'ea 1t a'a'eaa for all g €8, e EES.

Then Gomes[ 5] showed that for any orthodox semigroup S5, if (K,T ) is

a congruence-pair of S then ©(K,t ) defined by:

a D(K . ]beiaa'EV(a}, b€ V(b): sa't bb" aa',b'bTtb'b a'a , ab'e K
is a congruence on S with kernel K and trace 7T . Conversely, if p is a
congruence on S then (kerp, trp) is & congruence-pair of S and

p = plkerp ,trp ). Also, the mappingsp~ (kerp,trp), (K,T )=p are

(K,T )

mutually inverse lattice isomorphisms between (C(S), <) and (Cp(S),=<).

In order to illustrate the construction of all congruences on a

regular semigroup S, some special cases will be considered. Compare also

with the explicite form of certain congruences given in section 3. below.

a) K = ES, T =¢€

It is easily seen that (ES,E ) is a congruence-pair of S defining the

identity relation on S: p =€
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It is immediate that (S, w) is a congruence-pair of S defining the universal

relation on S:p (S ) = ©
c) K = ES’ T=Ww
(Es,w } is a congruence-pair of S iff tr Te = w, i.e. iff for all e,f € ES
S .
xey €E, is equivalent to xfy € Eq (x,v€ 81).

-~

In this case, S is orthodox (put x =€, y = 1). Note that conversely, if S

is orthodox then (E., w) is not necessarily a congruence-pair. In fact,

S)
consider S=T, » the semigroup of all transformations on the set X ={1,2}.
Then S is orthodox, but for x = a, e =0y , f =y =1d (where a(l) =2, a(2) = 1;
ui(x) =1; aig(x) = 2 for all x€ X), a° al_° id =G EES ando ® id ° id =a$ ES'
Furthermore, if (Es,w ) is a congruence-pair then by 2.5.

o) (Eg w)= 0 - the least group congruence on S (since for every Jroup
congruencep on S, tre=w ); it is given explicitely by

agbeab'c ES for some (all) b'e V(b).

Also, in this case P(ES, w) =m, the greatest idempotent-pure congruence

on S (since for every such congruence p, ker p= ES).
d) K normal, T= 0
(K, w) 1s a congruence pair of 5 iff tr n, = w, i.e. 1ff for all e,f€e E

K K

xey €K is equivalent to xfy €XK(x,y 681).



In this case, p is a group caongruence given by

(Kyw )
a P (K )b4+ ab'e K for some (all) b'e V(b).

Thus, by 2.5, the least group congruence gon S is defined by the least
normal subset K of S satisfying the condition at the beginning of this

paragraph.

e) K = ES,T normal

(Eg, 1) is a congruence-psir of § iff1-5tr“ES , i.e. iff for all e,f€ Ee,

e 1f - xey GES is equivalent to xfy EES (x,y¢€ 51).

In this case, p(ES,T) is an idempotent-pure congruence on S (since for

every such congruence pon S, ker p = E Thus by 2.5, the greatest

g
idempotent-pure congruence mon S is defined by the greatest normal
equivalence Ton ES satisfying the condition at the beginning of this

paragraph.

£) K =S, 1= ¢

(S,e ) is congruence-pair of S iff ker X° = S (whereTK:Irwa}.
We shall see that this is the case iff S is a band of groups (i.e. S is

a union of groups and¥®is a congruence on S; see Petrich[ 21] , IV.1.7).

In fact, if S is a band of groups, then @° =d( and for every a €S,

a EHE for some e GES; thus a €ker = ker3°  i.e. kerdl® = S. Conversely,

suppose that ker X° = S. Then for evefy a €S there is some e €E_ such that

S
p o

a € e, hence ake and S is the union of the groups He (see Clifford-Preston

[1], 2.16). Let a¥b (a,b €S); by Lallement [9],&X° = hence ker p = S

(p the greatest idempotent-separating congruence on S). Thus, a y e for



some e € ES, and b p f for some f€ ES' Consequently, aXe and b¥f, thus

ed f and by Clifford—Preston[l] , 2.16, e = f. Hence, ape and bpe, this aub.
Since pis a .congruence, it follows that ac pbc, ca dechb for all c€ S.

Now by lallement (9] p<2 & | hence acX bc and cafcb for all c€ S.

Consequently,® is a congruence and S is a band of groups.

In this case, C(S € ) =8 =y =_:K, where 8denotes the least band
congruence on S. In fact,p (S, € )=8 since kér H° = S implies that for
E - - ! -
every a €S there is e€ ES such that ap (s, € )e, thus each Q(S’ e) class

is idempotent. This means, that D{S c

) is a band congruence. It is the
least such (by 2.5), since for every band congruence o, kerp=S (by 1.1.).
Furthermore, by Lallement{ 9], Xe = H. Hence by hypothesis, ker p = S and

W= Bby 2.5 (since ker 8= S = ker p and trg = trp =¢= tr p). But

(Sg)
by Howie-lallement [ 8 ], 1.3, v =X°'58(,‘58 , so that X =8 = p (which again

implies that ¥ is a congruence).

g) K normal, t =¢

(K, ¢ is a congruence-pair of S iff KSker X° = ker p. Recall (Latorre| 10 ],12)

that for every regular semigroup S,
ker p ={a€S|3a'€V(a): a' ea = e for each idempotent e <aa'}.

Hence, (K,e ) is a congruence-pair iff for every a€ K there is some a'€ V(a)

such that a'ea = e for each idempotent e €aa'. In this case,p (K.e ) is an

idempotent ‘separating congruence on S (since for every such congruence pon S,

tr p= e), explicitely given by

a O(K ) be> aXb and ab'€ K for some (all) b'€V(b).



Thus by 2.5, the greatest idempotent separating congruence p on S is

defined by the greatest normsl subset K of S satisfying the above condition.

3. Particular congruences

The knowledge of a simple, explicite form of a particular congruence on

a semigroup is of special importance when applying it in certain considerations.
For reqular semigroups, useful descriptions of some important congruences

are known. A survey of these will be given including several different

methods of characterization, which have been found up to now. Note that

in section 2.some particular congruences have appeared already, given

explicitely by their kernel and their trace

a) Group congruences

Croisot‘[ 2}found a description of all group congruences on an arbitrary
semigroup S by means of particular subsemigroups of S. For every subset

H of S and any a €S denote

a:H ={ (x,y) €Sx5S | xay €H} .

Theorem 3.1. (Croisot[ 2}). Let S be a semigroup and H be a subsemigroup

of S such that (i) a:H =@ for all a€ S, and (ii) a:HAb:H £ @ (a,beS)—>
— a:H = b:H. Then the relation a Py b > a:H = b:H 1s a group
congruence on S. Conversely, if pis any group congruence on S then the

identity class E of S is a subsemigroup of S satisfying (i),(ii) and og =0 -



For regular semigroups, numerous other characterizations of group
congruences are known. Note first that every cancellative congruencepon a
reqular semigroup S is a group congruence, and conversely (since S/p is a
regular, cancellative semigroup, thus a group). Since the universal
congruence on S is cancellative and since the intersection of all cancellative
congruences on S is again a cancellative congruence on S, the least group-

congruence can be described in the following way.

Theorem 3.2. (Masat [ 12] ). Let S be a regulsr semigroup; then the least

. . t
group congruence gon S 1s given by g =p where

aF:b <> e ae=¢ebe for some e EES

and FF means the transitive closure of o.

Note. If S is a conventional semigroup (i.e. S is regular and a Es a'grES

for 81l e €S, a'€ V(a)) then the unpleasant transitive closure of pcan be
onitted and ¢ = p(Masat [12}). In particular, this is true for every

orthodox semigroup which was proved already by Meakin [14].

A more convenient description of con a general regularsemigroup was
given by Masat[ 12] by means of the reflexive subsemigroup of S generated

by its idempotents E A subset T of S is called reflexive if ab¢ T(a,b€ §)

g
implies ba€ T,

Theorem 3.3. (Masat [ 12]). Let S be a regular semigroup; denote by T the

reflexive subsemigroup of S generated by ES and by Tw = {a €5 | ta €T

for some t €T } Then the least group congruencec on S is given by

a obér xa, xb €Tw for some x€38S.
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Note. If S is conventional, then Tw={a€Sjeac Eq for some e € Eg 1

(Masat [12] ). In particular, if S is E-unitary and regular (i.e. ea,eEES

- a €Eg) then S is orthodox (see Howie-Lallement (8], 2.1) and Tu = Eg .-

Hence, in this case
a ob «» xa,xb GES for some x €5S.

An other approach to the characterization of all group congruences
on a regular semigroup S was found by Feigenbaum [4]using full and self-
conjugate subsemigroups of S:a subset T of S is called full if ES';_T, and

self-conjugate if &8'Ta €T for all a €S, a'c V(a). Let C denote the set of

all full and self-conjugate subsemigroups of S and let U be the intersection

of all semigroups in C.

