
Chapter 12

Hering-Ostrom Theory:
Elation-Generated Groups.

The celebrated Lenz-Barlotti theory describes maximal groups of centraI
col1ineations of arbitrary project.ive and affine planes. Similarly, one might
ask for a clescription of groups that are generateci by groups of centraI
collineations of a piane that share neither an axis nor a center. For ex­
ampIe, in affine Desargucsian plancs of orcler pr, if El and E2 are groups
of elations with distinct affine axes they generate the group G ~ SL(2, p'l
whenever s divides T.

A fundamental theorem of Ostrom asserts that the same conclusion holds
for arbitrary finite t.ranslation planes with charact.eristic p > 3. The case
p < 3 has been completely resolvecl by Hering, where the conclusions are
slightly more complicateci: for example, in the spreacls associateci with the
even order Liinebnrg planes, elation groups might generate Suzuki groups.
Taken together, the Hering-Ostrom theorem provides a complete description
of groups G generateci by affine elations of [partial) spreacls and has proven
be a powerful tool for the investigation of finite translation planes.

It is thus natural to seek to generalise this theorem. Major results on
finite translat.ion plancs have been obt.ainecl by Foulser basecl on extending
the Hering-Ostrom theorem to generalised elations. It tums out that a gen­
eralisecl elation, in the context. of a spread, is either an affine elation or a Baer
p-element, and this leads to a Baer analogue of the Ostrom's theorem. In
the next chapter, we use t.his t.o est.ablish striking incompatibilty results con­
ceming Baer p-element.s and affine elations, and also incompatibility among
Baer p-elements that have different slopesets in ocld characteristic. These
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reslllts are dlle to FOlllser in the odd characterist.ic case. In charact.eristic
2, FOllIser's reslllt-s do not apply H.S there are counterexamples. However, as
demonstrat.ed by t.he aut.hors via grollp-t.heoret.ic result.s of Dempwolff, t.here
is st.ilI stili a high degree incompat.ibility between Baers and elat.ions, even
in spreads of even order. In alI cases, t.he incompatibilit.ies indicat.ed have
a profound influence on t.he collineation group of a t.ranslat.ion l'lane. For
example, it implies that. semifield planes of odd order cannot admit Baer
p-element.s.

One of t.he main goals of t.he present chapter is t.o prove Ostrom's re­
sult, describing t.he groups C generat.ed by elations act.ing on finite part.ial
spreads of charact.erist.ic p > 3; we refer t.he reader t.o Liineburg's immaculat.e
t.reat.ment [31] for' t.he fnll Hering-Ost.rom t.heorem. In additiOll to Ost.rom's
theorem, and its generalization t.o finit.e-dimensional spreads, we shall est.ab­
lish FOllIser's analogue of Ost.rom's resllit. t.ha,t. applies to generalised e!at.ions:
t.his will be applied in t.he next. chapt.er t.o establish the incòmpatibility t.he­
orems indicat.ed above.

12.1' Field Extensions and Spreads.

Let V = Fn EB Fn, and let ]( ::J F be an extension field of the finite field F.
Rather than llsing t.ensor product. not.ation, we shall write: VK = ](n EB ](n,

X K = ](n EB O, YK = O EB ](n; in generaI if W is an F-subspace of V then
WK denotes the ](-subspace of VK gcnerat.ed by W; so WK consists of alI
the ](-linear combination of any F-basis of W. This follows by noting t.hat
F-independent. subset.s in V are also ](-independent.: look at t.he rank of t.he
matrix lv/w of any F-linear basis of IV: t.he rank of Mw , whet.her viewed as
an F-Inatrix or as a l<-mat.rix is alwavs the sanle.

•

Ncxt consider 9 E Hom(V, F); 9l( is the llnique extension 9l( of 9 t.o
H om(V,]() and t.he t.wo maps have t.he same matrix relative t.o any F-basis
of V, in part.icular relative to the canonical basis. So 9 E CL(V, F) if and
only if 9l( E CL(VK,]()'

We shall be part.icnlarly concerned wit.h the act.ion t.hat a gronp G <
CL(V, F) indnces on a K-snbspace U < \!J( t.hat is CJ('invariant., sometimes
when V n U = O. In alI cases, t.he act.ion of C l( on U is jnst the act.ion
associat.ed with t.he mat.rix group repre.'lent.ing C, and we writ.e CU to mean
C'I<, t.he act.ion of Cl( on U.

