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1. The classical integral functionals

The study of the integral of the scalar curvature, A(g) = [,, R dV,, as a functional
on the set M of all Riemannian metrics of the same total volume on a compact ori-
entable manifold M is now classical. Moreover other functions of the curvature have
been taken as integrands, most notably B(g) = [,, R*dV,, C(g) = f,, |Ric|* dV,, and
D(g) = [,, |Riem|* dV,, where Ric denotes the Ricci tensor and Riem denotes the full
Riemannian curvature tensor; the critical point conditions for these have been computed
by Berger [2]. A Riemannian metric ¢ is a critical point of A(g) if and only if ¢ is an
Einsten metric. Einstein metrics are critical for B(g) and U(g) and metrics of constant
curvature and Kahler metrics of constant holomorphic curvature are critical for D(g) but
not necessarily conversely.

Our study in these lectures is primarly motivated by two kinds of questions.
1. Given an integral functional restrictel to a smaller set of metrics, what is the criti-
cal point condition; one would expect a weaker one. The smaller scts of metrics we have
in mind are the sets of metrics associated to a sympleetic or contact structure. 2. Given
these sets of metrics, are there other natural integrands depending on the structure as well
as the curvature?

To set the stage for our study let us first prove that a Riemannian metric is critical for
A(g) if and only if it is Einstein. Let M be a compact crientable manifold and M the set
of all Riemannian metrics normalized by the condition of having the same total volume,
usually taken to be 1, but we don’t insist on the particular value in a given problem. We
begin with the following leinma.

Lemma 1.1. Let T be a second order symunetric tensor field on M. Then [, T D;; dV, =
0 for all symmetric tensor fields D satifying fM D! dV, =0 if and only if T' = cg for <ome
constant c.

Proof. Let X,V be an orthonormal pair of vector fields on a neighborhood If on M and f a
€' function with compact support in2{. Regarding X and Y as part of a local orthonorn:: !
basis, define a teusor field D on M by D(X,X) = f and D(Y,V) = — f, with all other
components equal to zero and D = 0 outside 4. Then [, (T(X,X)-T(Y,Y))fdV, =
0 for any C* function with compact support and hence T{X,X) = T(Y,Y) for every
orthonormal pair X, Y. Therefore T' = ¢g for some function ¢ and it remains to show that
¢ is a constant. To see this let X be any vector field and D = Lxg, where £ denotes Lie
differentiation (i.e. D is tangent to the orbit of ¢ under the diffeomorphism group). Then
since the integral of a divergence vanishes,

0 =/ TH(VX+ ViXi)dV, = =2 [ (V79X dV,,
M M

but XX is arbitrary so that V;T% = 0 from which we sce that ¢ must be a constant. The
converse is immediate.

Now the approach to these critical point problems is to differentiate the functional in
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question along a path of metrics. So let g(f) be a path of metrics in M and

Jygi
D=5

=0

its tangent vector at ¢ = ¢(0). We define two other tensor fields by
Dh_l'th VDh th
jio = 5(ViD + ViD;" = ji)
Dyt = ViDji* = V; Dyt

where V denotes the Riemannian connection of 4(0) and we note that

ORs-;','h
05 =0

[/
Dyjit =

where [y j,-"‘ denotes the curvature tensor of g(t).

Theorem 1.2. Let M be a compact orientable C'*° manifold and M the sct of all Riemman-
nian metrics on M with unit volume. Then g € M is a critical point of A(g) = IM RdV,
if and only if g i1s Einslein.

Proof., The proof is to compute (-L’;i at ¢t = 0 for a path ¢(f) in M. First note that from
gk = gk
Ggij9°° = ¢, .
97| . _pu,
Ot |mp
Diflferentiation of the volume element gives
L4y, = 4 [det(g(t))dz* A -+ A da™ = b ('—Edr’tfg(i)) dV,
dt” 0T ey ' ‘ 2det(g(t)) \dt 7

1 ../d 1,
— §g1j (a“t‘gij)(ﬂ‘rg == -é-D;(”;g

dA
dt

Now

== Ryiikg?tdv,
o At Sy !

= -/M (iji"gj' - RjiD“ + ER'{;ﬂDﬁ)dVg

t=0

L1 .
= | (B4R,

since the integral of a divergence vanishes. On the other hand differentiation of [, dV, =1
dA

gives fM D{dV, = 0. Thus setting T 1= = 0 and applying the lemma, we have
1

Rjg—g

Rgji = cgji
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for some constant ¢ and hence that g is Einstein.

