1. Varietà analitiche e problemi variazionali connessi

Prima conversazione

In questa conversazione diamo una definizione di varietà analitica con peso intero immersa in \mathbb{R}^n (vedi Definizione 4) che sembra conveniente nello studio dei problemi variazionali (vedi Congettura 7). È ovviamente assai probabile che definizioni analoghe alla Definizione 4 e problemi analoghi a quelli considerati nella Congettura 7 siano già noti nella letteratura matematica.

Indichiamo con $\mathcal{A}(\mathbf{R}^n)$ la famiglia degli aperti di \mathbf{R}^n e con $\mathcal{K}(\mathbf{R}^n)$ la famiglia dei compatti di \mathbf{R}^n . Per ogni $A \in \mathcal{A}(\mathbf{R}^n)$ indichiamo con $C^{\omega}(A)$ lo spazio delle funzioni analitiche reali in A. Data una funzione v poniamo

$$\operatorname{dom} C^{\omega}(v) = \bigcup \{ A \in \mathcal{A}(\mathbf{R}^n); v \in C^{\omega}(A) \}.$$

In maniera analoga si definisce $dom C^k(v)$ per ogni $k \in \mathbb{N} \cup \{+\infty\}$.

Per $h \in \mathbb{N}$ con $0 \le h \le n$, sia \mathcal{H}^h la misura h-dimensionale di Hausdorff. Indichiamo con $B_{\rho}^h(x)$ la sfera $\{y \in \mathbb{R}^h; |y-x| < \rho\}$ e poniamo $\omega_h = \mathcal{H}^h(B_1^h(x))$.

Nel seguito consideriamo Ω fissato in $\mathcal{A}(\mathbf{R}^n)$.

Definizione 1. Definiamo $SL_h(\Omega)$ la classe delle funzioni $v \in L^1_{loc}(\Omega, d\mathcal{H}^h)$ tali che si abbia

dom
$$v \cap \Omega = \{x \in \Omega : \text{esiste finito } \lim_{\rho \to 0} \rho^{-h} \int_{B_{\rho}^{n}(x)} v(\xi) \ d\mathcal{H}^{h}(\xi) \},$$

ed inoltre risulti, per ogni $x \in \text{dom } v \cap \Omega$,

$$v(x) = \lim_{\rho \to 0} \frac{1}{\omega_h \rho^h} \int_{B_a^n(x)} v(\xi) \ d\mathcal{H}^h(\xi).$$

Definizione 2. Date $(f_j)_{j\in\mathbb{N}}$ e f_{∞} , diciamo che $f_j \to f_{\infty}$ in $SL_h(\Omega)$ se e solo se $f_j, f_{\infty} \in SL_h(\Omega)$ e

$$\lim_{j \to +\infty} \int_{\Omega} g \ f_j \ d\mathcal{H}^h = \int_{\Omega} g \ f_{\infty} \ d\mathcal{H}^h$$

per ogni $g \in C_0^0(\Omega)$.

Assegnata una funzione v definiamo, per ogni $x \in \mathbb{R}^n$,

$$DSv(x) = \frac{1}{2} \left[\operatorname{dist}(x, \operatorname{supp} v) \right]^2,$$

dove con supp v si è indicato il supporto di v.

Definizione 3. Definiamo $V_hC^{\omega}(\Omega)$ la classe degli insiemi $E \subset \mathbb{R}^n$ tali che $E \cap \Omega = \overline{E} \cap \Omega$ e per ogni $x \in E \cap \Omega$ esistono $A \in \mathcal{A}(\mathbb{R}^n)$, $B \in \mathcal{A}(\mathbb{R}^h)$, $\varphi \in (C^{\omega}(B))^n$, $\psi \in (C^{\omega}(A))^h$ tali che

$$x \in A$$
, $\psi(\varphi(y)) = y$ per ogni $y \in B$, $E \cap A = \varphi(B)$.

Il collegamento tra la nozione di insieme di classe $V_1C^{\omega}(\mathbf{R}^n)$ e la nozione di curva semplice analitica chiusa è dato dalla Congettura 1.

Congettura 1. Se E è un insieme connesso ed $E \in V_1C^{\omega}(\mathbf{R}^n) \cap \mathcal{K}(\mathbf{R}^n)$ allora esiste $\phi \in (C^{\omega}(\mathbf{R}))^n$ tale che per ogni $x, y \in \mathbf{R}$,

$$\phi(x) \neq \phi(y)$$
 se $0 < x - y < 2\pi$,

$$\phi(x+2\pi) = \phi(x),$$

$$\left|\frac{\mathrm{d}\phi}{\mathrm{d}x}\right| > 0,$$

e si ha

$$\phi(\mathbf{R}) = E$$
.

Riguardo agli insiemi di classe $V_h C^{\omega}(\Omega)$ possiamo porre la seguente congettura.