Theorem 3.4. (Feigenbaum {4}). For each H €C, the relation

ap be>xa = by for some x,y€H

is a group congruence on the regular semigroup S. The least group congruence

g on S is given by o= Pu-
Defining the closure of a subset H of a regular semigroup S as the ;set
Ho= {a€S| haeH for some he HY,
Feigenbaum [ 4]showed that also for each HE€C

ap H b« ab'é Hw for some (all) b'EV(b).

Further details for the description of Oy can be found in Latorre [10]



In particular, he showed that

aob <« aub' €U for some uvu€U and some (all) b' € V(b).

Now let C be the set of all closed subsemigroups in C, i.e. consider
those full and self-conjugate subsemigroups Hof S such that Hw= H. Note
that a closed subsemigroup H of a regular semigroup is necessarily regular.

Feigenbaum [4 ] proved that the mapping
ﬁ-»pg, where & be>ab'€ H for some b'€ V(b),

is g bijektive and inclusion preserving function of C onto the set of all

group congruences on S.(For every group congruence O on S, 0 = P with

H = kerp). It is easily seen that the intersection U of all semigroups

X

in C is again closed. Consequently, we obtain that ¢ =p and

U

acherab'€ U for some (all) b'€ V(b).

Note. For the much larger class of E-inversive semigroups an explicite

description of all group congruences was given by Mitsch[ 17}‘ A semigroup
S is called E-inversive if for every a €S there is some x€ S such that
ax€ ES.This is equivalent to the condition that I(a) = {x ES}ax, xa€ tbl A
for all &€ S. The characterization is strongly reminiscent to that given

by Feigenbaum for the regular case (see Theorem 3.4).

b) Right group congruences

A group is right- and left-simple and also right- and left-cancellative.

Weakening these properties ore may ask for those homomorphic images of a
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semigroup S which are right groups, 1.e. which are right-simple and
left-cancellative (for several equivalent definitions see Clifford-

Preston [1]).

A description of all right-group congruences an an arbitrary semigroup S
was given by Massant [ 13 | by means of group-congruences and left-zero
congruences on S.Numerous characterizations of group congruences were
given in a). Concerning right-zero congruences p(i.e. such that S/p
is a right-zero semigroup: xy =Yy Vx,y €S/p ) a description for arbitrary

semigroups S can be found in Petrich[ 22 ] , III. 1:

Let LS be the set of all left ideals L.%:S of S such that ab €L implies
b gt(a,b €S); denoting by Lx the least left ideal of S in LS containing

x € S,the following characterization of right-zero congruences on S holds:

Let S be a semigroup and ﬁ%:AEL then the relation

g

apAtJeafor every L&A : either a,b€Ll or a,b ¢L

is a right-zero congruence on S. The least right-zero congruence fon S

is given by &= p ., or equivalently by a&b <> La =L

S b’

whith is not a group- nor a right-zero congruence, is a right-group congruence
iff is the intersection of a non-trivial group congruence on S and a

right-zero congruence on S.

Since on regular semigroup S the least group congruence exists (see

a) above) we obtain the following
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Corollary 3.6. Let S be a regular semigroup; then the least right-group

congruence on S is given b
g

a vy b-e}La = Lb and xa = by for some x,y¢ U,

where U is the intersection of all full and self-conjugate subsemigroups of S.

For the special case that S is regular with ES a rectangular band (i.e.

e f e =e for all e,f€E;), Massat {12 | gave the following description of

the least right-group congruence on S:

afvb «» ea = eb for all e EES.

Conversely, he showed that if the congruence p so defined on a regular

semigroup S is a right-group congruence on S then ES is a rectangular band.

c) The least inverse congruence

Reducing the condition that the homomorphic image of S has to be a group

one can ask for those congruences ¢ on S, for which S/p is an inverse
semigroup. In the general case, there is no description of such congruences
similar to the group case. Even the characterization of the least inverse
congruence Y is not very satisfactory. It is based on the fact that a regular

semigroup S is inverse iff the idempotents of S commute (see Petrich [22] ).

inverse congruence Yon S is given by Y = p*, where

apbh <« a=ef, b=fe fore,féES

and o * denotes the congruence on S generated byp .
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In the particular case that S is orthodox,Hall [ 6 gave the following
explicite description of Y: a ¥ b+V(a)=V(b).
Also, he showed conversely that if for a regular semigroup S, Y is an

inverse congruence on S then S is orthodox.

Using the concept of congruence pair G.Gomes (R-unipotent congruences
on regular semigroups, Semigroup Forum 31 (1985), 265-280) found a

description of all inverse congruences orn an arbitrary regular

semigroup S. She called a pair (K, t ) an inverse congruence pair of S if

a) K satisfies: (i) K is a regular subsemigroup of S; (ii) ES € K;
(iii) a'Ka & K for all a €5, a'€ V(a);

b) T 1is a congruence on <E.>, the subsemigroup of S generated Ly &,

S
such that (i) <ES>/ T is a semilattice, (ii) X Ty, X,y € <ES>%¢

;.'

—> &@'xa 1 a'ya, whenever a'xa, a'ya ¢ <ES> for a€ S, a'¢€ V(a):
c) (1) ax€ K, a'a 1 x (a €S, 8'€ V(a), x E<ES> - g €K
(ii) sb€ K(a,b€ S)—=>» axb€ K for all x € <ES>

(iii) axa't aa'x, whenever axa' € <E.> for ag€ S, a'€ V(a), x ¢ «li,.>

S
Given such an inverse congruence pair the unique inverse congruence on &,

whose kernel is K and whose restriction to <ES> is 71 , is given by

@ g )b Ja'€V(a), b'€ V(b):aa't bb', a'be K.
Conversely, ifp is an inverse congruence on S then (kerp , 1) WithT:Oi<ES>
is an inverse congruence pair of S and P (kerp LR

Remark. As a conseqguence, the particular case of group congruences on a

general regularsemigroup S now can be described in the following way

(G. Gomes, loc.cit.):
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If Ke S satisfies (a) shove and (d) ax€ K(a€ S, x E<E8>) — 3 €K, then
the relation

a QKbéiﬂb‘ €V(b) such that ab' €K

is a group congruence on S with kernel K. Conversely, if p is a group

congruence on S then ker p satisfies (a) and (d) above and p p

kerp -

d) The least semilattice of groups congruence

A semilattice of groups (or: Clifford semigroup) can be defined as

a reqgular semigroup with central idempotents (1.e. ea = ae for every
a €S5S and every e EES). Thus, such a semigroup is a special inverse
semigroup and also a particular union of groups (see Clifford-Preston [ 1] ).
An explicite form of the least congruence ¢ on & regular semigroup S

such that S/ p is a semilattice of groups was found by Latorre[ 11 ] .
It is a characterizaﬁion by means of the least group congruence g on S

(see Theorem 3.4 sbove) and the least semilattice congruence n on §

(see paragraph f) below).

Theorem 3.8. (Latorre {11] ). Let S be a regular semigroup; then the

© least semilattice of groups congruence on S is given by

L]

avb +anband xa = by for some x,y€ Un{an ),

where U is the intersection of all full and self-conjugate subsemigroups

of S. ;

In the particular case that S is orthodox, J. Mills [ 16] showed that

a Vv beasa nb and eae = ebe for some eéESn(an ).



Latorre [ 11 ]described y on an orthodox semigroup S in a slightly different

way :

avbeanb and ea = bf for some e,f EESm(a nj.

e) Orthodox congruences

An inverse congruencepon a regular semigroup S yields a (regular) homo-
morphic image S/ p, in which the idempotents commute. Generalizing, one
may ask for those congruencesp on S, for which the idempotents of S/p

form a subsemigroup, only. Gomes [ 5 | gave a description of -all these
orthodox congruences by means of so called orthodox congruence-pairs,
specializing the general concept of congruence-pair on a regular semigroups

defined by Pastijn-Petrich [ 18 | (see section 2, above).

Definition (Gomes[ 5 }}. Let S be s reqular semigroup.

1) A subset K of S is said to be a normal subsemigroup of S if K is a

regular subsemigroup of S such that ES €K and sKa'& K for every a€ S, a'eV(a}.
2) A congruencef on <E.>, the subsemigroup cf S generated by ES’ is called
normal if x £y — a'xa £ a'ys for all a€ S, a' €V(a), whenever

1

a'xa, a'yat <E.>

S
3) The restrictionof a congruencepon S toc< ES> is called the hypertrace

(core) cf p , denoted by htr‘p.

Those congruence-pairs, which yield all the orthodox congruences on a

regular semigroup, are characterized abstractly in the following



Definition (Gomes [ 5]).let S be a regular semigroups, K a normal subsemi-

group of S and £a normal congruence on cES >such that <ES> /g is a band.