In [15] Y. Muto computed the second derivative of A(g) at a critical point and showed
that the index of A(g) and the index of —A(g) are both positive.

Y. Muto also considered the second derivative of D(¢) from the following point of
view. Let D denote the diffeomorplism group of M; if f € D, then D(f*g) = D(g) and
Lience we ~luwe an induced mapping D : -%’- — R. }‘m say that a metric ¢ is a critical
point of D if its orbit under D is a critical point of D. As we have noted a Ricinannian
metric of constant curvature is a critical point of Dj; in [{16] Y. Muto proved the following
result.

Theorem 1.3 (Muto). If M is diffeomnorphic to a sphere and ¢ is a metric of positive
constant curvature, then the index of I and the index of D are both zero and D has a
local minimum at g¢.

2. Sympiectic and contact manifolds

By a symplectic manifold we mean a C'° manifold 272" together with a closed 2-form

§2 such that Q" % 0. By a contact manifold we mean a > manifold A*"*1 together with
a 1-form 7 such that n A (dn)™ £ 0. It is well known that given 7 therc exists a unique
vector field € such that dp(€,X) = 0 and y(€) = 1 called the characteristic vector field
of the contact structure 7. A contact structure is said to be regular if every point has a
neighborhood such that any integral curve of ¢ passing through the neighborhood passes
through only once. The celebrated Boothby-Wang Theorem [10] states that a compact
regular contact manifold is a principal circle bundle over a symplectic manifold of integral
class. The Hopf fibration of an odd-dimensional sphere S?™"*! as a principal circle over
complex projective space PC™ is a very well known example.

Let us now consider the Riemannian geometry of these manifolds. For a symplectic
manifold M let £ be any Riemannian metric and X,..., X, be a k-orthonormal basis.
Consider the 2n x 2n matiix i(.X;, X;); it is non-singular and hence may be written as the
prolict GF of a positive definite symmetric matrix & and an orthogonal matrix F. G then
defines a new metric ¢ and F' defines an almost complex structure J; checking the overlaps
of local charts, it is easy to see that g and J are globaily defined on M. The key point
is that Q(X,Y) = ¢(X,JY) where ¢ and J are created simultaneously by polarization. A
metric g created in this way is called an associated metric and the set of these metrics will
be denoted by A. In particular A is the set of all alimost Kahler metrics on A which have
(2 as their fundamental 2 form. We note also that all associated metrics have the same
volume element dV = 2,,n, aQr.

In the contact case we have a two step process for constructing associated metrics.
Starting with any Riemannian metric &', define a metric k& by

RX,Y) = F(=X 4 n(X)§, =Y +9(¥)E) + n(X)n(Y).

k is a Riemannian metric with respect to which 7 is the covariant form of £. Polarizing di on
the contact subbundle {n = 0} using % as in the symplectic case gives an associated metric
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g and a tensor field ¢ of type (1,1) such that ¢? = —~I +n ® £. As in the symplectic case
dn(X,Y) = g{X,¢Y). We also refer to (,9) or (¢,€,1.9) as a contact metric structure.
For any associated metric dV = 5;;1;71; A (dg)™.

Given a contact metric structure (¢,&,1.¢) we define a tensor field h by h = 1Leé. I
is a syinmetric operator which anti-commutes with ¢; L€ = 0 and h vanishes if and only if
¢ is Killing. When £ 1s Killing, tlie contact metric 1s said to be K-contact. We also have
the following useful formulas involving h on a contact metric manifold.

V€ =—¢X —~ ¢hX (2.1)
%(1?.(5,)()5 — ¢R(E,pX)E) = h2X + $*X (2.2)
(Veh) X = ¢X — h2¢X — ¢pJi( X, )¢ (2.3)
Ricl€) - 2n — trh? (2.4)

For a general reference to these idens see [3].

We close this introduction to symplectic and contact manifolds with an example. Let
M be an (n+1)-dunensional C'*° manifold and @ : TM —— M its tangent bundle. If
(z',..., 2" are local coordinates on A, set ¢' = a' o &r; then (¢%,...,¢" 1) together
with the fibre coordinates (v',...,v"t?) form local coordinates on T'M. If X is a vector
field on M, its vertical lift XV on T'M is the vector field defined by X Vw = w(X)ow where
w is a 1-form on M, which on the left side of this equation is regarded as a function on T'M.
For an afline connection D on M, the horizental lift X7 of X is defined by XHw = Dw.
The connection map IV - TTM — TM is defined Ly

KNXH =0, K(X) = X3, t € TM.
TM adinits an almost complex structure J defined by
X=XV, JxV = -xH"

Dombrowski {12] showed that J is integrable if and only if D has vanishing _urvature and
torsion.

