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J. Introduclion

Il is • basie resuh of ring theory th.t lhe seI of endomorphisms of an .belian group is •
ring under funetion .ddition and composition and furthermore every ring is isomorphie lo •
subring of • ring of this lype. If the group is net .belian then the seI of endomorphisms is
no Jonger elosed under .ddition. This leads one lO the study of near-rings. Il is the purpose
of thi, p.per lO presenl • survey of some of the more recenl results in the area of near-rings
of group m.ppings. We star! with some b.sic definitions .nd eoneepts lo be used
throughout tbe papero Far further detaiIs about these concepts and other results in near-ring
thecry we refer the rear::er to the books of Meldrum, [J4] and Pilz, [J 7].

We recalI th'l' near-ring N := (N,+,.) is • set N with binary operations of addition +
and multiplication . sueh that
(i) (N,+) is a group (not necessarily abelian) with neutraI element O;
(ii) (N,.) is a semigroup; .

(iii) (a+b)c = ac + be, Va,be E N.
More precisely we have defined a right near-ring. Using

(iii)' a(b+c) = ab + 'e, V.,b,c E N
one gets a Iefr near~ring. Henceforth wc consider only right near-rings and refer to them as
"near-rings". -Examples of near-rings are abundant. They arise in a natural manner when
one deaJs with "non-linear" m.ppings.

Examples: Let (0,+) be. group with neutral e!emenl O, let T be a topological group, V •

vector space and R a commutative ring. With respect to funetion addition, +, and funeticn
compesition, ", the following are near-rings:

(a) M(O):= (f:O'" O);

(b) Mo(O):= lf E M(O) I f(O) = O);

(c) M",n,(1):= (f E MCD I fis continuous on T);

(d) M.tP):= (f E M(V) I f is an affine m.p on V);

(e) R[x]:= lf Ifis. polynomial over R in. single indeterarlnant, xl.

Funher every ring is a near-ring and ii we define o on any group (0,+) by aob = .,

..beO then we gel. near-ring (0.+,0), Le., every group can be made inlO. near-ring.

7



A near·ri.ng N is said to be zcnrS)'mmerr:c if 8-0:; o-a = o ';t'a E N. A DeM·ring N is a

near-ring wjlb idenritv ii 3i E N such mal i·a =a·i =a. V'a E N. In mc sequel alI ncar­
rings wiJ! be z.eTO-symmetric with identity.

LeI G be a group, End G the monoid of endomorphisms of G and let 5 C End G be

any sernigroup of endomorphisms of G such thal the zero map and idenrity map are in 5.

We discuss tv.'o ways of associaling ncar-rings witÌ1 the pair (G,S).

Distriburive!v gtoerared near-rinCl; lei dg S denote tbe subgroup of M(G) generated by S.

n

Thus dg 5 =(f =L ± a; I al E 5). !< is straightforward IO verify thal dg 5 is a near-ring,
i = l

zero-symmetric and with identity. We cali dg 5 <he near-rin, di,tributivelv ,enmled by 5.

Centralizer near-rin.<. Lei Ms(G) = IfE M(G) I fa =ar, 'Va E 5). 5ince 5 contains the

zero map we see <hai Ms(G) is a zero-symmetric near-ring with identity. We cali Ms(G) the

centralizer "tar-rine delennined bv CO Sl.

Qur main focus in me remainder of rnis paper will be 00 various centralizer near-rings
although distributive!y generated near-rings wiU reappear.

A near-field is a near-ring N with <he property that (N* := N - (O},·) is a group.

Historicall)' near-fieids were the first class of near-Iings investigated. In 1905, L.E.

Dickson gave the first example of a near-field which is net a fieJd. In 1936, H. Zassenhaus

oetennined ali finite fields. He fouod that, except for seven isomorphism types, ali finite

near-fielÒ5 can be conslrUcleà by a methoò going back to Dickson.

5ubnear-rings and homomorphisms are oefineà in the usual manner. The i.Ikill of a

near-ring N are defined as kerneIs of near-ring homomorphisros. This gives rise [O ilie
internai characterization thal a subset l of a near-ring N is an ideal of N ii

(i) (1,+) is a normal subgroup of (N,+);

(ii) 'Va E l, 'Vn,m E N, n(a+m) . nm E l;

(iii) 'Va E l, 'Vn E N, an E l.

A subset A of N salisfying (i) ano (ii) of the above defnition is called a left jdea! of N

and a subgroup (B,+) of (N,+) is an N-subgroup ii nb E B, 'Vn E N, 'Vb E B.

We define the 12 radical of a near-ring N as the inlersection of ali ideals of N which are

maximal as N-subgroups and we denote Ihis radical b)' J2(N). When N is a ring the J2
radical cOITesponds IO the Jacobson radical of the ring.

A near-ring N is simple when the only ideals of N are [O) and N. A near-ring is ~

semisimple when J2(N) = {O). When N is finite, J2(N) is the intersection of all marimal

ideals of N and N is 2-sernisimple ii and 001)' ii N is <he diTect sum of simple near-rings.

The interes[ in centraJiz.er near-rings stems from me followi.ng resuh which shows that
such near-rings are generai in the sense thal every near-ring (as usual, zero-symmetric with
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idennty) arises as a centralizer near-ring.

Tbeorem I I. Let N be a near-ring. Tben there exists a group O and a semigroup 5 of

endomorphisms of O sueh that N" Ms(O).

Proof. For each a E N the map ~.: N .... N defined by ~.(x) = xa 'Ix E N is an

endomorphism of (N,+). Tben, for 5 = [~. la E N), one finds N "Ms(N).

Therefore, since MsCG) is as genera1 as possible, in arder to obtain specific struetural
results, one must put some resoictions on tbe pair (O,S). In tbe next section we indicate
structural results for certain choices of (0,5).

II. 5tructure of the centralizer near.ring Ms(G)

When 5 is a group of aUlomorphisms of O one ean make use of the theory of groups
acting on sets. This situation has received a great dea1 of attennon. Hence we fU'St consider
(O,A) where A is group of automorphisms of O with zero adjoined.

Recall that in this situation, for each a E O, we have a subgroup stia) := [a E A I

a(a)=!), the A-stabilizer of a. Also for a E O, the orbit Aa of a is defmed by Aa := [a(a) I

a E A). The next result, due to O. Betsch and known as BelSch's Lemma is fundamenta!
to the study of MA(O).

Lemma Il l Let A be a group of automorphisms of the grciup O and let X,y E O. There

exislS a funetion f E MA(O) such that f(x) = y ii and only ii st(x) ~ st(y).

",'hen O is finite several definitive structural results can be given.

Theorem II.2. [IOJ Let O be a finite group and A an alitomorphism group of O,

l. Tbe following are equivalent:
a) MA(O) is a near-field;
b) A acts transitively on O· = G· [O);
c) 0* is a single orbit under the action of A on O.

2, MA(O) is a simple near-ring if and only if all A-stabilizers of non-zero elements of O

are A-eonjugate, Le., for a,b E0* there exislS rE A such !hai sl(a) = r Sl(h)yl.

3. MA(O) is 2-semisimple if and only ii ali A-stabilizers of elements in 0* are maximal,

Le., for a,1> E O", sl(a) ~ sl(b) implies sl(a) = st(h).

In particular, if A is a group of fixed point free automorphisms (only the identity of A

has more than one fixed point) then sl(a) = (id) for each a E 0* so in this case MA(O) is

sirnple.



We now consiJer the case in which G is an infinite group. Recall mat a near-ring N is

regular If for every a E N, a = aba for some b E N. In [15J, Meldrum and OswaJd obUlin a

very nice characterization for regular centralizer near-rings.

Theorem U 3. [I 5J Le! A be a group of aUlomorphisms of a group G. Tbe near-ring

MA(G) is reglllar If and only if for a,b E G', stra) ç: stCb) Implies sl(a) =Sl(b).

We remark mat in the finite case regularity coincides with 2-semisimple. Funher, if A
is fixed poinl free tben MA(G) is regular. lf tbe palr (G,A) salisfies tbe condilion of

Tbeorem il.3 tben we say (G.A) js regular.

When G is infUlite, it seems te be a rather difficult problem to determine in general
whelher or noI MA(G) is a simple near-ring. Jf A = {O, id} (reeail the groups of

automorphisrns have zero adjoined) then it is a classica! result of Bennan and Silverman
(see [14] or [17]) !hat Mo(G) is a simple near-ring. The investigation of tbe generaI

situation was Initiated by Meldrum and OswaJd [15] and rontinued, in [16] and [2]. When

dealing witb regular pairs, Meldrum and Zeller [16J showed tbal it su[fices to restric! A lO

be fixed poin! free. Tbey prove tbe foliowing resul!

A
Tbeorem n. 4. [16J lf (G,'J is regular and tbe stllbilizers in A form a single conjugacy

class then there exists a subgroup H of G and a fixed point free group of automorphisms,

B, of H such that MB(H) " MA(G).

Tbus one focuses on flXed point free automorphism groups A. LeI [w, IÀ E AJ be a

complete set of A-orbit representatives in G and define for v E G,

A, = (À E A I Aw), + v sI. Aw,}.

Lemma n s. [16J Le! A be fixed point free on G. If there exislS v E G' such thal lAvi =

IAI, tben MA(G) is a simple near-fing.

Using this result Meldrum and ZeHer then prove

Tbeorem n.6, [16] If A I. fixed poinl free on G and IAI < IGI tben MA(G) is a simple near­

ring.

Given a funcrion f E MA(G), define the rank of f, rk(f), to be tbe cardinality of the set

of A-orbits in the range of f. For a nonempty subset B of G, define tbe rank of B, rk(B), to

be the cardinality of tbe set of A-orbits in G which intersec! B nontrivially. For each

cardinal :J{." define Ru = (f E MA(G) I rk(f) < ?{,,}. I! was proven by Meldrum and

Zelier [16] that these selS Ru are the only candidates for ideals in MA(G).
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T'neorcm II,L (161 Le! A be fixcd poinl free OD G. lf I lS an ideai of MA(G) Ù1cn I = Ra for

some ordinaI Cl..

T1ìis result was reccmJy ìmproved.

Tbeorem TT S. [2J Le[ A be fixed point free on G. Then MA(G) has at mosl one nontriviaJ

ideaJ I. SpecificaJ!y, I = {f E MA(G) I rk(O < !AIJ is the onJy possible nonuiviaJ ideal of

MA(G).

L'l [2J severaJ cond..itions on che pair (G,A) Me given which force MA(G) to be a simple

ne.ar·ring. Moreover it is shown that if a nonsimp!c neM-ring MA(G) exisLS then A and G

hayc Tather unusua! properries. BUI rhal is where L;'C maner now stands. I[ remains an opcn

question if MA(G) is simple.

QUCqjoo' If A is fixed poinl free on G. is MA(G) a simple ne.ar-ring?

We Je.ave the case of automorphisrns and re/um to the situatio'n in which S is a rnonoid

of enàomorphisrns with zero. We discuss a panicular siluatioo.

Defi:·.irion 11.8. [12] A senugroup S of endomorphisrns of a group G is 6xed poini fp~ if

(a) n Ker a. = (O);
OES

(b) \1~ E S, Ker ~ = Ker ~2 = .

(c) \1a.,~ E S, \1a E G, ii a.a = ~a .. O !hen a. =~.

Il is clear that if S is a group of automorphisms L~en this concept agrees with the

prcvious use of flXed point free.

Theorem II lO [12J Let N be a finite near-ring. Therl N is 2-semisimple near-ring with ics

simple summands bcing non-rings or fields if and only if N:; Ms(G) for some finite group

G a.rld S a se.m.igrotlp of fixe.d poin! free endomorphisms of G.

li S is a fixed point free semigrotlp of endomorphisrns of a finite group G men S is a

completely regular inverse semigroup, [12]. Thus the prevjous theorem suggests a study of

near-nngs of me fonn Ms(G) where S is a comple!cly regular inverse semigroup. In [12] it

was determined for finite groups when such a near-ring is 2-semisimple. There are aJso

other isolated results on the StTucture of Ms{G) when S has cenain propenies (see e.g.•

[7)). However much more work needs lO be done in trus area.

We menrioned above that Ms(G) is indeed generaI. However, one has been able to

charac!erize !hose pairs (G,S) such !ha! Ms(G) is a near-field. No! surprisingly, !he

discussion breaks imo tbe cases in which S is a group and when it is nOL
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Therrcm TI 11 [6J Lct A be a group of automorpnisrns of a grouf G. The following are

e..quivaJent:

(i) MA(G) is a near·field;

(jj) G = IO) V Ax and (G,A) is regular;

(jji) G ~ IO} v Ax and (G,A) saosfies Ihe propeny (F.c.): If 5I(x) c: 5I(ax), XE G,

aE A, !hen 5I(x) = 5I(ax).

\Vhen G is finite, (E C.) is aIways satisfied so we obtain Theon:m 11.2, (l). Moreover,

if the action of A on G is fixcd point free then regularity is equivalcnt to (F.c.) and in this

case bJm conditions hoId trivially.

CQrolla'" II 12. [6J If A is a group of fixcd point free aUlolDorphisms of G !hen MA(G) is

a near·field if and onJy if G = IO) v Ax.

We mention heTe that we know of !iO example of a group Gand a group A of

aUlornorphisrns ofG sueh thal G = [O) v Ax bUI (G,S) docs noi satisfy (F.c.),

Now Jet S be a semigroup of endomorphisms efG as usual wi.L~ zero and identity. For

J.ny x E G, x E Sx SO we have G = U SYi' We calI Y =' (Yi 1i E Il a geneT2ting set.
j € r

Hencefor.h we take Y = {Yi ! i E I} a.s an arbitrar)' bUI ii.xecl generating ser and wc consider

I weU ordered by the relarion "5". Hence we consider Y c.S an l-sequence (yiJ.

For U,Y E G define the relation F(u,v) := I(a,~) E SxS I au = ~Y). Further lei H =

{1-sequences (xJ J Xi E G, F(Yi,y) C F(xj.x;), i ::; j}. Ii;ci is the i~th projecrion map th~n

clearly 1ti(H) C G. We define another relarion R on G· by (x,y) E R if there exists ae S

such rhat a(x) = y. Ler R denote me equivalence relatlon genera!cd by R. \Ve calI the

equivalence classes ofR the coonected cQmpQnen{~ of Gand we say G is $-cQonecIed

provided G* is a connected component.

Equivanùy u,v E G* are S-connected if and only if there exist x1,x2'" ,xn.1 E G*,

0 1.... ,<Jn'P1' ... 'Pn E S such mat

GjU == P1X 1 :1: O

02X1 = P2x2 :I: O

We now inrroduce a concepr needed in the ncxt theorem bUI a]so uscd ve!)' much in me

following secnoo.

