
Chapter 13

Foulser's Theorem:
Baer~ElationIncompatibility.

In this chapter, we demonstrate the high degree of incompatibilit.y between
Baer p-element.s and affine elations, acting on a translation pIane 1r of order
p2r. Among the most st.artling of such result.s is Foulser's theorem, asserting
that non-trivial Baer p-elements and nOIl-t.riviaI affine elations cannot simul
taneously ad on 1r if p is odd. The first section of this chapter establishes
st.riking constraint.s of this type, alt due 1,0 Foulser, that apply 1,0 translation
planes of odd order. The second sect.ion is concerned wit.h the even order
versions of Foulser's t.heory: here affine elations and Baer 2-elements are
compatible, buI, they constrain each otehr quite severely.

13.1 Baer-Elation Theory: Odd Order Case.

V,Te begin with a theorem that altows us 1,0 use Ost.rom's theorem for gener
alsied elations due 1,0 Foulser.

Theorem 13.1.1 Let 1r be a translation piane 01 order p2k lor p> 3.
Il a and T are Baer p-colhneations in the translation complement whose

axes are distinct then Fixa n FixT = O.

Proof: Sketch. Suppose IlOt! Then there exist. a and r as Baer p-collineations
such t.hat. FixanFixT = X has maximum dimension r over GF(p). We note
that. if X is a proper subplane of Fixa then r < k/2 and if X is a parI, of a
line of Fixa t.his rest.riction is st.ill valido
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Note that any generalized elation leaves invariant any subspaee eontaining
t.he axis. Hence, both <I ane! T leave FixfT + FixT invariant and aet fait.hfully
asgeneralizedelationsof(FixfT+FixT)/X = VI' Let<I, = <I IVi,T, = T IV,.

We consider the following three possible eases:
(1) Fix<I1 n FixT, = oon V"
(2) both fT, and T, are non-triviai on V, and FiX<I1 n FixTI i oand
(3) either fTl or 7, = 1.
'Ve consider case (3) first and assume <I, = 1.

Exercise 13.1.2 Show that <I, = l if and only if <I fixes FixT.

Since <I fL"es Fix7, <I is a gcneralized elation on FixT so induees either
an elation or a Baer p-element. on Fix7. In either case, we may ehoose a
decomposition for V as follows: LeI. FixT n Fix<I = X O, Fix<I = Xo El) XI,
Fin = XoEl) X 2 ane! V = Xo El) X, El) X 2 El) X 3·

The group E generateci by the Baer p-eollineations with axis Fix7 is an
elementary Abelian group p-group and ali nonidentity elements of this group
have the same axis. II. follows that <I normalizes E and sinee t.he order of <I
is p, <I commutes wit.h some element of E and we may assume that <I and 7

commate (here we dan't, insist on the maximality condition 00 intersection
dimension).

Exercise 13.1.3 Under the ass'Umptions that fT and 7 are Baer collineations
(generalized elations), and assuming the matrix acts on the right, show that

<I=

I O O O
O l O O

A, A3 I O
A2 A, O I

and that

T=

I O
BI I
O O

B3 O

O O
B2 O
I O

B" I

Exercise 13.1.4 Using the above exercise and the fact that <I and T commute
show that A3 = B2 = O and
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and realize that theExercise 13.1.5 Change basis by

A, O O O
A2 A., O O
O O I O
O O O I

generai Jorm oJ 7" does not change to obtain that, without loss oJ general
ity, A, = A. = I and A2 = O. Then, again using the Jact that <7 and 7"

commute, show that that BI = B•.

Exercise 13.1.6 Show that <77" is a generalized elation by computing <77" and
its fixed point space.

Exercise 13.1.7 Compute (<77" - 1)2 and show that the Jollowing matrix is
obtained:

O O O O
O O O O
O O O O

2B, O O O

•

Now since (<77" - 1)2 = O, il. follows t.hat. BI = O. From the above exercise,
il. t.nrns out. t.hat. t.he fIxed point space of a7" is 1.00 large to be either a Une
or a Baer subplane.