Then the pair (K, ) is called an orthodox congruence-pair of S if for

all a,b€S, a' €V(a), xEcES> and f¢ ES’

(i) xa €K, x Esa'-—a €k
(ii) ab €K, a'a Ebb' a'a - axbhe€ K

(iii) a€K, aa' gf—>£fxf £ fa'xaf, whenever fa'xafe<ES>.

Theorem 3.9 (Gomes[ 5 ]). Let S be a regular semigroup. If (K,£ ) is an

orthodox congruence-pair of S then the relation

! 1 T 1 1 r Y
¢ P,k )ba-aa £ bb'aa', b'bf b'ba'a, ab'g K for some (all)

a'€ V(a), b'e V(b)

£.

is an orthodox congruence on S such that ker = K, htr =
Ty Pkey T TR )

Conversely, ifp is an orthodox congruence on S, then (ker p, htr p)is an

orthodox congruence-pair of S and D(kero htr D)=p .

Furthermore, the mappings p~(kerp , htrp ), (K, £) "‘Q(KE ) are mutually

inverse order-preserving between the lattice of all orthodox congruences

on S and the set of all orthodox congruence-pairs of S partially ordered by
(K,£)s (K', £) iff KeK', £< &'

Remark 1. For the special case that S is orthodox itself, this result

yields a description of all congruences on S (see section 2. above).
2. The least orthodox congruence N on a regular semigroup S can
. . . x
be descripted also in the following evident way: A = P where

anH a:ef,b:efeffore,féES.
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f) Semilattice congruences

A semilattice is defined as a commutative and idempotentsemigroup, i.e.

as a special band. Band congruences on a semigroup S are of particular
interest, because all the congruence classes form subsemigroups of S.

For general semigroups a construction of all band congruences is known, as
are descriptions of all rectangular band congruences and of all (right,left)
normal band congruences (see Petrich[ 22], I1I, 1IV). The least band

congruences on a regular semigroup satisfies
¥ *
AL £ Qﬁ@ni)
Qt,dl,xi are Greens's relstions (see Howie-Lallement [8.]).

For the important special case of semilattice congruences, the construction
found by Petrich [ 20] for arbitrary §emigroups will be given now. Recall
that a filter F of a semigroup S is a subsemigroup of S such that ab& F implies
that a,b €F. Note that §f + FES is a filter of S iff I = S\F is empty or
a completely prime idesl of S (i.e. an ideal I of S such that ab €I implies
that a €I or b €I).Denote by‘fthe set of all filters of S and F the least

filter of S containing x €S.

filters of S. Then the relation

ap, b <« for every F€A either a,be F or a,b ¢F

is a semilattice congruerce on S. Conversely, for every such congruence p



on S there is some A ¢¥ such that p = 0, The least semilattice congruence n

on S is given by TFQ_, OT equivalently by
3

an b-é»Fa :Fb «for every filter Fia€F iff befF.

For regular semigroups S, ncan be described by means of Green's relation

aﬁorg on S (where Oz):inﬂ andgis defined by : 83 b 1ff SaS = SbS):

Theorem 3.11 (Howie-Lallement| 8] Let S be a regular semigroup. Then the

least semilattice congruence vy on S is given by n =2)* ::3*‘(where¢2* denotes

the congruence on S generated by D).

g) The greatest idempotent-pure congruence

A congruence p on a semigroup S is called idempotent-pure (slso: idempotent-

determined) if

ape, act€S, e cES—> a GES,
i.e. each p-class containing an idempotent consists entirely of idempotents.
Evidently, the identity relation on S is an idempotent-pure congruence. For
general semigroups, the greatest such congruence can be described in the

following way.

Theorem 3.12. (Theissier {24 }). If S is a semigroup, then the relation

anmb «> xay€ E, if and only if xbye Es(x,ye 81)

S

is the greatest idempotent-pure congruence on S,
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h) Idempotent-separating congruences

In a certain sense opposite to the idempotent-pure congruences are those
congruences p for which each congruences class conteins at most one

idempotent, i.e.

epf, &fEES—}ez f.

Clearly, the identity relation on S is always idempotent-separating. It
was noted by Lallemenet [9] that for a regular semigroup every such

congruence is contained in Green's relation ]ﬁ.

Theorem 3.13. (Lallement [9] ) Let S be a regular semigroup. Then a

congrue’nce p on S is idempotent-separating iff 0:536. Thus, the greatest
idempotent-separating congruence on S is given by %L=E£F (the greatest

congruence caontained in?k.), i.e.

apb <> xayxxby Vx,yesl .

Note that the hypothesis of the regularity of S cannot be removed:
if S = {O,a }is the two-element zero semigroup (32 = a0,= 0a = 00 = 0) then

K= ¢, the identity relation, and H =W, the universal relation, hence

pEX.

Another characterization of p+ on a regular semigroup was given by Hall [7]

and Meakin [15] , independently:



For the special case that S is orthodox, Meakin [15] found the following

description of g

apb 4> 3 a'€v(a), b'e€V(b): a'ea=b'eb, aea'=beb' for all e€k.

Note. For the much larger class of eventually regular semigroups an

explicite description of pwas found by Edwards [3} . A semigroup S is called
eventually regular if for every a €S there is some positive integer n such
that a" €S is regular. The greatest idempotent-separsting congruence on

such a semigroup is given by

a M besrif x €5 is regular then each of x(g.,xa, x@xb implis xa_dfxb,

and each of xiax, xz bx implies ax‘\dfbx.

It is noted also, that the hypothesis on S to be eventually regular cannot
be removed. An example of a semigroup is given for which the greatest
idempotent-separating congruence is different from p described above (see

Edwards [ 3], Ex. 3).

Remark. There is still another approach of characterizing particular
congruences on a reqular semigroup S. Since every congruence on S is
uniquely determined by its kernel and trace, one can define the following

equivalence relations on the lattice C(S) of all congruences on S:

p Kt «> kerp = kert 5 p Tt «>»trp = try
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Then each K-class and each T-class is an interval in (C(S),< ). Using

these two relations, P. Alimpic-D.Krgovic(Some congruences on reqular

semigroups, Proceedings Oberwolfach 1986, Lect. Notes Math. 1320(1988), 1-10)

gave an alternative description of some special congruences; fecr example:

(1)

(i1)

the least band of groups congruence on S is the least element of the
T-class containing B;
the least semilattice of groups congruence on S is the least element

of the T-class of n ;

(iii) the least E-unitary congruence on S is the least element of the

[1]

[ 2]

K-class containing o.
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STRUCTURE, CONGRUENCES AND VARTIETIES OF COMPLETELY REGULAR SEMIGROUPS

NORMAN R. REILLY

1. LOCAL AND GLOBAL STRUCTURE

One area of research in the field of Semigroup Theory in which there
have been significant successes in recent years has been the subject of
completely regular semigroups., The aim of these lectures is to give a brief
review of some of the achievements in the theory of completely regular

semigroups. We will start with some familiar and well known results and

concepts,

An element a of a semigroup S 1is regular if there exists an element
x in S .such that a = axa and a semigroup S 1is regular if every
element of S 1is regular.

If a, x € S, a semigroup, are such that a = axa and y = xax, then
a simple calculation will verify that a = aya and y = yay. Such an
element y 1is called an inverse of a.

An element a of a semigroup S 1is completely regular if there exists

an element X € S such that a = axa and ax = xa. In particular, x must

be an inverse of a.

LEMMA 1.1. For any element a in a semigroup S, the following
statements are equivalent.
(i) a 1is completely regular,
(ii) a has an inverse with which it commutes.

(iii) Ha is a subgroup.

We say that a semigroup S 1is completely regular if every element of
S 1is completely regular.

LEMMA 1.2, For any semigroup S the following statements are

equivalent.
(i) S 1is completely regular,
(ii) S 1is a union of (disjoint) groups.

(iii) Every H - class of S 1is a group.



NOTATION Let G6R denote the class of all completely regular
semigroups and for any a &€ S € BR, let a_l denote the inverse of a in
the (group) K - class Ha and let ao denote the element aa_l - a_la, the

identity of the group Ha.

It is not hard to see that the class TR 1s closed with respect to
products and homomorphic images. However, the additive group of integers is
completely regular but nas the infinite cyclic semigroup of positive
integers, which is not completely regular, as a subsemigroup. Thus the class
CR is not closed under subsemigroups, On the other hand, any subsemigroup of
a completely regular semigroup which is closed under inverses (4 — a“l) is
also completely regular,

These observations suggest considering completely regular semigroups not
simply as semigroups but as semigroups endowed with a unary‘operation (a —
a_l). This has now become the accepted viewpoint from which to study the
class CR. When we do this the class ORf becomes a variety of algebras
endowed with a binary and a unary operation satisfying the following |

identities:
-1
x(yz) = (xy)z, X = xx "X, (x 7) - X, XX - X X,

. . . . . . 0
In this context, consistent with earlier notation, we shall write x =
-1 -1
XX T = X "X,
The manipulation of inverses in completely regular semigroups can
present quite a problem. One observation that is sometimes

helpful is the following.