DeGoltjon II 13 Le! G be a group and :F= IGa ) a eoll«:noo of subgroups of G sueh !hai

(i) (O) ~Ga~G;

(ii) U Ga =G;
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(iii) Ga n G~ = {al ifa" p.
Then 7 is caJled a 5hratioo of Gand (G,J) is called a fjQered w',m.

I[ :J = (Ga ) is a fibration of G, we say a E S is a risomorphism if for each Ga E :l',
,,(Ga) = {O} or Ker" n Ga = (O) and ,,(GO> = G~ for some G~ e :1. Thus" e S is a:E.
i<;omorphi"m jf and only if for each Go E !l. cr is the zero rnap 00 G a or cr is an

isomorphism 00 Ga with image in :.r The characlcnz.ation result is as folJows.

Theorem TI i4 (6J Le, S be a semigTOup of endomorphisms of a gTOup G. Then Ms(G) is

a ncar-field if and onJy if
(i) G is S-connected,

(ii) G has a fibration, say :1= (H
J

Ije 1) and each "e S is an J'isomorphism,

(iii) if y, E Hj' then ",(H) = Hj-

III. Geometry and Near-rings

From the rime of Descanes , earJy in the 17th cenrury , mathematicians bave bun
interested in associating aJgebraic structures with georneoic srructures and investigated the
transfer of informatioo. In this scenDo wc introduce a geomeoic structure, associate rwo
near-rings to thc geomerry and inclicate how Ùle geomerry influences thc algebra. Wc start
wi,h a defminon due lO André, [i].

Defininon fi,l, [1] Le, L = (P, L, I I) where P is a Set of poinlS, L a colleetion of subselS

of P called lines, wilh the incidence relarion "belongs w", and a parallelism relation J I

defmed on L such thar
(Al) Every two points in Pdetermine a unique line;

(Al) 1L1? 2 and for each A E L, IAI? 2;

(A3) Parallelisrn is an equivalence relation;

(A4) "Ix E P, VA e L, there exislS a unique B E L such that x e B and B Il A.

Further there exis!s a one-one rnap $: P....-..) Colli: such thar $(P) is a poinr transitiye

group of fixed point free collineations. We say (:E,cv) is a translation srrnc!ure. (See [1]
and [4J.)

Let (G,:J= {G,)) be a fibered group (sce Definition !I.13). By taking 1\G) = G, L(G)

= (x + G, I G, E :1, x E G) and setting a + G, Il b + G
J

if and only if i=j one gets an

incidence sTructure L(G) = (1\G), L(G), Il) satisfying (Al) - (A4). Funher define <I>(G):

P(G) ---> Coll L (G) by <I>(G) : a ---> À. where À. donotes the left rranslation of G

determined bv a E G. We !hen find we have a rransiation sTructure (L(G), <I>(G».

Conversely, every translation structure arises in this manner. That is, if 0::,<1», :r. =

(P, L, I I) is a transiation sTructure, !hen ,here is a fibered group (G,J) such that P~ 1\G),
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L = 4G), I ! is as dcfin.ed above and <D = <D(G}. Hcncc a rranslation structure may be

considered as a fibercd gTOUP and wc hcnccforth do so.

If thc traoslation strucrurc (G,'J = {Gd) has thc property that G i + G j = G for each

Gi,G j E ;r, i;>tj thcn 'J is calI ed a CQngruence fjhr(l{jQo and in this case one obt.ains t~c

classicaJ rranslation planes.

Thus congruence fibrations lightcn the stTIlCtllre of the gcometry. \I/c ncxt tighlcn the

srrucru.re in an alternative fashion. Lei (G,'J = {Gd) be a rranslaòon structure and let S be a

semigroup of endomorphisrns of G such that

(01) The identity map and uro Irulp are in S;

(02) For eaeh O E S, for eaeh G i E :r, 3G, E :r sueh !ha< o(G) C Gr

Then S is callcd a semigroup of operarors for (G,J) and (G,.r;S) is a trao<;]atjoo stTIlCjure

with operators, TSO. Wc mention that operators can also be defined in a gconct!ic

manner, ([4]).

Wc now show how 10 associate oear-rings \l,1th TSO's, (G,;r,S). First we consider the

set DU(G,J) = (o E End G I o(G,) C G i , \;IG, E .:n (Note !hat !he operators play no role

here.) Under [unction composition Dil(G,J) is a semigroup with zero and identity, calle.d

the semigrO"D of dilitatiQns of (G,:r,S). Our firs! near-ring is d.g. Dil(G,T! ealled the

kemel of (G 1:S). For OUT seeond associated near-ring we take Ms(G ,J) = (f E Mo(G) I

f(G) ç: G i , VGi E ;r, fa = af, '?'a ES}, a near-ring under funtion addition and

composition called the centr2.Jizer of C0 1:S).

We restrict now to the case in which G is a finite group and look at various properties

of mese associated oear-rings.

mA' Kemel of (G,7.S).

The stTUcture of DU(G,J) is welI-known, «(3), [9]).

Theorem JlJ 2 For a finite fibered group (G,J), Dil(G,J)\(O) is a eyclic gTOUp of flXed

point free automorphisms of G.

Proof. To illusrrate some of the ideas we show that each O :;>t 0 E Dil(G,JJ is a

monomorphism. Hence, since G is finite a is an automorphism. Suppose 0 E Dil(G,J)

and 0(X) = O for some x E G, say x E G i . Let Y E Gj • j:;ti. Then x+y E Gk, i,ck:;>tj. Now

o(y) E G j and o(y) = o(x+y) E G,. Henee o(y) = O. For any w E G i , use w and y to got

a(w) =O. Thus a is the zero map.

A classicaI result states that when !T is a congruence fibration, G is an abelian group,

therefore Dil(G,J) is • finite f;eld. Thus when G is an abelian group dg Dil(G,T! =

Dil(G,J) is a fielcL We now turo lO che non-.belian case.
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Thcorcm IU 1, [3) If (G,']) is a finilc fibcrcd group ..,,"iV} Dil(G,J).,: (O,id) Lhcn G is a p­

group for some prime p, is of exponcnl p and of nilpo!cncy c1ass al most 2.

Using this result and U1C known structure of Dil(G,.1) thc following rathcr surprising

result has becn oblaincd.

IbcOjem III 4. {9] If (G,.1J is a finile fiberw group thcn dg Dil(G,.1J is a commuta:ivc

ring. lf fUMer, Dil(G,7>" (O,id I <hen dg Di!CG,7> is a field.

Clearly if Dil(G,7> = !O,id) <hen dg Dil(G ,7> = z" where n is <he exponent of G. 10e

abovc theorem shows that whether or not G is abeLia:l, whenever Dil(G,JJ :;r. {G,id} there

is a field associateci with the gcomerry (G,J) is a naru.ral manner. We also mention that i.n

the abelian ca..'e the field has geometrie significance. The signifieance of the field

dg Dil(G,J) in [Jje non abelian case is still unknown.

TlIB, Centralizer of (G,'T.S).

As above, to obwin definitive struclural results one places some restrictions on the

semigroup of opcrators. One fust considcrs thc case where S is a group of automorphisms

(with O). As one might expect from the previous diseussion on eentraliz.er near-rings, the
orbits of Ù)C aetion and the stabilizers play an imponant mIe. Far results in this siruation

see [8J.

Next one considers the situation in which S is a eyclic semigroup, say S :::: <a> U

(O,id), We "'TIte Ma(G,7> for M sCG,7>. Wc are mainly in'erested as to when Ma(G,7> is

a simple near-ring. lf a is an auwmorphism, using the results in [8]. one nOtes when

lv1a.(G,J) is simple. In other cases wc have the foUowing.

TheOTem III 5 (8) If S :::: <u> U {D,id}, a no, invertible and a not niJpotent, then

Ma(G,J) is not a simple near-ring.

Proof. Since a is nOI invertible, Ker a:;t: {G}. Thus there is some fiber, G j , of me [ibrarion

sueh <hat G, n Ker a" (O). For f E M a CG,7>, f (Ker a n G,) C Ker a n G, so A ~

«(O}: Ker a n G) is an ideal in Ma(G,J). Using !he faet L1at a is no[ nilpotent onc gets A

" (O), henee Ma(G,7> is not simple.

Wc henceforth restrict aUT auention te nilpotent endomorphisms. We recaI! thc eoncepts

of generating se[ and conneeted eomponents as discussed after Corallary II.I2.

Lemma m.6 There are k·l connected compenents of G* where lKer cd = k.
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Proof. Lel Ci ix: a connectcd componenr and lel Y E ~. Since a is nilpotent the.-c exists

some s such that aSlv) E Ker a and since a'(y) E Ci. aS(y) E Ker a f\ ~. Thus there

exists a kernel clerncnt in each conncctcd component. Suppose XI'X2 E Kc:r a (ì Cl' Wc

then find XI = ak.(x::) far some inlcger k :2: a. lf k;dJ, xI = 0, a cono-adiction. Thus each

connectcd comp::mcnt has a uniquc kcme! cJcmcnt.

lf wc let {O) be a connectec component rncn wc say tne number of connectcd

componcnts is the cardinaliry of Ker a. In parGcular (G,1) is S-connected if and only if

Ker a ~ (O,ilf).
x

Suppose Ma.(G,J) is a simple near-ring. Wc how there is some fiber G i such that

Kcr et (ì Gi ;t: {a}. li Kcr a n Gj ~ (O). i;t:j then one iinds there cxists a eomponent with

more than one kemel e1cment which conrradiers thc aoove lemma. This gives Ù'le foUowing

resu!t.

Lemma ID 7 lf Ma(G,J) is simple and et is nilpotem men Ker a is containcd in a single

fiber of ;r, say Go.

Lemma IIJ.8 lf Ma,(G,J) is a simp!e near-ring and a is niìpotenr there is a unique

generating set Y = G \ Ker an-l where a n = Obut a n. 1 :;t O.

When G is S-connected rnuch can be saldo

Theorem ID 9 [8J Let a be a nilpotent operator on (G,J) and Jet G be S-connected, S ~

<et> U (a,id) with Ker a C Go. Let Y be any generaring sct for G. The tolJowing are
equivaJent.

(i) Y n Go ~ 0;

(ti) Ma(G,J) is a near-field;

(iii) Ma(G,J) is a simpie near-fing;

(iv) I\\,(G,J) is a 2-semisimple near-fing;

(v) Mo(G, J) "Z2'

When G is nor S-connected necessary and sufficient conditions, in tenns of :hp.

gcometry, are known for Mo(G,J) to be simple, [8]. lnslead of stating these we give an

extcmal characteriz.ation.

Theorem m lO [8J Let a be a nilpo,ent operator on (G,J). Then Mo(G,J) is a simpif.

near-fing if and only if Ma(G,J) " Mo(Ker a).

In [8J an example is given where G :~ (F)6, F a finite field :J a fibranon of G and a a
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nilpotent opcrator such Ùlat Ma(G,J) == Mo(F e F). TI1US simp1c ncar-nngs, not rings,

actually anse.

IV. Rings and Near-rings

Ler R be a ring wirh idenriry and Ier G be a (righr) unitary R-module. Then R

determines a sernigroup of endomorphisrns of G s.o wc have a centralizcr ne.:li-ring MRCG)

= (f E MD(G) I f(u) = (fx)r, lix E G, lir ERI. !n !his secricn wc discuss some of the
interplay betwecn the properties of the ring R, ~e R-module, GR, and tbe near-ring

MR(G).

Wc recall that a fQ..Y.Q for an R-rnooule G is a coìlection C= {Ga.l of subrnodules of G

sucht thal

(i) [O} ~Ga~G;

(ii) 0a $ G~ far a " ~;

(iii) U Ga = G.

Let R := Z and G := V and Ier C be a cover by maximal cyclic submodules. Fumer Iet

[XI] [Xllì [c t ]f E Mz(V) be determined on Ga = Z by f J = . Since Ga is a maximal
X2 x2 / c2

subrnodule we have gcd(x} ,x2) = 1 so 3h,k E Z, hXI + kx2 = 1. But thcn f can be

[
Cth Clk]

represented on Go. by the matrix h k' Le., f/e can be extended to an
c2 c2 a.

endomorphism of G. Equivalentiy, evcry f E MZ(z2) is piecewisc an endomorphism of 7J.
in !he sense that for each Ga E C. 3'l' E EndzfV) with fiO = 'l'.

a

In generaI, Iet C = [Oa} be a cover of G by maxirnal cyc!ic su brnodules of O and Iet

N:= (f E MR(G) I fio can be extended to an endomorphisrn of O), a subnear-ring of
a

MRfG) which wc cali !he near-ring of piecewise endornorphisms determìned by (R,O,C).

We ask, "When is N = MRfG)?", The next example shows thar in general, N" MR(G),

Example IV.I, (5] Let R := Z[xJ, O := Ri and let C be a cover by maximal cyclic

submodules. One verifies !hat [x:J R E C. Further, 3f E MR(G) with
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[~J I otherwi.se,

Howcvcr, !hcre is no 'l' E EndR(G) wi!h 'l' [,:2J = [:J. Henee N '" MRCG).

Note that in the above example R is not a PIO. For PID's the siruation is quite
different. In faet we have we nexr rat.her inleresting resull

Theorem TV 2 [5J Le, G be a finitely generated module over a PID, D, let c= {Gal be a

eover by maximai eyelie submodules and let N = (f E MR(G) I flG ean be extende.d lO an
a

endornorphism of G l. Then N =MD(G).

We mention that it is an open question whether or no! tbc requirement that G be finitely
generated can be omined.

In the ncxt theorem wc present some [urther rel2.tionships betv.'een the ring mooule GR
and the near-ting MRCG).

Theorem TV 3 (13) (a) lf D is an integrai domain, not necessarily commutative ÙH".n

MD(D2) is a near-fing, not a ring.

(b) Let R be a commutative fingo MR(R2) is a simple near·ri.ng li and onIy if R is an integral
domain.

(c) Le, R be a left Artinian ring. Then M RCR ') is 2-semisimple if and only if R is

semisimpie.

lt shouId be pointed. out that rings do anse as MR(G). In fact LE D is a commutative
integrai domain and' Q(D) its field of fraetions, Ù1en MD(Q(D) is a ring. Funher, if R is a

complete llxIl matrix ring over a ring S then for each R·moduie, G, MR(G) is a Ting, in fM:t
MR(G) = EndR(G).

On the other hand if R is the field of real numbers, for G := R, MR(R) is a ring while
for G := R2, MR(R2) is not a ting.

