Chapter 14

The Translation Planes of order q^{2} that admit $S L(2, q)$.

In this final chapter, we consider the set of translation planes of order q^{2} that admit $S L(2, q)$ in the translation complement and mention a classification. The theory developed from Walker's thesis who classified all such translation planes of odd order that have $G F(q)$ in their kern, and Sch-äefer dealt with the even order case. Foulser and Johnson showed that no further cases occur when the kern hypothesis is dropped.

The resulting classification, of translation planes of order q^{2} admitting $S L(2, q)$, constitutes one of the most powerful tools in finite translation plane theory. As a demonstration, we show how the classification allows us to completely determine the translation planes that admit large Baer groups that generate a nonsolvable group.

We first consider the examples that arise in the classification.

14.0.3 Desarguesian Planes.

A Desarguesian plane of order q^{2} may be coordinated by a field $F \simeq G F\left(q^{2}\right)$ and admits $\Gamma L\left(2, q^{2}\right)$ in the translation complement where the p-elements are elations where $p^{r}=q$. In particular, there is a regulus net R which is left invariant by a subgroup isomorphic to $G L(2, q)$.

HAPTER 14. THE TRANSLATION PLANES OF ORDER Q^{2} THAT ADMIT SL $(2, Q)$.

14.0.4 Hall Planes.

If the net R is derived, the group $G L(2, q)$ is inherited as a collineation group of the derived plane. Hence, the Hall planes admit $G L(2, q)$ where the p-elements are Baer p-collineations.

14.0.5 Hering and Ott-Schaeffer Planes.

The reader is referred to Lüneburg [31] for details.
Definition 14.0.22 Let \mathcal{Q} be any set of $q+1$ points in $P G(3, q)$ such that no four of the points are coplanar. Then \mathcal{Q} is called a $(q+1)$-arc.

The ($q+1$)-arcs are all determined as follows:
Theorem 14.0.23 Let \mathcal{Q} be a $(q+1)$-arc then \mathcal{Q} may be represented as follows:
(1) (Segre [38]) If q is odd then the representation is $\left\{\left(s^{3}, s^{2} t, s t^{2}, t^{3}\right) ; s, t\right.$ in $G F(q),(s, t) \neq(0,0)\}$. Even if q is even, if an arc has this representation, we call this a 'twisted cubic' Q^{3}.
(2) (Casse and Glynn [8]) If q is even then the representation is $\mathcal{Q}^{\alpha}=$ $\left\{s^{\alpha+1}, s^{\alpha} t, s t^{\alpha}, t^{\alpha+1}\right) ; s, t$ in $\left.G F(q),(s, t) \neq(0,0)\right\}$ where α is an automorphism of $G F(q)$ which is a generator.

Theorem 14.0.24 Let V_{4} denote a 4-dimensional vector space over $K \simeq$ $G F(q)$. Consider the following matrix group:

$$
S^{\beta}=\left\langle\left[\begin{array}{cccc}
a^{\beta+1} & b a^{\beta} & a b^{\beta} & b^{\beta+1} \\
c a^{\beta} & d a^{\beta} & c d^{\beta} & d b^{\beta} \\
a c^{\beta} & b c^{\beta} & a d^{\beta} & b d^{\beta} \\
c c^{\beta} & d c^{\beta} & c d^{\beta} & d^{\beta+1}
\end{array}\right] ; a, b, c, d \in K \text { and } a d-b c \neq 0\right\rangle .
$$

(1) If q is not 3^{r} or 2 and $\beta=2$ then $S^{\beta=2}$ is isomorphic to $G L(2, q)$ and acts triply transitive on the points of the twisted cubic \mathcal{Q}^{3}. Furthermore, S^{2} acts irreducibly on V_{4}.
(2) If $q=2^{r}$ and β is an automorphism α of K then $S^{\beta=\alpha}$ is isomorphic to $G F(2, q)$ and acts triply transitive on the points of the $(q+1)-a r c, \mathcal{Q}^{\alpha}$. Furthermore, S^{α} acts irreducibly on V_{4}.

CHAPTER 14. THE TRANSLATION PLANES OF ORDER Q^{2} THAT ADMIT SL(2, Q)

Theorem 14.0.25 Let Σ be $P G(3, q)$ and consider the plane $x_{4}=0$ where the points are given homogeneously by $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ for x_{i} in $G F(q), i=$ $1,2,3,4$.
(1) Then $x_{1} x_{3}=x_{2}^{\beta}$ for $\beta \in\{2, \alpha\}$ defines an oval cone C_{β} with vertex $(0,0,0,1)$ and oval $\mathcal{O}_{\beta}=\left\{\left(1, t, t^{\beta}, 0\right),(0,0,1,0) ; t \in G F(q)\right\}$ in $x_{4}=0$.
(2) The $(q+1)$-arc $\mathcal{Q}^{\beta}=\left\{\left(1, t, t^{\beta}, t^{\beta+1}\right),(0,0,0,1) ; t \in G F(q)\right\}$ is contained in C_{β} and the q lines $L_{t}=\left\langle(0,0,0,1),\left(1, t, t^{\beta}, t^{\beta+1}\right)\right\rangle$ intersect \mathcal{O}_{β} in $\left(1, t, t^{\beta}, 0\right)$. Hence, there is a unique line $L_{\infty}=\langle(0,0,0,1),(0,0,1,0)\rangle$ of the oval cone which does not contain a point of \mathcal{Q}_{β}.