LEMMA 1.3. (Petrich and Reilly {19], Lemma 2.8) The variety GCR
satisfies the identity

Gt = Oy om0 O ) ©

Recall that a simple semigroup is one without proper ideals. A
completely simple semigroup is one which is both completely regular and
simple.

Lét' S be the disjoint union of the semigroups Sa (a‘e Y), where Y
is a semilattice and Sasﬂ - Saﬁ' Then S 1is said to be a semilattice of

the semigroups Sa, a €Y, and we write § = (Y;Sa). The importance of
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this concept in the theory of completely regular semigroups was revealed by

the following theorem.

THEOREM 1.4, (Clifford [2] and (4], Theorem 4.6) ILet S be a
completely regular semigroup. Then D =~ § 1is a congruence, each J-class is
a completely simple semigroup and S/f 1is a semilattice. Thus S 1is a

semilattice of its J-classes.

This theorem focusses the attention on the class of completely simple
semigroups, not just as an interesting special class of completely regular
semigroups but as an essential component of the structure of all completely
regular semigroups. That the class of completely simple semigroups
is an interesting class is also attested to by the fact that it can be
characterized in so many different ways, as illustrated in the next
theorem.

We adopt the notation E(S) for the set of idempotents of a semigroup

S.
THEOREM 1.5. The following conditions on a semigroup S are
equivalent.
(i) S 1is completely simple.
(i1) S 1is completely regular and satisfies the identity (axb)O - (ab)o.
(iii) S 1is completely regular and satisfies the identity (axa)o - ao.
(iv) S 1is completely regular and, for all a,b,x € §, ab X axb.
(v) S 1is completely regular and, for all a,x € S, a & ax.
(vi) S 1is regular and, for all a,b € 5, aSb is a maximal subgroup of §.
(vii) S 1is regular and weakly cancellative (that is, ax = bx and =xa =

xb implies that a = b).
(viii) S 1is regular and a = axa implieslthat X = Xax,

(ix) S 1is regular and every idempotent is primitive in E(S) (e € E(S)
is primitive if f € E(S) &and ef = fe = € 1implies that e = f),.

(x) S 1is simple and E(S) contains a primitive element.

It follows immediately from Theorem 1.5(il) and (iii) that € 1is a

subvariety of UR.

For any 4-tuple (I,G,A;P) where G 1is a group, I and A are

non-empty sets and P: (X,i) — Py; is a function from AxXI to G, let
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M(L,G,A;P) = IXGXA together with the multiplication

(1,8, h,p) = (ijgp,\jh,u).
It is a straightforward exercise to show that AM(I,G,A;P) 1is a completely
simple semigroup. This construction is due to Rees and such semigroups are

therefore called Rees matrix semigroups. However, Rees matrix semigroups

are much more than examples of completely simple semigroups.

THEOREM 1.6. (Rees [31] and [&4], Theorem 3.5) Every completely simple

semigroup is isomorphic to a Rees matrix semigroup.

The Rees Theorem is tremendously important in the study of completely
regular semigroups in general and completely simple semigroups in
particular. Congruences and homomorphisms can be effectively studied in
terms of the Rees matrix representations following from Theorem 1.6.
Indeed, the construction of Rees matrix semigroups is so simple, it would
almost seem as if any problem concerning completely simple semigroups could
be resolved by the simple expedient of representing all completely simple
semigroups as Rees matrix semigroups and then performing the appropriate
arithmetic., While many problems are indeed amenable to such an approach it

is not universally true as we shall see later.

We can view Clifford’s Theorem as giving a global structure to any
completely regular semigroup while Rees’s Theorem provides a local
structure. However, much of the complexity in the study of completely
regular semigroups arises in going from the local to the global picture.
This is perhaps best illustrated by the following general structure theorem
for completely regular semigroups where the "simple" local components

interact by means of factors and mappings.

THEOREM 1.7.(Petrich, [17]) For every o = Y a semilattice, let Sa -
M(I ,G ,A ;P ) be normalized at a € I NA . For a = §, let
[# 4 (s o Q [# 4 o

(1) <, > 8 X1, — 1

2 B’
(2) Scz —_ Gﬂ' denoted by a — aﬁ,
3 , 1:A,XS A
(3) [, 1:agxS, — 4
be functions such that, for a € Sa, b e Sﬁ
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(i) if i eI and X\ € A then

B g’
Pica,i>%8P18,a11 ~ Paca,p>28P (2, a)i

(ii) if {1 eI and X € A , then
a a

a = (Ka,i>, & [x,al).

On S -agYSa define a multiplication by

(4) aoh = (<a,<b,ap>>a b g 14 opbog (laf,a] b]).

Suppose that
iii) for y = af, i €1 ,A € A,
(111) 2l B ¥ N

<a,<b,i>>, a b ,[[X,a],b = (<aob,i>, (aeb) ,[A,acb]).

( Pl aleb, 4oy [[2:a1,B]) = (aob)_, [3,a0b])
Then S is a completely regular semigroup whose multiplication restricted

to each Sa coincides with the given multiplication. Conversely, every

completely regular semigroup is isomorphic to one so constructed.

This result is remarkable for its complete generality. A special case
of particular importance arises as follows.
let § = (Y:Sa) and, for all a, B €Y with a = g, let
Sa —> §_, be a homomorphism such that '

(1) o -1,

a,a a
(2) for a=z= g =17,

®

@, B 8

Ya,8%8,7 T %a, v’

If, in addition, for an a€esS,besS,_ , we have ab = ap be ,
7 a g a,af VB,a

we say that S 1is a strong semilattice of the semigroups Sa and write

S = [¥i5_, ¢,

then

ﬁ]. Clearly, any strong semilattice of completely simple
semigroups is’completely regular. There are various nice characterizations
of the semigroups that arise in this way. We require a few preliminary
concepts.

Recall that a normal band is a band which 'satisfies the identity

axyb = ayxb and that a semigroup is a normal cryptogroup if X 1is a

congruence on § and S/H 1is a normal band.
For any completely regular semigroup §, let the relation = be
defined in S by: for a,b € §
a<b & a=eb =D0bf, for some e,f € E(S).
Let S be a completely regular semigroup with completely simple
components Sa, €Y., If S8 1is such that, fora, g €Y with a 2= g8, and

any idempotent

123

in Sa there exists a unique idempotent £ in S

B
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with e = £, then § 1is sald to satisfy D-majorization.

Let
€Y = the variety cf completely simple semigroups
¥ = the variety of semilattices.
We can now provide a number of different characterizations of normal

cryptogroups.,

THEOREM 1.8. For any semigroup S the following statements are
equivalent,
(i) 8 1is a normal cryptogroup.
(ii) 8 1is completely regular and, for all e € E(S), eSe 1is an inverse
semigroup.
(iii) 8 1is completely regular and, for all e € E(S), E(eSe) 1is a
semilattice,
(iv) S 1is completely regular and satisfies ¥-majorization.
(v) § = (Y;Sa) is completely regular with completely simple components
Sa and for all a; B e wi?h a*z B and for all a € Sa, there.exists a
unique element a €& Sﬂ with a =< a.
(vi) § = (Y;Sa) is a strong semilattice of the completely simple
semigroups Sa, a €Y,
(vii) 8 is regular and a subdirect product of completely simple semigroups
with, possibly, a zero adjoined.

(viii) S € &9 v ¥,

2. CONGRUENGCES

We begin our treatment of congruences with congruences on completely
simple semigroups. With the aid of the Rees Théorem, congruences on
completely simple semigroups can be described fairly completely. The
details of the following treatment can be found in Howie [10]}.

let S = A(I,G,A;?). A triple (¥,N,¥), where ¥ 1is an equivalence
relation on I, ¥ 1is an equivalence relation on A and N is a normal
subgroup of G, 1is said to be admissible if

(i,j) € # or (\,p) €T = pAip;1ppjp;§' €N

For any admissible triple (¥ ,N,7), define the relation p(er,g) on

by



(i,a,1) Pis N.9) (J.b,p) &= (1,j) € ?f’,_l()_nlp)_le 7 and
pgiaprppxb pfj e N
for some (all) x € I, ¢ € A.

THEOREM 2.1. For anj admissible triple (¥ ,N,7), Pro w 7) is a

congruence on S = H(I,G,A;P) and all congruences on § are of this form.