Congettura 2. Dato un sottoinsieme $E \subset \mathbf{R}^n$ si ha $E \in V_h C^{\omega}(\Omega)$ se e soltanto se

$$E \cap \Omega = \overline{E} \cap \Omega$$

$$\chi_E \in SL_h(\Omega),$$

$$E \cap \Omega \subset \mathrm{dom}C^{\omega}(DS_{\chi_E}).$$

Definizione 4. Definiamo $F_hC^{\omega}(\Omega)$ la classe delle funzioni w tali che, per ogni $x \in \Omega$ esistono $A \in \mathcal{A}(\mathbf{R}^n), \nu \in \mathbf{N}, E_1, \dots, E_{\nu} \in V_hC^{\omega}(A)$ per cui $x \in A$ e

$$w(y) = \sum_{i=1}^{\nu} \chi_{E_i}(y)$$
 per ogni $y \in A$.

Congettura 3. Se $w \in F_h C^{\omega}(\Omega)$, allora

$$\mathcal{H}^h(\operatorname{spt} w \cap \Omega \setminus \operatorname{dom} C^{\omega}(DSw)) = 0.$$

Definizione 5. Date due funzioni w ed f definiamo il gradiente tangenziale $_{w}\nabla f$ imponendo che

$$\operatorname{dom} \,_{w}\nabla f = \operatorname{dom} C^{2}(DSw) \cap \operatorname{dom} C^{1}(f),$$

e, per ogni $x \in \text{dom }_{w}\nabla f$, il vettore $_{w}\nabla f(x)$ abbia le componenti

$$_{w}\nabla_{i}f(x) = \left[\left(w\nabla f\right)(x)\right]_{i} = \partial_{x_{i}}f(x) - \sum_{j=1}^{n} \partial_{x_{i}x_{j}}^{2}DSw(x) \partial_{x_{j}}f(x).$$

Congettura 4. Date tre funzioni w, f_1 ed f_2 e posto

$$A = \operatorname{dom} C^{2}(DSw) \cap \operatorname{dom} C^{1}(f_{1}) \cap \operatorname{dom} C^{1}(f_{2}),$$

se $f_1(x) = f_2(x)$ per ogni $x \in A \cap \text{supp } w$ allora si ha su tutto $A \cap \text{supp } w$,

$$_{w}\nabla f_{1} = _{w}\nabla f_{2}$$
.

Al problema dello scioglimento delle singolarità di una varietà che sia il supporto di una funzione di classe $F_hC^{\omega}(\mathbf{R}^n)$ corrisponde la seguente congettura.

Congettura 5. Se $w \in F_h C^{\omega}(\mathbf{R}^n)$ e supp $w \in \mathcal{K}(\mathbf{R}^n)$, allora esistono $m = m(h) \in \mathbf{N}$, $E \in V_h C^{\omega}(\mathbf{R}^m) \cap \mathcal{K}(\mathbf{R}^m)$, $A \in \mathcal{A}(\mathbf{R}^m)$ e $\phi \in (C^{\omega}(A))^n$ tali che $E \subset A$, $w(x) = \text{card } \{y \in E; \phi(y) = x\}$ e, posto $b_{ij}(x) = \sum_{x_E} \nabla_j \phi_i(x)$, si ha che la matrice b(x) ha caratteristica h per ogni $x \in E$.

Congettura 6. I funzionali definiti per $w \in F_hC^{\omega}(\Omega)$ da

$$\mathcal{F}(w,\Omega) = \int_{\Omega} |\nabla^{i}(DSw)|^{p} w \ d\mathcal{H}^{h}$$

sono semicontinui inferiormente rispetto alla convergenza in $SL_h(\Omega)$ per ogni $p \geq 1, i \in \mathbb{N}, i \geq 2.$

Congettura 7. Siano $f \in C^{\omega}(\mathbb{R}^n)$ tale che $\lim_{|x| \to +\infty} f(x) = +\infty, i \in \mathbb{N}, i \geq 3$. Esiste

$$\min \left\{ \int_{\mathbf{R}^n} |\dot{\nabla}^i (DSw)|^2 w \ d\mathcal{H}^h + \left(\int_{\mathbf{R}^n} w \ d\mathcal{H}^h \right)^2 + \int_{\mathbf{R}^n} fw \ d\mathcal{H}^h \right\}$$

nella classe delle funzioni $w \in F_h C^{\omega}(\mathbf{R}^n)$.

Seconda conversazione

Alcuni lettori della prima conversazione hanno trovato scarse informazioni sul significato geometrico delle derivate della funzione $DSw(x) = \frac{1}{2} \left[\operatorname{dist}(x, \operatorname{supp} w) \right]^2$. Possiamo perciò enunciare una serie di congetture la cui conferma o confutazione chiarirebbe ampiamente tale significato.