If now G 1s a Riemannian metric on M and D its Levi-Civita connection, we define a
Riemannian metric g on T'M called the Sasaki metric, by

GHX,Y) = G(7 X, 7Y) + GKX, KY)

where X and Y are vector fields on TM. Since 7,0J = —I and KoJ = 7,, § i1s Hermitian
for the almost complex structure J.

On TM define a 1-form 8 by 8(X), = G(¢,7.X), t € TM or-equivalently by the local
expression f# = 3 G;v'dg’. Then df is a symplectic structure on TM and in pa:ticular
2d3 is the fundamental 2-form of the almost Hermitian structure (J,g). Thus TM has an
almost Kahler structure which is I{ahlerian if and only if (M, G} is flat (Dombrowski [12],
Tachibana and Okumura [21]).



Let R denote the curvature tensor of G, V the Levi-Civita connection of ¢ and 12 the
curvature tensor of . Complete formulas for V and R can be found in [14]; here we give
just two of the four formulas describing the connection.

= . 1 .
(Vav Y= —S(R(X, 1Y) (2.5)
(Vxn¥Y™) = (DxY) = (R 1)) (2.6)

The tangent sphere bundle = : Ty M —» M is the hypersurface of TA defined by
5> Gijvivd = 1. The vector field N = tii;ﬁr is a unit normal, as well as the position vector
for a point t. The Weingarten map A of 17 M with respect to the normai 1V is given
by AU = =U for any vertical vector U and AX = 0 for any horizontal vector X (sce e.g.
[3,p-132]). Thus many computations on T M inwvolving horizontal vector ficlds can be done
directly on T M.

Let ¢' denote the metric on 7} M induced from g on TAf. Define ¢, &' aud ' on Ty M
by

¢ = —JN, JX = ¢'X + 1/ (X)N.

' 1s the coutact form on Ty M induced from the 1-forin # on T'AI as one can easily check.
However ¢'( X, ¢'Y) = 2dn'(X,Y), so strictly speaking (¢', &', 7', ¢') is not a contact metric
structure. Of course the difficulty is easily rectificd and we shall take

: 1r‘ :
?fra 5::2‘5’: ¢:¢,a .‘):gg ( -

(o)
-1
—

‘

Do b

7 =
as the standard contact metric structure on Ty M. In local coordinates
.0
ot H,
{=2v (b;;:) ;

on T'M the vector field vi(?fz-r H s the so-called geodesic flow.

We can now compute V& in two ways, by equation (2.1) and by vsing (2.5) and (2.6).
Comparing these we can determine the tensor field L for the staundard contact metric
structure on Ty M. For a vertical vector U at ¢t € T7 M we have

WUy = Uy — (Rycuat)”.
For a horizontal vector X orthogonal to £ we have
hX, ==X, + (R, x,t)"
hXe ==X+ (R x,et)"
For example, if the base manifol! {Af, &) is of constant curvature 41, the structure on
Ty M is K-contact (Tashiro [23]). If the base manifold is flat then the non-zero eigenvalues

of h are &1, each with multiplicity n, and T\ M is locally E**! x S™(4), 4 being the
constant curvature of the sphere owing to the homothetic change in metric (2.7). If the
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base manifold is of constant curvature -1, the non-zero eigenvalues of I are +2, each with
multiplicity n.

3. Integrals of scalar curvatures on symplectic and contact manifolds

We now want to consider a number of integral functionals defined on the set of metrics
associated to a symplectic or contact structure. To begin we neced to see how the set A of
associated metrics sits in the set M of all Riemannian metrics with the same total voliune;
for a more detailed treatment see [5].

Let M be a symplectic manifold and g, = g + tD 4 O(i?) be a path of metrics in A.
We will use the same letter D to denote D as a tensor icid of type (1,1) and of type (0,2),

Dij = g“‘Dk_,'. Now
g(X,JY) =X, Y) = g X, J.Y) = (X, J,Y) + ty(X, DJ) + O(t*)
from which
J = J[ ‘I iD.)Tt *[’ 0({2)

Applying J; on the right and J of the left we have
Jy=J +tJD + O(t?).

Squaring this yields JDJ — D = 0 and hence JD 4 D.J = (. Converscly if D is a symmetric
tensor ficld which anti-commutes with J, then ¢, = ge'” is a path of associated metrics.
We summarize this and the corresponding result in the contact case as follows (cf.[5],{0]).