A spread r on V corresponds in t.hc obvious way to a partial spread r l(
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of vi-:, and f includes the st.andard components X and Y of F" E9 F" iff f K

does: that is XI< and YI< lie in fI<, and a similar comment applies to the
unit line I. \Ve always assume that we are dealing with spreads and partial
spreads containing the standard components Xand Y, as well as the unit
line I. Let M be the spreadset. of matrices defining f; so M, viewed as a set
of K-Illat.rices is a partia/ spreadset defining the partial spread fl(.

Next. foeus on a'rank t.wo K-subspaee U < VI< t.hat meets non-trivially
the subsaees X and Y of V, and let fu be the set of ali components ìI< E fI<
t.hat. meet. U non-trivially. Since U has rank 2 over J{, fu is a Desarguesian
K-spread on U, and il. meets non-trivially each of X, Y and I, in three
distinet components.

Next. suppose G < GL(V, F) preserves f and sneh that GI< leaves U­
invariant. So GI< is a J{-linear automorphism group of the partial spreacl
fI< and also leaves U invariant.. Thus GV< < GL(2, J{). Moreover, the given
e1at.ion groups continue t.o aet a..~ elat.ion elation groups on the Desarguesian
spread fu, so GI(.. :: SL(2,IC) for some J{' C J{. The close connection
between GV< and G leads to a similar conclusion for G, as required.

This suggest.s a strategy: take any F-spread admit.t.ing G, then seek an ex­
t.ension field K over which G fixes a 2-space made up of distinct. eigenvectors
of some nonnal subgraup of G and then apply the above argument..

Rct.lll'ning to t.he main theme, assume G acts transit.ively on the non-zero
point.s of U. Now the component.s of f that. meets U non-trivially do so
in at. least. one non-zero point. of V, so the components of fI< induce the
st.andard Desarguesian spread on U. Not.e t.hat. the point of t.his claim is that
the component.s of t.he st.andard Desarguesian spread t.hat, U carries, simply
because it. is a 2-dimensional space, must. extend t.o component.s of f I<.

Suppose now t.hat the p-Sylow subgroups of Gare non-t.rivial but nol.
planar. So if P Is such a graup t.hen Vp Is a component. of f. By the
conjugacy of Sylow subgroups it. follows t.hat t.he associat.ed component.s,
which we call p-axes [of Gl form a G-orbit Now P cert.ainly fixes a component.
of t.he Desarguesian spread !:.U. Also wlog X is the a.xis of P. So if more
t.han one axis is involved t.hen t.he t.ransit.ivit.y of P on the axes implies that
the axes all meet. U non-t.rivially anel each corresponds t.o t.he axis of a shears
group of 6.u . The non-planarity hypot.hesis means that P act.s fait.hfully on
6.u and hence Is element.ary abeliano All t.hese groups generat.e SL(2, L) on
6.u , where F < L < K.
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12.2 Algebra Generated By Matrix A.
Let A be an n x n matrix over a field F, and define the F-algebra generated
by A to be the smallest ring < A > of matrices containing A and Fl. Since
we have fini te dimension, A satisfies a unique monic minimum polynomial
I(x) = L:~ di,x' over F; thus

k-l

A k = L f;A' = o,
i=O

and we have an algebra isornorphism:

< A >~ F[x]/(f(x)).

Thus we have:

Remark 12.2.1 < A > is a fie/d iff its minimum polynomial I(x) is irre­
ducible and now < A > is isomolphic to an extension field 01 F by any 01
tlte mais oll(x) = o.
Now, even in the generai case, if .\ is an eigenvalue of A then 1(.\) = O, so
if I(x) is irnd'ucible then the algebra F(.\) ~ F[x]/(f(x)) is the extension
field of F by.\. But the eigenvailles of A are just the roots of I(x) = O,
5ince the minimum and the characteristic polynomials have the same root5.
In particular, the eigenvalues of A are ali congugate in the algebraie cl05nre
of F. Hence the previous remark may be restated as:

Remark 12.2.2 The F -algebra < A > is a field iff its minimum polynomial
I(x) is irrcdueible and now < A > is an extension fie/d 01 F sueh that
< A >~ F(.\), where.\ is any eigenvatue 01 A; the fields F(.\) are isomorphic
as .\ ranges aver the cigenvalues 01 A.

We can now consider the the case of interest: when the F-algebra < A > .
does not cont.ain any non-zero singnlar matrices. In this case, if for some
non-zero T E< A > the minimum polynomial fr(x) = gT(x)hT(X), where
rnin[og, oh] > l, and T E< A > then gr(T) and hT(T) are both non-zero
and singular matrices sinee ther product h(T) is zero. This eontradiet5 OllT

assumption that the non-zero elernents in < A > are non-5ingular, 50 we
have:

Proposition 12.2.3 Il the F -algebm < A >, i. e. the polynomial ring F[A),
is a parlial spreadset 01 matrices then it is a field 01 matrices isomorphie to
the field F(.\), where .\ may be chosen to be any eigenvalue 01 A: these are
ali conjugate aver F.
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12.3 Properties of SL(n, K).