This raises the questions:
(Ql): Whieh rings R have the property that MR(O) is B ring for eaeh R-module G ?
(Q2): Whieh rings R have the property !hat MRCO) =EndRCG) ?

Far finite rings R the above questions have been shown te be equivalent and mose
rings R sueh !ha, MRCG) is a ring for eaeh R-module have been eharaeterize.d, (sce [11]).

However the general problem remains open.

18



REFERENCES

I. André, J., Obcr Parallelsrrukturen, Il: Translationssrrukluren, Math. L, 76 (1961),
155-163.

2. Fuchs, P., Maxson, C.l., Penel, M.R. and Smith, K.C., Centralizer near-rings

determined by fixed point free automorphism groups, Pro:. Royal Soc. Edin., 107
(1987),321-337.

3. Herzcr, A" Enct.l!che nicht.kommutative Gruppen mi! Partirion f1 und fupunk.-rfreie fl­
AUlomorphismen, Arch. Marh., 34 (1980), 385-392.

4. Maxson, Cl., Nea.r-rings associated with generaliz.ed translation so"uctures, Jown. of
Geom., 24 (1985),175-193.

5. Maxson, CJ., Piecewise endomorphisrns of PID·rnodules, (subrnined).
6. Maxson, Cl. and Me1drum, J.D.P., Centralizer representations of near·fie1ds, Iourn.

of Alg., 89 (1984), 406-415.
7. Maxson,-C.J. and Oswald, A., 00 the cenrralizer of a semigroup of group

endomorphisms, Sernigroup Forum, 28 (1984),29-46.
8. Maxson, C.l. and Oswald, A" Kemels of fibered groups with operators, Arch.

Marh., 9 (1987), 453-486.
9. Maxson, C.l. and Pilz, G.F., Near·rings delermined by fibered groups, Arch. Marh.,

44 (1985), 311-318.
lO. Maxson, C.J. and Srnith, K.C., The centralizer of a set of group auwrnorphisrns,

Comm. in AIg., 8 (1980), 211-230.
11. Maxson, C.l. and Smith, K.C.. Centraljzer near-rings that are endornorphism rings,

Proc. Amer. Marh. Soc., 80 (1980),189-195.
12. Maxson, c.I. and Smith, K.C., Centralizer near-rings determined by eompletely

regu!ar inverse semigroups, Semigroup Forum, 22 (1981), 47-58.
13. Maxson, C.l. and Van der Watt, A.P.l., Centralizer near-rings over free ring

moduJes, (subrnitted).

14. Me1drum, I.D.P., Near·rings and their links with groups, Pitman (Research Notes
Series No. 134), 1985.

15. Meldrum, J.D.P. and Oswald, A., Near-rings of mappings, Proc. Royal Soc. Edin.,
83 (1979), 213-223.

16. Meldrum, J.D.P. 'and Zeller, M., The simplicity of near·rings of mappings, Proc.
Royal Soc. &lin., 90 (1981), 185-193.

17. Pilz, G., Near·rings, revised ed., Nonh·Holland, Amsterdam, 1983.

Department of Mathematies
Texas A & M Universiry
College Station, Texas 77843
U.S.A.

19









CONGRUENCES ON REGULAR SEMIGROUPS

H. Mitsch

University af Vienna/Austria

1. Generalities.
===============

Lpt (S,,) be a semigroup; an element aE 5 will be called reguleT if there

is some xE S such that axa = a. S is called regular if each element of S

is reguiar. Notice that if a = cxa, then for y = xax we have that

a = aya and y = yay.

ror every aES, denote V(a) =1 xE si a = axa, x = xaxJ; hence S is regular

ifi V(a) ~ ~ for alI aE S. Furthermore, if a = axa, then clearly ax and

xa are idempotents; de note by ~ the set af alI idempotents in X for

any subset X af S.

Examples for reguiar semigroups are:

Idempotent scmigraups (bznds); groups; unions of groups (compietely

regular semigroups); inverse semigroups (i.e.JV(a) 1= 1 for alI aE 5); (T x'o)

the semigroup af all mappings of the set X inta itself wfth respeet to

eomposition af funetions; (P ,o) the semigrcup af alI partial mappings
x

af X into itself; (LV ,o) the semigroup cf alI linear mappings of the
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vector space Vinto itself; (i'1n (F),;) the semigroup of alI (nxn)-matrlces

aver the field F; direct products and homomorphic images of regular semi­

groups, but not subsemigroups (the subsemigroup of alI natural numbers of

the additive group of alI integers is not regular) ,hence the class of

alI regular semigroups does not form a variety.

Not only since appearance of the book of ~\.Petrich [22] on "Inverse

Semigroups", the theory of regular semigroups has attracted wide attention.

This is particularly true far the study of congruences. They play a centraI

role in many of the structure theorems and various considerations of

semigroups in generaI. The efficient handling of the congruences is a

basic prerequisite far their useful application. Far this reason, the

most important facts concerning congruences on regular semigroups are

collected here, with particular emphasis on

- the ~struction of generaI congruences, and

- the explicite form of special types of congruences.

An equivalence relationpon a semigroup (S,.) is called a congruence if

a p b (a, bES) implies that acobc end capcb far alI cE S.

The set S/p of alI congruence classes ao (sE S) ofpforms a semigroup

with respect to the multiplication

(a P) * (b P) = (ab)p

and is a homomorphic image of (S,.). Converse ly., every homomorphic image

of (S,.) is obtained by a c:ongruence on (5,.).
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With respect to the par~ial ordering

p S 1 iff ao b implies that. al b (a,bE S),

the set C(S) of alI congruences on (S,.) farms a complet.e lattice with

least element € , the identity relaticn, and greatest element ..JJ , the

universal relation. It is easily seen that if O,T EC(S) such that p $ T

then(S/ 1 , *! is a homomorphic image of (S/ p, 1::).

In generaI, particular hamomorphic images af a given semigroup S

are af special interest; thus particular congruences on S have to be

found. If'e d.enotes any class of semigroups, then a congruence p is called

a t' - congruence if the semigraup (5/ p ,:-;) belongs to the class e. Far

example, let tthe class of alI groups, semilattices, bands,resp.; then a

~ - congruence is called a group cangruence, semi lattice congruence, band

congruence, respectively. In particular)we will be interested in the

least or the greatest congruence far some given class L(with respect to

the partial arder ~ above) :

B · ...... the least band congruence

a · ...... the least group congruence

1 · ...... the least right-group congruence

~ ....... the least semilattice congruence

y ·...... the least inverse congruence

v the least semi lattice of groups congruence

TI · ...... the greatest idempotent-pure congruence (i. e. ali' e, '" S, BO ES ~ a:: ES)

~ · ...... the greatest idempotent separating cangruence (i. e. e~f,e,fEES~ e=f)
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Far details see section 3. below. Note th2~ far generaI semigroups

not alI of these congruences exist; but they da exist for any regular

semigrouD (see Howie-Lallement [8 )).

If, far exarnple, l-le consider the leas~ group congruence on a seml!Jroup

(5, .) - if exists l then ",,le ha ve for e'Jery -: EC{S) satisfying Tf'J that

(5/ T ,*) is again e group, a homomorphic image of the group (5/c l *). Thus,

one can say that the least group congruence on S gives the greatest group

homomorphic image of 5.

A very useiul result on congruences on regular semigroups is the

following

Lemma 1.1. (Lallement [9)) Let (5,.) be a regular semigroup and D any=====:::==:::=
congruence on S. If a p ESIp is idempotent then there is some e E ES such

that ap = ep.

2, GeneraI congruences,
======================

Our first aim will be the description of an arbitrary congruence on a

regular semigroup, For this, let us consider first the speclal case of

a group.

If G is a group then it is known that far every normal subgroup N of G,

the relation ~ on G defined by

is a congruence on G, and conversely that for a congruence p on G the
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p-class containing the identity e or G is è normal subgroup N of G sue h

thatoN =0 . Furthermore, alI ofo ean be reeonstrueted tram any one of its

elasses, in partieular the class ep ~ N. Far semigroups, such a reconstruetian

of a eongruence l) [rom a single p-elass is root possible, in generaI. If

S is regular, He have at least the follDloJing result:

~~~~g~~=~= (Clifford-Prestcn [ 1]). Far a regular semigroup S, any

congruenceo on S is uniQuely determined by the p-elasses containing

idempotents.

Note that this result daes not tell us how to recanstruct alI af the

congruence p from the set of 311 idempotent p -classes. Various attempts

have been made to find an analog of the connection between congruences on groups

and norma l subgroups. Far inverse semigroups, G.B.Preston ebstractly

characterised the set or alI idempotent classes of a congruenee on S

end gave a construction of the congruenee associated with sueh a

kernel norma l system (see Clifford-Preston [1)). Meakin [14Jgeneralized

this result to regular semigroups:

Definition. A set A~(A.liEI}of disjoint subsets of a regular semigroup S
~~~~==~==== l

is called a kernel system on S if

(1)

(2)

A. n A. = ~ far aH i,), j in I
l J

each A. contains an idempotent of Sand eaeh idempotent of S belofq~'
l

to some A
j

(j El) I

(3) x Ai YflA j f '/; implies that XAiyçAj far X,YES1 ,i,jEI.

The construction of the unique congruencep having every Ai E A as

idempotent p-class, is now the following:
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r~~2;~~=~=~. (Meakin [ 14J) Let (5,.) be a regular semigroup ùnd A =lAi Iif: Il

a kernel system on s. Then the unique congruence on S \."ith a11 A. (iEI)
l

as idempotent classes lS given by

r I r I r
a 0A b.....-+ a'EV(a), bEV(b); aa,baEAi , bo, bbEA

j
for some l,jEI.

This result suffers - as in the inverse case - from the disadvantage

that the conditions imposed on a kernel system are very difficult to

utilize. For inverse semigroupsanother approach proved very useful: it is

possible to reconstruct any congruence p from the set-theoretical union

of alI the idempotent .o-classes (the kernel of p) taking into account

the partition on the set of alI idempotents induced by p (the tra ce of p);

see ~1.Petrich [23]. Following this idea l Pastijn-Petrich (19) introduced

the concept of congruence pair for a regular se~igroup generalizing the

corresponding notion far inverse semigroups. The exact definitions are

the following:

Definition. Let 5 be a regular semigroup; tren far any congruence p cn S==========
consider the following two characteristic concepts:

1) t r p = p )ES i5 called the trace of P,

2) ker p ={aE'S1 ape far some e EESI i5 called the kernel of p .

Note that trp i5 the restriction oip to the subset ES of Sand thus

yields a certain partition of ES. Furthermore, kerp is the set-theoretical

union of alI idempotent p-classes.

It wa5 shown by R.~eigenbaum [~]that every congrcience.o can be re-

constructed from its trace and kernel. We give this result in the formulation

of Pastijn-Petrich [18] which uses Green 5 relation ':t.. and 6{; recaI l that
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for a regular semigroup S, aX b iff Sa '" Sb and a 0\ b iff eS = bS.

rQ~~[~~=~=~=(Pastijn-Petrich [19J .Any congruenceoon e regular sem1group S

\... ith ker (J = K and tr P'" 1 can be desc:ribed in the f ollo'l'Iing \...ay:

aD b .... a(;fU-,:ZnO?:r.J\.c.J()b, ab'EK far some (all)b'E V(b).

Note. It was proved by G. Gomes [5] that p can be obtained also in the

fa11aw1ng way:

apb.f-taa'p bb'aa', b'bp b'ba'a, ab'E K far some (alI) a'E V(a), b'E V(b).

As it was observed above, te every congruence p on S there can be

associated the pair (ker p ,tr p). But the problem is to find conversely

a11 congruences on 5. In generaI, for a pair (K, T) with K ç Sand "T

an equivelence on E
5

, there is net always a congruence p on S such that

K=kerp and <::: trp. Thus, the pairs (kerp ,trfJ), p6 C(5), have to be

characterized abstractly in arder to give alI pairs (K, l ) by means of

which a congruence an 5 can be defined.

Far inverse semigraups S this attempt was successful in the fallowing way

(Petrich [23] ): if K ç S, T E C(E
S
)' then the pair (K,T ) is called a

4)

congruence-pair if

-1 _1 U
1) K satisfies: (i) ESçK; (ii) aE K--..a EK (iii) a -KaçK vaES

-1
(where a denotes the unique element a'EV(a))

-1 -12) 1" satisfies: e 1" f, aE 5 imply that a e a l a f a

-1
3) aeE K, a aT e (aE S, eE ES)"" a E K

-1 -1
aa T a a far alI a ES.



Then for ony inverse semigroup Sand every congruence p on S the pair

(ker p,trp ) lS a congruence pair, and conversely, for every congruence

pair (K,T ) the relat10n

-l -1 ab- 1 EK
a O(K,T) bMa a lb b,

is a congruenee on S such that ker P(K,T) = K, tro(K,T = T'

For regular semigroups S, Pastijn-Petrich [19J found an abstraet

characterization af thase pairs (K, T) far which a congruence ~ on S can

be defined in an analagaus way. The first trivial observatian is that K

has to be the kernel af some cangruenee, which is equivalent ta say that

K = ker 11 K' where 1;K is defined on S by

a 1I K b -(-7" xay EK is equivalent xbyE K(x ,yE 51).

Alsa, l has to be the trace af some congruence, which is equivalent to

the requirement that 1 = tr 1* (where T * denote5 the congruence on S

generated by the equivolence-r on ES): see PasLijn-Petrich [ 19 J ..

The key ta the theory-similar to the inverse case-is the following concept.

~~!~g~~~~g. (Pastijn-Petrich [ 19J). Let 5 be a regular semigroup, K f S,

1 an equivalence on ES; then a pair (K, 1) is called a eangruence-pair if

(i) K 15 a norma l subset of S(i.e. K is the kernel of some congruence an S)

(ii) 1 is a normal equivalence on Es' (Le. 1" is the trace of some congruence an S)

(iii) K ç ker {.;t'Lt.t;;L r. 1\."'CrR..""CcI't.)O (where for any equivalence S on S,

s o denotes the greatest congruence on S contained in S
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Note thet in case the; S is an inverse semigraup, this definitian af

congruence-pair reduces to that given abave.

With this concept we are ready far the constructian af all ccngruences

on a regular semigroup, which is completely analague to the situation in

the inverse case.

r~~~o~~=~=~.(Pastij n-Petnch [ 19 ]). If (K, T is a congruence-pair af the

regular semigroup S, then the relation P(K,T ) defined 0$ in

is the unique cangruence p on S far which ker O= K, tr p = T '

lheorem '(..3

Conversely, if p is a cangruence on S then (ker o ,tr p) is a congruence pair

of Sand p(Ker p ,tr (j =p .