Lemma 3.1. Let M be a symplectic or contact manifold and ¢ € A. A symunetric tensor
field D is tangent to a path in A at g if and only if
DJ+JD =0 (3.1)
in the symplectic case and
DE=0, Dp+¢D =0 (3.2)
in the contact case.

Similar to the role played by Lemma 1.1 in ecritical point problems on M, we have the
following lemma for critical point problems on A.

Lemma 3.2. Let T be a second order symmetric tensor field on M. Then [ A T D;; av, =
0 for all symmetric tensor fields D satifying (3.1) in the symplectic case and (3.2) in the
contact case if and only if TJ = JT in the symplectic case and ¢T — T = n @ ¢T¢ —
(o T¢) ® & in the contact case (i.e. ¢ and T commute when restricted to the contact

subbundle).

Proof. We give the proof in the symplectic case; the proof in the contact case being
similar. Let X,... X2, be alocal J-basis defined on a neighborhood U (1.e. Xy,... Xy, is
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an orthonormal basis with respect to g and X9; = JX»;—;) and note that the first vector
field X1 may be any unit vector field on U. Let f be a C'*° function with compact support
in U and define a path of metrics g(t) as follows. Make no change in ¢ outside ¢/ and
within Z{ change g only in the planes spanned by X and X, by the matrix

st f 1—tf+43t°f

It is easy to check that ¢(tf) € A and clearly the only non-zero components of D are

D,y = —Dyy = f. Then fM TijDij dVy = 0 becomes
(TH —T2)fdVy =0
M
Thus since X; was any unit vector field ou U,

T(X,X)=T(JX,JX)

for any vector field X. Since T is symunetric, linearization gives T'J = JT. Conversely, if
T commutes with J and D anti-commutes with J, then t+7D = trTJDJ = trJTDJ =
—trT D, giving TV D;; = 0.

Theorem 3.3 (Blair-Ianus). Let M be a compact symplectic manifold and A the set
of metrics associated to the symplectic form. Then g € A is a critical point of A(g) =

fM It dV, if and only if the Ricci operator of ¢ commutes with the almost complex structure
corresponding to g.

Proof. The proof is again to compute ‘f?:—l at t = 0 for a path ¢(f) in A. Since all
associated metrics have the same volume element this is easier than in the Riemannian
case. In particular we have,

dA
di

d

= — Rk"kgji d‘i’,
=0 dt M o !

t=0

= [ Dy;i*¢’' — R;;D7' dV,
M

= ﬁf RI'D;; dV,,
M

the other terms being divergences and hence contributing nothing to the integral. Setting

iff? 1=o = 0, the result follows from Lemma 3.2.

We now review some known properties of almost IKahler manifold. First of all
ViJ* =0, (3.3)

(Vidip)J;" = (VpJij) " (3.4)
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an alinost Hermitian structure satisfying this last condition is call a quasi-KKahler structure.
The # Ricci tensor and the #-scalar curvature are defined by

R} = Rau 7', R* = R}
The Ricei identity yieids
R i t
T Vet = (R — REDT,

where Rf,J;* is skew-symmetric in 7 and k. Therefore
Vt‘?k.,-’j‘ + VJJ}-JE‘ = kaJ}t -+ ijjkt. (3.5)

The most important property of I2* is that

1 .
R L* = -—-~|VJE2
2
and hence IR — R* < 0 with equality holding if and only if the metric is Kahler. Thus
Iahler metrics are maxima of the functional

Ko = [ R-mav,
M

on A and the question that S. Ianus and I [8] were first interested in was whether these
were the only eriticai points. The surprising result is that the critical point condition is
again QJ = JQ, @ denoting the Ricci operator.

Theorem 3.4 (Blair-Ianus). Let M be a compact symplectic manifold and A the set of
metrics associated to the symplectic form. Then g € A is a critical point of I(g) if and

only if (4J = J().

Proof. To compute %{} at t = 0, we must differentiate R* = R J¥ I along a path ¢(t)

in A. Since Q is fixed,

OJki
ot

) ki
Z_Dimjmja "B""{'"_ = 0.

=0 01‘ 1=0

Tt
’ ot

t=0

Then proceeding as before using (3.3)

dK
dt

zf [ RI™ 4 V(YT )+ T, dY.
0 M

=

By Lemma 3.2, the critical point condition is that the symmetric part of the expression
i brackets commutes with J. This is a long equation; some of its terms cancel by virtue
of the quasi-Kahler condition (3.4) and the other terms combine by virtue of (3.5) to give
the result.