In this sect.ion, we mention a conple of propert,ies of the nnimodnlar group
SL(2, q). The first, property is will be tacit.ly assnmed in several places.

Theorem 12.3.1 Let GL(n, K) be the group 01 non-singular maps 01 an n­
dim-ensional vector space over a finite field K and let SL(n, K) be its lull
unimodular subgroup.

Il H is a subgroup 01 GL(n, K) such that H ~ SL(n, K) then H =
SL(n, K).

Proof: LeI. p denot.e t.he charact.eristic of K. Then every SL(n, K) in
GL(n, K) is generated by t.he seI. of all Sylow p-sllbgronps of GL(n, K), and
t.hese are all in the 'standard' nnimodnlar gronp SL(n, K) since this gronp
is normal in GL(n, K) and cont,ains al. least one of t.he "8ylow p-gronps of
GL(n, K) .•
In the infinite case the Sylow 'p-snbgronps' may be identified with the ma.\:­
imal groups t.hat have characterist.ic polynomial (x - 1)", and these groups
are generated by ali the transvect.ions, and all transvections are conjugate by
a basis-c1lange argument. Such considerations permit the extension of the
above theorem 1.0 t.he case where K is any infinite field.

'Ve record for convenience: .

12.4 Ostrom's Theorem.

,Ve adopt the notation:

p=U o ) :
1 '

From now on nnti! Ostrom's t.heorem has been established we shall assume:

Hypothesis 12.4.1 N ::> {X, Y, I} is a parlial spread on V = r (B r
admitting an automorphism group G =< p, PA >, lor some A # O.

The following elementary observations associated with the above hypothesis
will be frequent1y used:
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Remark 12.4.2· The maps p and PA are non-trivial elations 01 N with axis
X and Y respectively. MO"eove,':

1. The map PA E AutN mops X to y = xA; more genemlly an elation 01
N with axis Y mapping X onto a component y = xM must be the map
PM, and conve"sely il PM E AutN then it is an elation 01 the type just
mentioned.

2. Il PM E AutN then M is non-singular; so A lS non-smgutar.

3. The group Gy 01 all Y -axes elations in G is isomorphic to an additive
group 01 matrices E contained in the full set 01 slopes 01 N. In lact

E = {E E Fn IPE E G},

or equivalently

E = {E I y = xE E Orbcy(X)} ~ Gy .

4. The elation p maps Y onto the unit /ine: y = x := 1.

5. The Y -orbit under G includes the unit line l among its components.

Proof: The maps p and PA are both e!ations of N sinee their fixed spaees
are precise!y eomponents, viz., X and Y respective!y. Ali the listed iterns
are equally trivia! to verify.•
Now suppose U is any G-invariant rank 2 K-sllbspaee of VK , llsing OUl' stan­
dard notation, see page 197. So U eannot be part of a eomponent sinee G
eontains non-trivial elation grollps with distinet B.,es. Moreover, both p and
PA are e!ations of U, viewed as a K-spread, and this spread is Desargllesian
becalls,: il. has order IKI and K is in the kern. So GK induees a llnimodular
grOllp G of U. F\irt.hermore, distinet e!ation axes associated with non-trivial
elations in G musI. meet U in distinct eomponents:

Lemma 12.4.3 Suppose", and {3 are components 01 N such that eaeh is the
axes 01 a non-trivial elation in G. Then "'K n U and {3K n U are distinct
components 01 U.

Proof: Let A and B be the grollps of elations of N whose axes are respec­
t.ively the eomponents "',{3 E N. Sinee A and Bare both non-trivial p-grollps
and are K-linear each fixes a l-dimensionaI K-sllbspaee of U elementwise.
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These spaccs are disjoint. since C<K alld {3K are dist.incl. components of N K .•

The following proposition sho\Vs that t.he grollp G =< p, PA > leaves in­
variant a rank 2 J(-sllbspace U of VK and indllces on U the grollp SL(2, J(),
whenJ( is taken ta be F(À), ",here À is an eigenvaille of A. Thlls establishing
Ost.rom's theorem \Vill mainly involve showing that the G indllces SL(2, I<)
Jaithfully on U.

Proposition 12.4.4 Assume F = GF(p) is a prime field, p > 3, and fix the
extension field J( = F(À), U/here À is any eigenvalue aJ an F-matrix A, in
the algebraie closure oJ F. Then the group G =< p, PA > leaves invariant a
rank tU/o J(-spaee U sueh that GU = SL(2, J().