Congettura 1. Sia $f \in (C^{\omega}(\mathbf{R}^h))^{n-h}$, con $1 \le h < n$ tale che $|f(0)| = |\nabla f(0)| = 0$; sia $E = \{(x_1, \dots, x_n) \in \mathbf{R}^n; x_{i+h} = f_i(x_1, \dots, x_h), 1 \le i \le n-h\}$ e sia $w = \chi_E$. Allora

$$\begin{split} DSw(0) &= 0, & \nabla DSw(0) = 0, \\ \partial_{x_i}\partial_{x_k}DSw(0) &= 0 & \text{per } i \neq k, \\ \partial_{x_i}\partial_{x_i}DSw(0) &= 0 & \text{per } i \leq h, \\ \partial_{x_i}\partial_{x_i}DSw(0) &= 1 & \text{per } h < i \leq n, \\ \partial_{x_{i+h}}\partial_{x_{j}}\partial_{x_{k}}DSw(0) &= -\partial_{x_{j}}\partial_{x_{k}}f_{i}(0) & \text{per } 1 \leq i \leq n-h, \quad 1 \leq j, k \leq h. \end{split}$$

Definizione 1. Per ogni $w \in F_hC^{\omega}(\mathbb{R}^n)$ definiamo

$$[MCw(x)]_i = MC_iw(x) = -\sum_{j=1}^n \partial_{x_j}\partial_{x_j}\partial_{x_i}DSw(x).$$

Possiamo enunciare alcune congetture riguardanti la funzione vettoriale MCw(x) precedentemente definita, dopo aver introdotto le seguenti notazioni: data $w \in F_hC^\omega(\mathbf{R}^n)$ e

data
$$\psi \in (C^2(\mathbf{R}^n))^n$$
 poniamo $w \operatorname{div} \psi = \sum_{i=1}^n w \nabla_i \psi_i$ e $w \triangle \psi = \sum_{i=1}^n w \nabla_i (w \nabla_i \psi)$.

Congettura 2. Detta Id_n l'identità su \mathbb{R}^n , per ogni $w \in F_h C^{\omega}(\mathbb{R}^n)$ e per ogni $\psi \in (C_0^1(\mathbb{R}^n))^n$ risulta

$$\int_{\mathbf{R}^n} \langle MCw, \psi \rangle \, d\mathcal{H}^h = -\int_{\mathbf{R}^n} (_w \operatorname{div} \psi) \, w \, d\mathcal{H}^h =$$

$$= \frac{\mathrm{d}}{\mathrm{dt}} \left[\int_{\mathbf{R}^n} w (Id_n + t\psi) \, d\mathcal{H}^h \right]_{t=0},$$

inoltre per ogni $x \in \text{supp } w$ risulta

$$MCw(x) = {}_{w} \triangle (Id_n)(x).$$

Per ogni $w \in F_h C^{\omega}(\mathbf{R}^n)$ poniamo

$$\nu(w)(x) = \nabla^2 DSw(x).$$

Inoltre, dati due vettori $a, b \in \mathbb{R}^n$, poniamo $(a \otimes b)_{ij} = a_i b_j$.

Congettura 3. Sia $f \in C^{\omega}(\mathbb{R}^n)$ e, per ogni $t \in \mathbb{R}$, sia $E_t = \{x \in \mathbb{R}^n; f(x) = t\}$. Per quasi ogni $t \in \mathbb{R}$ risulta

$$E_t \in V_{n-1}C^{\omega}(\mathbf{R}^n)$$
, $\chi_{E_t} \in F_{n-1}C^{\omega}(\mathbf{R}^n)$,

 \mathbf{e}

$$\nu(\chi_{E_t}) = \frac{\nabla f \otimes \nabla f}{|\nabla f|^2} .$$

Se poi $w \in F_h C^{\omega}(\mathbf{R}^n)$ con h > 0, per quasi ogni $t \in \mathbf{R}$ si ha

$$w\chi_{E_t} \in F_{h-1}C^{\omega}(\mathbf{R}^n)$$
,

e per \mathcal{H}^{h-1} -quasi ogni $x \in \operatorname{supp} w \cap E_t$ risulta

$$\nu(w\chi_{E_t})(x) = \nu(w)(x) + \frac{\sqrt{y}f(x) \otimes \sqrt{y}f(x)}{|\sqrt{y}f(x)|^2}.$$

Con le notazioni della Congettura 3 sarebbe interessante esprimere $MC(w\chi_{E_t})$ in funzione di $_w\nabla f,\ _w\nabla^2 f,\ \nabla^2 DSw,\ \nabla^3 DSw$.

Con l'introduzione di MCw, si possono prendere in considerazione altri problemi variazionali del tipo di quelli esposti nella prima conversazione.