This proves case (3). Actually, this same proof can be adapted to show
hat, Baer p-element.s and elations cannot coexist when p > 2. We shall come

back 1.0 this in a later section.
Case (2) both al and 7"1 are non-trivial on Vi and Fixal n FiX7"1 i o.
Suppose that Fix", = Fixa / X and FiX7"1 = FiXT / X. Then Fixa / X n

FiX7" / X = X or rather Fixa, n FiX7", = O.
Hence, assmne without.loss of generality, that y +X is in Fixal - Fixa / X

and write y = v+u where v is in Fixa and u is in Fix7". Since a, fIxes y+X,
il. fo11ows that. a also fIxes 1.1 + X. Since 7" fIxes X = Fixa n Fix7" pointwise,
il. fo11ows that (u,X) c FiXT. Note that u is nonzero by assumption. But,
(1.1, X) C a(Fix7") = Fixr"-'. But, Fix7"'-' i FiX7" sinoe if it \Vere this
\Vould imply that. al = 1 by an exercise above. Hence, 7" and 7"'-' are
generalized elations of V both of whose fIxed point space properly contain X
which is cont.rary to the maximality condition.

Hence, il. remains 1.0 consider
Case (1) Fixa, n Fix7", = Oon Vi.
We give the proof in a series of lemmas.
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Lemma 13.1.8 (17 - I)FixT $ X = FixC7 and (T - I)FixC7 E9 X = FixT

Proof: Consider (l1-l)v for v in FixT. If (11-1)v # Othen v is noI. in X. If
(17 - l)v is in FixC7 nFixT t.hen 17 fixes v +X and clearly T fixes v+X so that.
171 and TI fix a common nonident.ity element. and hence FixC71 n FixTl # O.

Notice that. the kernel of 11 - l in FixT is FixT n FixC7 and FiXTIX ""
(17 - I)FixT. By the rank-nullit.y theorem, the l'esulI. now fol1ows.

Lemma 13.1.9 (17, T) = G leaves (C7-l)FixT$(T-l)FixO' = V2 invariant.

Proof: Not.e that. (O' - 1)2 = (T - 1)2 = Oand apply (O' - l) 1.0 (O' - l)v +
(T - l)u for v in FixT and u in FixO' realizing that (T - l)w is in FixT for
any tu in V. Hence, 0'-1 and T-l and thus O' and T leave the given subspace
invariant.

Exercise 13.1.10 Check that the sum is a diTect sum.

Lemma 13.1.11 Let P2 = P I \'S. Let G2 = (0'2,T2). Then G2 "" SL(2,p') ,
fOT some positive integeT z.

Proof: The idea of the proof is 1.0 show that t.he seI. {FixO'g , FixTf for
g,h in Gd is a partial spread and t.hen apply Ostrom's t.heorem. Not.e that.
0'2 and T2 are generalized elations of 11.,.

Not.e t.hat. Fix0'2 = FiXI1 n V, = (O' - I)FixT and FixT2 = FixT n V, =
(T-l)Fixl1. These subspaces are bot.h of dimension k-1' and since we have
a direct sum above, t.hese part.icular fixed point. spaces are disjoint. so that.
V, has dimension 2(k - T) and t.he generalized elations are of t.ype k - T.

Now assume thel'e exist. p and 'Y in G which are conjugate 1.0 17 and/or
T sucb t.hat FixP2 # Fix'Y2 buI. FixP2 n Fix'Y2 # O. Then, il. fol1ows t.hat
Fixp n Fix'Y c X $ Fix0'2 n FixP2 contl'ary 1.0 the maximality condition.
Hence, G 2 "" SL(2,p'). In part.icular, -l is in G2 acting on V2. This proves
the lemma.

Lemma 13.1.12 Let O be in G such that O2 = -1. Then 02 = 1.

Exercise 13.1.13 Note that any nonidentity collineation can pointwise fix a
subspace of dimension < k (one half the dimension of the translation piane).
Prove the above lemma by considering X $ V2 and realizing that G fixes X
pointwise and show that the dimension of X e V2 is 2k - T > k.
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Lemma 13.1.14 G ~ G2 .