Given the stucture theorems of Clifford (Theorem 1.4), Rees (Theorem
1.6) Petrich (Theorem 1.7), it would be natural to investigate the
properties of congruences on a completely regular semigroups by considering
their restrictions to the completely simple components and how they can be
reconstituted from these components. This approach has been succesfully
explored by Petrich [18]. However, here I wish to explore an apprecach to
the study of congruences which is less direct but which has provided a rich
harvest of insights into not only the behaviour of congruences but also the

lattice of varieties of completely regular semigroups.

DEFINITION Let p be a congruence on a completely regular semigroup
S. Then the kernel of p is
kerp—{aES:apaO)
and the trace of p is
T lagsy
The key observation about the kernel and trace of a congruence is that

in combination they completely determine the congruence.

LEMMA 2.2, (Pastijn and Petrich [l4], Lemma 2.10) Let p be a

congruence on a completely regular semigroup S. Then, for any elements
a,b €8s,

aph e ao trp bo and ab_l € kerp.

Proof. Let a,be S and a p b. Then ao ) bo and ab_l p bO.

Hence aO trp bo and abml € ker p. Conversely, suppose that ao try b0
and ab t e ker p. Then
b = b(b 1b)b b
p bla tayp b
- ba lav b
p ba_l(ab_l)(ab—l)b

- bea tayb tar tb)
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COROLLARY 2.3, (Feigenbaum [5], Theorem 4.1) Let X, p be congruences
on a completely regular semigroup S. Then

A= p == ker A = ker p and tr A = tr p.

This leads to natural questions concerning the nature of those subsets
‘of a completely regular semigroup which are kernels for congruences and
those equivalence relations on the set of idempotents which are the traces
of congruences. The treatment presented here is essentially that of Pastijn
and Petrich [14], specialized to completely regular semigroups as in (Petrich
and Reilly [24]).

DEFINITION A subset K of a completely regular semigroup S is said
to be a normal subset of S 1if it satisfies the following conditions:

(K1) E(S) C K,

(K2) keK » k' ek,
(K3) xy € K = yx €K, (x,y € 8),
(K&4) x,xoy eK = xy ek (x,y € S).

For any subset K of a semigroup §, we denote by T the largest
congruence on S for which K is a union of ﬂK-classes. Then
1
anwn,b > [xay € K &= xby € K (x,y € §7)]
- > - *
If v 1is a relation on a semigroup S, then we denote by v  the
congruence on S generated by v, and if <« is an equivalence relation

then we denote by 70 the largest congruence on S contained in 7.

THEOREM 2.4. (Pastijn and Petrich [14], Lemmas 2.4, 2.9 and Petrich and

Reilly {24]) Let K be a subset of a completely regular semigroup S. Then the
following statements are equivalent.

(l)' K is a normal subset of S.

(2) K is the kernel of some congruence on S.

(3) K 1is the kernel of M
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*
When (1) - (3) hold, {(k,ko): k € K) is the smzilest congruence and

Ty is the largest congruence on S with kermel K.

Next we consider the relations on the set of idempotents that arise from

congruences,

DEFINITION Let S be a completely regular semigroup and r be an
equivalence relation on E(S). Then r 1is a normal eguivalence if it
satisfies the following condition:

er f = (xey)o T (xfy)0 (x,y € Sl).

THEOREM 2.5. (Pastijn and Petrich [14], Lemma 1.3 and Petrich and
Reilly {24]) Let S be a completely regular semigroup and 7 be an equivalence
relation on E(S). Then the following conditions are equivélent.

(1) 7 1is a normal equivalence.

(2) 7 is the trace of some congruence on 5.

(3) r=tror |

When (1) - (B)Ihold, then T* is the smallest congruence and (HTH)O

is the largest congruence on S with trace r.

Having successfully characterized those subsets of S that can be
kernels and those equivalences on E(S) that can be traces, it is natural
to consider when a normal subset and a normal equivalence can be combined to

be the kernel and trace of a single congruence.

DEFINITION Let S be a completely regular semigroup, K be a normal
subset of § and r be a normal equivalence relation on E(S). Then

(K,7) 1is a congruence pair for § if K 1is a normal subset, r 1is a

normal equivalence and the following conditions are satisfied:

(CPLl) er f = |[xey € K & xfy €K, for all x,y € Sl]

(CP2) keK = (xky)o T (xkoy)o, for x,y € Sl.

i
From the definition of r, it follows that (CPl) could be replaced by

the equivalent condition

*
(CPL) er f = en, £, (equivalently, 7 € tr =«

K K>

or, altefnatively, invoking (K3) we could replace (CPl) by

*
(CPL) * er f = J[ex €K « fx € K].



In the same spirit, (CP2) can be replaced by the equivalent condition

* 0
(CP2) K ¢ ker (HrK) .

For any congruence pair (K,r) for §, define the relation p(K )

on S by

8P b e Qv atex (a,b € 5).
THEQREM 2.6. (Pastijn and Petrich [14], Theorem 2.13 and Petrich and

Reilly [24]) Let S be a completely regular semigroup, K be a normal subset

of S and r be a normal equivalence relation on E(S). Then the following

statements are equivalent.

(1) (K,r) 1is a congruence pair for S.

(2) % N (HTH)O has kernel K and trace r.

(3) There exists a congruence p on S with kernel K and trace r.

(4) There is a unique congruence p on S with kernel K and trace r.
Whenever (1) - (4) hold, the unique congruence on S with kernel K

and trace 1 1is

L O
p(K,‘r) - TI'Kﬂ (HrH) ™.

3. KERNEL AND TRACE RELATIONS

Throughout this section, let S denote a completely regular semigroup
and ©(S) 1its lattice of congruences. Let the kernel relation K and the
trace relation 7T be defined on €(S) as follows.

ADK p & ker A = ker p (A, p € B(S))
AT p e+ tr A=trp. (A\,p € B(S))
Clearly K and T are both equivalence relations. As an immediate

consequence of Corollary 2.2, we have
LEMMA 3.1, KN T = ¢, the identical relation.

We consider K first. As a related characterization of the kernel

relation we have the following interesting obvservation.

LEMMA 3.2, (Pastijn and Petrich [14], Lemma 3.9) Let X,p € T(S). Then
A Kop = AnH = pnH,



Proof. First suppose that ker XA = ker p. Then

alilnHib = a b, aib

-]
= aHHb, ab " A bO (since ao - bo)
= alb, ab_l € ker XA = ker p
= ...,
= a pNt b,
Thus A N X = p nX. Conversely, let A NH = ¢ N H. Then
a € ker A = aXni ao
0
= apnta

e a € ker p

so that ker A € ker p and, by symmetry, equality follows.

NOTATION Let X(S) denote the set of normal subsets of S ordexesd oy

set theoretic inclusion.

For any family (K ,:i € I} of normal subsets of §, it is clear that
igIKi is again a normai subset of §. From this it follows that XK(S) is
a complete lattice with respect to the operations

K, A K, =K NK, and K, VK, = n{Ke}{(s):KluK:acmv

THEOREM 3.3. (Pastijn and Petrich [1l4], Lemma 2.9 and Petrich and

Reilly [24]) The mapping

ker: p —— ker p (p € B(S))
is a complete N - homomorphism of E(S) onto X(S) which induces the
relation XK on EB(S). For all p € 8(S) the K - class of p 1is an
interval [pK,pK} where

*
Py = (p N K) and p o=

Unfortunately, K 1s not always a congruence. Let G bpe any
non-trivial group, Y = {0,1) be the two element semilattice and S = G x ¥.
Let ¢ denote the identical relation, w tHe universal relation, o the
minimum group congruence and p the Rees congruence determined by the ideal
G x (0). Then € Ko but

EV p = p and cvVp = w

where p and w do not have the same kernels.

However, there are circumstances under which K 1is a congruence.

The method of proof used by Pastijn to establish the fact (Tneorem 4.4 below)
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that K is a congruence on the lattice of fully invariant congruences on the
free completely regular semigroup suggests the following discussion. We
begin with completely simple semigroups. Let (¥,N,7), (¥',N',7') and
(P,4,Q) be admissible triples for S = MA(I,G,A;P) and let
PPNy P T PNy T T T Y M)
A straightforward calculation will show that
ker p = {(i,a,X): ap, € N)
with similar expressions for ker p’ and ker ¢. Consequently,
ker p = ker p' & N = N',
Now it is also the case that
p Yo P (#vP MN,TVQ)
so that

ker p Vo = ((i,a,X): ap € MN)

with a similar expression for ker p'Ai o. Therefore, it is clear that
ker p = ker p' = ker pve = ker p' vo
whence K 1is a congruence on €(S) and the mapping ker is a homomorphism
on €(S8) for any completely simple semigroup S.
This observation has consequences for any completely regular semigroup.