An obviaus, but very useful consequence is the fallowing

Corollary 2.5. (Pastijn-Petrich [19]). Let (C(S),':;) be the lattice
=============

cf alI congruences and Cp(S) the set af alI congruence-pairs af a regular

semigroup 5, partially ardered by: (K, t) S ( K', t') iif K ~ K', r ~ t·

Then the mappings p + (ker p, tr p), (K, T ) -+ p (K, T ) are mutvally j rWArse

isamarphisms af the lattices C(5) and Cp(5).

The special case af arthadox semigraups is worthy of note, A r.egulHT

semigroup (5,.) is celled orthodox if ES forms a subsemigroup of S.

Note that an inverse semigroup 5 can be characterized a s a regular semigroup,

in which alI idempotents commute; thus every inverse semigroup is orthodnx,

The concept af congruence-pair reduces in this case to a set afaxioms

which is strongly reminiscent to the inverse case.
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that a' eal a' f a (note that a' ea EES

Gomes (5JGslled s psir (K,"'( ) a congruence-pa:J.r of the orthodox

semigroup (S,.) if

1) K satisfies: (i) ES ç K; (ii) aE K--> a'E K far same [aH] a'E V(a);

(iii) a'KaSK far aH a ES, a' EV(a)

2)"'( satisfies: e lf, a ES imply

far aH a ES, a' E V(a), e E ES)

3) aeE K, a'ace (aES, eEE
S

)--+ aEK

4)a'ea"C a'a'eaa far a11 a ES, e EE
S

'

Then Gomes[ 5] showed that for any orthodox semigroup S, if (K,T ) is

a congruence-pair of S then P(K,l) defined by:

ap(K,1)b~3',a'EV(a), b'EV(b): aa'Tbb' aa',b'blb.'b a'a, ab'E K

:.s a congruence on S with kernel K and trace l. Conversely, if P is a

congruence on S then (ker p, tr p) is a congruence-pair of Sand

p= p(kerp ,trp). Alsa, the mappingsp~(kerp,trp), (K,c )~P(K,c) are

mutually inverse lattice isomorphisms between (C (5) , ::) and (Cp (S) , ~ ) .

In order to illustrate the construction of alI congruences on a

regu1ar semigroup S, some special cases will be considered. Compare a1so

with the explicite form of certain congruences given in section 3. below.

al K = ES' c = <

It is easily seen that (E
5

,c ) is a congruence-pair of S defining the

identity relation on 5: P(ES'C )=€ .
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b)K=S,T=W

It is immediate that (5 l W) is a congruence-pair of S defining the universaI

relation on S: p ( S, w) = w

(ES'w ) is a congruence-pair of S iff tr 1l E = w, i.e. ift for alI e,f E ES
S

EE ' . l t t xf Y EE
S

(x,YE 51).xe y S lS equlva en o

In this case, S is orthodox (put x =e, y = 1). Note that conversely, if S

is orthodox then (ES' w) i$ not necessarily a congruence-pair. In faet,

consider S=T2 I the semigroup of alI transformation.s on the set X = { 1,2} .

Then S is orthodox, but for x = U, e =01' f = Y = id (where 0(1) = 2, a(2) = 1;

"l(x) = 1;"2(x) = 2 for aH xE X), ,,°"1 ° id ='2EEs andao id ° id ="t ES'

Fu~thermore, if (ES'w ) is a congruence-pair th~n by 2.5.
p (ES.

w
)= 0- the least group congruence on S (sincB for every gro\jt:"!

congruencBçJ on S, tr p=w ); it is given explicitely by

aab_ab' E ES for some (aH) b'E V(b).

Also, in this case f(E S' w) =TI, the greatest idempotent-pure congruence

on S (since for every such congruence"p. ker p= ES)'

d) K normal, 1: =W

(K, w) is a congruence pair of S iff tr TIK = w, i.e. iff far al1 e,fE EK

xey EK is equiva1ent to xfy EK(x,y ESi).
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In this case, ~(K,w ) is a group congruence given by

a P(K,w )b<->ab'E K for some (a11) b'E V(b),

Thus, by 2.5, the least group congruenc€ aon S is defined by the least

norma l subset K of S satisfying the condition at the beginning of this

paragraph.

e) K = ES,t normal

(ES' l) is a congruence-pair of S iff t ~ trrc~ , i. e. iff for alI e, f E ES'

e tf -? xey EES is equivalent to xfy EES (x,yE 51).

In this case, P(ES,T) is an idempotent-pure congruence on 5 (since far

every such eongruenee ~on S, ker p = ES)' Thus by 2.5, the greatest

idempotent-pure eongruence non 5 is defined by the greatest normal

equivalenee Ton Es satisfying the condition at the beginning of this

paragraph.

f) K = S, ,= (

(S, ( ) is congruence-pair of S iff ker Xo = S (where~.t o &) ,

We shall see that this is the case iff S is a band of groups (i.e. S is

a union of groups and?!..is a congruenee on S; see Petrich [21 J , IV .. 1,.?).

In faet, if S is a band of groups, then (10 = ac and for every a ES,

a EHe far some e EES; thus a Eker-d(: ker1t°, i.e. kerOt° = S. Conversely,

suppose that ker d{. ° = S. Then for every a ES there is some e EES such that

a de° e, hence adee and S is the union of the groups He (see Clifford-Preston

[1 ], 2.16). Let a1eb (a,b ES); by La11ement [9], dt° = ~ hence ker ~ = S

(~ the greatest idempotent-separating congruence on 5). Thus, a ~ e for
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far

the

class

some e E ES' and b ~ f for some f E ES· Consequently, a~ e and bJe f I thus

e;J:.f and by Clifford-Preston[ lJ, 2.16, e = f. Henee, ape and bpe, thl5 a" b.

Since lJis a eongruenee, it follows that ae 1.1 be, ca IJ cb far aH cE S.

NoVI by Lallement [9] P ==.;;e , h ence ae:,*-bc and ca1: cb far aH cE S.

Consequently,dtis a congruence and S is a band of groups.

In this case, p(s, E ) =B = 1.1 ="J( I where Bdenote5 the lea5t band

congruence on S. In fact, p (S, E )=B since kér at° = S implie5 that

every a E S there i5 e E ES 5uch that a p (S, E le, thus each O(S, E:) ­

is idempotent. Thi5 means, that p{S ,E ) i5 a band congruence. It is

least. such (by 2.5), 5ince far every band congruence p, ker p = S (by 1.1.).

Furthermore, by Lallement[ g),d(0 = 1.1. Hence by hypothesis, ker 1.1 = Sand

~ = ~ by 2.5 (sinee ker a = S = ker ~ and tra = trp (5,0) = t= tr ~). But

by Howie-la11ement [ B], 1.3, ~ =JC' ~ (j(,;;a , so that J(=S = ~ (whieh again

implies that'Jt i5 a congruence).

g) K normal, T =f

(K, E) is a congruence-pair of S ift Kf:ker';K° - ker IJ, Recall (Latorre( 10],12)

that far every regu!ar semigraup S,

kerl.l ={aES13a'EV(a): a' ea= eforeachidempotente~aa'}.

Hence, (K, E ) is a congruence-pair iff for every a E K there i5 some a I E V(a)

such that a'ea = e far each idempotent e ~aa'. In this case,p (K,E ) is an

idempotent 'separating ::ongruence.on S (since far every 5uch congruence pon S,

tr p= E), explicitely given by

a P(K,t ) b f-> aOl:b and ab'E K far some (a11) b'EV(b).
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Thus by 2.5, the greatest idempotent separating cangruence ~ on S is

defined by the greatest normal subset K of S satisfying the above condition.

3. Particular congruences

===========================

The knowledge of a simple, explicite farm of a particular congruence on

a semigraup is af special importance when applying it in certain cansiderations.

Far regular semigraups, useful descriptions of some important congruences

are knawn. A survey af these will be given including several different

methods of characterization, which ha ve been faund up to now. Note that

in section 2. some particular congruences have appeared already, given

explicitely by their kernel and their trace .

a) Graup cangruences

Craisot '[ 210und a description of alI group congruences on an arbitrary

semigroup S by means af particular subsemigraups af S, Far every subset

H of Sand any a E S denote

a:H:{ (x,y)EsxSI xayEH)

Thearem 3.1. (Croisot [ 2 ]). Let S be a semigroup and H be a subsemigroup============

af S sueh that (i) a:H ~Il far aH aES, and (ii) a:Hl"\b:H,j, Il (a,beS) ....

-+- a :H = b: H. Then the relation a PH b ~ a: H = b: H is a group

congruence on S. Conversely, if P is any group congruence an S then the

identity class E af S/p is a subsemigroup of S satisfying (i), (ii) and Pr =p .
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Far regular semigroups, numerous other characterizatians of graup

congruences are known. Note first that every cancellati ve congruence p an a

regular semigroup S is a graup cangruence, and canversely (since S/p i5 a

regular, cancellative semigroup, thus a group). Since the universal

cangruence on S is cancellati ve and since the intersectian af alI cancellative

congruences on S is again a cancellative congruence an S, the least graup-

cangruence can be described in the following way.

r~~~~~~=~=~=. (Masat [ 12] ). Let S be a regular semigraup; then the least

group congruence O" on S is given by O" = Pt where

a p b ~ e a e = e b e far some e EE S

and pt means the transitive clasure of p.

Note. If S is a conventional semigroup (i.e. S is regular and a ES a' ~ ES

for alI e ES, a'E V(a)) then the unpIeasant transitive closure af pcan be

omitted and O" = p(Masat [12]). In particular, this is true for every

orthodox semigroup which was praved already by Meakin [14].

A more convenient description of cron a generaI regularsemigroup was

given by Masat[ 12] by means of the reflexive sub5emigroup of S generated

by its idempotents ES' A subset T af S is called reflexive if abE T(a,bE S)

implies baE T.

lQ~~~~~=~=~= (Masat [12]). Let S be a regular semigroup; denote by T the

reflexive subsemigroup af S generated by ES and by Tw = {a ES l ta ET

for some t ET ~ Then the least graup congruencecr on S is give~ by

a crb<f-)oxa, xb ETw for some xES.
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Note. If S is conventional, then T,.o = l a ES i ea E ES far some e E ES }

(t~asat [12J ). In particular, if S is E-unitary and regular (i,e. ea,e~ES

-?- a E ES) then S is orthodox (see HO\'Jie-Lallement [8 J. 2,1) and Tw = ES'

Hence, in this case

a ab ~ xa ,xb EES far some x ES.

An other approach to the characterization of all group congruences

on a regular semigroup S was found by Feigenbaum [4]using full and self-

conj ugate subsemigraups af S: a subset T af S is called full if ES S T, and

self-conj ugate if a I Ta S; T far alI a ES, a lE V(a). Let C denote the set of

alI full and self-conjugate subsemigroups af Sand let U be the intersection

of alI semigraups in C.

Theorem 3.4. (Feigenbaum [4J). Far each H EC, the relation============

a P H b.....". xa = by far some x, y E H

is a group congruence on the regular semigroup S, The least graup congruence

o on S is given by Cl::: Fu.

Defining the closure of a subset H of a regular semigroup S as the set

Hw= [aESI h aEH for some hEH),. .

Feigenbaum [4J showed that also far each HEC

a p H b .... ab'E Hw for some (aH) b' EV(b).

Further details far the description of OH cari be found in Latorre [10] .
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In particular, he showed that

a o b~ aub' EU far seme u EU and some (all) b' E V(b).

Now let E be the set of alI c10sed subsemigroups in C, i.e. consider

those full and self-canjugate subsemigroups Hof S such that Hw= H. Note

that a c10sed subsemigroup H of a regu1ar semigroup lS necessarily regu1ar.

Feigenbaum ( 4 ] proved that the mapping

R.... PR' where a PR b ~ ab' E li f or some b' E V(b) ,

is a bijektive and inclusion preserving function of E onta the set of alI

graup cangruences an S. (Far every group cangruence p an S, p = DR with

R= kerp). It is easily seen that the intersection Oaf a11 semigraups R

in C is aga in closed. Consequently, we obtain that a = Di] and

a o b _ab' E O for some (aH) b' E V(b).

Note. Far the much larger class af E-inversive semigraups an explicite

description of alI graup cangruences was given by Mitsch( 17]. A semigraup

S is ca11ed E-inversive if far every a ES there is some xE S such that

axE ES.This is equivalent to the condition that l(a) = {x ESlax, xa( t:si ! :ii

far alI aE S. The characterization is strongly reminiscent to that given

by Feigenbaum for the regular case (see Thearem 3.4).

b) Right group congruences

A group is right- and 1eft-simple and also right- and left-cancellative.

Weakening these praperties ore may ask far those hamomorphic images of a
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semigroup S which are right groups, i.e. which are right-simple and

1eft-cancellative (far several equivalent definitions see Clifford-

Preston [1]).

A descriptian of alI right-group congruences on an arbitrary semigraup S

was given by Massant [13] by means af group-cangruences and 1eft-zero

congruences on S.Numerbus characterizations of group congruences were

given in a). Concerning right-zero congruences p(i.e. $uch that S/p

is a right-zero semigroup: xy = y ~x,y ES/~ ) a description far arbitrary

semigroups S can be found in Petrich[ 22] , III. 1~

Let LS be the set af alI left ideals L~ S of S such that ab EL implies

b EL(a,b ES); denoting by Lx the least 1eft ideaI of S in LS containing

x ES,the f011awing characterization of right-zero congruences on S holds:

Let S be a semigroup and ~+As:LS; then the relatian

a PA b .... for every LEA either a,b E L or a,b ~L

is a right-zero congruence on S. The least right-zero congruenca ~ on S

~s given by ;= ~LS ' or equivalently by a'; b ~ La = Lb ·

Theorem 3.5. (Massat [ 13 ). Let S be a semigraup; then a congruence p on S,============
whith is not a group- nor a right-zero congruence, is a right-group congruence

iff is the intersection of a non-trivial group congruence on Sand a

right-zero congruence on S.

Since on regular semigroup S the least group congruence exists (see

a) above) we obtain the following
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ç~f~~~~fX==~~~' Let S be a regular semigraup; then the least right-group

congruence on S is given by

a 'Y b k+ La = Lb and xa = by far some x, yE U I

where U is the intersection of alI full and self-canjugate subsemigroups af S.