The question.as to whether or not on an almost IKahler manifold satisfying QJ = JQ
1s Kahlerian scems to be difficult. In [13] S. I. Goldberg showed that if J commutes
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with the curvature operater, then the metric is Kahlerian and conjectured that a compact
almost-I{ahler Einstein manifold is Kahlerian. I{. Sckigawa [20] proved that a compact
almost-Wahler Einstein manifold with non-negative sealar curvature is IKahlerian.

In [9] A. J. Ledger and I proved the contact analogues of these theorems, which we
present here without proof.

Theorem 3.5 (Blair-Ledger). Let M be a compact contact manifold and A the sct of
metrics associated to the contact form. Then g € A is a critical point of A(g) = [,, RV,
if and only if Q and ¢ commute when restricted to the contact subbundle.

This iutegral was further studied in dimension 3 by D. Perrone [18], who gave the
critical point condiiion as

To sece this, recall that in dimension 3, the Riccl operator determines the full curvature
tensor, 1.e.

R(X,Y)Z = (oY, 2)QX — g(X, Z)QY +9(QY, 2)X — ¢(QX, Z)Y)

R
T2

(g(lf) Z)‘Y - Q‘(A’:, Z)l'-)

Therefore the operator [ defined [X = R{X, €)¢ by is given by

- - /T AW i o R r -
X = QX = n{(X)Q¢ +9(Q X — g(QX,E — 5 (X —n(X)E)

from which
(I¢ — o1)X =(Q¢ — Q)X + (X )$QE — g(QeX, £)E. (3.6)

Thus the critical point condition is l¢ — ¢! = 0. Now recall equations (2.2) and (2.3), viz.
%(—? + ¢ld) = h* 4 ¢* and Veh = ¢ — ¢h? — ¢l. Applying ¢ to the first of these and
adding to the second gives Veh = £(I¢ — 1$) and thus the critical point condition may be
expressed as Veh = 0.

In the contact case the *-scalar curvature is defined by I* = Rir o™ ¢ and it was
shown by Olszak [18] that

1
R—R*~dn® = ~<[V¢[* +2n ~ trh? < 0

with equality holding if and ounly if the metric is Sasakian.

Theorem 3.6 (Blair-Ledger). Let M be a compact contact manifold and A the set
of metrics associated to the contact form. Then g € A is a critical point of I(g) =
[y R— R* —4n* dV, if and only if () —2nh and ¢ commute when restricted to the contact
subbundle.

In dimension 3, the argument giving Perrone’s result gives the critical point condition
as Veh = —26h, a condition that will be important in the next lecture.
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For contact manifolds of general odd dimension, if ¢ is critical for both A and I{,
h = 0 so £ is Killing. To see this note that the commutativities of Theorems 3.5 and 3.6
together imply that ¢h = h¢ but ¢h = —h¢ and hence h = 0 easily follows. As with
the almost Kahler case, the question of whether or not a K-contact structure satisfying

Q¢ = ¢$Q is Sasakian would seem to be difficult.

4. Integral of the Ricci curvature

in the direction of the characteristic vector field

We devote this section to a discussion of a particular functional defined on the set of
metrics associated to a contact structure. The main theorem is the following [6].

Theorem 4.1 (Blair). Let M be a compact regular contact manifold and A the set
of metrics associated to the contact form. Then g € A is a critical point of L(y) =
Jyg £2ic(€) dVy if and only if g is K-contact.

One might conjecture this without the regularity, however we have the following coun-
terexample: The standard contact metric structure on the tangent sphere bundle of a
compact surface of constant curvature -1 is a critical point of L but is not K-contact. It
is a result of Y. Tashiro [23] that the standard contact metric structure on the tangent
sphere bundle of a Riemannian manifold is I{-contact if and only if the base manifold is
of constant curvature +1. Also recall the result of [4] that the standard contact structure
of the tangent sphere bundle of a compact Riemannian manifold of non-positive constant
curvature is not regular. Our second result is the following theorem [7].

Theorem 4.2 (Blair). Let Ty M be the tangent sphere bundle of a compact Riemannian
manifold (M, G) and A the set of all Riemannian metrics associated to its standard contact
structure. Then the standard associated metric is a critical point of the functional L(g) if
and only if (M, G) is of constant curvature +1 or -1.

Recall that by a IX-contact structure we mean a contact metric structure for which &
is Killing and that this is the case if and only if 2 = 0. Recall also equation (2.4), viz.