Proof: Since G fixes l'2, the group induced on V2 is isomorphic 1.0 G/ G[l'2]
where G[V2] is the subgroup whidl fixes l'2 pointwise. The above exercise
shows that G[l'2] = (l) .•

Remark 13.1.15 A result 01 Baer's states that in any finite affine piane,
an involution either fixes pointwise a line or a Baer subplane. Thus, the
dimension 01 a pointwise fixed subspace by an involution 01 a translation
piane is hall the dimension 01 the translation piane

Note that (_0)2 = l so that -O is an involution.

Lemma 13.1.16 The subspace fixed pointwise by -O contains V2 . Then
r = k/2.
Furthermore, O is in Z (G).

Proof: From the preceding, wc have 2(k - ,.) < k so that k/2 < r buI.
r < k/2 since X is either contained with aline of Fixa or is a subplane
of il. (note that the intersections of subplanes is either contained within a
line or is a subplane of each containing subplaRe). So, r = k/2. Note that
(wOw-1), = 82 = O2 = -1. It follows that FixO-1wOW-1 contains X (B V2

since G fixes X pointwise. Hence, 0-lWOW-1= l which proves the lemma.
Thus, il. follows that FixO is left invariant by G. Represent FixO = X(BW

where both X and W are k/2-dimensional subspaces.

Lemma 13.1.17 W (B (Fixl7 + Fixr) = V.

Proof: By the previous notes on dimension, il. suffices 1.0 show that the
indicated direct sum is, in fact, direct.

If O(v + u) = 11 + u for 11 in Fixa and u in FixT then recalling that O is
in Z(G), we have 170(11 + u) = O(v + a(u)) = v + a(u). Il. then follows that
a(u) - u = (a - l)u is fixed by O. BuI., O acts as -l on V2 so that u = O.
Similarly, 11 = O.

Now leI. 1/>3 = l/> IFixO. Then 173 and T3 are genera!ized elationS of FixO
wit.h identica! fixed point spaces X since a does noI. fix a nonidentity element
of W.

Hence, we obtain
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Lemma 13.1.18 (0"3,73) is an elementary Abelian p -group (oJ order p2).

Exercise 13.1.19 Show that the commutator subgroup C' oJ C fixes FixB
pointwise.

However, C' = C as C"" SL(2,p'). On the other hand, C leaves invariant
112 and B act.s on 112 as -l, 112 n FixlJ = O. Hence, there exist.s an element
9 of order p which fixes a nonzero point. of V2 which implies that. Fixg has
dimension st.rict.ly larger t.han k -a contradict.ion. Hence, this completes the
proof of case (3) and consequent.Iy t,he proof of the theorem.

It might be pointed out t.hat bot.h Ost.rom's and Foulser's t.heorems can be
stat.ed for p = 3 also alld in this case, it is possible t.hat, SL(2, 5) is generat.ed.
F\lrt.hermore, t.he full group generat.ed by elations or Baer p -collineat.ions is
complet.ely det.ermined by t.he work of Ost,rom, Hering and Foulser.

\Ve ment.ioned above that. an adaption of the.proof of case (3) will show
t.hat. it is not possible t.o have both Baer p-collineations and elat.ions acting
on a translat.ion pIane of odd order. We stat,e t.his formally. We not.e that
t.his .case only requires t,hat p is odd.

Theorem 13.1.20 Let 71' be a finite translation piane oJ odd order pro
Then the collineation group oJ 71' does not contain both Baer p -collineations

and elations.

F\lrt.hermore, Foulser shows t.hat. ali Baer axes of p-collineations share
t.heir parallel classes.

Theorem 13.1.21 Let 71' be a finite translation piane oJ odd order p2. Jor
p> 3.

IJ B denotes the set oJ axes oJ Baer p-collineations in the translation
complement then each subplane oJ B lies in the same net oJ degree p. + l.

Proof: In this case, the group generat.ed by any pair of Baer p -collineations
is SL(2,r) for some positive integer z. Since any two distinct axes "'0 and
71'1 share exactly t.he zero vect.or, we may decompose the space as 71'0 ffi 71'1 so
that t.he collineat.ion group has the form

([ ~ ~]; ad - bc = l for alI a, b, c, d in K "" SL(2, p') ) .
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In part.iclllar, we have t.he snbgrollp ([ ~ aD, ] ;a in [{ - {D}). Choose a

in t.he prime snbfielel F '" GF(p) of [{ anel since p > 3, we may assnme
t.hat. a # a-l. We not.e t.hat a fielel of 2k x 2k mat.rices over a fielel GF(p)
cont.ains t.he scalars aln' Hence, a = >.f2k for À in GF(p) Ct.he kernel of t.he
t.ranslat.ion l'lane.

