Chapter 12

Hering-Ostrom Theory:
Elation-Generated Groups.

The celebrated Lenz-Barlotti theory describes maximal groups of central
collineations of arbitrary projective and affine planes. Similarly, one might
ask for a description of groups that are generated by groups of central
collineations of a plane that share neither an axis nor a center. For ex-
ample, in affine Desarguesian planes of order p”, if F; and FE5 are groups
of elations with distinct affine axes they generate the group G = SL(2, p°)

whenever s divides r.
A fundamental theorem of Ostrom asserts that the same conclusion holds

for arbitrary finite translation planes with characteristic p > 3. The case
p < 3 has been completely resolved by Hering, where the conclusions are
slichtly more complicated: for example, in the spreads associated with the
even order Liuneburg planes, elation groups might generate Suzuki groups.
Taken together, the Hering-Ostrom theorem provides a complete description
of groups G generated by affine elations of [partial] spreads and has proven
be a powerful tool for the investigation of finite translation planes.

It is thus natural to seek to generalise this theorem. Major results on
finite translation planes have been obtained by Foulser based on extending
the Hering-Ostrom theorem to generalised elations. It turns out that a gen-
eralised elation, in the context of a spread, is either an affine elation or a Baer
p-element, and this leads to a Baer analogue of the Ostrom’s theorem. In
the next chapter, we use this to establish striking incompatibilty results con-
cerning Baer p-elements and affine elations, and also incompatibility among
Baer p-elements that have different slopesets in odd characteristic. These
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results are due to Foulser in the odd characteristic case. In characteristic
2, Foulser’s results do not apply as there are counterexamples. However, as
demonstrated by the authors via group-theoretic results of Dempwolff, there
1s still still a high degree incompatibility between Baers and elations, even
in spreads of even order. In all cases, the incompatibilities indicated have
a profound influence on the collineation group of a translation plane. For
example, it implies that semifield planes of odd order cannot admit Baer
p-elements.

One of the main goals of the present chapter is to prove Ostrom’s re-
sult, describing the groups G generated by elations acting on finite partial
spreads of characteristic p > 3; we refer the reader to Liineburg’s immaculate
treatment [31] for the full Hering-Ostrom theorem. In addition to Ostrom’s
theorem, and its generalization to finite-dimensional spreads, we shall estab-
lish Foulser’s analogue of Ostrom’s result that applies to generalised elations:
this will be applied in the next chapter to establish the incompatibility the-

orems indicated above.

12.1 Field Extensions and Spreads.

Let V = F" @ F"*, and let K D F be an extension field of the finite field F.

Rather than using tensor product notation, we shall write: Vi = K™ & K™,
Xk =K"®0, Ye = 06 K™; in general if W is an F-subspace of V then
Wy denotes the K-subspace of Vi generated by W; so Wk consists of all
the K-linear combination of any F'-basis of W. This follows by noting that
F-independent subsets in V are also K -independent: look at the rank of the
matrix My of any F-linear basis of IV: the rank of My, whether viewed as
an F-matrix or as a K-matrix is always the same.

Next consider ¢ € Hom(V, F); gix is the unique extension gx of g to
Hom(V, K) and the two maps have the same matrix relative to any F-basis
of V, in particular relative to the canonical basis. So g € GL(V, F') if and
only if gx € GL(Vk, K).

We shall be particularly concerned with the action that a group ¢ <
G L(V, F') induces on a K-subspace U < Vi that is G-invariant, sometimes
when V NU = O. In all cases, the action of G on U is just the action
associated with the matrix group representing G, and we write GV to mean
G%, the action of Gk on U.

A spread I' on V' corresponds in the obvious way to a partial spread I'g,
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of Vi, and I includes the standard components X and Y of F*" @ F" iff 'y
does: that is Xx and Yx lie in ', and a similar comment applies to the
unit line 7. We always assume that we are dealing with spreads and partial
spreads containing the standard components X and Y, as well as the unit
line I. Let M be the spreadset of matrices defining I'; so M, viewed as a set
of K-matrices is a partial spreadset defining the partial spread I'y.

Next focus on a rank two K-subspace U < Vi that meets non-trivially
the subsaces X and Y of V, and let I'yy be the set of all components v € 'k
that meet U non-trivially. Since U has rank 2 over K, I'y is a Desarguesian
K-spread on U, and it meets non-trivially each of X, Y and I, in three
distinct components.

Next suppose G < GL(V, F) preserves I' and such that G leaves U-
invariant. So Gk is a K-linear automorphism group of the partial spread
I'ic and also leaves U invariant. Thus G% < GL(2, K). Moreover, the given
clation groups continue to act as elation elation groups on the Desarguesian
spread 'y, so GY = SL(2,K’') for some K’ C K. The close connection
between G} and G leads to a similar conclusion for G, as required.