We shall call L_{∞} the 'tangent' line to $(0,0,0,1)$. More generally, any image of L_{∞} under an element of the group S^{β} is called the tangent line at the corresponding image point.
(3) Consider the plane $x_{1}=0$ which intersects \mathcal{Q}^{β} in exactly the point $(0,0,0,1)$. We shall call $x_{1}=0$ the 'osculating' plane at $(0,0,0,1)$. Each image of $x_{1}=0$ under an element of S^{β} is also called an osculating plane and the corresponding image point.

Theorem 14.0.26 If \mathcal{Q}^{β} is a twisted cubic then the set of $q+1$-tangents form a partial spread \mathcal{T}.

Theorem 14.0.27 Assume q is even and $\beta=\alpha$ for some automorphism of $G F(q)$. Let S_{2} denote a Sylow 2-subgroup of S^{α}.
(1) Then S_{2} fixes a unique point P of \mathcal{Q}^{α} and fixes the tangent plane $T(P)$.
(2) Choose any point Q of $\mathcal{Q}^{\alpha}-\{P\}$ and form the lines $X Q$ and then the intersection points $I=T(P) \cap X Q$ and then the lines $P I$ of $T(P)$ incident with P. Let $N_{i}(P)$ denote the two remaining lines of $T(P)$ incident with P for $i=1,2$.

Then $\mathcal{R}_{i}=N_{i}(P) S^{\alpha}$ is a regulus and \mathcal{R}_{j} is the opposite regulus to \mathcal{R}_{i} for $i \neq j$.

To construct the Hering and Ott-Schaeffer planes we require that $q \equiv-1$ $(\bmod 3)$.

Theorem 14.0.28 When $q \equiv-1 \quad(\bmod 3)$ any element ρ of order 3 in S^{β} fixes a 2-dimensional subspace M pointwise.
(1) There is a unique Maschke complement L for ρ such that $V_{4}=L \oplus M$.
(2) If $\beta=2$ and q is odd then $\mathcal{T} \cup L S^{2} \cup M S^{2}$ is the unique S-invariant spread of V_{4}.

The corresponding translation plane is called the 'Hering plane'of order q^{2}.
(3) If $\beta=\alpha$ and q is even then $\mathcal{R}_{i} \cup L S^{\alpha} \cup M S^{\alpha}$ is a S-invariant spread of V_{4} for $i=1$ or 2 and for any automorphism α of $G F(q)$.

The corresponding translation planes are called the 'Ott-Schaeffer planes'.
Remark 14.0.29 (1) The Hering and Ott-Schaeffer planes admit affine homologies of order 3 with $q(q-1)$ distinct axes.
(2) Schaeffer determine the planes when α is the Frobenius automorphism and Ott generalized this to arbitrary automorphisms. (See Hering [17], Schaeffer [37] and Ott [33].)
(3) Each Ott-Schaeffer plane is derivable. If α is an automorphism for a given Ott-Schaeffer plane then α^{-1} is the automorhpism for its corresponding derived plane. (See e.g. Johnson [27]. If $q=2^{r}$ it turns out that the number of mutually non-isomorphic planes is $\varphi(r)$ as the automophisms used in the construction are generators of the cyclic group of order r.

14.0.6 The Three Walker Planes of order 25.

Let

$$
\tau_{s}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
s & 0 & 0 & 0 \\
3 s^{2} & s & 1 & 0 \\
s^{3} & 3 s^{2} & s & 1
\end{array}\right] ; s \in G F(5)
$$

and

$$
\rho=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right]
$$

Then $\left\langle\tau_{s}, \rho\right\rangle=S \simeq S L(2,5)$.
Furthermore, let

$$
H=\left\langle\left[\begin{array}{cccc}
t & 0 & 0 & 0 \\
0 & t^{-1} & 0 & 0 \\
0 & 0 & t & 0 \\
0 & 0 & 0 & t^{-1}
\end{array}\right] ; t \in G F(5)-\{0\}\right.
$$

Then, there are exactly three mutually nonisomorphic spreads $\pi_{2}, \pi_{4}, \pi_{6}$ of order 25 that admit S such that H fixes exactly 6 components of each
plane and ρ fixes either 2,4 , or 6 of these components respectively. These planes are determined by Walker in [41].