In ot.her worels, [~ ~] is a kernel homology if a is in t.he prime sllbfielel

of [{. Hence, it. follows t.hat. [~ aD, ] = ga act.s as a scalar grollp on each

snbplane 71'0 and 71', so fixes each line of "a anel each line of 71'0 incident. wit.h

[ aD ] [a D] [a
2

D]the zero vector. Bill., D a-l D a = D l = h # I fixes each

line of 71'0 and fixes 71'[ point.wise. Since t.he fixecl lines of h are exact.ly t.he
lines of 71'1, it. follows t.hat. each line of "o ext.ending t.o aline of 71' is aline of
71'" Hence, each line of "o incielent. wit.h t.he zero vect.or is aline of "l anel
conversely. Hence, t.he lines of 71'0 incident. with t.he zero vect.or are exactly
the lines of 71', which are incident. wit.h t.he zero vect.or.

F\lrt.hermore, more can be saiel abont. the st.ructure of the net. containing
the Baer axes anel we shall come back t.o t.his in t.he next. sect.ion in more
generality bot.h for even oreler anel for infinit.e order.

13.2 Incompatibility Theory: Even Order Trans
lation Planes.

\\'e have seen in t.he previons sect.ion t.hat., when p is odel, it. is not. possi
ble t.hat. elat.ions and Baer p-collineat.ions can coexist. in t.ranslat.ion planes
of order pr. This is definit.ely not. t.he case in planes which are not. t.rans
lation planes. For example, t.here elCist semi-translation planes of oreler q2
elerivecl from ellla! translation planes for which t.here is a Baer grollp of order
q and an elation grollp of oreler q as well. Furt.hermore, il. is possible that.
Baer involntions and elat.ions exist. even in DesargnesilUl affine planes of even
order. If 71' is Desargnesian of order q2 coordinat.izecl by GF(q2) t.hen the
field ant.omorphism of oreler 2 which fixes GF(q) point.wise induces a Baer
involntion.

When 71' is a semifielel l'lane of even order, Ganley [14] has shown tliat
if t.here is a Baer involntion then t.he fnll group which fixes t.he Baer alCis
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pointwise has order 2.

Exercise 13.2.1 Let 7f+ be any projective piane and 7f;; a projective sub
piane. Let a be a centrai collineation. Then show that a leaves 7f;; invariant
ij and only ij the center and axis oj a are in 7f;; and jor some point P oj 7f;;

then a P is also a point oj 7f;;.

Exercise 13.2.2 Let 7f be a semifield piane with special point (00) on the
line at infinity. Let 7fo be an affine subplane oj arder h oj 7f one oj whose
parallel c1asses is (00). Show there exists an elation group oj arder h which
leaves 7fo invariant.

Note that., in a semifield pIane of even order q2, if there exists a Baer
sllbplane sharing the special point on the line at infinity then there exists an
elation grollp of order q which leaves the sllbplane invariant.

13.2.1 Maximal Elation Groups and Baer involutions.

Here we consider this more generally. The reader is referred to Jha and
Johnson [21] for more details.

Theorem 13.2.3 Let 7f be a translation piane oj even arder q2 jor q = 2'
Let 7fo be a Baer subplane oj 7f which is fixed pointwise by a Bae,' 2 -group B.
Ij 7f admits an elation graup t: oj arder q which normalizes 8 then 181< 2.
Ij 181= 2 then the full collineation group which fixes 7fo pointwise has arder
2.

Proof: The proof will be given as a series of lemmas. In particlllar, we
shall reqllire a more-or-less st.andard representation of the translation pIane
and Baer sllbplane.

Represent 7f is the form {(XI,X2,YI,Y2); Xi,Yi are r -vect.ors aver GF(2)
for i = 1,2}. Represent with equation Xl = Yl = O and consider a spread
far 7f is t.he form Ix = O, Y = O, Y = xM where x is a 2r -vector and M is
a nonsinglllar 2r x 2,· matl'ix. We also assume, with loss of genel'ality, that
x = O, Y = O, Y = x are components of 7fo also and that the axis of t: is x = O.