Ric(¢) = 2n — trh®,

Thus IK-contact metrics when they occur are maxima for the function L(g) on A. Also
the critical point question for L(g) is the same as that for [y |R|*dV, or [, |7]|*dV,
where 7(X,Y) = (Leg)(X,Y) = 2¢g(X, h¢Y). This last integral was studied by Chern and
Hamilton [11] for 3-dimensional contact manifolds as a functional on A regarded as the
set of CR-structures on M (there was an error in their calculation of the critical point

condition as was pointed out by Tanno[22]).

Proof of Theorem 4.1. As with our other critical point problems, the first step is

to compute %{-‘» at t = 0 for a path ¢g(t) € A
dL
dt

= /M (=R h™F — RFLETE + 20Dy V.

=0
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Thus if g(0) is a critical point, Lemma 3.2 gives
R(X,6) = —¢?X — KX + 20X (4.1)
as the critical point condition. Using equation (2.3) this becomes
(Veh)X = —2¢hX. (4.2)

From this we see that the eigenvalues of h are constant along the integral curves of £ and
that for an eigenvalue A # 0 and unit eigenvector X, ¢g(V X, ¢X) = —1.

If now M is a regular contact manifold, then M is a principal circle bundle with ¢
tangent to the fibres; locally M is U x S where U is a neighborhood on the base manifold.
Since h¢ + ¢h = 0, we may choose an orthonormal ¢-basis of eigenvectors of h at some
point of U x S say, Xy;—1, Xo; = ¢X2i—1, €. Since the eigenvalues are constant along the
fibre, we can continue this basis along the fibre with at worst a change of orientation of
some of the eigenspaces when we return to the starting point. Thus if Y is a vector field
along the fibre, we may write

Y — Z(Cl:z,‘_]xYQi—l + ﬁzid'{'Zf) + 76

where the coeflicients are periodic functions.

Now suppose that the critical point g is not a I{-contact metric. Since ¢ and h anti-
commute, we may assume that all the A\y; 4,7 = 1,...,n are non-negative. Also from
equation (4.2) it is easy to see that if some of the Az;—; vanish, the zero eigenspace of A is
parallel alcnig £ and hence we may choose the corresrding Xy;—; and X,; parallel along
a fibre. Again since M is regular we may choos a vector ficld Y on U x S! such that at least
some ay;—1 Z 0 for some A\gy;_; # 0 and Y is horizontal, i.e. n(Y) = 0, and projectable,
te, [£, V] =0. Writing Y = 3 .(a2i-1X2i—1 + $2iX2:) along a fibre we have using (2.1)

0=[Y]=VY ~-Vy¢
= Z((Eazi—J)Xzi_: + agi1 Ve Xoioy + ({Pa2i) Xai + £2iVe Xai

i1 X2i + Aic102i-1X2i — B2iXaiey + A2ic1P2iXaio1).

Taking components we have

0=C¢azj—1+ Zﬂfzi—lg(vga\’znxzj) + Azj—102j,

- . . -
0= &8s + Lﬂzw(va}t’?i,lﬁ) + Agj-1agj-1.
i
Multiplying the first of these by 3,5, the second by a5, and summing on j swe have

£ i) == Neja(ed;_y +83) <0,
- .

7
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Thus 25 ayj-102; is a non-increasing, non-constant function along the integral curve,
contradicting its periodicity.

In preparation for a sketch of the proof of Theorem 4.2 we state the following lemma
of Cartan.

Lemma 4.3. Let (M,G) be a Riemannian manifold, D the Levi-Civita connection of ¢
and R its curvature tensor. Then (M, G) if locally symmetric if and only if

(DxR)(Y, X,Y,X) =0

for all orthonormal pairs {X,Y}.

Proof of Theorem 4.2. As we have seen the tangent sphere bundle, 77 M, herits a

contact structure from the symnlectic structure on T'M and a natural associated metric

from the Sasaki metricen TM. After computing (R(U, £)&)¢, t € 1y M for a vertical tangent
I 3586 1

vector U, we consider the critical point condition (4.1; and compare hiorizontal and vertical

parts. This yields for any orthonomal pair {X,t} on the base manifold (M, G)

(DR)(X, 1)t =0 (4.3)

and

R(R(Y, t)t,8)t = X, (4.4)

see {7] for more details. From (4.3) and Lemma 4.3 we sec that (M, Q) is locally symmetric.