Far the special case that S is regular with ES a rectangular band (i.e.

e f e = e far all e, f E ES)' Massat ~2 J gave the following description of

the least right-group congruence on S:

a p b.+-J> ea = eb for alI e EES '

Conversely, he showed that if the congruence p so defined on a regular

semigroup S is a right-group congruence on S then ES is a rectangular band.

c) The least inverse congruence

Reducing the condition that the homomorphic image of S has to be a group

one can ask for those cangruences P on S, for which S/p is an inverse

semigroup. In the generaI case, there is no description of such congruences

similar to the group case. Even the characterization of the least inverse

congruence Y is not very satisfactory. It is based on the fact that a regular

semigroup S is inverse iff the idempotents of S commute (see Petrich [22J ).

r~~~;~~=~;z; (Hall [6 J). Let S be a regular semigroup; then the least

inverse congruence Yon S is given by Y = p*, where

a p b +-+ a = ef, b = fe for e, f E ES

and p * denotes the congruence on S generated by p .
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In the particular case that S is orthodox,Hall 6Jgave the following

expIicite description of Y: a Y b+-'V(a)=V(b).

Also, Me showed conversely that if for a regular semlgroup S, Y is an

inverse congruence on S then S is orthodox.

Using the concept of congruence pair G.Gomes (R-unipotent congruences

on regular semigroups, Semigroup Forum 31 (1985), 265-280) found a

description of alI inverse congruences or. an arbitrary regular

semigroup S. 5he called a pair (K, t ) an inverse congruence pair of S if

a) K satisfies: (i) K is a regular subsemigraup af S; (ii) ES g K;

(iii) a'Ka G K for all a ES, a'E V(a);

b) , is a congruence on <ES> I the subsemigraup of S generateo L/t i\,
such that (i) <ES>/ \ is a semilattice, (ii) x TY, x,y E <[S>......:.r

-> s' xa t a' ya, whenever al xa, a'ya E < ES> far aE S, a'E V(a);

cl (i) ax E K, a'a , x (a ES, a'E V(a) , x E<E
S

> -t aEK

(ii) abE K(a,bE S)4 axbE K for aH x E <ES>

(iii) axa' t aa' x, whenever axa' E <ES> for a~ S, a' E V(a); ;< l". ...:;:~.>

Gi\.(;!n such an inverse congruence pair the unique inverse congruence on S,

whose kernel is K and whose restriction to <ES> is t , is given by

a P(K,,)b~>3a'EV(a), b'E V(b):aa', bb' a'béK.

Conversely, if p is an inverse congruence on S then (kerp ,t ) with t=pl< Es>

is an inverse congruenc~ pair of Sand P(kerp , .r)= p.-

Remark. As a consequence) the particular case of group congruencp.s on a

generaI reguiarsemigroup 5 now can be described in the following way

(G. Gomes, Ioc.cit.):
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If K So S satisfies (8) abave and (d) axE K(aE S, x E<ES» 4- a EK, then

the re13tion

a PKb" 3b' EV(b) 5ueh that ab' E K

is a graup cangruence on S with kernel K. Conversely, if p is a group

congruence on S then ker p satisfies (a) and (d) above and p kerp =p

d) The least semilattice of groups congruence

A semilattice of groups (or: Clifford semigroup) can be defined as

a regolar semigroup with centraI idempotents (i.e. ea = ae far every

e E S end every e EES)' Thus, such a semigroup is a specie l inverse

semigroup end also a particular union of groups (see Clifford-Preston l: 1) ).

An explicite form of the least congruence p on e regular semigroup S

such that SI p is e semilattice of groups was found by Latorre [ 111

It is a characterization by means of the least group congruence (J on S

(see Theorem 3.4 sbove) and the least semilattice congruence n on S

(see paragraph f) below).

r~~~;~~=~=~~ (Latorre [llj), Let S be a regular semigroup; then che

least semilattice of groups congrue~ce on S is given by

a vb + a n b end xa = by for some x,yE UA(an ),

where U is the intersection of alI full and self-conjugate subsemigroups

of S.

In the perticular case that S is orthodox, J. MilIs [ 16] showed that

a v bf-;. e Il band eee = ebe for some eE Esf\(an ).
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Latorre [11 )described v an an orthodox semigroup S in a slightly different

a vbHa nb and ea = bf far some e,f EEsn(a n).

e) Orthadax congruences

An inverse congruence p on a regular semigroup 5 yields a (regular) homo­

morphic image 51 p, in which the idempotents commute .. Generalizing, one

may ask far those congruences p on S, far which the idempotents of SI p

farm a subsemigroup, only. Gomes [ 5) gave a description af ·a11 these

orthodox congruences by means of so called orthodox congruence-pairs)

specializing the genera l concept af congruence-pair on a regular semigroups

defined by Pastijn-Petrich [18 J (see section 2, above)

Q~~~~~~~~~ (Gomes [ 5 ] ). Let 5 be a regular semigroup.

1) A subset K of 5 is said to be a norma l subsemigroup of S if K is a

regular subsemigroup af 5 such that ES s:K and aKa t ç K for every a ES, a' EV (a) .

2) A congruence E; on <ES >, the subsemigroup of 5 generated by ES' is ca11ed

normal if x [,y ~ atxa [, atya far a11 aE S, a' EV(a), whenever

a' xa, a t yaE <ES> .

3) The restriction of a congruence p on S to < ES> is called the hypertrace

(core) of p , denoted by htr' p .

Those congruence-pairs, which yield a11 the orthodox congruences on a

regular semigroup, are characterized abstractly in the following
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Definition (Gomes [ 5)), Let S be a regular semigroups, K a normal subsemi-=======;:==
group of S and ~ a normal congruence on <ES > such that <ES> / ~ is a band.

Then the pair (K, ~ ) is called an orthodox congruence-pair of S if far

a11 a,bES, a' EV(a), xE'E
S

> and tE ES'

(i) xa EK, xt:aa'~aEK

(ii) ab EK, a'al;bb' a'a~axbEK

(iii) aEK, aa' t:f-']J>fxf ~ fa'xaf, whenever fa'xafE<E
S

>'

Theorem 3. 9 (Gomes [ 5 ]). Let S be a regular semigroup. If (K, l; ) is an===========
orthodox congruence-pair of S then the relation

a p )b~aa'< bb'aa', b'b<b'ba'a, ab'EK far some (alI)(K,I; S S

a' E V(a), b'E V(b)

is an orthodox congruence on S such that ker p (K, t:) = K, htr p (K, t;: )= t;: ,

Conversely, ifp J.s an orthodox congruence on S, then (ker D, htr p)is an

orthodox congruence-pair of Sand çJ(ker çJ htr çJ) =D .

Furthermore, the mappings p'""ikerp l htrçJ), (K, ~) ....P(K,t: ) are mutually

inverse order-preserving between the lattice of alI orthodox congruenr.es

on Sand the set of all orthodox congruence-pairs of S partially ordered by

(K, 1;) S (K', 1;') iff K<;'K', I;~ 1;'.

Remark 1. For the special case that S is orthodox itself, this result

yields a description of alI congruences on S (see section 2. above).

2. The least orthodox congruence ~ on a regular semigroup S can

be descripted also in the following evident way: "À =P , where

a F b a = ef,
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f) Semilattice congruences

A semilattice is defined as a commutative end idempotentsemigraup, i.e.

as a specia1 band. Band congruences on e semigroup S are of particu1ar

interest, be cause alI the cangruence classes farm subsemigroups of S.

Far generaI semigroups a construction of alI band congruences is known, as

are descriptions of alI rectangular band congruences and of alI (right,left)

normal band congruences (see Petrich[ 22], III, IV). The 1east band

congruences on a regular semigroup satisfies

are Greens's relations (see Howie-Lallement [B. J).

Far the important special case of semilattice congruences, the construction

found by Petrich [ 20] for arbitrary ~emigroups wi11 be given now. Recall

that a filter F of a semigroup S is a subsemigroup of S such that abE F implies

that a,b EF. Note that ~ t FSS is a filter of S iff I : S,",F is empty or

a completely prime ideaI of S (Le. an ideaI l of S such that ab El implies

that a El or bEl) .Oenote by l' the set of alI filters of Sand F the least
x

filter of S containing x Es.

Theorem 3.10 (Petrich [20]) Let S be e semigroup end A ~7 be a set of============
filters of S. Then the reiation

aDA b ~ for every FEA either a,bE F or a,b iF

is a semilattice congruence on S. Conversely, far every such congruencep

46



on S there is some A ç l' such that p = PA'

on S is given by T"FP or 8Quivalently by,,'
The least semilattice congruence 'I

an b ........ F ::F for every filter F:a E F iff bE F.. a b ~

F 1 . S, n can be described by means of Grèen l s relationor regu ar sem1groups 'l

J) orJ on S (where JJ =:io(j( andJis defined by : aJb iff SaS = SbS):

Theorem 3.11 (Howie-Lallement [ 8] Let S b e a regular semigroup. Then the
= ======= =====

least semilattice congruence 11 on S is given by n =~* =.d* (wherecZl* denotes

the congruence on S generated by;lJ ) .

g) The greatest idempotent-pure congruence

A congruence p on a semigroup S is called idempotent-pure (also: idempotent-

determined) if

i.e. each p-class containing an idempotent consists entirely of idempotents.

Evidently, the identity relation on S is an idempotent-pure cangruence. Far

generaI semigraups, the greatest such cangruence can be described in the

following way.

Theorem 3.12. (Theissier [24 ]). If S is a semigraup, then the relation
========="====

1a TI b ~ xayE ES ii and only if xbYE ES(X,YE S )

is the greatest idempatent-pure congruence on S.

47



h) Idempotent-separating congruences

In a certa in sense opposite to the idempotent-pure congruences are those

congruences p for which each congruences class contains at most one

idempotent, i.e.

e p f, e, f E Eç -+ e = f.

Clearly, the identity relation on S is always idempotent-separating. It

was noted by Lallemenet [9] that for a regular semigroup every such

congruence is contained in Green's relation de.

Theorem 3.13. (Lallement [9] ) Let S be a regular semigroup. Then a=:=:===========

congrue'nce p on S is idempotent-separating iff p ~:k:. Thus, the greatest

idempotent-separating congruence on S is given by ~=dt° (the greatest

congruence contained in1.- ), i. e.

Note that the hypothesis of the regularity of S cannot be removed:

if S = {D,a} is the two-element zero semigroup (a 2 = aO. = Da = 00 = O) then

~= c., the identity relation, and ~ = w, the universal relation, hence

Another characterization of ~ on a regular semigroup was given by Hall [7J

and Meakin [15] , independently:
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Theorem 3,14, (Hall [7] ) Let S be a regular semigroup; then
============

ap.b#3 a' E V(a),b' EV(b):a'a'=bb', a'a=b'b, a'e'a=b'eb far each idempotent esaa',

Far the special case that S is orthodox, Meakin (15) found the following

description of p.:

a~b .... ::1 a'EV(a), b'EV(b): a'ea=b'eb, aea'=beb' far ali eEE
S

'

Note. Far the much larger class af eventually regular semigroups an

explicite description ofp-was faund by Edwards [3} . A semigroup S is called

eventually regular if far every a ES there is some positive integer n such

that an ES is regular. The greatest idempotent-separating congruence on

such a semigroup is given by

a IJ b~ if x ES is regular then each af x etxa, x(j., xb implis xaetxb,

and each af x'lax, xl bx implies ex (L bx.

It is noted also, that the hypothesis on S to be eventually regular cannot

be removed. An example af a semigroup is given for which the greatest

idempotent-separating congruence is different fram ~ described abave (see

Edwards [ 3], Ex, 3),

Remark. There is stilI anather approach af characterizing particular

cangruences an a regular semigraup S. Since every cangruence an 5 is

uniquely determined by its kernel and trace, ane can define the fallawing

equivalence relatians an the lattice C(5) af all cangruences an S:

P KT ~ kerp = kerT > p TT ... trp = trT
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Then each K-class and each T-class is an interval in (C(S),~ ), Using

these two relations, P. Alimpié-D.Krgovié(Some congruences 00 regular

semigroups, Proceedings Oberwolfach 1986, Lect. Notes Math. 1320(1988), 1-10)

gave an alternative description of some special congruences; for example:

(i) the least band of groups cangruence on S is the least element of the

T-class containing 8;

(ii) the least semilattice of groups cangruence on S is the least element

of the T-class af n

(iii) the least E-unitary congruence on S is the least element of the

K-class containing a.
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STRUGTURE GONGRUENGES AND VARIETIES OF GOMPLETELY REGULAR SEMIGROUPS

NORMAN R. REILLY

l. LOGAL AND GLOBAL STRUGTURE

One area af research in the field of Semigroup Theory in which there

have been significant Successes in recent years has been the subject of

completely regular semigroups. The aim of these lectures i5 to give a brief

review of some of the achievements in the theory of completely regular

semigroups. We wlll start with some familiar aud we!1 known results and

concepts.

An element a of a semigroup S 15 regular ii there exists an "element

x in S such that a - axa and a semigroup S 15 regular if every

element of S 1s regular.

If a, x E S, a semigroup, are such that a - axa aud y - xax, then

a simple calculation will verify that a - aya aud y - yay. Such an

element y 15 called an inverse of a.

An element a of a semigroup S is completely regular if there exists

an element x E S such that a - axa and ax - xa. In particular, x must

be an inverse of a.

LEMMA l.~. For any element a in a semigroup S, the following

statements are equivalent.

(i) a is complete1y regular.

(ii) a ha. an inverse with which it comm.utes.

(iii) H is a subgro~p .
a

We say that a s~migroup S is completely regular if every element of

S is completely regular.

LEMMA 1.2. For any semigroup S the fol1owing statements are

equiva1ent.

(i) S is completely regular.

(ii) S is a union of (disjoint) groups.

(iii) Every H - class of S i5 a graup.
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of a in
-l

- a a, the

denote the inverse
-l

aa

of alI eompletely regular
-l

a

denote the element

NOTATION Let e~ denote the class

semigroups and far any a E S E e3{, let

rhe (group) H class H and let
O- aa

identity of rhe group Ha

It is not hard to see that the elass e3{ 1s elosed with respeet to

produets and homomorphie images. However, the additive group of integers is

eompletely regular but nas the infinite eyelie semigroup of positive

integers, whieh i5 not completely regular, as a subsemigroup. Thus the elass

e~ 1s not closed uoder subsemigroups. 00 the other hand, any subsemigroup of

a completely regular semigroup whieh is elosed under inverses (a ~ a-l) is

al so eompletely regular.

These observations suggest considering eompletely regular semigroups not

simply as semigroups but as semigroups endowed with a unary operation (a ~
-l

a ). This has now beeome the accepted v1ewpoint from whieh to study the

class e3{. ~en we do this the class e3{ beeomes a variety of algebra5

endowed with a binary and a unary operation satisfying the following

identities:

x(yz) - (xy)z, -l
x - xx x,

-l -l
(x ) - x,

-lxx -l
X x.

In this context, consi5tent with earlier notation, we shall write
-l -l

xx - x x.

o
x

The manipulation of inverses in completely regular semigroups ean

present quite a problem. One observation that is sometimes

helpful is the following.