Congettura 4. Siano $f \in C^{\omega}(\mathbf{R}^n)$, $\epsilon > 0$ e p > 0. Esiste

$$\min \left\{ \int_{\mathbf{R}^n} \epsilon |MCw|^2 w d\mathcal{H}^h + \int_{\mathbf{R}^n} f w d\mathcal{H}^h \right\}$$

nella classe delle funzioni $w \in F_h C^{\omega}(\mathbf{R}^n)$ tali che $\int_{\mathbf{R}^n} w \, d\mathcal{H}^h \leq p$.

Si possono anche considerare problemi variazionali con discontinuità libere.

Congettura 5. Siano $f \in C^{\omega}(\mathbf{R}^n)$, $\epsilon > 0$, p > 0 e $\lambda > 0$. Esiste

$$\min \left\{ \int_{\mathbf{R}^n} \epsilon |MCw|^2 w d\mathcal{H}^h + \int_{\mathbf{R}^n} f w d\mathcal{H}^h + \lambda \mathcal{H}^{h-1}(K) \right\}$$

nella classe delle coppie (K, w), dove $K \in \mathcal{K}(\mathbf{R}^n)$ e $w \in F_h C^{\omega}(\mathbf{R}^n \setminus K)$ verifica la condizione $\int_{\mathbf{R}^n} w \, d\mathcal{H}^h \leq p$.

Terza conversazione

Varie situazioni naturali suggeriscono l'idea di varietà analitiche a tratti (basta pensare per esempio ad una lastra di vetro colpita da un sasso) e questo fa ritenere che vi sia un qualche interesse nello studio di problemi matematici le cui soluzioni sono analitiche a tratti.

In questa conversazione si utilizzano le notazioni introdotte nella prima conversazione. Accanto alla definizione di varietà analitica su Ω (cfr. definizione 3 della prima conversazione), può essere interessante introdurre la nozione di varietà analitica con bordo analitico su Ω .

Definizione 1. Definiamo $V_hBC^{\omega}(\Omega)$ la classe degli insiemi $E \subset \mathbf{R}^n$ tali che $E \cap \Omega = \overline{E} \cap \Omega$ e per ogni $x \in E \cap \Omega$ esistono $A \in \mathcal{A}(\mathbf{R}^n)$, $B \in \mathcal{A}(\mathbf{R}^h)$, $\varphi \in (C^{\omega}(B))^n$, $\psi \in (C^{\omega}(A))^h$ e $z \in \mathbf{R}^h$ tali che

$$x \in A$$
, $\psi(\varphi(y)) = y$ per ogni $y \in B$, $E \cap A = \{\varphi(y); y \in B, \langle y, z \rangle \ge 0\}$.

Definizione 2. Sia $E \subset \mathbb{R}^n$ un insieme \mathcal{H}^h -misurabile. Poniamo

$$\partial(E,\mathcal{H}^h) = \left\{ x \in \mathbf{R}^n; \quad \text{esiste} \quad \lim_{\rho \to 0^+} \cos\left(\frac{2\pi}{\omega_h \rho^h} \mathcal{H}^h(E \cap B_\rho(x))\right) = -1 \right\}.$$

Osservazione 1. Se $E \in V_h BC^{\omega}(\Omega)$ allora $\partial(E, \mathcal{H}^h) \in V_{h-1}C^{\omega}(\Omega)$.

Accanto alle definizioni precedenti, introduciamo anche alcune classi di varietà analitiche fuori di un insieme singolare (risp. varietà analitiche con bordo analitico fuori di un insieme singolare).

Definizione 3. Siano $\Omega \in \mathcal{A}(\mathbb{R}^n)$, $h \in \mathbb{N}$ con $0 < h \le n$ e $s \in \mathbb{N}$, $0 \le s \le h$.

Definiamo $V_h Q_s C^{\omega}(\Omega)$ (risp. $V_h Q_s B C^{\omega}(\Omega)$) la classe degli insiemi $E \subset \Omega$ tali che esiste un insieme C relativamente chiuso in Ω con $\mathcal{H}^s(C \cap \Omega) = 0$ e $E \in V_h C^{\omega}(\Omega \setminus C)$ (risp. $E \in V_h B C^{\omega}(\Omega \setminus C)$).

Definiamo inoltre $V_h \overline{Q}_s C^{\omega}(\Omega)$ (risp. $V_h \overline{Q}_s BC^{\omega}(\Omega)$) la classe degli insiemi $E \subset \Omega$ tali che esiste un insieme C relativamente chiuso in Ω con $\dim_{\mathcal{H}}(C \cap \Omega) \leq s$ e $E \in V_h C^{\omega}(\Omega \setminus C)$ (risp. $E \in V_h BC^{\omega}(\Omega \setminus C)$).

Con le notazioni precedentemente introdotte possiamo formulare alcune congetture riguardanti la regolarità parziale delle soluzioni di un problema di minimo con discontinuità libere studiato in E.De Giorgi-M.Carriero-A.Leaci: Existence Theorem for a Minimum

Problem with Free Discontinuity Set, Arch. Rational Mech. and Analysis, 108(1989), 195-218 (cfr. anche E. De Giorgi: Free Discontinuity Problems in Calculus of Variations, Atti del convegno in onore di J.L.Lions, Parigi 1988, cong.3, 5, 6).