Now working on (M,G), for each wuit tangent vector ¢t € T,,M, let [t]* denote
the subspace of T}, M orthogonal to t and define a symmetric linear transformation L, :
(1] — [t]* by Le.X = R(X,t)t. Then from (4.4) we have that (L;)? = I and hence that
the eigenvalues of Ly are £1. Now M is irreducible, for if M hLad a locally Ricinannian
product structure, choosing ¢ to one factor and X tangent to the other we would lave
R(X, 1)t = 0, contradicting the fact that the only eigenvalues of L, are 1. However the
sectional curvature of an irreducible locally symmetric space does not change sign. Thus
if for some ¢, Ly had both +1 and -1 occuring as eigenvalues, there would be sectional
curvatures equal to +1 and -1. Consequently only one eigenvalue can occur and hence
(M, G) is a space of constant curvature +1 or -1.

Conversely 1f (M, G) has constant curvature ¢, let U be a vertical vector tangent to
TyM and X a horizontal vector erthogonal to £. Then at a point ¢, hlU; = (1 — ¢)Uy,
hY, = (c—1)Xy, (R(E,U)) = —c?Uy and (R(E, X)) = (3¢? — 4¢) X;. Substituting these

into the critical point condition (4.1) we sce that it is satisfied when ¢ = £1.

3

Remarks: I. Recently Mr. 5. R. Deng has begun the study of the second variation for
the functional L(g).

Proposi?i{)n 4.4 (Deng). Let ¢ € A be a critical point of L(y), then at g, %ﬁ— is
nonpositive,

II. Clearly in dimension 3 by Perrone’s form of the critical point condition for A and the
form (4.2) for L, we sce that if ¢ is a critical point for both of them, g is a I{-contact
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metric. Now the Webster scalar curvature W on a 3-dimensional contact metric manifold
is defined by

;1 1 )
W= g(R + ElTI +2);
by virtue of (2.4) and ;1{|Ti2 = |h|*, W becomes

1 .
W= —8—(12 — Ric(€) + 4).

Chern and Hamilton [11] studied the functional Ew(g) = f,, W dV, for 3-dimensional
contact manifolds as a functional on A regarded as the set of CR-structures on M and
proved the following Theorem.

Thecrem 4.5 (Chern-Hamilton). Let M be a compact 3-dimensional contact manifold
and A the set of metrics associated to the contact form. Then g € A is a critical point of
Ew(y) = [4; WdV, if and only if g is K-contact.

An alternate proof was given by D. Perrone [19]. In view of the work we have done
so far we can prove this theorem as follows.

Proof of Theorem 4.5. Clearly it is enough to consider [, R — Ric(£)dV, and
having computed the derivatives of each term separately we see that

d

- f R — Ric(£)dV,
M

1t = [ (—RM 4R ET 4 REETE - 20Dy dV,
G

{=0 M

Thus the critical point condition is

(Qd— Q) —(lp — ¢l) —4¢h = - Q@ PQE+ (noQP) BE.

So far we liave not used the fact that we are in dimension three and hence this is the critical
point condition for the intergral of the generalized Tanaka-Webster scalar curvature as
defined by Tanno [22]. Now in dimension 3 we can combine this condition with (3.6) to
get b= 0.

5. The Abbena-Thurston manifold as a critical point

In 1976 W. Thurston [24] gave an example of a compact symplectic manifold with
no Kahler structure. We will begin by discussing this manifold briefly and then turn to a
natural Riemannian metric on this manifold introduced by E. Abbena [1]. For dctails of
the topological obstructions to a Kahler structure we refer to [24] or ! and simply remark
here that the first Betti number of this manifold is 3 whereas the odd-dimensional Betti
numbers of a compact IKahler are even.

Let G be the closed connected subgroup of GL(4, C) defined by

1 aip ag 0

0 1 a 0

0 {] is 0 alz’a’]:]!ﬂ‘QS,GER ,
0 0 O e?n’m
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i.e. G is the product of the Heisenberg group and S'. Let I' v¢ the discrete subgroup
of G with integer entries and M = G/I'. Denote by z,y, z,f coordinates on G, say for
A€ G, 2(A) = ayq, y(A) = ag, 2(A) = a13, t{A) = a. If Lp is left translation by B € G,

pdr = dr, Lydy = dy, Ly (dz — zdy) = dz — xdy, Lydt = di. In particular these forms
are invariant under the action of I'; let # : G — M, then there exist 1-forins oy, as,
«g, aq on M such that dz = n*ay, dy = 7*as, dz — ady = n%agz, dt = 7*ay. Setting
0 = aqg Aoy + az Aag we see that 2 AQ % 0 and df2 = 0 on M giving M a symplectic
structure.