Proof: There is a I<-matrix B sllch that

ÀOO",O
• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

• • • • • • • ••• • • • • • •

now by a dircct complltat.ion

{3p(3-1 = p,

",here {3 = Diag(B, B).
Similarly the {3-eonjllgate of PA is given by:

(BO) (l A) (B-1 O) = ( l
O B O l O B-1 O

,

BAB-l)
l '

(12.2)

(12.3)

(12.4)

alld by eqll 12.2 the R.HS abovc 11llS top ro\V of form:

(l, O, O, ... ,O, À, O, O, ... ,O),
" ' " ..... ..

" "
so the {3-conjllgat.e of PA leavcs invariant the rank 2 J(-space

U = (x, O, O, ... ,O, y, O, O, ... , O) I x, Y E J( ,
.. , " J.... ...

n "
allcl similarly p, whieh is it.s own {3-conjllgat.e, by eqn (12.3), also leavcs U
illvariant. Thlls the {3-conjllgat.c grollp {3G(3-1 of G leaves invariant the 2­
space H' and dearly indllces on il. t.he grollp

- (10)(lÀ)G =< l l ' O l >
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and now by Dickson's analysis, for p > 31, t.he subgroup of H = 8L(2, I<)
generat.ed by G is 8L(2, L), where L = Z(À), Z t.he prime field of F. BuI.
as onr hypot.hesis spèdes t,haI. Z = F and I< = F(À), we conclude t,haI.
G = 8L(2, I<).
Thus we have shown a l1-conjugat.e of G induces 8L(2, I<) on a rank 2 sub­
space of VK . Hence t.he same musI. hold for G.•
From now we adopt. t.he hypot.hesis and not.at.ion of t.he proposit.ion above:
I< = F(À), where F = GF(p) and À is any eigenvalue' of A; U is a G­
invariant t.wo-dimensional I<-subspace of VK , and as remarked earlier U is a
rank-t.wo I<-space t.hat. is also a Desarguesian spread; so we have seen t.hat
(; = GV = SL(2, I<). It follows t.hat. (; is t.ransit.ive on the non-zero point.s
of U.

Lemma 12.4.5 The set 01 axes E: 01 non-trivial elations in G are in natuml
1-1 correspondence with the components 01 U, i.e., tlte map

,

'I E E: >--+ 'IK n U,

is a bijection lrom E: onta the one-spaces 01 u.
-Proof: Since by remark 12.4.2X is in E:, the transt.ivit.y of G on U· implies

t.hat every one-space of U is ofform 'IK nU, for some component 'I E E:. Thc
converse t,haI. every mcmber E: mcct.s U in a component., has been mentioned
in lemma 12.4.•
In order 1.0 count. t.he conjugacy classes of p-element.s in 8L(2, q) consider:

(
X O ) (I a) (X-IO) = (I ax2

)
O X-l O 1 O X O 1 '

and so we bave:

Remark 12.4.6 Let P be a p-SylolV subgroup 01 8L(2, q), q a power 01 the
prime p. Then N(P) has at most two non-triuial conjugacy classes in P and
distinct classes have the same cardinality.

Lemma 12.4.7 There is an additive gro1Lp 01 mat1'ices A ~ (I<, +) S1Lch
that the identity I E A and the s1Lbgro1Lp 01 Y -shears in G is:

{(~ An IMEA}

lThis explains OstrolU's constraint p > 3.
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Proof: Let E be t,he elation subgroup of O associated wit,h the Y -axis.
This induces faithfully an elat.ion group on U with axis Y, faithf,ù, because
elations of O extend t,o elations of OK and hence cannot fix any points outside
a component. So E may be identified wit.h a subgroup of T} the full elation
group in OU with axis Y: il. is conceivable that O{Y} contains a p-group
P > E such t,hat P, alt.hough not itself an elation group, induces on U the
full elation group T}, of size Wl.
Consider the O{y}-conjugacy class of any non-trivial a E E. We show that
E ~ ([(, +) by showing that this class has > IKI/2 elements, and noting
t.hat any elation group in O has order < 1[(1. since il. must faithfully induce
an elat.ion group of U.
Consider any non-t.rivial elat.ion a E E, Hence for any t E O{y}, tat: l agrees
on U with t,he elat.ion taCI E E and dist.inct. tiit:' are 'induced' by distinct
taCI, sinee they have dist.inct. actions on U. So t.he number of elat,ions 1/ E E
must exceed the numb<:r of elat.ions of U fixing Y that lie in a conjugacy class
of t.he st.abilizer Y in O. So by remark 12.4.6, and t.he fact that E cont.ains
the ident.ity, shows t.hat lEI> (q - 1)/2, so 1[(1 > lEI > q + 1/2 > q/2 and
t.his forces E = [(, by Lagrange's t.heorem, and the fact that EU may be
ident.ified wit.h a subgroup of ([(, +), Since E consists of matrices of type
PAI, where y = xkf is a Cùmponent of N meeting U non-trivially, the desired
result, follows once we have not.ed l E A. This holds because by remark
12.4.2.5 t.he unit line y = x of N is in the O-orbit of Y and hence meets U
non-trivially: so P1 E O means t.hat, l E A. •