14.0.7 The Translation Planes with Spreads in $P G(3, q)$ admitting $S L(2, q)$.

The translation planes or order q^{2} with kernels containing $G F(q)$ and admitting $S L(2, q)$ as a collineation group are completely determined by Walker and Schaeffer.

Theorem 14.0.30 Let π be a translation plane of order q^{2} with spread in $P G(3, q)$ that admits $S L(2, q)$ as a collineation group.

Then π is one of the following types of planes:
(1) Desarguesian,
(2) Hall,
(3) Hering and q is odd
(4) Ott-Schaeffer and q is even
(5) one of three planes of order 25 of Walker.

14.0.8 Arbitrary Dimension.

There are exactly three semifields planes of order 16 one each with kernel $G F(2), G F(4)$ and $G F(16)$ each of which is derivable. We have considered the planes derived from the semifields planes with kernel $G F(4)$ that admit $P S L(2,7)$ as a collineation group. The semifield plane with kernel $G F(2)$ derives the Dempwolff plane of order 16 which admits $S L(2,4)$ as a collineation group. Furthermore, the kernel of the Dempwolff plane is $G F(2)$ (see e.g. Johnson [26]).

Using methods of combinatorial group theory and linear algebra, Foulser and I were able to prove that the only translation plane of order q^{2} that admits $S L(2, q)$ as a collineation group and whose spread is not in $P G(2, q)$ is, in fact, the Dempwolff planes.

Theorem 14.0.31 (Foulser-Johnson [13]). Let π be a translation plane of order q^{2} that admits a collineation group isomorphic to $S L(2, q)$ in its translation complement.

Then either the plane has its spread in $\operatorname{PG}(3, q)$ or is the Dempwolff plane of order 16 .

Actually, the way that the proof was given, it was not necessarily to assume that $S L(2, q)$ acts faithfully on the translation plane. That is, it is possible that $P S L(2, q)$ acts on the plane. In fact, this essentially never occurs.

Corollary 14.0.32 Let π be a translation plane of order q^{2} that admits a collineation group isomorphic to $\operatorname{PSL}(2, q)$ then π is Desarguesian.

14.0.9 Applications.

Let π be a translation plane of odd order p^{r} that admits at least two Baer p-groups B_{1} and B_{2} in the translation complement with distinct Baer axes. Assume that $\left|B_{i}\right|>\sqrt{p^{r}} \geq 3$. Then, by Foulser's work (which works in the characteristic 3 case in this situation), it follows that the Baer axes lie in the same net of degree $p^{r}+1$. The Baer groups generate a group G isomorphic to $S L\left(2, p^{s}\right)$ for $p^{s}>p^{r / 2}$. From here, it follows that the group G must be $S L(2, q)$. Applying the previous theorem, we have:

Theorem 14.0.33 (Jha and Johnson [23]) Let π be a translation plane of odd order p^{r} that admits at least two Baer p-groups of order $>\sqrt{p^{r}} \geq 3$. Then π is the Hall plane of order p^{r}.

Recall, that Foulser's result is not necessarily valid in translation planes of even order but there is considerable incompatibility between elation and Baer 2-groups.

Dempwolff analyzed the groups generated by two Baer 2-groups with distinct axes and orders $\sqrt{2^{r}}$ if the translation plane is of order $2^{2 r}$.

Theorem 14.0.34 (Dempwolff [9]) Let π be a translation plane of even or$\operatorname{der} q^{2}$ and let G be a collineation group in the translation complement which contains at least two Baer 2-groups of orders $>\sqrt{q}$ with distinct axes. Let N denote the subgroup of G generated by affine elations.

Then one of the following situations occur:
(1) $q^{2}=16, G \simeq S L(3,2)$ and π is either the Lorimer-Rahilly or JohnsonWalker plane, or
(2) $G / N \simeq S L\left(2,2^{z}\right)$ where $2^{z}>\sqrt{q}$ and $N \subseteq Z(G)$.

Using the incompatibility results previous mentioned, we know that any elation group centralizing a Baer 2 -group can have order ≤ 2. If, in fact, the

CHAPTER 14. THE TRANSLATION PLANES OF ORDER Q Q^{2} THAT ADMIT SL $(2, Q)$.
order is 1 then we argue that, in fact, we obtain $S L(2, q)$ so that the results of Foulser and myself apply. If the order of is 2 then some group representation theory shows that $G \simeq S L\left(2,2^{z}\right) \oplus N$ and we argue that $S L\left(2,2^{z}\right)$ contains a Baer group of order $>\sqrt{q}$ which again shows that $S L(2, q)$ is a collineation group. We note that the Dempwolff plane of order 16 does not occur here since there are no large Baer 2-groups in this plane.

Hence, we may show:
Theorem 14.0.35 (Jha and Johnson [24]) Let π be a translation plane of even order q^{2} that admits at least two Baer groups with distinct axes and orders $>\sqrt{q}$ in the translation complement.

Then, either π is Lorimer-Rahilly or Johnson-Walker of order 16 or π is a Hall plane.