The vector fields

9 d a J a

e ==, € = —+ T, €3 = —, € = —
’ z’ dz’ ot

are dual to dz, dy, dz — zdy, dt and are left invariant. Moreover {e;} is orthonormal with
respect to the left invariant metric on G given by

ds® = da* + dy® + (dz — zdy)? + di*.

On M the corresponding metric is ¢ = ) «; ® a;. The Riemannian manifold (M, g) is
refered to as the Abbena-Thurston manifold.
Moreover M carries an almost complex structure defined by

Je; = ey, Jeqg = —ey, Jeg = ey, Je, = —e;y.

Then noting that Q(X,Y) = ¢(X, JY), we see that ¢ is an associated metric.
The curvature of g was computed by E. Abbena in [1]. With respect to the basis {e;}
the non-zero components of the curvature tensor are

3 1 1
Ryan = g R332 = D Ryggr = ——.

Thus the Ricel operator @ is given by the matrix
0
0

0

B

O O O
o Ov-= O
oo oo

and we note that Q2 is parallel with respect to the Levi-Civita connection of g but that
is not parallel.
The following observation stems from conversations between Won-Tae Oh and myself.

Proposition 5.1 (Blair-Oh). The Abbena-Thurston manifold is a critical point of the
functional

4
lo) = [ (Gu@*-myav,
M
on M.
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Sketch of the proof. Computing the critical point condition for I(g) on M in general
we find that 1t 15

UV ViR RF™ + V,, VR R¥™ — V™V o Rk RY; — iV ViIR™ R

1 1.4
~2RimR™R¥; + j?-RiJ') + 5(575?@3 — R)gi; = cgij.

Now since Q? is parallel and Q® = }Q on the Abbena-Thurston manifold we see that this
metric on the underlying manifold M = G/T is a critical point of I(g).

From the expression for @ it is clear that (A, g) i+ not Einstein nor is QJ = J(Q.
Thus this metric is not a critical point for A(g) = f,, RdV, considered as a functional ou
M or on Aorfor K(g) = [,, R — R*dV, on A. In particular it does not give a negative
answer to the question of wliether or not an almost Kahler manifold eatisfying QJ = J(Q)
is Kahlerian. On the other hand (M, g) is a critical point for I{ in a different context; C.
M. Wood [25] showed that the Abbena-Thurston manifold is a critical point of K defined
with respect to variations through almost complex structures J which preserve ¢g. For this
problem the critical point condition is

[J,V*VJ] =0,

wlhere V*VJ is the rough Laplacian of the metric in question.

6. Problems involving othier integrands

Finally we turn to a brief discussion of some related problems. In the Riemannian
geometry of contact metric manifolds the tensor fields [ and S defined by I.X = R(X £)¢
and S(X,Y) = R(X,Y)¢ play important roles. For example on a K-contact manifold [ is
thie identity and on a Sasakian manifold S(X,Y) = n(}¥)X — n(X)Y. More generally we
have noted (equation {2.3)) that

Ve¢h = ¢ — dh? — ol.

Thus it seemns reasonable to consider functionals defined by integrals such as JM 12 dv,
and IM |S1? dV,. In the case of the first of these Mr. S. R. Deng computed the critical
point condition of f,, |I|* dV; as a functional on A and noted the following.

Proposition 6.1 (Deng). Let M be a compact contact manifold and A the set of metrics
associated to the contact form. Then a K-contact metric is a critical noint of the functional
Jas 1117 dV, on A. More gencrally if for a metric g, V¢h = 0, thew g is a critical point if
and only if h* — h = 0.

The original functionals A(g), B{g), C(g), D(g) on M have been study further in the
coutext of contact geometry by Muto [17] and Yamaguchi and Chuman [26]: the general
thrust of their work is to suppose that a critical point is a Sasakian metric. For example
we have the following results.
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Theorem 6.2 (Muto). If a critical point g of A(g), B(g), C(¢) or D(g) is a Sasakian
metric, then its scalar curvature is constant,

We remarked at the outset that Einstein metrics were critical points of B(g). From
Theorem 6.2 and the critical point condition for B(g) we have an immediate converse in
the case of a Sasakian metric.

Theorem 6.3 (Yamaguchi and Chiiman). In order for a Sasakian metric to be a
critical point of B(g) it 1s necessary and sufficient that it be an Einstein meturic.

The two papers [17] and [26] give many results and focus in particular on Sasakian
submersions, discussing relations between B(g), C(g) and D(g) defined relative to the
bundle space and the base space of the submersion. There are other contexts where some
of these functionals have been discussed, but further discussion would take us beyond the
scope of these lectures.
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