Lemma 12.4,8 The a.dditive group A '" ([(, +) is also closed under inver­
sion oJ its non-zero elements.

Proof: Since l E A, we have -1 E A, and the corresponding autoll1or­
phism II E O, Hence by eqn 12,1 O contains:

and now any component y = x/"I of N' moves under T to the component
y = X(_M-I) E JV, So for, M E A, we must have _M-I E A since G, and
hence T, maps components meeting U into other components of the same
type, But since T is an additive group M-l E A. •
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Lemma 12.4.9 G contains thc map:

Proof: Since A is closeci nnder inversion we have PA-l E G, since A E A.
Hence G contains the map

which by a direct calcnlat.ions is t.he mat.rix Diag[A, A-I] defining o.•
The following resnlt is essent.ially the theorem of Ostrom. lt implies that. if
two elat.ions wit.h dist.inct. axes fix a charact.eristic p partiaI spread N, with
p> 3 and INI > 2, t.hen t.he gronp t.hey generat.e a gronp G ~ 5L(2, q) and
G leaves invariant. a rat.ional Desargllesian net. containeci in N .

•

Theorem 12.4.10 (Ostrom's Elation Theorem.) The spreadset A is a
field ~ K, and G = 5L(2,A :: 5L(2, K). Morover, the parlial spread ~A
associated with A is a mtional Desarguesian parlial spread and G has the
standa1d action on this parlial spread, induced by its standard action on ~:F,

a Desarguesian spreacl associated with a field extension :F oJ the fielcl A.

Proof: We first. est.ablish that. t.he polynomial ring F[A] is a field :: IC
Since OA maps t.he component y = xlvI ont.o y = xA-IMA-I, we have
A-1MA-1 E A, whenever M E A. Choosing M from A,I E A, we see that
all odd and even powers of A-I, and hence all powers of A lie in A. But
since A is an addit.ive gronp it. is also an F-modllle, over the prime field F.
Thns t.he polynomial ring F[A] is a subset of A. Bnt. the non-zero elements
of l.he algebra < A > are invert.ible and, of conrse, closed nnder differences.
Thns the algebra < A > is also a part.iaI spreadset of matrices, and hence,
by proposit.ion 12.2.3, t.he algebra is isomorphic to t.he field F(>.. ) = K.
Bnt. since, by lemma 12.4.8 A :: (K, +), we now have A =< A > is a field of
mat.rices ~ K. So, by lemma 12.4.7 we clearly obtain < p, PA >= 5L(2, A) ::
5L(2, K). Moreover, by lemma 12.4.7, the component.s of N - {Y}, meeting
U non-t.rivially are jnst. t.hose of form y = xk, k E A :: K.
Next. choose a mal.rix field :F ::l A snch t.hat /:FI = [FIn, so the associateci
Desargnesian spread ~:F conl.ains the part.ial spread associat.eci with A, that
is t.he component.s of N t.hat. meet. U n'on-t.rivially, or eqnivalent.ly, the com­
ponent.s of N t.hat. are t.he axis of non-t.rivial elat.ions in the gronp G.
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Thlls G :::: SL(2, K) leaves invariant. a Desargllesian spread 1::>.1' such t.hat
t.he component.s of N t.hat. are t.he non-t.rivial elat.ion axes of element.s in G,
when G is regarded as act.ing on N, form t.he slopeset. of a subplane of 1::>.1"
[This may be esablished even wit.hollt. reference 1.0 'U', since the only way
t.hat. SL(2, K) aet.s on a Desargllesian spread over a larger finite field. F :::J K
is 1.0 leave invariant the sllbplane K E& K.] •
Ostrom's theorem needs t.o be slight.ly modified if we pennit. characteristic
]l = 3. We smnmarize wit.hollt. proof t.he sitllat.ion when p = 3 is permit.ted
in Ostrom's t.heorem.

Theorem 12.4.11 Let 7r be a finite translation piane olodd order pT. Let a
and T denote two elations in the translation complement with distinct axes.
Then one 01 the t1l'O lollowing sit'uations occur:

1. (a,T) ~ SL(2,p') 101' some positive integer z and the elation net is a

Desarguesian net which may be eoordinatized by G F(pZ).