This suggests a strategy: take any F'-spread admitting G, then seek an ex-
tension field & over which G fixes a 2-space made up of distinct eigenvectors
of some normal subgroup of G and then apply the above argument.

Returning to the main theme, assume G acts transitively on the non-zero
points of U. Now the components of I' that meets U non-trivially do so
in at least one non-zero point of V, so the components of I'y induce the
standard Desarguesian spread on U. Note that the point of this claim is that
the components of the standard Desarguesian spread that U carries, simply
because it is a 2-dimensional space, must extend to components of I'j.

Suppose now that the p-Sylow subgroups of G are non-trivial but not
planar. So if P is such a group then Vp is a component of I'. By the
conjugacy of Sylow subgroups it follows that the associated components,
which we call p-axes [of G| form a G-orbit Now P certainly fixes a component
of the Desarguesian spread Ay. Also wlog X is the axis of P. So if more
than one axis is involved then the transitivity of P on the axes implies that
the axes all meet U non-trivially and each corresponds to the axis of a shears
group of Ay. The non-planarity hypothesis means that P acts faithfully on
Ay and hence is elementary abelian. All these groups generate SL(2, L) on
.L\U, where F “_: L ﬂ K.
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12.2 Algebra Generated By Matrix A.

Let A be an n X n matrix over a field F', and define the F-algebra generated
by A to be the smallest ring < A > of matrices containing A and F1. Since
we have finite dimension, A satisfies a unique monic minimum polynomial

f(z) = Zf;[} fix* over F'; thus
k—1
AL =3 fili =0,
1={)

and we have an algebra isomorphism:
< A > Fla)/(f(x)).

Thus we have:

Remark 12.2.1 < A > is a field iff its minimum polynomial f(z) is irre-
ductble and now < A > is tsomorphic to an extension field of F' by any of

the roots of f(x) = 0.

Now, even in the general case, if A is an eigenvalue of A then f(A) = 0, so
if f(x) is irreducible then the algebra F(A) = Flz|/(f(z)) is the extension
field of F' by A. But the eigenvalues of A are just the roots of f(z) = 0,
since the minimum and the characteristic polynomials have the same roots.
In particular, the eigenvalues of A are all congugate in the algebraic closure
of F'. Hence the previous remark may be restated as:

Remark 12.2.2 The F-algebra < A > 1s a field iff its minimum polynomial
f(x) is irreducible and now < A > 1is an extension field of F' such that
< A > F()), where A is any etgenvalue of A; the fields F(\) are isomorphic
as A ranges over the eigenvalues of A.

We can now consider the the case of interest: when the F-algebra < A >
does not contain any non-zero singular matrices. In this case, if for some
non-zero T €< A > the minimum polynomial fr(z) = gr(z)hr(z), where
min{dg,0h} > 1, and T €< A > then gp(T) and hy(T) are both non-zero
and singular matrices since ther product fr(7T) is zero. This contradicts our
assumption that the non-zero elements in < A > are non-singular, so we

have:

Proposition 12.2.3 If the F-algebra < A >, i.e. the polynomial ring F|A],
i1s a partial spreadset of matrices then it is a field of matrices isomorphic to
the field F'(A\), where A may be chosen to be any eigenvalue of A: these are

all conjugate over F'.
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12.3 Properties of SL(n, K).

In this section, we mention a couple of properties of the unimodular group
SL(2,q). The first property is will be tacitly assumed in several places.

Theorem 12.3.1 Let GL(n, K) be the group of non-singular maps of an n-
dim-ensional vector space over a finite field K and let SL(n, K) be its full

unimodular subgroup.
If H is a subgroup of GL(n,K) such that H = SL(n,K) then H =
SL(n, K).

Proof: Let p denote the characteristic of K. Then every SL(n,K) in
GL(n, K) is generated by the set of all Sylow p-subgroups of GL(n, K), and
these are all in the ‘standard’ unimodular group SL(n, K) since this group
is normal in GL(n, K) and contains at least one of the Sylow p-groups of

GL(n,K). =

In the infinite case the Sylow ‘p-subgroups’ may be identified with the max-
imal groups that have characteristic polynomial (z — 1)*, and these groups
are generated by all the transvections, and all transvections are conjugate by
a basis-change argument. Such considerations permit the extension of the

above theorem to the case where K is any infinite field.
We record for convenience: '

({1 0} (1 -1 S R S S 0 1
P=\11)" “Tlo 1) Ee P T -10)

(12.1)

12.4 Ostrom’s Theorem.

We adopt the notation:

(10 (1M
p_ lljpﬂf_gl'

From now on until Ostrom’s theorem has been established we shall assume:

Hypothesis 12.4.1 A" D {X,Y,1} is a partial spread on V = F" & F"
admitting an automorphism group G =< p,p4 >, for some A # 0.