Congettura 1. Assegnati $\lambda > 0$ e $g \in C^{\omega}(\mathbb{R}^n) \cap L^2(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$, sia $(\overline{C}, \overline{u})$ una soluzione del problema

$$\min_{C,u} \left\{ \int_{\mathbf{R}^n \setminus C} |\nabla u|^2 dx + \int_{\mathbf{R}^n \setminus C} |u - g|^2 dx + \lambda \mathcal{H}^{n-1}(C) \right\},\,$$

al variare di C tra i sottoinsiemi chiusi di \mathbb{R}^n e al variare di u tra le funzioni di $C^{\omega}(\mathbb{R}^n \setminus C)$. Allora risulta $\overline{C} \in \mathbb{R}_{n-1} Q_{n-1} C^{\omega}(\mathbb{R}^n)$.

Una congettura ancora più fine è la seguente.

Congettura 2. Esiste una soluzione $(\overline{C}, \overline{u})$ del problema di minimo formulato nella congettura 1 tale che $\overline{C} \in V_{n-1} \overline{Q}_{n-2} C^{\omega}(\mathbb{R}^n)$.

La congettura seguente riguarda un problema "tipo Plateau" con discontinuità libere.

Congettura 3. Assegnati $\lambda > 0$ e un insieme chiuso $C \subset \mathbb{R}^n$ con $\mathcal{H}^h(C) < +\infty$, esiste

$$\min_{L,E} \left\{ \mathcal{H}^{h+1}(E) + \lambda \mathcal{H}^h(L) \right\},\,$$

al variare di L tra i sobtoinsiemi chiusi di \mathbb{R}^n e al variare di E nella classe $V_{h+1}BC^{\omega}(\mathbb{R}^n \setminus L)$ con la condizione $\partial(E, \mathcal{H}^{h+1}) \setminus L = C \setminus L$.

Congettura 4. Assegnati $\lambda > 0$, un insieme chiuso $C \subset \mathbb{R}^n$ con $\mathcal{H}^h(C) < +\infty$ e un insieme $S \in V_{h+r}C^{\omega}(\mathbb{R}^n)$ con $r \geq 1$, esiste

$$\min_{L,E} \left\{ \mathcal{H}^{h+1}(E) + \lambda \mathcal{H}^h(L) \right\},\,$$

al variare di L tra i sottoinsiemi chiusi di \mathbb{R}^n e al variare di E nella classe $V_{h+1}BC^{\omega}(\mathbb{R}^n \setminus L)$ con le condizioni $E \subset S$ e $\partial(E, \mathcal{H}^{h+1}) \setminus L = C \setminus L$.

Per il problema considerato nella congettura 3 (oppure nella congettura 4) sarebbe interessante trovare condizioni affinché

$$\lim_{\lambda \to +\infty} \quad \min_{L,E} \left\{ \mathcal{H}^{h+1}(E) + \lambda \mathcal{H}^h(L) \right\} < +\infty.$$

Congettura 5. Supposta vera la congettura 3 se

$$\lim_{\lambda \to +\infty} \quad \min_{L,E} \left\{ \mathcal{H}^{h+1}(E) + \lambda \mathcal{H}^h(L) \right\} = \alpha < +\infty$$

allora esiste

$$\min_{L,E} \left\{ \mathcal{H}^{h+1}(E) \right\},$$

al variare di L tra i sottoinsiemi chiusi di \mathbf{R}^n con $\mathcal{H}^h(L) = 0$ e al variare di E nella classe $V_{h+1}BC^{\omega}(\mathbf{R}^n \setminus L)$ con la condizione $\partial(E, \mathcal{H}^{h+1}) \setminus L = C \setminus L$ e tale minimo coincide con α .

Si può formulare una congettura analoga alla precedente anche per il problema considerato nella congettura 4.

Quarta conversazione

Per dimostrare l'esistenza di soluzioni del problema di minimo

$$\int_{\Omega \setminus K} |\nabla u|^2 d\mathcal{H}^n + \mathcal{H}^{n-1}(\Omega \cap K) + \int_{\Omega \setminus K} |u - g|^2 d\mathcal{H}^n$$

al variare di K nei chiusi di \mathbb{R}^n , u in $C^{\omega}(\Omega \setminus K)$ e $g \in C^{\omega}(\Omega) \cap L^2(\Omega) \cap L^{\infty}(\Omega)$ assegnata, è stato utile introdurre la classe di funzioni $SBV_n^2(\Omega)$ approssimabili in $L^1_{loc}(\Omega)$ da funzioni $u_i \in C^{\omega}(\Omega \setminus K_i)$ tali che la somma

$$\int_{\Omega\setminus K_i} |\nabla u_i|^2 d\mathcal{H}^n + \mathcal{H}^{n-1}(K_i) + \int_{\Omega\setminus K_i} |u_i| d\mathcal{H}^n$$