2. (a, T) ~ SL(2, 5) and p = 3 and the elation net is a Desarguesian net
which may be coordinatized by G F(9).

Finally, i t. is not.ed t.hat. Ost.rorn's t.heorem is aet.llally more generai than con­
sidered above anel can be more generally applied t.o collineat.ion grollps gen­
erat.ed by Baer p-groups. Not.e t.hat. what. needs t.o be eonsidered is whether
t.he grollp generat.ed by t.he set. of ali elat.ions is also isomorphic t.o SL(2, p"')
for some posit.ive int.eger w and what oeelll'S when p = 2 or 3.

,Ve also may observe t.hat. t.his result. is generally valid over finit.e dimen­
sional vedor spaces of charact.erist.ic p. The proof given uses t.he above result
t.o deal wit.h t.he except.ional case when p = 3, but. is ot.herwise self-eont.ained
alt.hough it. largely follows t.he Ost.rom argllment. described above.

Theorem 12.4.12 Let" be a translation piane llIhieh is finite dimensionai
over its kemel and let K be IL subfield 01 the kemel 01 eharaeteristie not 2.

Let a (md T be affine elo.tions with distinet axes in the translation com­
plement and let G = (a, T). Let N denote the net each 01 whose components
are axes 01 elations in G.

Il G is finite then the characteristic 01" is p < 00 and one 01 the two
lollowing situations occu,.:

1. G :::: SL(2,p') 101' some positive integer s. Furthermore, N is a Pap­
pian net which may be coordinatized by G F(p').
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2. G ~ 8L(2, 5). In thiscase, N is a Pappian net which may be coordi-'
natized by GF(9).

Proof: Assume the dimension·of 7r over 1( is 2k. Represent u by (x, y) I l

(x, Ax + y) and r by (x, y) I l (x + y, y) where A is a k x k matrix with
elements in 1(.

Note that the order of u is finite if and only if the characteristic is finite
p.

The proof of the theorem now follows from the following sequence of
lemmas.

Le.mma 12.4.13 Let À be an eigenvalue oJ A in some extension field 1((À).
Then A and hence À has finite order and

F = GF(p)(À) o:e GF(p'),

for some positive integer s.

Proof: Consider ur = [~ 1][~ n = [ I ~ A 1]. Now square ur

[
)2 ( ) ] .

to obtain (I t/+: A I +1~~+A . Squaring this element, we note

that the entries in the (1,1) -position are always nontrivial polynomial in A
over GF(p).If this element has finite order, it follows that eventurally the
element in the (1, l)-entry is a polynomial in A over GF(p) which is equal to
(1, 1) -entry of a previons element in (ur). Hence, A satisfies a polynomial
over GF(p). Thus, the minimal polynomial for A has coefficients in GF(p)
so that every eigenvalue in an extension field does as well.

Consider t.he field GF(p)(À) within [((À). Let the minimal polynornial
for A have degree n so that every element in GF(p)(À) may be written in
the form 2::7 o ÀiQ; for Cii E GF(p). Hence, GF(p)(À) = F is a finite field
isomorphic to GF(p') for some positive integer s.•

Lemma 12.4.14 Let V denote the underlying vector space over [( and let
U be a l-dimensionai À-eigenvector in V 0K 1((À) = V'. Then U Ef) U is
G-invariant.

Proof: Realize u and r as linear transformations over V' and apply the
form to conclude that U e U is G-invariant.. •
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Lemma 12.4.15 U(f)U defines a Pappian piane which contains a C-invariant
Pappian subplane 7ro coominatized by F.

Proof: Since F = CF(p)(À) is a subfield of K(À), there is a Pappian
subplane 7ro of U (f) U.

Since the elements in C restricted 1.0 U (f) U are ali in EndoF(p)7ro , il. fol­
lows that C leaves 7ro invariant. _

Lemma 12.4.16 If C I ""0 is G'o then either G'o "" SL(2, p') or p = 3 and
C'O"" SL(2, 5).

Proof: Since.".o is a finite translation piane of odd order, the result foliows
from Ostrom's theorem ([34J and [35]). _

Lemma 12.4.17 There are exact/y 1 + p' eiation axes in N when C'o is
SL(2,p') and lO elation axes in N when G'o is SL(2, 5).

Proof: Il. follows exactly as in the previous section that every elation axis
of N is also an axis of ""0 . Since the group generated by the elatioIlS is tran­
sitive on the components of 7ro (even in the case that the group is SL(2,5)
where F "" CF(9) and there are lO elatioIlS in SL(2, 5)), we have that every
component of 7ro is an elation axis of N. _ .