The following elementary observations associated with the above hypothesis
will be frequently used:
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Remark 12.4.2 The maps p and p4 are non-trivial elations of N' with axis
X and Y respectively. Moreover:

1. The map ps € AutN maps X to y = xA; more generally an elation of
N with azis Y mapping X onto a component y = M must be the map
par, and conversely if pyr € AutN then it is an elation of the type just
mentioned.

2. If ppr € AutN then M is non-singular; so A 1s non-singular.

8. The group Gy of all Y -azes elations in G is isomorphic to an additive
group of matrices £ contained in the full set of slopes of N'. In fact

or equivalently

E={F|y=zF € Orbg,(X)} = Gy.

4. The elation p maps Y onto the unit line: y =z := 1.
5. The Y -orbit under G includes the unit line 1 among its components.

Proof: The maps p and p4 are both elations of A since their fixed spaces
are precisely components, viz., X and Y respectively. All the listed items
are equally trivial to verify. =

Now suppose U is any G-invariant rank 2 K-subspace of Vi, using our stan-
dard notation, see page 197. So U cannot be part of a component since G
contains non-trivial elation groups with distinct axes. Moreover, both p and
pa are elations of U, viewed as a K-spread, and this spread is Desarguesian
because it has order |K| and K is in the kern. So G induces a unimodular
group G of U. Furthermore, distinct elation axes associated with non-trivial
elations in G must meet U in distinct components:

Lemma 12.4.3 Suppose a and 3 are components of N such that each is the
azes of a non-trivial elation in G. Then ax NU and Bx NU are distinct

components of U.

Proof: Let A and B be the groups of elations of N/ whose axes are respec-

tively the components «, 3 € N. Since A and B are both non-trivial p-groups
and are K-linear each fixes a 1-dimensional K-subspace of U elementwise.
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These spaces are disjoint since ag and Sx are distinct components of Nx. m
The following proposition shows that the group G =< p,ps > leaves in-
variant a rank 2 K-subspace U of Vi and induces on U the group SL(2, K),
when K is taken to be F'(A\), where A is an eigenvalue of A. Thus establishing
Ostrom’s theorem will mainly involve showing that the G induces SL(2, K)

faithfully on U.

Proposition 12.4.4 Assume F = GF(p) is a prime field, p > 3, and fiz the
extension field K = F()), where A is any eigenvalue of an F-matriz A, in
the algebraic closure of F'. Then the group G =< p, pa > leaves invariant a
rank two K-space U such that GV = SL(2, K).
Proof: Thereis a K-matrix B such that

A 00 ---0

BQIAB | e | (122)

iiiiiiiiiiiiiii

now by a direct computation

BpB~ = p, (12.3)
where 3 = Diag(B, B).

Similarly the B-conjugate of p4 is given by:

(05)(01)(% s2)=(o"F7) 020

and by eqn 12.2 the RHS above has top row of form:
(1,0,0,...,0,A,0,0,...,0),
S — ’

n Th

so the -conjugate of p, leaves invariant the rank 2 K-space

n TL

F: {(EJ,U,U,...,O,E,OJO,...,Q)Ifﬂ,ye I{}r

and similarly p, which is its own [-conjugate, by eqn (12.3), also leaves U
invariant. Thus the B-conjugate group BSGB3~! of G leaves invariant the 2-
space W and clearly induces on it the group

~ (10 1 A
("‘"(1 1)’(0 1)>
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and now by Dickson’s analysis, for p > 3!, the subgroup of H = SL(2, K)
generated by G is SL(2, L), where L = Z()\), Z the prime field of F. But
as our hypothesis species that Z = F and KX = F(A), we conclude that
G = SL(2,K).

Thus we have shown a -conjugate of G induces SL(2, K) on a rank 2 sub-
space of V. Hence the same must hold for G. =

From now we adopt the hypothesis and notation of the proposition above:
K = F()\), where FF = GF(p) and X is any eigenvalue of A; U is a G-
invariant two-dimensional /{-subspace of Vi, and as remarked earlier U is a
rank-two K-space that is also a Desarguesian spread; so we have seen that
G =GV = SL(2,K). It follows that G is transitive on the non-zero points

of U.

Lemma 12.4.5 The set of axzes € of non-trivial elations in G are in natural
1-1 correspondence with the components of U, i.e., the map

T}EE*—*?}‘KHU,

is a bijection from € onto the one-spaces of U.