To see this, let § = S be a completely regular semigroup with

QEY a
completely simple components Sa and let p, p', o € (D], the sublattice
of €(S) consisting of those congruences contained in D, be such that ker p

- ker p', Let

- L — i -
P p[S ) P pls and 7, G[S (a € Y).
a a a
Then ker p = ker p'. Also
a a
- p VY o = U pogopo,,., 0p where the union runs over compositions

of arbitrary length
- U agYpaocao...Opa since p, ¢ € (D]
- agY Upaogao”'oJJ

= agY paVoa.

o 4

Hence

(p Vo),

1
©
<
q

and

ker p Vo = Uker(p Vv o)a

U ker (pa v aa)
= U (ker Po v ker aa) since ker 1is a homomorphism when
applied to the lattice of congruences on a

completely simple semigroup



= U (ker p' Vv ker o )
a a
- ker p’' VvV o.

Thus we have established the following theorem:

THEOREM 3.4. For any completely regular semigroup, the mapping ker is

a homomorphism on (D].

Parallelling Lemma 3.1, we have the following result characterizing

the trace relation.

LEMMA 3.5. (Pastijn and Petrich [14], Lemma 6.5) Let X,p € F(S).
Then
ATop = AVHE = pVvH,

Combining Lemmas 3.1 and 3.5, we obtain a rather curious test for the

equality of congruences.

LEMMA 3.6. Let X,p € B(S). Then
A= p = ANK = pnNnH and A VHK = p VvV H,

In dealing with expressions of the form p VvV H, it is sometimes useful

to know the following simpler descriptions.

LEMMA 3.7. Tor any p € U(S),
p VE = pHp = HpH.

NOTATION Let J(S) denote the set of all normal equivalence relations
on E(S).

Clearly the intersection of any family of normal equivalences is again
a normal equivalence. From this it follows that the set J(S) 1is a
complete lattice with respect to the operations

AT = oNnT and oVr = Ni{peT(8): courgop).

THEQREM 3.8. (Pastijn and Petrich [14], Theorem 4.20) The mapping
tr: p —— tr p (p € T(S))
is a complete hamomorphism of €(S) onto J(S) inducing the relation T

on €(S). Moreover, for each p € €(S), the T-class of p 1is an
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interval [pT, pT} where

* T 0
2 (tr p) and . p - (p VvV H) .

In contrast to the fact that K need not always be a congruence on
€(S), we have the following immediate consequence of Theorem 3.8.

COROLIARY 3.9. T is a complete congruence on U(S).

From Theorems 3.3 and 3.8, we see that the equivalence relations K
and T are such that every class is an interval in the lattice C(S). These
facts, together with Lemma 3.1 enable us to give a purely lattice theoretic

proof of the next cbservation.

PROPOSITION 3.10. (Pastijn and Petrich [14], Theorem 3.5) Let p &€ G(S).

Then
P ¥V P - pr = P' A PT
K T
Proof. We have
Pg = PV Pp = P
and, by the convexity of the class p¥, 1t follows that Pr v Pr K p

Similarly, Py ¥ P T p which, by Lemma 3.1, implies that Py vV Pp = P

The second equality in the statement of the proposition follows bv duality.

There are two additional relations on ¥€(S) that are closely related
to T. 1In order to recognize that these relations are natural relatives of
K and T, it is helpful to consider slightly different characterizations
of K and T.

Let p € €{(S). Then

p 1is idempotent pure if ker p = E(8),

p 1s idempotent separating 1f tr p = ¢ or,

equivalently, p C K.

Clearly,
AKp = ker A = ker p = ker Anp
&= ker A/(Jnp) = E(S/(Anp)) = ker p/(XNp)
= A (Anp) and e/ (ANg) are both idempotent pure.
Similarly,
AT p & tr d = tr p = tr AnNp
&= tr A/(Anp) = € = tr p/(Anp)
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= A/ (Anp) and p/(ANg) are both idempotent separating

= A/(anp), p/(ANp) C© K.

It is this very last characterization of T that leads to two
additional relations on T(S): for X,p € G(S),
AT, b e A (A%, p/(ANp) C Z
AT e = AS(Anp), p/(A0p) S R

We refer to T£ as the left trace relation and to Tr as the right trace

|

relation on ©C(S).

For any congruence p € T(S), the left trace and right trace of »p
are defined to be
1tr p = (pv )P and  rtr p = (p v R°,
Then an equivalent characterization of the relations Tﬁ and Tr is given
by the following: for A,p € C(8),
A TE p & ltr A = 1ltr p and A Tr p &= TLY A = rtr p.

The parallelism between the relations T, Tj. and Tr is brought out

strongly in the next result,.

THEOREM 3.11. (Pastijn and Petrich [14], Lemma 6.5) The mappings
p —= p VvV H, p —> p V 2, p— p VvV R
are complete homomorphisms of the lattice €(S) into the lattice E(S) of

equivalence relations on S 1inducing the relations T, TE and Tr'

respectively. Consequently, the relations T, T£ and Tr are complete

congruences on G&(S).

As an immediate consequence, to match Lemma 3.5, we have

COROLLARY 3.12. (i) A Tg p = A VI = pv_ZI,

(11) AT_p & AVE = pV&

Since T, and 'I‘r are complete congruences, it follows that all the

A

T,-classes and T_-classes are intervals. For any p € G(5), we define

£ T ror

2 r . .

P 1 P4 P and p Dy setting

LE Lr

T2 Tr
pT, =~ (o o 7] and pT_ = [pn v 2 7],
2 T‘e r Lr

o



The next result sets out some important basic connections between the

relations T, T and Tr'

2
THEOREM 3.13, (Pastijn and Petrich [1l4)}, Corollary 4.8 and Theorem 4.14)
(1) T£ N Tr - T.
(ii) For any p € B(S),

and p AP - p

2 r
P K
K \\\\\\\\\\\ T
p p
P\\\\\\\\\\
: / ’
p P
T£ Tr

In order to give more explicit descriptions of the endpoints of T£~
and Tr-classes, it is convenient to introduce the following relations.
Define

e <, f = e = ef (e, f € E(8))

and define the relation = dually.

PROPOSITION 3.14. (Pastijn and Petrich [14], Theorem 4.12)

Let p € B(S).

. * Tr 0
(1) P = (p 0=y and p - (p VR .

r



.. * T£ 0
(ii) pp = (P =) and p - (pVvZI) .

4. THE LATTICE OF VARTETIES

We shall reguire some notation. For any subvariety V of TR, we
shall write
Z(V) = the lattice of subvarieties of V
FV = the relatively free completely regular semigroup in ¥
on a countably infinite set X
[ = the lattice of fully invariant congruences on FCR.
Fundamental to the discussion of varieties is the standard
correspondence between varieties and fully invariant congruences.
For V¥V € LZ(ER), let Py be defined on FCR by
py = ((u,v) € FERXFER: uf = v§, for all homomorphisms ¢:FCR — S € V).
Then the mapping
TV — py (Vv € Z(CR))
is an antiisomorphism of Z(CR) onto T.

The study of ZE(BR) involves many special varieties as reference

points.
T - trivial semigroups (x = y]
ZZ - left zero semigroups [xy = x]
RZ - right zero semigroups [xy = v]
RB - rectangular bands [xyz = xz]
Ref - rectangular groups {xOyOzD - (xz)o]
¥ - semilattices [x2 - X, Xy = yx]
3 - bands [xz - x]
#¥8 - normal bands [xz = X, axya = ayxa]
¢ - groups [xo - :»’O]
df - abelian groups [x0 - yo, Xy = yX]
dn - abelian groups of exponent n [xo - yo, Xy = yX, X" = xo]
I§ - left groups [xoyo - xO]
RG - right groups {xoyo yO]
G - semilattices of groups [xoyo - ycxo]

€ - completely simple semigroups {(xyz)o - (xz}O}
00 0 0.0
- orthogroups (xy" = X7y )]

06
€% - cryptogroups {(Xoyo)o - (XY)O]
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O6§ - orthocryptogroups {xoyo - (xoyo)o, (xoyojo — (xy)o]

&G - normal cryptogroups (completely regular semigroups for which
H is a congruence and S/H 1is a2 normal band).
LOEY - locally orthodex cryptogroups (that is, all S € ER such
that eSe € 08y for all e € E(S)).
CLOEG - completely regular semigroups for which the core (that is,

the subsemigroup generated by the idempotents) lies in LX§

The first part of Z(BR) to be studied in any depth was the lattice
£(8) of subvarieties of the variety & of bands. Here is the familiar

diagram for (¥,8] due to Birjukov [l], Fennemore [6] and Gerhard [8]:

The next part of the lattice ZL(ER) to be studied in depth (excluding
the lattice of varieties of groups, which has been studied for many vyears,
of course) was the lattice Z(E¥) of subvarieties of the variety of
completely simple semigroups. Most of the work on Z(E¥) to date has
taken advantage of the description of the free completely simple semigroup

described by Clifford and Rasin (independently), in 1979.
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THEQOREM 4.1.(Clifford [3] Theorem 7.4, Rasin [28] Theorem 1) Let X
be a non-empty set and fix z € X. Let Y = {px’y:x,y € X\(z)} Dbe a set.
indexed by pairs of elements from X different from z and let G be the
free group on Z = X U Y. Let pz,x =~ Py " 1, the identity of G, for all
x € X, and let P = {px,y) be the X %X X matrix with (x,y}th entry equal

to P, - Then FGL(X) = (H(X,G,X;P),8) where x§ = (x,x,x), for all =x €
X.