L~~ 1.3. (Petrich and Reilly [19], Lemma 2.8) The variety e~

satisfies the identity

-l(xy) o -l O -l O
(xy) Y (yx) x (xy)·

Recaii that a simple semigroup is one without proper ideals. A

compietely simple semigroup 1s one wh1ch 1s both completely regular and

simple.

be the disjoint union of the semigroups

is a semi lattice and

y(Q E Y), where

a semilattice of

The importance of

S
Q

1s said to besThen

wr1teS , a
Q

sLet

the semigroups
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chis concepc in che cheory of complecely regular semigroups was revealed by

che following theorem.

THEOREM 1. 4. (Clifford [ 2 J and [4 J, Theorem 4.6) Let 5 be a

complecely regular semigroup. Then Il - 3 is a congruence, each '·class is

a complecely simple semigroup and 5/3 is a semilaccice. Thus 5 is a

semi lattice of its j·classes.

This cheorem focusses che attention on the class of completely simple

semigroups, noc just as an inceresting special class of completely regular.
semigroups but as an essential component of the structure of alI compleeely

regular semigroups. That the class of completely simple semigroups

is an interesting class is also attested to by ehe face that it can be

characterized in so many different ways, as illustrated in the next

theorem.

Ve adopt the notation E(S) for the set of idempotents of a semigreup

5.

THEOREM 1.5. The follewing conditions on a semigroup S are

equivalent.

is completely simple.

is completely satisfies
O O

regular and the identity (axb) (ab) .

is completely regular and satisties the identity
O O

(axa) a

is completely regular and, for a11 a,b,x E 5, ab K axb.

is completely regular and, for a11 a,x E S, a ~ ax.

is regular and, for alI a,b E S, a5b is a maximal subgroup of 5.

is regular and weakly cancellative (ehae i5, ax - bx and xa

thae a-b).

1s regular and a - axa implies that x - xax.

is regular and every 1dempotent is primitive in E(S) (e E E(S)

is primitive if f E E(S) and et - fe - é implies thae e - t).

(x) S is simple and E(S) concains a primitive elemento

(i) 5

(i i) 5

( iii) 5

( iv) 5

(v) 5

(vi) 5

(vii) 5

xb implies

(viii) 5

(ix) 5

It follows immediately from Theorem 1.5(i~) and (iii) ehae e~ is a

subvariety of e~.

For any 4-tuple (I,G,h;P) where G is a greup, I and h are

non-empty sets and P: (l,i) ~ Pli is a function from AxI to G, let
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~(I,G,A;P) - IxGXA together with the multiplication

(i,g,À)(j,h,p) (i,gp.\jh,p).

lt is a straightforward exercise to show that M(I,G,A;P) is a completely

simple semigroup. This construction is due to Rees and such semigroups are

therefore called Rees matrix semigroups. However, Rees matrix semigroups

are much more than examples of completely simple semigroups.

THEOREM 1. 6. (Rees, [31] aud [4], Theorem 3.5) Every completely s imple

semigroup is isomorphic to a Rees matrix semigroup.

The Rees Theorem is tremendously important in the study of completely

reguiar semigroups in generaI and completely simpie semigroups in

partieular. Congruenees and homomorphisms can be effeetively studied in

terms of the Rees matrix representations following from Theorem 1.6.

Indeed, the eonstruction of Rees matrix semigroups is so simpIe, it would

aimost seem as if any problem concerning compietely simple semigroups eould

be resolved Py the simple expedient of representing alI completely simple

semigroups as Rees matrix semigroups snd then performing the appropriate

arithmetie. ~ile many problems are indeed amenabie to such an approach it

is not universally true as we shaii see later.

We can view Clifford's Theorem as giving a global structure to any

campletely reguiar semigroup while Rees's Theorem'provides a laeal

structure. However, much of the complexity in the study of completely

regular semigroups arises in going from the Ioeai to the global pieture.

This is perhaps best illustrated by the follawing generaI strueture theorem

for eompietely reguiar semigraups where the "simpie n Iacai eomponents

iuteraet by means of factors aud rnappings.

THEOREM 1.7.(Petrich, [17)) Far every Q ~ Y a semilattiee, let S
a

~(I ,G ,A ;P ) be normalized at Q E I ~ . For Q ~ p, let
a a a a a a

(l) < >: SaXI f3 --t I p '

(2) S --t Gp' denoted by " --t "p'a

(3) [ , l:hpXSa
--t hp

be functions such that, far a E S
a' b E Sp
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( i) if i E l,,;: and .\ /\ hp E f3 J t: en

(ii) if i E I
a

and À E A ) then
a

a - «a,i>, a , {..\,a]).
a

On S - U S define a rnultiplication by
cr.EY Cl'

(4) aob -

Suppose that

\.Iith the given multiplication.

is isomorphic to one so constructed.

(iii) for ~ $ o{3. i E I ,À E A I

1 1

«a,<b,i», a p[ )<b b ,[[À,a],bl) - «aob,i>,(aob) ,[À,aobl)·
ì "1 ) a ,1> ì I

Then S is a co~pletely regular semigroup whose multiplication restricted

Conversely, everyta each S coin~ides
a

completely regular semigroup

This re sul t 1S remarkable for its complete generality. A special case

of particular importance arises as f0110\.15.

Let S - (Y;S) and, for alI a, p E Y with Cl ~ {3, let
a

~ ~: S ~ Sp be a homomorphism sueh that
o.'f/ Cl: IJ

l ,
a

Cl' ~ f3 ~ ì, ~cr,P~f3.ì - ~a,ì'

a E S bES R' we have ab·· alp .Qb~ R .a' then
Q}J a,Q}.' p,o.p

semilattice of the semigroups Sa and write

any strong semilattice of completely simpie

'P
0,0

for

(l)

(2)

is a strongS

s - [Y;S ,'P Rl. Clearly,
a a ,I-'

semigroups is completely regular. There are various nice characterizations

of the semigroups that arise in this way. We require a few preliminary

If, in addition, for any

\.le say that.

for some e,f E E(S).

concepts.

Recall that a normal band is a band ~hich "satisfies the identity

axy~ - ayxb and that a semigroup is"a normal cryptogroup ii X is a

congruence on Sand S;X is a normal band.

For any completely regular semigroup S, let the reiation ~ be

deiined in S by: far a,b E S

a ~ b <-=* a - eb bi,

Let S be a completely regular semigroup wi th completely simple

components S
a'

a E Y. If S is such that, for a, fJ E Y with a <::. p, and

any idempotent e in S there exists a unique idempotent f in SfJa
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with e ~ f, then S is said to satisfy D-rnajoriZation.

Lec

e~ the variety of completely simple semigroups

~ the variety of semilattices.

~e can now provide a number of different characterizations of normal

cryptogroups.

THEOREH 1.8. For any semigroup S the following sta~ements are

equivalent.

(i) S is a normal crypcogroup.

(ii) S is complecely regular and, for all e E E(S), eSe is an inverse

semigroup.

(iii) S is completely regular and, for alI e E E(S), E(eSe) is a

semilattice.

(iv) S is completely regular and satisfies V·majorization.

(v) S - (Y;So) is completely regular with completely simple components

Sand for alI a, ft E Y with a ~ ft and for alI a ES, there exists a
a * * a

unique element a E Sp with a S a.

(vi) S -

semigroups

(Y;S) is a strong semilattice of the completely simple
Q

S , a E Y.
Q

(vii) S is regular and a subdirect product of completely simple semigroups

with, possibly, a zero adjoined.

(viii) S E e~ v ~.

2. CONGRUENCES

We begin our t~eatment of congruences with congruences on complet~ly

5imple semigroups. ~ith the aid of the Rees Th~orem, congruences OD

completely 5imple semigroups can be described fairly completely. The

details of the following treatment can be ~ound in Howie [lO].

Let S - M(I,G,A;P). A triple (~,N,~), where ~ i5 an equivalence

SonP
(~,N,~)

relation on I, ~ i5 an equivalence relation on A and N i5 a normal

subgroup of G, i5 5aid to be adrni5sible if
-l -l

(i,j) E ~ or (À,~) E ~ -. PÀiP~iP~jPÀj E N.

For any admis5ible triple (~,N,~), define the relation

by



(i,a,À) P(:f,N,Y) (j ,b,~) - (i,j) E:f, (À,~) E ~ and
-l -1 -1

PçiaPÀxp~xb PçJ E N

for some (alI) x E I, reA.

THEOR~~ 2.1. Far any admissible triple (~,N,~),

congruence on S - M(I,G,A;P) and alI congruenees on

p is a
(:f,N,~)

S are of this formo

Given the stucture theorems of Clifford (Theorem 1.4), Rees (Theorem

1.6) Petrich (Theorem 1.7), it would be natura! to investigate the

properties of congruences on a completely regular semigroups by considering

their restrictions to the completely si~ple eomponents and how they can be

reconstituted from these eomponents. This approach has been succesfully

explored by Petrich (18). However, here I wish to explore an approach to

the study of eongruences which 1s less direct but which has provided a rich

harvest of insights into not only the behaviour of congruences but also the

lattice of varieties of completely regular semigroups.

DEFINITION Let p be a congruence an a completely regular semigroup

S, Then the kernel of p is

ker p a ES: a p aGI

and the trace af p is

tr p P!E(S)'

The key ohservation about the kernel and trace of a congruence is that

in combination they completely de termine the congruence.

~ 2.2. (Pastijn and Petrich [14], Lemma 2.10) Let p bè a

congruence on a completely regular semigroup S. Then, for any elements

a,b E S,

!ben

b b(b-1b)b-1b

p b(a-1a)b-1b
-l -l

ba (ab )b

p ba-1 (ab-1 )(ab-1 )b

b(a-1a)b-i a(b-1b)

Conversely, suppose that

a p b.

ker p.

-l
ab p

°a

and

-l
ab E kerp.

Theh a O
p bO

and
o O

a trp b

E Sand
-l

ab E

a p b

Proof. Let a,b

° OHence a trp band
-l

and ab E ker p.
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p

p

b(b-lb)b-la(a-la)

bb-la
-l

aa a

a.

COROLLARY 2.3. (Feigenbaum [5], Theorem 4.1) Let À, p be congruences

on a completely regular semigroup S. Then

À - p ker À - ker p and tr À tr p.

This leads to natural questions concerning che nature of those subsets

·of a completely regular semigroup which are kernels for congruences and

those equivalence relations on che set of idempotents which are che traces

of congruences. The Creatment presented here is essentiall~ that of Pastijn

and Petrich [14J, specialized to completely regular semigroups as in (Petrich

and Reilly [24).

DEFINIT!ON A subset K of a completely regular semigroup S is said

to be a normal subset of S if it satisfies the following condit~ons:

(K1) E( S) ~ K,

(K2) k E K .. k-1
E K,

(K3) xy E K .. yx E K, (x,y E S) ,

(K4)
O

(x,y S) .x,x Y E K .. xy E K E

Far any subset K cf a semigroup S, we denote by ~K the largest

congruence on S for which K is a union of ~KMclasses, Then

a ~K b - [xay E K ~ xby E K
l

(x,yES)]

*If 1 is a relation on a semigroup S, then we denote by 1 the

congruence on S

then we denote by

generated by 1.
O1 the largest

and if 1 is an equivalence relation

congruence on S contained in l'

THEOREM 2.4. (Pastijn and Petrich [14}. Lemmas 2.4, 2.9 and Petrich and

Reilly [24}) Let K be a subset of a completely regular semigroup S. Then the

following statements are equivalent.

(l) K is a normal subset of S.

(2) K is the kernel of some congruence on S.

(3) K is the kernel of ~K'
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~~en (1) . (3) hold, ((k,kO): k E Kj* is the sm~llest congruence and

~K is the largest congruence on S with kernel K.

Next we consider the relations on the set of idempotents that arise from

congruences.

DEFINITION Let S be a completely regular semigroup and r be an

equivalence relation on E(S). Then l' is a normal eguivalence if" it

satisfies the following

e , f

condition:
O'* (xey) r

o
(xfy)

l
(x, Y ES).

T~EOREM 2.5. (Pastijn and Petrich [14], Lemma 1.3 and Petrich and

Reil1y [24]) Let S be a completely reguiar semigroup and r be an equivalence

relation on E(S). Then the following conditions are equivalent.

(l) , is a normal equivalence.

(2) , is the trace of some congruenee on S.

*(3) ,. - tr ,
When (1) .- (3) hold, then r* is the smallest eongruence and CXr1!) °

is the largest congruenee on S with trace 1'.

Having successful1y characterized those subsets of S that can be

kernels and those equivalences on E(S) that can be traces, it is naturai

to consider when a normal subset and a normal equivalence can be combined to

be the kernel and trace of a single congruence.

DEFINITION Let S be a completely regular semigroup, K be a normai

subset of Sand l' be a normai equivalence relation on E(S). Then

(K,r) is a congruence pair for S if K is a normai subset, l' is a

normal equivalence and che following conditions are satisfied:

(GPl)

(GP2)

e , f

k E K
--

[xey E K
O(xky) ,

<:=:> xfy E
O O

(xk y) ,

K, for alI x,y
lfor x,y ES.

From the definition of
,

it follows that (CPl) could be replaced by

e r f o=> e ~K f, (equivalentIy, r !: tr 'J'l"K)

invoking (K3) we could replace (CPI) by

e l' f .-} [ex E K <:=:> fx E K).

alternatively,

**(GPl)

equivalent condition

*(GPl)

the

or,
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In che same

*(CP2)

sp~r~t, (CP2) can
O

K 'l: ker (J<TJ<) •

be replaced by che equivalent condition

Far any congruence pair (K,T) for S, de fine che relation P(K,T)

on S by

a P(K,r) b - o O -l
a T b ,ab E K (a,b ES).

THEOREM 2.6. (Pastijn and Petrich [14], Theorem 2.13 and Petrich nnd

ReiIIy [24]) Let S be a completely regular semigroup, K be a normal subset

of Sand T be a norma l equivalence relation on E(S). Then che following

statements are equivalent.

(K, r) is a congruence pair far S.

~K n (HrH) O has kernel K and trace r.

There exists a congruence p on S with kernel K and trace r.

(l)

(2)

(3)

(4) There is a unique congruence p on S wieh kernel K and trace T.

Whenever (l) - (4) hold, che unique congruence on S wieh kernel K

and trace T is

P(K,r)
o

1l"K lì (RrH) .

3. KERNEL AND TRACE RELATIONS

(.l,p E e(S».