Lemma 12.4.18 IVhen the group crro
"" SL(2,p') then (I A [,p) = 1 and

x = 0, y = xM for all M in GF(p)[A] is a parlia/ spread. Hence, CF(p)[A]
is a fie/d.

Proof: The argnments of the previous section can be utilized in this case 1.0

conclude that ([ A~I ~] ) is a collineation group of the translation piane.

Hence, y = x maps 1.0 y = xA2. nIlder the group and y = xA maps 1.0
y = XA2i+1 It follo\Vs that, Ai - I is nonsingular or zero for each integer j. _

Lemma 12.4.19 When the group C'O"" SL(2,5) then (I A l,p = 3) = 1 and
x = O, y = xM for ali !vI in CF(3)[AJ is a parlia/ spread so that CF(3)[A]
is a fie/d.
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Proof: Hence, we may conclude that the net N is {x = O, Y = x(xAa +,6I)
for alI a,,6 in GF(3)} assuming that the Ostrom theorem is proved for fi­
nite planes in this case. Moreover, alt.hough not a collineation necessarily of

. . ([I A8+ ì 1] )the piane, the net admlts the group O I ;8,ì E GF(p) . Now

again apply the arguments of the previous section again, we may conclude

again that the group ([ A~l ~]) acts on the elation net N so that by the

above argument, (I A j, p = 3) = 1. •

Lemma 12.4.20 The elation net is a Pappian net and the group induced on
U El) U is faithful.

Proof: Let V = X El)X. Thcn X is a semi-simple J( (A}-module = L::" 1 N,.
Let F, denote the restriction of J( (A) to N,. Then N, is a l-dimensionai F;
-algebra. !vloreover, GF(p)[A] is a field which forms a partial spread set so
that GF(p)[A] acts faithfully on each Ni . Since one of these N;'s may be
taken as U, it folIows that GF(p)[A] is isomorphic to GF(p') or GF(9) ex­
actly when the induced group on U El) U is SL(2,p') or GF(9).•
The main result. theorem 12.4.12 has now been established.•

12.5 Generalized Elations.

In this section, we present the preliminaries for the theorem of Foulser on
I3aer p-groups act.ing on translation planes of order p'. When p f 2, Foulser
showed that the Baer axes of t\\'o distinct Baer p-collineations in the trans­
lation complement. are identica! or share exact.ly t.he zero vector. In t.he
previous sect.ion, Ostrom's t.heorem was presented. This theorem can be
viewed as a theorem on partial spreads generated by certain automorphism
groups called generalized elat.ions. Once this is achieved, it is possible to
show t.hat Ostrom's Theorem may be applied to conclude that the groups
generated by Baer p-elements are exact.ly those in the elation case. Using
the extension of Ostrom's theorem, it is possib!e to extend Foulser's work to
the finite dimensionaI case as welI.

In this section, we follow Foulser's work in [11].
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Definition 12.5.1 Let V be a vector space 01 dimension n over K '" Gp(pr).
Let a be a lineartmnslormation 01 V .' Let Fixa denote the set 01 vectors
fixed by a. Then a is said to be a genemlized elation 01 V 01 type t il and
only il a fixes' V/ Fixa pointwise and the dimension 01 Fixa = t ..

The subspace Fixais called the 'axis'ol a and C(a) = (a - 1)V is called
the 'center'ol a.

Remark 12.5.2 We have seen that elations are genemlized elations 01 type
n/2. Consider a Baer collineation a 01 order p. We shall show that a a
genemlized elation' also 01 type'n/2.

Note that a is a genemlized elation il and only il (a - 1)2 = O .

Proposition 12.5.3 Let a be a genemlized elation 01 V 01 type t. Then

(1) The order 01 a is p;

(2) dim C(a) + dim Fixa = n;

(3) t > n/2 and

(4) Il W is a complement 01 Fixa then, with respect to Fixa E!l W, a has
the lollowing matm representation

where A is a t ,x (n - t) matrix.

Exercise 12.5.4 Prove (1).

Exercise 12.5.5 Prove (2) noting that V/Fixa ~ (a -1)V.

Exercise 12.5.6 Use (2) to prove (3) noting thatC(a) C Fixa.

Exercise 12.5.7 Prove (4).

Corollary 12.5.8 The group genemted by a set 01 genemlized elations with.
the same axis is elementary Abelian 01 order p. for some positive integer a.
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'vVe now specialize 1.0 the case when <T is a generalized elation which is
a collineation of a translation piane". of order qnl' with associated vector
space of dimension n over a field K"" GF(q = pr).