NOTATION Let & denote the set of endomorphisms w of G for which

there exist mappings ¢ and ¥ of X into itself such that, for all
x,y € X,
-1 * -1

Pry? 7 pX¢,yw(pZ¢,Y¢)

X,y Pzp,ze )

(PX¢,Z¢
Llet XN denote the set of normal subgroups of G which are invariant
under all elements of €. It is easily verified that ¥ is a sublattice

of the lattice of normal subgroups of G.

THEOREM 4.2. (Rasin [28], Theorem 3) The interval [®8,0¥] is

anti-isomorphic'to the lattice X,

Because of this result, most of the advances to date in the study of

Z(CP) bave involved the study of the structure of G and ¥.

NOTATION Let € denote the variety of all completely simple
semigroups with the property that the product of any two idempotents lies

in the centre of the X-class containing it. This variety is defined by

the identity ‘
g0 00
ax a ya = aya x a. .
For any V € EZ(B¥), let J(¥) denote the €lass of all idempotent
generated members of ¥ and let <J(V)> denote the variety of completely

simple semigroups generated by J(V).

The largest ideal of Z(B¥) to have been given a fairly precise

characterization is ZX(¥).
THEOREM 4.3. (Petrich and Reilly [20], Théorem_3.1l) The mapping

fid — (d N BB, <FP> N df, d N§) (d € 2(F))

is an isomorphism of Z(€) onto the subdirect product
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((U,¥ W) € £(RB) X L(4E) X E(E): V C ¥, U w B8 —=s ¥ = ).

Despite the "simple" characterization of completely simple semigroups
provided by the Rees Theorem, the structure of Z{(¥¥) outside of the ideal

E(E), remains a mystery,

In order to probe deeper into the structure of ZIX(ER), we take
advantage of the recent techniques for investigating congruences that were

described in earlier sections.

In Theorem 3.10, we saw that the relations T, T, and Tr are complete

£
congruences on C(S), for any completely regular semigroup §, but that K

need not be. We now have:

THEOREM 4.4.(Poldk [25] Theorem 1, Pastijn [12] Theorem 1l1l) K is a

complete congruence on I.

Thus K, T, Tg and Tr are all complete congruences on I'. Under the
.. . -1 -
antiisomorphism m ~, these carry over to complete congruences on ZL(CR):

UYKY < Py K UTTY = Py T Py

Pors

v
U T£ V & Py T£ Pyrs U Tr V & Pyl Tr Py

The classes of any complete congruence are intervals and so it is

convenient to denote the intervals for these four congruences as follows:

YK = (v, v YT - [V, V"
K

TE Tr

po VL VI = YT

£ T

VT, = (¥

THEOREM 4.5.(Poldk [25] Theorem 1 and [26] Theorem 1.6, Pastijn [12]

Theorem 8) The mappings

v —s v¥, vV, Y, (¥ € £(ER))
2 r

are complete endomorphisms of Z(TR) inducing the congruences K, T, and Tr'

£
Somewhat surprisingly, the mapping
Vv — VT (Vv € E(ER))
is not an endomorphism of -E(ER) (see Petrich and Reilly [22]}, Proposition
7.6). In addition, the mappings associated with the other ends of the

intervals of K, T, T, and Tr are not endomorphisms. An interesting and

2
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useful fact is that the upper ends of the intervals of K, TE and Tr can be

described in terms of Mal’cev products (Pastijn [12] Lemma 3, Theorem 13):
K T£ rI‘r
V" = RBo(YV¥), V T = oV, ¥ T = RCoV.

An alternative expression for VK is VK - 8oV,

One approach used in the study of ZE(BR) has been to describe certain
intervals of the form [¥ A V,U v ¥], for suitable U,V € E(CR), as
particular subdirect products of the intervals [U% A ¥,U] and [U A V,V].

Ve begin by studying the circumstances under which an interval of the
form {a A b,a vb] in a lattice may be isomorpbic to the product
(a Ab,a] x [a Ab,b] with a view to applying this to the lattice Z(CR).

For any complete congruence A on a complete lattice L and
any a € L, the class aX 1is an interval. We define ay and aA
by ai = [aA,aA}. The following discussion is taken from (Petrich and
Reilly [23]).

LEMMA 4.6. Let x and r be congruences on a lattice L and

a,b € L. The following statements are equivalent.

(i) ax a Ab 1 b. (ii) a r a v b & b.
Proof. If (i) holds then
a=aVv{(aAab) r a v b and b =(aAb)Vb x avhb

which gives (i1). The proof that (ii) implies (i) is similar.

DEFINITION If L,a,b,x and 7 satisfy (i) and (ii) in Lemma 6.1,
then we will say that a and b are «xr-neighbours. Congruences « and

7 on a lattice L are said to be disjoint if kK N7 = ¢,

LEMMA 4.7. let x and 7 be disjoint complete congruences on a
complete lattice L and let a € L. Then
K T
a=a Va =a Aa
K T
Proof, Since x and r are congruences, we have

a Vv a X ava =a and a Vv a r a v a=a
K T T 5 T 5

so that a v a, (¢, N 7r) a. But k and r are disjoint. Therefore

a=a Vva. The second equality follows by duality.

COROLIARY 4.8. Let k and r be disjoint complete congruences

T

. K
on a complete lattice L and let ae€ L. Then a , a are
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k7-neighbours and a , a are rx-neighbours.

K T
o a Vv a

Proof. By Lemma 4.7, we have

K

K T K T T
a Aa =a K a and a Aa =a r a

from which we deduce the first claim. The second claim follows

similarly using Lemmas 4.6 and 4.7.

We are now ready for the main lattice theoretic observation. One of
the striking features of this result is the fact that neither

modularity nor meutrality appear in the hypotheses.

THEOREM 4.9. Let «,r be disjoint congruences on a lattice L
and a,b € L be kr-neighbours. Then the mappings

w: z — (z A a,z ADb3, ¥ (X,¥) = x Vy
are mutually inverse isomorphisms between [a A b,a V b] and

[ A b,a] X [a A b,b].

Applying these lattice theoretic considetations to congruences, we

obtain:

THEOREM 4,10. (Pastijn and Trotter [15], Theorems 5.1 and 5.2)
let p €T,
(1) The mappings
I— (BN, ), (g — &V
are mutually inverse isomorphisms between [p,pK v pT] and

T}.

(ii) The mappings

[p,pK] X [p,p

9—>(9VPK,9VPT). (£,n) —> £ N
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are mutually inverse isomorphisms between [pK n pT,p] and
oy p) X logipl.
Proof. (i) From Lemma 3.1, we know that K and T are disjoint
complete congruences on I'. It follows from Corollary 4.8 that pK
and pT are KT-neighbours and the claim follows by Theorem 4.9.
(ii) This follows from (i) by duality.

In order to provide some specific illustrations of the preceding
discussions in terms of varieties rather than fully invariant
congruences, we need to know some specific values for the upper

end points of some of the K- and T-classes,

LEMMA 4.11. (i) 7% = 8, G~ = Ref" = OF .
(ii) 97 = §, 88T = Ref’ - E7.

Proof. (i) See (Polak [25]), Theorem 2).
(ii) See (Petrich and Reilly [21], Section 9).

We can now give some examples of applications in Z(TR).

LEMMA 4.12, (i) (Petrich [16], Theorem) The mappings
vV — (Y N3, ¥nig,. (U, %) — UV Y

are mutually inverse isomorphisms between Z(OFF) and Z(B) X L(§).
(ii) (Hall and Jones [9], Corollary 5.5 and Rasin [30],

Proposition 1) The mappings

Y —s (Y N3, ¥ nbEY¥, (UL,¥) — UV
are mutually inverse isomorphisms between [RB,LIXY] and
[88,8] x [®8,0F).