(.l,p E e(S»

~ ker À - ker p

~ tr À - tr p

Throughout this section, let S denate a completely regular semigroup

and e(S) its lattice of congruences. Let the kernel relation K and the

T be defined on e(S) as follows.trace relation

.I K p

.I T p

Clearly K and T are both equivalence relations. As ~ immediate

consequence of Corollary 2.2, we have

~ 3.1. K n T - l, the identical relation.

We consider K first. As a related characterization of the kernel

relation we have the following interesting obvservation.

and Petrich [14], Lemma 3.9) Let3.2. (Pastijn

.I K p .I n H p n 1< •

.l,p E e(S). Then
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Proof. First suppose t'bat ker À - ker p. Then

a À CI ~ b <= a ~ b, a À b

a ~ b, -l
À bO (since

O _ bO)<= ab a

a ~ b, -l ker ker<= ab E À - p...... a pri< b .

Thus À n K - p CI ~. Conversely, lec À CI ~ - p n K. Then

ker À a À i<
Oa E -> CI a

~
O... • p CI a- a E ker p

so that ker À , ker p and, by symmetry, equality follows.

NOT.....TION Let X(S) denote the set of normal subsets of S 0rde:te·j "1

set theoretic inc1usion.

For any family (Ki:i E Il of normal subsets of S, it i5 clear that

iQIKi 1s again a normal subset of S. From this it follows that X(S) is

a complete lattice with respect to the operations

and

(p E e(S)

X(S) which induces the

K . class of p is ~n

- .ker p
K

p

e(s) onto

E e(S) Che

is a complete CI - homomorphisDI of

relation K on e( S) . For a11 p

interval K
[PK'p ] ",here

*PK - (p CI ~) and

THEOR~~ 3.3. (Pastijn and Petrich [14], Lemma 2.9 and Petrich and

Reil1y [24]) The mapping

ker: p ~ ker p

Unfortunately, K is not always a congruence. Let G be any

non-trivial group, Y {O, l l be the two element semi lattice aud S - G x -Y.

Let € denote the identical relation, w tne universal relation, o the

minimum group congruence and p the Rees congruence determined by the ideaI

G x (O). Then € K o but

€ .y p p and a V P w

where p and w do not have the same kernels.

However, there are circumstances under which K is a congruence.

Th~ method of proof used by Pastijn to establish the fact (Tneorem 4.4 below)
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that K is a congruence on the lattice of fully invariant congruences on the

free completely regu~ar semigroup suggests the following discussion. We

begin with completely simple semigroups. Let (:f,N,~). (:f' ,N' ,-;l') and

(T,M,Q) be admissible triples for S - M(I,G,A;P) and let

andP P p'(:P,N,:!)'
A scraightforward

- p(:P' ,N' ,:!')
calculation will show

a - "(T,M,Q)'
that

ker p ((i,a,),): ap)'i E N)

with similar expressions for ker p' and ker~. Consequently,

ker p ker p I 4=> N - N' .

Now it 1s al so the case that

so that

p v " P(:fvT,MN,:!vQ)

ap)'i E MN)

p' v a. Therefore, it is clear that

ker p' v a

and the mapping ker is a homomorphism

((i,a,).):

ker p' ~ ker p v a

ker p v ~

ker p

whence K is a congruenee on e(S)

on e(S) for any completely simple semigroup S.

This observation has consequences for any completely regular semigroup.

To see this, let S - a~ySa be a completely regular semigroup with

with a similar expression for ker

completely simple components Sand let p, p', a E (Il], the sublattice
a

of e(S) consisting of those congruences contained in Il, be such that ker p

ker p'. Let

(a E Y).a
a

where the union runs aver compositians

andpis
a

Also

p'
a

p' .
a

U poaopo .•. 0p

P 1S '
a
- kerker Pa

p v a

Then

of arbitrary length

U UyP oa 0 •• • op since p.·a E (V]aE a a a
U Up oa o ••. 0fJ

aEY a a a
Uy P Va .aE a a

Hence

(p v a)
a

p v a
a a

and

ker p V a U ker(p V a)
a

U ker (P
a

V a )
a

U (ker p v ker a ) since ker is a hamomorphism when
a a

applied to che lattice of congruences on a

complecely simple semigroup



U (ker p' v ker a )
a a

ker p' V a.

Thus we have escablished che following theorem:

THEOREM 3.4. For any complecely regular semigroup, the mappi~g ker is

a homomorphism on (DJ.

Parallelling Lemma 3.1, we have the following result eharaeterizing

the trace relation.

~ 3.5. (Pastijn and Petrich [14]. LelllDla 6.5) Let A,p E e(S).

Then

A T p A V II p v K.

Combining Lemmas 3.1 and 3.5, we obtain a rather eurious test for che

equality of congruences.

~ 3.6. Let À,p E e(S). Then

A - p A n II p n II and À v II p V J(..

In dealing with expressions of che form p V X, ic is sometimes useful

to know the following simpier descriptions.

LEMMA 3.7. For any p E e(S),

p v II pllp llpll.

NOTATION Let ~(S) denoce che set of alI normai equivalenee relations

on E(S).

Clearly che interseetion of any famiIy of normai equivalenees is again

a normai equivalence. From this it follows thac the set ~(S) is a

complete lattice with respect to the operations

o A r o n r and o V r n {p E .(S): o U r ~ pl.

THEOREM 3.8. (Pastijn and Petrich [14J, Theorem 4.20) The mapping

tr: p -----7 cr p (p E e(S»

is a complete homomorphism of e(S) onto ~(S) inducing the relation T

on e(S). Moreover, for eaeh p e e(S), the T-class of p is an
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interval 'W'here

*(tr p) and
T

p
o

(p v H) .

In contrast to the fact that K need not always be a congruence on

e(S), we have the following immediate consequence of Tneorem 3.8.

COROLTARY 3.9. T is a complete cong!:"uence on e(S).

From Theorems 3.3 and 3.8, we see that the equivalence relations K

and T are such that every class is an interval in the lattice e(S). These

facts, together with Lemma 3.1 enable us to give a pure1y lattice theoretic

preof of the next observation.

PROPOSITION 3.10. (Pastijn and Petrich [14J, Theorem 3.5) Let p E e(S).

Then

Prooi. 'We have

p
K T

p A P •

PK " PK v PT " P

and, by the convexity of the c1ass p'l., it follows that: PK v PT K p.

Similarly, PK
V PT T P ,,'hich, by Lemma 3.1, implies that PK

v PT - p.

The second equality in the statement of the proposition f0110\o1s by duality.

There are two additional re1ations on e(S) that are c10s~ly re1ated

to T. In order to recognize that these relations are natural re1atives of

K and T, it is he1pful to èonsider slight1y different characterizations

of K and T.

Let p E e(S). Then

p is idempotent ~ ii ker p - E(S),

p is idempotent separating ii tr p - ( or,

equivalentIy, p ç X.

C1early,

>. K p .... ker >. - ker p - ker >.np

= ker >./ (>.np) E(S/(>.np) ) ker p/(>.np)

= >./ (J.np) and p/(>.np) are both idempotent pure.

~ tr >./(,\np)

Similarly,

>. T p ~ tr >. tr p

,
tr >.np

tr p/(J.np)
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vp!>p)

vp!>p) ,

and p/p!>,)

p/(),!>p) ç; x.

are both idempotent separating

It is this very last characterization of T that leads to t'Wo

additional relations on e(S): for )"p E e(S) ,

), T2 p ... ),/(),!>p) , p/(),!>p) ç;

), T o ... V(),!>p) , p/(),!>p) ç;
r

We refer to T2 as the left trace relation aod to

relation on e (S) .

!

3\.

T as the righe traee
r

Far any congruence p E e(S), the ~~ and~ trace af p

are defined to be

ltr p and rtT p
o

(p v 3\) •

Then ao equivalent characterization of the relations T
1

by the following: for À,p E e(S),

and T
r

1s given

À T1 P ~ ltr À - ltr p and À Tr p ~ rtr À - rtT p.

The parallelism between the relations T, T
1

strongly in the next result.

and T
r

is brought aut.

THEORS~ 3.11. (Pastijn aod Petrich [14J, Lemma 6.5) The mappings

p~ p v R, P ---4 P v t, p ---4 P v ~

are complete homomorphisms of the lattice e(S) into the lattice e(S) of

equivalence relations on S inctucing the relations T, T2 and Tr'
respectively. Consequently, the relations T Ti and T are complete- , r
congruences on e(S).

As an immediate consequence, to match Lemma 3.5, ve have

CQROLL,,-o.y 3. 12 . (i)

( ii)

À T~ p ~ ). v l

À T p ~ À V ~
r

p V l.

p v '1:.

complete congruences, it follows that a11 the

are interva1s. For any p E e(S), wc define

Since T and T are
.l r

T.2~classes and T -classes
T2

r T
and

r
byPT ' PT ., p p

2 r
T

(PT
-2

pTi ,p )
.l

setting

and pT
r
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The next result sets out some imporcant basic connections between che

relations T, Tl and T .
r

and Petrich [14J, Corollary 4.8 and Theorem 4.14)THEOREI1 3.13 . (Pastijn

(i) Ti n T - T.r
(ii) For any p E (;'(5) ,

PT v PT PTi r
and

T
r

A p
T

p .

This leads to the following diagram from [14].

In order to give more explicit descriptions of che endpoines of Tl ­

and T -classes, ie is convenient to introduce the following relations.
r

Define

e ~l f ~ e - ef

and define the relation ~r dually.

(e;r E E(S»

PROPOSITION 3.14. (Pastijn and Petrich [14], Theorem 4.12)

Let p E (;'(5).

(i) and
T

r
p
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(ii) *(p n " )r
and °(p v X) •

4. THE LATTICE QI VARIETIES

We shall require some notation. Far any subvariety V of ep., ve

shall write

X (V)'"- the lattice af subvarieties of V

FV- the relatively free completely regular semigroup in V

on a countably infinite set X

r - the lattice of fully invariant congruences on Fe3!.

Fundamental to che discussion of varieties 1s che standard

correspondence between varieties and fully invariant congruences.

Far V E !(e~), let Pv be def1ned on Fe~ by

Pi - {(u,v) E Fe~xFe~: u8 - vS, for alI homomorphisms e:Fe~ ~ S E V}.

Then Che mapping

11': V~

1s an antiisomorphism of

(V E X (1:31) )

onto r.
The study of t(e~) involves many special varieties as reference

points.

°- x ]
nx

yx)

yx,

Ix - y]

[xy - x]

Ixy - y]

[xyz - xz]

°°° °[x y z - (xz) ]
2

[x - x, xy - yxJ

Ix
2

x]

Ix2 - x, axya - ayxa]

IxO - yO]
[xC _ yO, xy

[xC °- y xy
[xOyO - xO]

IXOyO - yO]
O O C O

Ix y - y x )

° °I (xyz) - (xz) )
IXOyO _ (xOyO)O)

°°° °[(x y) - (xy) ]

groups

abelian groups

abelian groups of exponent n

left groups

right groups

semilattiees of groups

eompletely simple semigroups

orthogroups

eryptogroups

crivial semigroups

left zero semigroups

righe zero semigroups

rectangular bands

rectangular groups

semilattices

bands

normal bands
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orthocryptograups
00 000 000 O

Ix Y - (x Y ) , (x Y) - (>;y) J

r.ormal crypt.ogrotlps (completely regular semigroups far which

K is a congruence and SJH is a normal band).

~ . locally ort.hodox erypt.ogroups (chat. is, alI S E eR such

that eSe E ~ for al1 e e E(S».

CLOeç . completely regular semigroups far ~hieh the core (that is,

che subsemigroup generated by che idempot.ents) lies in ~

The first part of !(e~) ta be st.udied in any depth was the lattice

t(B) of subvarieties of the variety B of bands. Here is t.he familiar

diagram for f~,BJ due to Birjukov [l], Fennemare {6] and Gerhard [Bi:

II

The next pare of the lattice X(e~) to be studied in dapth (excluding

the lattice af varieties of groups, which has been studied for many years,

of course) was the lat.t.ice t(e~) of subvarieties of the variet.y of

completely simple semigroups. Mose of che ~ork on X(e~) to dat.e has

taken advantage of the description of the free eompletely simple semigroup

deseribed by Clifford and Rasin (independently), in 1979.
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THEOREM 4.1.(Clifford [3] Theorem 7.4, Rasin [28] Theorem l) Let X

be a non-empty set and fix z E X.

indexed by pairs of elements from

Let Y - {p :x,y E X\(z}) be a set._x,y
X different from z and Iet G be the

free group on

x E X, and let

to Px,y' Then

X,

z - X u Y. Let p - p - l the identity of G, far alIz x x z ', , th
p - (px,y) be the X X X matrix with (x,y) entry equa1

R';f(X) - (M(X,G,X;P) ,8) where x8 - (x,x,x), far alI x E

NOTATION Let e denote the set of endomorphisms w of G far which

there exist mappings Cf> and y, of X into itself such that,· far alI

x,y E X,

NOTATION Let

semigroups with the

in the centre of the

Let N denote the set of norma1 subgroups of G which are invariant

under alI elements of e. lt is easi1y verified that N is a sublattice

of the lattice of normal subgroups of G.

THEOREM 4.2. (Rasin {28], Theorem 3) The interval [lUl ,e;fJ is

anti-isomorphic to the lattice N.

Because of this result, most of the advances to date in the study of

t(e~) have involved the study of the structure of Gand N.

e denote the variety of alI completely simple

p~operty tbat tbe product of any two i~empotents 1ies

X-class containing it. This variety is defined by

the identit"j
o O 0'0

ax a ya aya x a.

Far any V E t(e~). let '(V) denote the ~lass of alI idempotent

generated members of V and Iet <'(V» denote the variety of completely

simple semigroups generated by '(V).

Tbe largest ideaI of t(e~) to bave been given a fairly precise

characterization is t(e).