\Ve recall t.hat if".;; is a project.ive subplane of order m of a project.ive
piane ".+ of order w t.hen m < ,jW. Hence, if T is a planar collineat.ion of
a t.ranslation pIane t.hen FixT has dimension less t.han or equal t.o half t.he
dimension of t.he underlying vector space.

Theorem 12.5.9 A genemlized elation acting as a collineation 01 a finite
tmnslation piane 01 order p' is either an elation or a Baer p-elemento

Proof. Not.e t.hat. we must. have t.hat a generalized elation <T is of type s if
t.he order of t.he piane is p' since the dimension of t.he vect.or space is 2s over
GF(p). Hence, t.he cardina!it.y of Fix<T is also p'.

Exercise 12.5.10 Show that il a coliineation <T 01 an affine piane olorder
•k fixes exactly k points then Fix<T is either a line or a Baer subplane.

It. remains t.o show t.hat. a Baer p-element is a generalized elat.ion.
Choose any complement. W of Fix<T so t.hat. with respect. t.o t.he decom­

position Fix<T Ef) W, we have t.he following representat.ion for <T

It. remains t.o show that. B = I. Not.e t.hat t.he order of <T is p so we must.
have BP = I.

Suppose L and M are component.s int.ersecting Fix<T in a s/2 -dimensionai
subspace. Choose a basis for t.he int.ersect.ions wit.h Fix<T and ext.end t.o a ba­
sis for L and M and hence for t.he t.ranslat.ion piane. Wit.h t.he decomposit.ion
L EEi 111, we have a basis of 4(s/2)-vect.ors and let.t.ing Xi, Yi be (s/2)-vect.ors,
t.he representation is (Xl, X., YI, y,) where !vI is X, = X. = 0, L is Y' = Y' = °
and Fix<T is given by t.he equation x. =°= Y•. \Vithout. loss of generalit.y,
we assume t.hat. y = X is a component. of FiX<T.

Now consider t.he p'l' + l-component.s of the trans!ation piane t.hat !ie
on FiX<T. These have matrix equat.ions as follows X = O,Y = O,Y = X,Y =

X [~li ~~:] where il. may be not.ed that. the components of FiX<T are x. =

0, Y. = 0, Y. = x. and generally Y. = x.B.i fòr i = 1,2, ... ,p'l' - l.
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Since t.he collineal.ion fixes x = O, y = O, y = x il. follows l.hat the form
for rr is now

I E O O
O D O O
O O I E
O O O D

Note l.hat. comparing the previollS decomposition, we have [~ ~] = A

and [~ ~] = B.

S· fi h l' fF' l [I _ED-l] [BI, B,,] [I E]lllce rr lxes eac me o ,xrr so t. lat O D-l O B;, O D

= [Bd' ;::] which implies in parl.iclllar that. D-lB.,D = B.,. Since {B' i

i = 1, 2, ... , p'/2 - l} defines a spread set, and a spread set acts transitively
on l.he non-zero vecl.ors of l.he associated vector space 11,/2, il. follows t.hat
D centralizes an irredllcible set of linear transformations of V,/z. By Schur's
lemma, il. follows t.hat D belongs to a field (finite division ring) isomorphic
to GF(pe). In any case, since BP = 1 also DP = 1 and hence D = 1 so that
also B = 1.

\Ve now may rest.at.e Osl.rom's t.heorem for generalized elations of vector
spaces provided t.he set of images of l.he fixed poil1t sllbspaces is a partial .
spread. The previolls proof may be reread l.o prove l.he following t.heorem.

Theorem 12.5.11 Let V be a finite vector space of dimension 2k over GF(p).
Let rr and T be generalized elations of V with distinct axes.

Let 8 = {Fixrr (a, p) , FixT (rr, p)}.
Then the following are equivalente
(1) (rr, p) "" 8L(2, p') for some positive integer z.
(2) 8 is a partial spread of V.

(3) Representing (a, p) = ([ ~ ~], [~ ~]) thenGF(p)[A] is afield

isomorphic to GF(p').
Furthermore, when the above conditions are satisfied then 8 is a De­

sarguesian partial spread coordinatizable by GF(p') within the Desarguesian
piane coordinatized by GF(pk) and the unique involution in SL(2,p') is the
kemel homology -1.
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The ql1estions now are whether it can be gnaranteed that two Boor p
-collineat.ions always or ever have disjoint axes and if it is possible that, in
the above theorem a cOIùd be an elation while p is a Baer p-collineation.
Both of these qnestions have been resolved by Foulser when p > 3. Recall
that a Boor sl1bplane of a finite projective piane of order n is a sl1bplane of
order ,;n.