(iii) (Reilly [32], Theorem 4.9) The mappings

Y — (Y nOE, Y nEP (U,¥) — UV ¥

are mutually inverse isomorphisms between [Ref, CLOCE] and

[Rel,08] x [Re,C¥].
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5. POLAK'S THEOREM

The following subset has a special role to play in the study
of E(TCR):
XO - {VK:V € E(ER))
Examples of members-of KO are plentiful and include all group

varieties and all non-orthodox varieties of completely simple semigroups.
o

Since K 1is a complete congruence on Z£(ER) and KO contains exactly

one representative from each K-class, we may consider KO as being a

lattice with the lattice structure inherited from Z(ER)/K. Thus, for U, V €
E(@ER), U=V if and only if UK =< VK.

We now adjoin three elements to the bottom of X (below the trivial

0

o t° X = KO v {L,T,R} as indicated

in the diagram below so that X becomes a lattice with X

variety 7) and extend the order on X

as a
0

sublattice.

Before proceeding, we require some additional notation:

ENB = the variety of left normal bands = [x2 - x: Xyz = xzy]
RN8 = the variety of right normal bands = [x2 - X, Xyz = yxz].
For ¥ € Z(CR), let the mapping
vV — ¥V *x (¥ € [¥,BR])

K
be defined by the following:

VK if ¥V = #,ZNB,RV8
VK* - L. if V = ZN8

T if V =

R if V = RN8.
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We wish to combine the above mapping with mappings associated with To

and Tr._rTowards this end we introduce "products" of T and Tr' let

£
8-<‘I,T}T2-T,T2-T> and 6 = 8 U (1)
27l TR 2 Y r 2
be the monoid with generators T2 and Tr subject to the relations 'I‘£ - Tf'

2

Tr - Tr' It is easy to see that every element of 6 can be written

uniquely in canonical form as

T = T1T2...Tn where Ti = {TE'Tr}’ Tir‘Ti+l
For such an element 7, let |f| = n, h{r) = Tl and t(r) = Tn' Define a

relation =< on 61 by

o<1 & |o|>|r|] oxr =171 or r = 1.

Then (81, <) 1is the partially ordered set depicted on the left of the
diagram:
T ,
r
T,T — ¢, X
L
TrT.ETr
We also extend the definitions of VT and VT to cover Vr for any
2 r
T E 81 by defining Vl = ¥ and otherwise defining Vr inductively as
follows: for r = T1T2 e Tn €86 and YV € L(CR) let
VY -
T (VT ...T )T :
1 n-1 "n 1
Our main interest is in certain mappings of 8~ into X.
1
Let ¢ denote the set of all ¢ € x® satisfying the following
conditions:
D(i) 1¢ € X

0 1
D(ii) ¢ 1is order preserving,
D(iii) r € 8, ¢ = L = t(7) = Tr'

D(iv) r € 8, 7¢ = R = t(r) = T,E’
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D(v) o € el,r € 8, op € KO and either o = @

or t(o) » h(r) = (or)¢ 2 (a¢)TK*.

THEOREM 5.1, (Poldk [26], Theorem 3.6) ¢ 1is a complete lattice (with

respect to the component-wise order).

Poldk's main theorem concerns those subvarieties of €& that contain

the variety of semilattices,

1
THEOREM 5.2.(Poldk [26], Theorem 3.6) For any ¥ € [#,88], let x, € x®

be defined by:

VK ifr=-g
TXV - .
v % otherwise
7K
Then the mapping
x: ¥ —> xv (Y € [¥,BR])

is an isomorphism of [#,CR] onto &.

Many interesting subsidiary facts and applications of this theorem can
be found in Poldk’s three papers [25], [26] and [27].

A case to which Poldk's Theorem can be quickly applied to give new
information, is the lattice ZX(0fF) of subvarieties of the variety 0§ of
orthodox completely regular semigroups It is not hard to show that
OQK - g, where.ﬁ denotes the variety of groups. ~Therefore, for any
Vv € £(0§), the partially ordered set of values of x, may be depicted as
follows:

%o
&) ¢
€3 ¢,
¢s ¥




where 60 € Z(§), the lattice of varieties of groups and, for each n > 1, §n

€ E(Gyu{ L, T, R }. From this it is easy to deduce the following result.

THEOREM 5.3. (Poldk [26], Theorem &4.2) E(Of) is a subdirect product of
countably many copies of E(§) and a single copy of Z(38).

One question about ZF(BR) that remained unanswered for a considerable
time was whether or not it is a modular lattice. Various results had been
obtained concerning various sublattices of E(ER) (see, for example, Rasin
[29] for the lattice of varieties of completely simple semigroups and Hall
and Jones [9] for the lattice of varieties of completely regular semigroups
for which ¥ 1is a congruence). The question was finally answered in full

generality with the aid of Poldk’s Thecrem by Pastijn:
THEOREM 5.4.(Pastijn [12], Theorem 18) L(BR) is modular.

Verifications of the modularity of Z(CR) that are not dependent on
Poldk's Theorem have béen obtained by Pastijn [13] and Petrich and Reilly
[23]. |

Since the lattice of group varieties is a sublattice of ZX(BR) it
follows that Z(BR) 1is not distributive. However, even in a
non-distributive lattice, there may be elements which have properties that
are normally associated with distributivity. More exactly, an element a
in a lattice L is neutral if the mapping

x — (xAa, XVva)
is a monomorphism o¢f L onto a subdirect product of (a)] and [a) (where (a]
and [a) denote the ideal and filter of L, respectively, generated by a).

The usefulness of a neutral element a in a lattice L is that it
mazkes it possible to convert certain types of problems on the whole lattice
L to (hopefully simpler) problems on the (hopefully simpler) sublattices
(a] and [a). One nice feature of iodular-lattices is that, by virtue of
the lemma below, in order to establish that an element is neutral it is not

necessary to verify all the conditions in the definition each time,

LEMMA 5.5. ([7]) For any element a in a modular lattice L, the
following statements are equivalent:

(1) a is neutral in L;
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(ii) the mapping
Byix —3 XAa (x € L)
is an endomorphism of L;
(iii) the mapping
v oix —> XVa (x € L)

is an endomorphism of L,

Prior to Poldk’s Theorem, a few simple examples of neutral elements in
L(ER) were known. For example, Hall and Jomnes [9] had shown that the
variety ¥ of semilattices is neutral and Jones [1l] extended the list to
include all subvarieties of the variety #8 of normal bands.

Also Jones [11] had shown that pg and Hpyp are homomorphisms so that,
by the preceding theorem and lemma, we may conclude immediately that § and
¥ are both neutral in ZE(FR). But now, with the techniques available on
account of Poldk’s Theorem it is possible to determine many more neutral
elements and to approach the search for neutral elements in a much more

systematic way.

The foliowing is a partial listing of the varieties that are now known
to be neutral in E(Eﬂ):(for details, see Hall and Jones [9], Jones [ll] and
Reilly [33]) |

g, ©r, 45, 3, 0, LOGG,

CS(4F) - the variety of completely simple semigroups with
abelian subgroups.

OG(4F) - the variety of orthodox completely regular
semigroups with abelian subgroups.

LOEG (4F) - the variety of locally orthodox cryptogroups
with abelian subgroups.

2(3) - all subvarieties of 8
E(OQ(AG)) - éll subvarieties of Of(§).
L(LOCG(4§)) - all subvarieties of LOCG(AG).

Some partial results can also be obtained, such as the following.

COROLLIARY 5.6. (Reilly [33], Corollary 5.8) The variety Cf is neutral
X K
in E(EF ).

Since § ¢ CF, we must also have Of = gK c EﬁK and therefore also
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GG v O C egK . From this it can be shown that &f is neutral in
E(EG v OF).

An important feature of the next theorem is the fact that certain

varieties are expressible as joins of well known varieties.

LEMMA 5.7. (i) 8 v E = OBF. (ii) 8 v B = LIXG.

(i11) O v B = CLOCE.

Proof. (i) See (Petrich [16], Lemma 1).
(ii) See (Hall and Jones [9], Corollary 5.4).
(iii) See (Hall and Jones [9], Theorem 5.3 and Reilly [32], Proposition

5.3).

COROLLARY 5.8. (i) (Petrich [16), Theorem) The mappings
VY — (Y Nn3B, VYNNG, (U, %) ——;a Tvw
are mﬁkually inverse isomorphisms between ZIL(OC{) and Z(3) X Z(§).
(ii) (Hall and Jones [9], Corollary 5.5, Rasin [30]), Proposition 1)
The mappings
V — (Y N2, V NnCYP), U, ¥) — U VYN
are mutually inverse isomorphisms between ZIZ(IOC§) and the subdirect
product of E(8) and Z(B¥) consisting of all those pairs (U, ¥) with
YN8 =unBY '
(iii) (Reilly ([33], Theorem 5.9) The mappings
vV —> (Y NEE, VO, (U, ¥) — YV ¥
are mutually inverse isomorphisms between Z(CGVZY) and the subdirect

product of Z(EF) and L(0F) consisting of all those pairs (U, ¥) with
U n OB =¥ n OB,
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