THEOREM 4.3. (Petrich and Reilly [20], Theorem.3.11) Tbe mapping

ç:' ----->' (. n lUl, Cf:!'> n •• , • n.) (' E !(e»

is an isomorphism of t(e) onto the subdirect product
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Despite the "simple u character!zation of completely simple semigroups

provided by the Rees Theorem, the structure of l(ef) outsiàe of the ideaI

l(e), remains a mystery,

In order to probe deeper into the structure of l(e~), we tske

advantage of the recent techniques for investigating congruences that were

described in earlier sections,

In Theorem 3,10, we saw that the relations T, T
1

and T
r

are complete

congruences on e(S), for any completely regular semigroup S, but ehat K

need not be. We now have:

THEOREM 4.4.(Polak [25] Theorem l, Pastijn [12J Theorem 11) K is a

complete congruence on r,

Thus K, T,.

antiisomorphism

T.2 and T
-l r

,.. these

are all complete congruences on r. Under the

carry over to complete congruences on l(e~):

~ K V ~ P~ K PV' ~ T Y ~ P~ T Py

~ T1 Y ~ P~ T1 Pv' ~ Tr V ~ P~ Tr Pv
The classes of any complete congruence are intervals and so it is

convenient to denote the intervals for these four cong~uences as follows:

VT

VT
r

T
[V

T
, V )

T
[V V rJ

T '
r

T .
r

and

(V E !(~31»

congruences K, T1

Y --7 V
T

r
inducing the

THEOREIj 4.5. (Po1àk [25) Theorem l and [26) Theorem 1. 6 " Pastij n [12]

Theorem 8) The mappings
K

V ~ V, V ~ V
T .e

are complete endomorphisms of l(e~)

Somewhat surprisingly, the mapping

V -; V
T

(V E !(~31»

is not an endomorphism of l(e~) (see Petrich and Reilly [22], Proposition

],6), In addition, the mappings associated with the other ends of the

intervals of K, T, T1 and T
r

are not endomorphisms, An interesting and
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useful fact 1s that che upper

described in terms of Mal'cev

K
V - 'lBo (Vv.:f) •

An alternative expression for

ends of che intervals of K, T ~ and T can be. • r
produccs (Pastijn (12] Lemma 3, rneorem 13):

T1 Tr
V - t,oV, V - ~oV.

VK is VK _ BoV.

One approach used in the scudy of l(eR) has beeo to describe certaio

intervals of the form [~A V,~ V VJ, for suitable ~,V E l(e~), 8S

particular subdirect products of the intervals [~A V.~] aod (~A V,V].

We begin by studying the circumstances under ~hich ao interval of the

form la A b,a V b] in a lattice may be isomorphic to the produce

[a A b,a] x [a A b,b] with a vie~ to applying this to the lattice l(e~).

Far aoy complete congruence À 00 a complete lattice

Tbe following discussion isby a~

Reilly

(Petrich and

and
À

a

L

and\le define al

taken from

1s ao int:erval.aÀa E L, the class
À

[aÀ,a l·
[23]) .

any

~ 4.6. Let ~ and r be congruences on a lattice L and

a,b E L. Tbe following statements are equivalent.

(ii) a T a v b < b.(i) a < a A b T b.

~. If (i) holds then

a - a v (a 1\ b) r a v b and b - (a 1\ b) v b ~ a v b

which gives (i). Tbe proof that (ii) implies (i) is similar.

DEFl,:nTION If L,a,b,~ and r satisfy (i) and (ii) in Lemma 6.1,

then we wi1l say that a and b are ~r-neighbours. Congruences ~ and

r on a lat~ice L are said to be disioint if ~ n r - !.

Proof

~ 4.7. Let ~ and T be disjoint complete coogruences 00 a

complete lattice L and let a E L. Then
< T

a - a v a - a 1\ a
< T

Since ~ and rare congruences, we have

a v a ~ a V a - a
< T T

and aVa raVa-a
K T K

equality follows by duality.Va.
T

so that

a - a
<

a v a (~n r) a.
< T

Tbe second

But and are disjoint. Therefore

COROLu.RY 4.8. Let

on a complete lattice L

~ and

and let

r be disj oint

a E L. Then

complete congruences
< Ta ,a are
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~r-neighbours and a , a
~ , are r~-neighbours.

~ ,
o a V a

~

a

a ,

,
~..'a

<,/ 'a
~

o a A a
~ ,

I:!:2.2.f. By Lemma 4. 7. we have

~, ~

aAa-a"a and
~, ,
aAa-ara

from which we deduce the firsc claim. The second claim f0110ws

similarly using Lemmas 4.6 and 4.7.

We are now ready for the main lattice theoretic observation. One of

the striking features of this result is the fact that neither

modularity nor neutralicy appear in the hypotheses.

THEOREM 4.9. Let ~,r be disjoint congruences on a lattice L

and a,b E L be ~T-neighbours. Then the mappings

~: Z -; (z A a,z A bi, ~: (x,y) -; x V y

are mutually inverse isomorphisms between [a A b,a V bl and

la A b,a] x [a A b,b].

Applying these lattice theoretic considerations to congruences, we

obtain:

THEOREM 4.10. (Pastijn and Trotter [15J. Theorems 5.1 and 5.2)

Let per.

(1) The mappings
K T

1 --> (I n p ,In p ),

are mutually inverse isomorphisms between
K T

[p,p l x [p,p l.
(ii) The mappings

1 --> (I V PK' 1 V PT)'
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From Lemma 3.1, we know that K and T are disjoint
KIt follows from Corollary 4.8 that p

and che cIaim follows by Theorem 4.9.

(i) by dualicy.

complece congruences on r:

and pT are KT-neighbours

(ii) This follows from

are mutuaIIy inverse isomorphisms between [PK n PT'p] and

[PK,p) x [PT,p].

Proof. (i)

In order to provide some specific illustrations of the preceding

discussions in terms of varieties rather than fully invariant

congruences, we need to know some specific values for the upper

end points of some of che K- and T-classes.

LEMMA 4.1l.
(ii) ..,T _ l',

(i)

lUIT

K
~el' - DI' .

Proof. (i) See (Polàk [25]. Theorem 2).

(ii) See (Pecrich and Reilly [21], Seccion 9).

We can now give some examples of applications in l(e~).

LEMMA 4.12. (i) (Pecrich [161, Theorem) The mappings

(~,") --. ~ v "

(~,") --. 'Il v "

are mutually inverse isomorphisms becween l(~) and l(S) x l(~).

(ii) (Hall and Jones (9J, Corollary 5.5 and Rasin [30],

Proposition 1) The mapp~ngs

V --. (V n S, V n e~).

4.9) The mappings

('Il,") --. 'Il v "

are mucually inverse isomorphisms between [~,toee] and

[lUI ,SJ x [lUI ,e~J.

(iii) (Rei11y [32J, Theorem

V --. (V n ex: , V n e~)

are mutually inverse isomorphisms becween [~e~, C~l and

[~el',DI'] x [~el',e~J.
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5. POLAK'S THEOREH

The following subset has a special rale to play in che study

of ! (e:R) ,

Xo - [VK,V E !(e:R))

Examples of members·of Xo are plentiful and include alI graup

varieties and alI non-orthodox varieties af completely simple semigroups.,
Since K 1s a complete congruence on l(e~) and X

o
contains exactly

one representative from each K-class, we may consider Xo as being a

lattice with the lattice structure inherited from l(e~)/K. Thus, for~, V E

!(e:R) , ~ ~ V if and only if ~K ~ VK.

We now adjoin three elements to Che battaro of Xo (below che trivial

variety ~) and extend che arder on Xo to X - Xo u IL,T,Rl as indicated

in che diagram below so that X becomes a lattice with KO as a

sublattice.

x -

L

T

R

(V E [:l',e:R])

Beiare proceeding, we require some additional notation:
2 .

!NB che variety of left normal bands - [x - x, xyz - xzy]
2

~! the variety of right normal bands - [x - x, xyz - yxz].

For V E X(eR) I let the mapping

V ~ V *
K

be defined by the following:

VK ii V .. ~.r.Ji!,1VI!

V * L ii V !HBK
T ii V :l'

R if V MB.
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~e wish co combine che above mapping with mappings associaced wi,h T~

LetT .
r

and

8
1

- 8 u {l}

in canonical form as

Towards this end we introduce ~products~ of,
2 2

a - <Tl,TrlTl - Tl , Tr - Tr> and

monoid with generators T1 and T
r

subject to the relations T~ - Ti'

le is easy to see that every element of e can be written

and

be the

T2 _ T
r r

uniquely

r - T1T2 · .. Tn where T. E (TrTr ), Ti"'T i +11

For such an element r, let Ir I - n, h(r) - Tl and t(r) - T Define a

al
n

relation '" on by

" ~.,. ~ I" I > 11' I or ,,-.,. or .,. - l.

Then <el,~) is che parcially ordered set depicted 00 the IeEt of the

diagram:

l

T Tlr

T1Tr TrTi
~

)

TrTiTr T1TrTl

/1 ,. /
/

Ile a1so extend the definitions of V and V
T to cover V for any

Tl r
al

r
r E by defining V

l - V and otherwise defining V inductively asr
fo1lows: for r - T1T2 T E a and V E L(e~) letn

Qur main interest is

denote the set of alILet

V
r (VT T )T'

l· .. n-l n
in cercain mappings

81
~ E X

of el into X.

saeisfying the following

condieions:

O( i) l~ E XO'

DIii) ~ is order preserving,

O( iii) r E a, r~ L ==> t(r) - Tr'

O(iv) r E 8, r~ R ==> t(r) Tl ,
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l
D(v) a E e ,r E e a~ E Xo and either a - 0

or t(u) ~ h(T)

THEOREM 5.1.(PolAk [26], Theorem 3.6) ~ 1s a complete lattice (vith

respeet to the component·wise arder).

Polak's main theorem concerns those subvarieties of e~ that contain

the variety of semilattices.

THEOREM 5.2.(Polàk [26), Theorem 3.6)

be defined by:

Far any V E {~,e~], let

if l' - 0

otherwise

Then the mapping

x: V~ Xv
1s an isomorphism of [~,e~} onto ~.

(V E [:f,ell])

Hany interesting subsidiary facts and applications of this theorem ean

be found in Polàk's three papers [25J, [26J and [27J.

A case to which PolAk's Theorem ean be quickly applied to give new

information, is the lattice !(~) of subvarieties of the variety oç of

orthodox completely regular semigroups lt is not hard to show that

~K - ~, where ç denotes the variety of groups .. Therefore, for any

V E l(~) I the part~ally ordered set of values of Xv may ~e depicted as

follows:

~o

~l ~2

~3 ~4

~5 ~6

-
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~here ~O E t(~), the lattice of varieties of group5 and, far each n ~ l, ~n

E t(~)U{ L , T , R l. From. this it is easy to deduce the follo~ing result.

THEOREM 5.3. (Polàk [26J,

countably many copies of t(~)

Theorem 4.2) t(~) i5 a subdirect product of

and a single copy of 1(2).

One question about t(eR) that remained unans~ered for a considerable

time was whether or not it is a modular lattice. Various results had been

obtained concerning various sublattices of l(eR) (see, for example, Rasin

[29] for the lattice of varieties of completely simple semigroups and Hall

and Jones [9] far the lattice of varieties of completely regular semigroups

far which X is a congruence). The question was finally answered in full

generality with the aid of Polak's Theorem by Pastijn:

THEOREM 5.4.(Pastijn (12), Theorem 18) t(eR) is modular.

Verifications of. the modularity of x (e1l:) that are not dependent on

Polak's Theorem have been obtained by Pastijn [13] and Petrich and Reilly

[23] .

Since the lattice of group varieties is a sublattice of X(eR) it

follows that X(eR) is not distributive. However, even in a

non-distributive lattice, there may be elements which have properties that

are normally associated with distributivity. More exactly, an element a

in a lattice L is neutral if the mapping

x -----? (XAa, xva)

is a monomorphism of L onta a subdirect product of (a] and [a) (where (a)

and [a) denote the ideaI and filter of L, respectively, generated by a).

The usefulness of a neutral element a in a lattice L is that it

makes it possible to convert certain types of problems on the whole lattice

L to (hopefull~ simpler) problems on the (hopefully simpler) sublattices

(a) and [a). One nice feature of modular ·lattices is that, by virtue of

the lemma below, in order to establish that an element is neutral it is not

necessary to verify alI che conditions in the definition each time.

~ 5.5. ([7J) For any element a in a modular lattice L, the

following statements are equivalent:

(i) a is neutral in L;
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( i i) ehe mapping

~a :x ---7 XAa (x E L)

is an endomorphism of L',
(iii) the mapping

" :x~ xYa (x E L)
a

is an endomorphism of L.

Prior to Polak's Theorem, a few simple examples cf neutral elements in

!(e~) were known. Far example, Hall and Jones [9] had shown that the

variety ~ of semilattices is neutral and Jones [11] extended the list to

include alI subvarieties of the variety N~ of normal bands.

Alsa Jones [11] had shown that ~~ and ~e~ are homomorphisms so that,

by the ·preceding theorem and lemma, we may conclude immediately that ~ and

e~ are both neutral in Z(e~). But now, with the techniques available on

account of Polak's Theorem it is possible to determine many more neutral

elements and to approach the search for neutral elements in a much more

systematic way.

The following i5 a partial listing of the varieties that are now known

to be neutral in l(e~):(for details, see Hall and Jones [9), Jones (11) and

Reilly [33])

tf , e:f,.s4J;, S, DC', I...De'ç,

e:f(.s4J;) the variety of completely simpie semigroups with

abelian subgroups.

oç(.s4~) - the variety of orthodox completely reguiar

semigroups with abelian subgroups.

l(~)

l(oç( ..~))

l(~("~))

the variety of locally orthodox eryptogroups

with abelian suhgroups.

alI sùbvarieties of $

alI subvarieties of ~(.s4~) .

alI suhvarieties of LOeç(.s4tf).

Some partial results ean also be obtained, 5ueh as the following.

COROLLARY 5.6. (Reilly (33], Corollary 5.8) The variety ~ is neutral

in l(eçK).

Since ç ~ ~, we must also have ~ - J;K C~ and therefore al so
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From this it can be shown that cç is neutral in

An importane feaeure of the nexc theorem is the fact that certain

varieties are expressible as joins of well known varieties.

~ 5.7. (i) ~ v ç - oeç. (ii) ~ v e~ - LDeç.

(iii) Dç v e~ - CLOeç.

Proof. (i) See (Petrich [16], Lemma l).

(ii) See (Hall and Jones [9], Corollari 5.4).

(iii) See (Hall and Jones (91, Theorem 5.3 and Reilly [32], Proposition

5.3) .

COROLLARY 5.8. (i) (Petrich [16J, Theorem) The mappings

V ~ (V n ~, V n ç) , (~, lf) --> ~ v li'

are mutually inverse isomorphisms between t(~) and t(~) x ~(~).

(ii) (Hall and Jones [9], Corollary 5.5, Rasin [3D]. Proposition l)

The mappings

V ~ (V n ~, V n e~), (~ ,w.) ~ ~ v li'

are mutually inverse isomorphisms between z:c.~) and the subdirect

product of z:(~) and z:(e~) consisting of alI those pairs (~, V) with

~n~-Wne~.

(iii) (Reilly [33], Theorem 5.9) The mappings

V ~ (V n eç, V n Dç), (~, W) --> ~ v li'

are mutually inverse isamorphisms between L(~V~) and the subdirect

product of t(~) and l(oç) consisting of alI chase pairs (~, V) with

~ n oeç - li' n oeç.
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