è limitata al variare di i. Per la definizione e le proprietà degli spazi SBV si vedano i lavori citati nella terza conversazione, ed i seguenti:

E.De Giorgi-L.Ambrosio. Un nuovo tipo di funzionale del calcolo delle variazioni, Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur., serie 8, 82 (1988), 199-210;

L.Ambrosio: A compactness theorem for a special class of functions of bounded variation, Boll. UMI 3-B(1989), 857-881;

L.Ambrosio: Existence theory for a new class of variational problems, Arch. Rational Mech. Anal., in corso di stampa.

Volendo introdurre un concetto analogo nella teoria delle varietà h dimensionali, diamo la seguente definizione.

Definizione 1. Sia h un intero compreso tra 1 ed n, e sia $\alpha > 1$, Ω aperto in \mathbb{R}^n . Definiamo la classe $FSBV_h^{\alpha}(\Omega)$ come la classe delle funzioni di Borel localmente sommabili $w: \Omega \to \{0,1,\ldots\}$ tali che esistono una successione di compatti $K_i \subset \Omega$, una successione di funzioni $w_i \in F_hC^{\omega}(\Omega \setminus K_i)$ tali che $w_i \to w$ in $SL_h(\Omega)$ e la somma

$$\mathcal{H}^{h-1}(K_i) + \int_{\Omega \setminus K_i} w_i \, d\mathcal{H}^h + \int_{\Omega \setminus K_i} \left| {}_w \nabla^3 (DSw_i) \right|^{\alpha} w_i \, d\mathcal{H}^h$$

è limitata al variare di i.

Congettura 1. Se $w \in FSBV_h^{\alpha}(\Omega)$ esiste una successione di insiemi \mathcal{H}^h -rettificabili E_i tali che

$$w(x) = \sum_{i=1}^{\infty} \chi_{E_i}(x) \quad \forall x \in \Omega.$$

Congettura 2. Se h = n, allora

$$\inf\{w,p\} \in SBV(\Omega)$$

per ogni intero p. Per la definizione della classe di funzioni speciali a variazione limitata $SBV(\Omega)$, si vedano i lavori citati nella terza conversazione e relativa bibliografia.

Congettura 3. Se $\alpha > h$ e $w \in FSBV_h^{\alpha}(\Omega)$, esistono $\gamma_w : \Omega \to [0, +\infty], S_w \subset \Omega$ tali che

$$\lambda_{1} \int_{\Omega} \varphi \gamma_{w}^{\alpha} w \, d\mathcal{H}^{h} + \lambda_{2} \int_{S_{w}} \varphi \, d\mathcal{H}^{h-1} \leq$$

$$\leq \liminf_{i \to +\infty} \lambda_{1} \int_{\Omega} \varphi \big|_{w} \nabla^{3} (DSw_{i}) \big|^{\alpha} w_{1} \, d\mathcal{H}^{h} + \lambda_{2} \int_{K} \varphi \, d\mathcal{H}^{h-1}$$

per ogni scelta di λ_1 , $\lambda_2 > 0$, $\varphi \in C_0^0(\Omega)$ non negativa e successioni K_1 , w_i come nella definizione 1. Inoltre, esiste una successione K_i , w_i per la quale

$$\lambda_{1} \int_{\Omega} \varphi \gamma_{w}^{\alpha} w \, d\mathcal{H}^{h} + \lambda_{2} \int_{S_{w}} \varphi \, d\mathcal{H}^{h-1} = .$$

$$= \lim_{i \to +\infty} \lambda_{1} \int_{\Omega} \varphi \big|_{w} \nabla^{3} (DSw_{i}) \big|^{\alpha} w_{1} \, d\mathcal{H}^{h} + \lambda_{2} \int_{K_{i}} \varphi \, d\mathcal{H}^{h-1}.$$

Congettura 4. Sia $\alpha > h$. Per ogni $\lambda > 0$ ed ogni misura non negativa μ in Ω esiste il minimo di

$$\int_{\Omega} |\gamma_w|^{\alpha} w \, d\mathcal{H}^h + \lambda \mathcal{H}^{h-1}(S_w) + \int_{\Omega} (DSw)^{\alpha} \, d\mu.$$

Tra le varie proprietà di regolarità delle funzioni minimanti w della congettura 4, ne segnaliamo una che potrebbe essere utile per varie applicazioni.