This first lemma depends on the previolls representat.ions and should be
clear by now.
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Lemma 13.2.4 Let the kernel of."o be denoted by 1(0 where 1(0 is consider
as the set of r x r matrices centmlizing the slopes of "'0'

(i) B may be represented in the following form:

I B O O

( ~ ~ ~ ~ ; B EÀ and 0,1 E>)
O O O I

(ii) The components of."o may be represented in the form

x = O, y = x [~ f~)]

far O in a set !1 of matrices where f : !1 I • HomGF(2) (Vz" V2r ) where Vzr

is a 2r-dimensional vector space aver GF(2) such that f(1) = f(O) = O.

Exercise 13.2.5 Prove that À is contained in the kernel 1(0 of "'0'

Note that since we are assllming that, c normalizes B, it follows that E
acts transitively on the non-axis components of 'lro • Hence, we have

Lemma 13.2.6 c may be represented in the form

I O O
/ O I O
\ O a I

a a a

f(O)
O
a
I

Exercise 13.2.7 Prove that if B has arder> 2 then we may take À to include
{a, I, B, B + I} far some fixed B i' a or I.

I D a a I a E f(E)

Now let aD =
a I O a

E Band let TE =
a I a E

O O I D O a I a E

O O O I O O O I
c.
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Exercise 13.2.8 Show that (JOTE is a Baer involution and a component y =

x [mi m 2 ] is fixed by (JOTE if and only ifm3 = D-IE and Dm, = f(E)+
m3 m4

ED + miD. (Hint: Write out what the conditions are for a component to
be fixed by (JOTE recalling that D is in the kernel of K o and hence commutes
with E).

Lemma 13.2.9 Let So = {(JOTC; C E fI}. The components by elements of
So cover 1r. Hence, this implies that, far each C E fI , B-IC is also in fI
and furthermore, Bi and BiC is in fI for ali integers i, j.

Exercise 13.2.10 Prove the previous lemma.

Thus, we have:

Lemma 13.2.11 (J[TB-'C, (JBTC) fixes the same Baer subplane pointwise
(namely, {(O, Y2B-IC, YI, Y2)}).

Bence, Dm, = f(E) + ED +mlD for (D, E) E {(B, C), (I, B-IC), (B +
l, (B- 1 + l)C}.

Choose (D, E) = (I, B-IC), we obtain m, = f(B-IC) + B-IC + mi'
Now reapplying (B, C), we obtain

which implies that

Bf(B-IC) + (B + I)C + f(C) = Bml + miB.

Let go(C) = Bf(B-lC) + f(C).

Exercise 13.2.12 Fo1' k > l if

then
gk(C) = B 2

' mi + m I B 2
'.

(Hint: Recall that BC = CB.)
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Since B is in the kernel of the subplane of order q , il. follows that Bq = B.
Hence, when q = 2', il. follows that g,(C) = Bml + mlB = go(C) + (B +

1)C.

Lemma 13.2.13 Let J(C) = ~l-t Bif(C)B-i.
Then
(i) J(C) + BJ(B-1C) = (I + B)C and
(ii) J(B2C) = B 2J(C).

Proof:

Exercise 13.2.14 Show that gk(C) = ~t;;' Bif(C)B(2'-1)-i+~t I Bi f(B-1C)B2'-i.
Then let k = r and using the fact that g,(C) + gore) = (I + B)C conclude

that (i) is valido

Exercise 13.2.15 Since BC is in n, replace C by BC in (i) to conclude
(ii).

Since the above lemma is valid for ali elements C of n, letting C = I, we
obtain by induction that

J(B2') = B 2' J(1) = O.

Letting r = k, we have that J(B) = O. In (i) above, let C = B to obtain
(I + B)B = O. Hence, B = O or I contrary to our assuIJ.1ptions. Hence, the
Baer 2-group has order 2 or 1. If the order is 2 then since the group fixing
the Baer axis normalizes the 2-group fixing il. pointwise, il. follows that any
Baer group must commute with a given Baer involution which cannot occur
unless the group has order 2 it,self. This completes the proof of the theorem.