Congettura 5. Sia $w \in FSBV_h^{\alpha}(\Omega)$ una funzione minimizzante il funzionale della congettura 4. Si ha allora

$$\mathcal{H}^{h-1}(S_w) = \mathcal{M}^{h-1}(S_w),$$

ove

$$\mathcal{M}^{h-1}(K) = \lim_{\rho \to 0^+} \frac{\mathcal{H}^n\left(\left\{x \in \mathbf{R}^n : \operatorname{dist}(x, K) < \rho\right\}\right)}{\omega_{n-h+1}\rho^{n-h+1}}$$

per ogni insieme compatto $K \subset S_w$.

Quinta conversazione

In questa conversazione useremo le notazioni introdotte nelle precedenti conversazioni, a cui rinviamo per le definizioni.

Definizione 1. Sia $v \in L^1_{loc}(\mathbb{R}^n, d\mathcal{H}^h)$. Diremo che v ammette funzione tangente in x_0 se esiste una funzione $\alpha_v(x_0) \in SL_h(\mathbb{R}^n)$ tale che risulti

$$\lim_{\rho \to 0} \int_{\mathbf{R}^n} v(x_0 + \rho y) g(y) d\mathcal{H}^h(y) = \int_{\mathbf{R}^n} \alpha_v(x_0)(y) g(y) d\mathcal{H}^h(y) \qquad per \ ogni \ g \in C_0^{\infty}(\mathbf{R}^n).$$

Quando una tale funzione esiste porremo $Ftg_hv(x_0) = \alpha_v(x_0)$.

Definizione 2. Sia $v \in L^1_{loc}(\mathbf{R}^n, d\mathcal{H}^h)$. Diremo che v ammette gradiente tangente in x_0 se esiste una funzione $\beta_v(x_0) \in SL_h(\mathbf{R}^n)$ tale che per ogni $g \in C_0^{\infty}(\mathbf{R}^n)$ risulti

$$\lim_{\rho \to 0} \int_{\mathbf{R}^n} \frac{v(x_0 + \rho y) - v(x_0 - \rho y)}{2\rho} g(y) d\mathcal{H}^h(y) = \int_{\mathbf{R}^n} \beta_v(x_0)(y) g(y) d\mathcal{H}^h(y).$$

Quando una tale funzione esiste porremo $\nabla t g_h v(x_0) = \beta_v(x_0)$.

Definizione 3. Sia $v \in L^1_{loc}(\mathbf{R}^n, d\mathcal{H}^h)$. Se esiste una funzione $\gamma_v(x_0) \in SL_h(\mathbf{R}^n)$ tale che per ogni $g \in C_0^{\infty}(\mathbf{R}^n)$ risulti

$$\lim_{\rho \to 0} \int_{\mathbb{R}^n} (v(x_0 + \rho y) - v(x_0 - \rho y)) g(y) d\mathcal{H}^h(y) = \int_{\mathbb{R}^n} \gamma_v(x_0)(y) g(y) d\mathcal{H}^h(y),$$

allora porremo $\partial t g_h v(x_0) = \gamma_v(x_0)$.

Osserviamo che gli operatori appena definiti sono locali e lineari. È interessante considerare anche iterazioni di tali operatori.

Definizione 4. Sia $v \in L^1_{loc}(\mathbb{R}^n, d\mathcal{H}^h)$. Poniamo:

$$FT_hv(x,y) = \begin{cases} Ftg_hv(x)(y) & \text{se esiste } Ftg_hv(x) \\ 0 & \text{se non esiste } Ftg_hv(x) \end{cases};$$

$$\partial T_h v(x,y) = \begin{cases} \partial t g_h v(x)(y) & \text{se esiste } \partial t g_h v(x) \\ 0 & \text{se non esiste } \partial t g_h v(x) \end{cases}$$

ed inoltre:

$$FT_h^2v = FT_{2h}(FT_hv),$$

$$FT_h^{i+1}v = FT_{2h}^i(FT_hv) \quad per \ ogni \ i > 1.$$

Enunciamo ora alcune congetture riguardanti il comportamento delle classi $V_h C^{\omega}$ ed $F_h C^{\omega}$ introdotte nella prima conversazione rispetto a questi operatori.

Congettura 1. Sia $w \in F_h C^{\omega}(\mathbf{R}^n)$. Allora per ogni $x \in \mathbf{R}^n$ esistono $Ftg_h w(x)$, $\nabla t g_h w(x)$, $\partial t g_h w(x)$ ed inoltre si ha $\nabla t g_h w(x) = 0$ e $\partial t g_h w(x) = 0$ per ogni $x \in \mathbf{R}^n$.

Congettura 2. Sia $f \in C^1(\mathbb{R}^n)$ e $w \in F_h C^\omega(\mathbb{R}^n)$. Allora per ogni $x \in \mathbb{R}^n$ esistono $Ftg_h(fw)(x)$, $\nabla tg_h(fw)(x)$, $\partial tg_h(fw)(x)$ ed inoltre si ha

$$Ftg_h(fw)(x) = f(x)Ftg_hw(x)$$

$$\nabla tg_h(fw)(x)(y) = \langle \nabla f(x), y \rangle Ftg_hw(x)(y)$$

$$\partial tg_h(fw)(x) = 0$$

Congettura 3. Se $w \in F_h C^{\omega}(\mathbf{R}^n)$, per ogni $i \ge 1$ si ha $FT_h^i w \in F_{2^i h} C^{\omega}(\mathbf{R}^{2^i n})$.

Le seguenti congetture legano gli operatori definiti in questa conversazione con l'operatore $_w\nabla$ introdotto nella prima conversazione.

Congettura 4. Per ogni $n \in \mathbb{N}$ e per ogni $h \in \mathbb{N}$ con $h \leq n$ esiste un polinomio $\varphi_{h,n}$ tale che per ogni $w \in F_hC^\omega(\mathbb{R}^n)$ e per ogni $K \in \mathcal{K}(\mathbb{R}^n)$ risulta

$$\int_{K\times B_{\rho}(0)} FT_h w(z) d\mathcal{H}^{2h}(z) = \rho^h \int_K \varphi_{h,n}({}_w\nabla Id_n, {}_w\nabla^2 Id_n) w d\mathcal{H}^h.$$

Congettura 5. Sia $E \in V_{h-1}C^{\omega}(\mathbb{R}^n) \cap \mathcal{K}(\mathbb{R}^n)$ e sia $w \in F_hC^{\omega}(\mathbb{R}^n \setminus E)$; se esiste $\rho > 0$ tale che

$$\sum_{i=1}^{\infty} \frac{\rho^i}{(2i)!} \int_{\mathbf{R}^n} |_w \nabla^i Id_n|^2 w d\mathcal{H}^h < +\infty$$

allora per ogni $x \in \mathbf{R}^n$ esistono $Ftg_hw(x)$, $\partial tg_hw(x)$ e si ha $2|\partial T_hw| \in F_{2h-1}C^{\omega}(\mathbf{R}^{2n})$. Inoltre le seguenti due condizioni sono equivalenti:

- (a) Per ogni $f \in C^1(\mathbf{R}^n)$ esiste $\nabla tg_h(fw)(x)$ per ogni $x \in \mathbf{R}^n$
- (b) $\partial t g_h w(x) = 0 \ per \ ogni \ x \in \mathbb{R}^n$.

Congettura 6. Siano $v, w \in F_hC^\omega(\mathbb{R}^n)$, $k \in \mathbb{N}$ e supponiamo che per un certo x sia v(x) = w(x) e che per ogni $i \leq k$ si abbia $\sqrt[n]{i}Id_n(x) = \sqrt[n]{i}Id_n(x)$. Allora

$$FT_h^i v(x,z) = FT_h^i w(x,z)$$
 per ogni $z \in \mathbb{R}^{n(2^i-1)}$ e per ogni $i \le k$.

Passiamo ora ad enunciare alcune congetture di tipo variazionale.

Congettura 7. Sia $E \in V_{h-1}C^{\omega}(\mathbf{R}^n) \cap \mathcal{K}(\mathbf{R}^n)$ e sia $w \in F_hC^{\omega}(\mathbf{R}^n \setminus E)$; supponiamo che esista $\rho > 0$ tale che

$$\sum_{i=1}^{\infty} \frac{\rho^i}{(2i)!} \int_{\mathbf{R}^n} |_w \nabla^i Id_n|^2 w d\mathcal{H}^h < +\infty.$$

Allora per ogni $i \ge h+1$ esiste finito il

$$\min \left\{ \int_{\mathbf{R}^n} |_{u} \nabla^i Id_n|^2 u d\mathcal{H}^h \right\}$$

al variare di $u \in F_h C^{\omega}(\mathbf{R}^n \setminus E)$ con $\partial T_h u = \partial T_h w$.

Congettura 8. Sia $E \in V_{h-1}C^{\omega}(\mathbf{R}^n) \cap \mathcal{K}(\mathbf{R}^n)$ e sia $w \in F_hC^{\omega}(\mathbf{R}^n \setminus E)$; supponiamo che esista $\rho > 0$ tale che

$$\sum_{i=1}^{\infty} \frac{\rho^i}{(2i)!} \int_{\mathbf{R}^n} |_{w} \nabla^i Id_n|^2 w d\gamma t^h < +\infty.$$

Allora per ogni $i \geq 2$ esiste finito il

$$\min\left\{\int_{\mathbf{R}^n}|_{u}\nabla^{i}Id_{n}|^{2}ud\mathcal{H}^{h}\right\}$$

al variare di $u \in F_hC^{\omega}[(\mathbf{R}^n \setminus (E \cup K))]$ con K chiuso, $\mathcal{H}^{h-1}(K) = 0$ e $\partial tg_h u(x) = \partial tg_h w(x)$ per ogni $x \in \mathbf{R}^n \setminus K$.