13.2.2 Large Baer groups and Elations.

Considering possible incompatibility relations, we consider the co-existence of
a 'Iarge' Baer group and an elation group of order > 2. Recall that il. follows
from the previous subsection that. the existence of a Baer group of order > Vii
shows that the Bacr axis is a Desarguesian sllbplane. In this subsection, we
consider the possible incompatibility with Baer groups of order > Vii and
elation groups of order > 4.

Previously, we required that a given elation group normalizes a Baer group
and hence centralizes il.. A result of Dempwolff [9J shows that if a Baer group
of order > Vii normalizes an elation group E then il. must centralize il..
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Exercise 13.2.16 Let " be a translation piane 01 order 2r that admits a
Baer group S 01 order > ,fii. Let E be any affine elation group. Let 52 be
a 8ylow 2-subgroup eontaining the lull elation group E' with axis E. 8how
that there exists a Baer group S' 01 order I S I eontained in 82 , 8how that
S' normalizes the lull group E'.

Renee, if we lise t.he reslllt. of Dempwolff, we may assume the exist.enee
of an elat.ion grollp E and a Baer group S of order > ,fii which eent.raiizes
each ot.her.

Theorem 13.2.17 Let" be a translation piane 01 order q2 = 22r that admits
a Baer group olorder' > 2,fii. Il E is any elation group 01" then I E 1< 2.

Proof: \Ve formnlate t.he proof in a mmmer similar 1.0 t.he above. In par
tieular, we t.ake the representat.ion exaet.ly as in t.he previous subsection.
Rowever, now we know t.hat. the elements of,À belong 1.0 a field K '" GF(q)
t.hat. coordinatizes the Baer snbplane so t.hat. we may assume that the ele
ments of n belong 1.0 t.he field K .•

Lemma 13.2.18 For eaeh C 01 n, then I C,À n,À I> 4.

Proof: Not.e that. ,À is a vector space over GF(2) as il. is additive. Similarly,
C,À is a veetor spaee over GF(2). Fìlrthermore, dim,À > r/2 so > r/2 + 1.
Renee, C,À + ,À is a snbspaee of K so that the dimension of t.he intersection
C,À n,À is at.least 2. Renee, the order is al. least 22 .

The impaet of the previolls lemma is that t.here are al. least two Baer
gronps of order 4 wruch come from t.he same element TC·

Lemma 13.2.19 For eaeh C in n, t/tere exist distinet nonzero elements E
and F sueh that

(aBT/,aBcTc) fixes a Baer subplane {(0,Y2B,YI,Y2)} pointwise lor BE
{E, F}.

Proof: LeI. CE and CD bein C,Àn,À. Recallt.hataDTEfixesy=x [mI m2 ]
m3 m4

if and only ifm3 = D-l E and Dm4 = I(E)+ED+mID. Thus,theindicat.ed
gronp must. fix the same Baer subplane point.wise.

Not.ing t.hat. 1(1) = O, leI. D = Band E = Il.o obtain Bm4 = B + miB.
BuI., also we may let. D = BC and E = C 1.0 obtain BCm4 = I(C) + BC2+
mIBC.

Thus, C(B + mlB) = I(C) + BC2 + mIBC.



2k-1 2k - 1
!k(C) = C fk-l(C) + /k_,(C)C .

Show that f.(C) = C2'm,B + m,BC2'.
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Exercise 13.2.20 Show that C2m,B + m,BC2 = f(C)C + Cf(C).

Exercise 13.2.21 Let f(C) = fa(C), II (C)= f(C)C + C f(C) and, in gen
erai, let

Nowlet k = rwhereq = 2r. Then, fr(C) = C 2r-'fr_' (C)+fr-' (C)C2r-' =
Cm,B + m,BC. From C(B + m,B) = f(C) + BC2 + m,BC, we obtain
em,B + m,BC = CB + CB2+ f(C).

Hence, (C + C2)B = C 2r-, fr-'(C) + fr_,(C)C 2r-' + f(C). Since B can
t.ake on eit.her of the nonzero elements E or F, this can only occnr when
C + C 2 = O and hence that. C = Oor I. Hence, we have shown t.hat. t.he only
possible elations re are ra and 1'/. That is, t.he elation group has order at
most 2.