Proof: Since by remark 12.4.2X is in £, the transtivity of G on U* implies
that every one-space of U is of form 1, NU, for some component n € £€. The
converse that every member £ meets U in a component, has been mentioned

in lemma 12.4. =
In order to count the conjugacy classes of p-elements in SL(2, ¢) consider:

(5 )0 1) (o 2)=(o"2).

and so we have:

Remark 12.4.6 Let P be a p-Sylow subgroup of SL(2,q), q a power of the
prime p. Then N(P) has at most two non-trivial conjugacy classes in P and

distinct classes have the same cardinality.

Lemma 12.4.7 There is an additive group of matrices A =2 (K,+) such
that the identity I € A and the subgroup of Y -shears in G 1is:

1 M
(2 1wed

1This explains Ostrom’s constraint p > 3.
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Proof: Let E be the elation subgroup of G associated with the Y -axis.
This induces faithfully an elation group on U with axis Y, faithful, because
elations of GG extend to elations of G and hence cannot fix any points outside
a component. So E may be identified with a subgroup of n the full elation
group in GY with axis Y: it is conceivable that Gy} contains a p-group
P > E such that P, although not itself an elation group, induces on U the
full elation group 7, of size |K|.

Consider the G(y)-conjugacy class of any non-trivial a € £. We show that
F = (K,+) by showing that this class has > |K|/2 elements, and noting
that any elation group in G has order < |K/|, since it must faithfully induce
an elation group of U. )
Consider any non-trivial elation a € E. Hence for any t € Gy, tat—! agrees
on U with the elation tat™! € F and distinct {at—! are ‘induced’ by distinct
tat™?!, since they have distinct actions on U. So the number of elations v € E
must exceed the number of elations of U fixing Y that lie in a conjugacy class
of the stabilizer Y in G. So by remark 12.4.6, and the fact that E contains
the identity, shows that |E| > (¢ —1)/2,s0 |K| > |E| > ¢+ 1/2 > ¢/2 and
this forces £ = K, by Lagrange’s theorem, and the fact that EY may be
identified with a subgroup of (/,+). Since E consists of matrices of type
par, Where y = zM is a component of A meeting U non-trivially, the desired
result follows once we have noted 1 € A. This holds because by remark
12.4.2.5 the unit line y = =z of A is in the G-orbit of Y and hence meets U

non-trivially: so p; € G means that 1 € A. =

Lemma 12.4.8 The additive group A = (K, +) is also closed under inver-
sion of its non-zero elements.

Proof: Since 1 € A, we have —1 € A, and the corresponding automor-
phism o € . Hence by eqn 12.1 G contains:

(23]

and now any component y = zM of N moves under 7 to the component
y=z(—M™1) € N. So for, M € A, we must have —M~! € A since G, and
hence 7, maps components meeting U into other components of the same
type. But since 7 is an additive group M~1 € A. =
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Lemma 12.4.9 G contains the map:

6;"1 : (I: y) = (‘TA:yA_l) >

Proof: Since A is closed under inversion we have p4-1 € G, since A € A.
Hence GG contains the map

PAT  pa-rTPAT ",
which by a direct calculations is the matrix Diag[A, A™!] defining §. =
The following result is essentially the theorem of Ostrom. It implies that if
two elations with distinct axes fix a characteristic p partial spread A, with
p > 3 and |[N| > 2, then the group they generate a group G & SL(2,q) and
G leaves invariant a rational Desarguesian net contained in N.

Theorem 12.4.10 (Ostrom’s Elation Theorem.) The spreadset A is a
field =2 K, and G = SL(2, A = SL(2,K). Morover, the partial spread A4
assoctated with A is a rational Desarguesian partial spread and G has the
standard action on this partial spread, induced by its standard action on Ar,
a Desarguesian spread associated with a field extension F of the field A.

Proof: We first establish that the polynomial ring F[A] is a field & K.
Since 64 maps the component y = zM onto y = zA 'MA~!, we have
A *MA-! € A, whenever M € A. Choosing M from A,I € A, we see that
all odd and even powers of A~!, and hence all powers of A lie in .A. But
since A is an additive group it is also an F-module, over the prime field F.
Thus the polynomial ring F'[A] is a subset of .A. But the non-zero elements
of the algebra < A > are invertible and, of course, closed under differences.
Thus the algebra < A > is also a partial spreadset of matrices, and hence,
by proposition 12.2.3, the algebra is isomorphic to the field F(\) = K.

But since, by lemma 12.4.8 A = (K, +), we now have 4 =< A > is a field of
matrices = K. So, by lemma 12.4.7 we clearly obtain < p, py >= SL(2, A) =
SL(2, K). Moreover, by lemma 12.4.7, the components of N’ — {Y'}, meeting
U non-trivially are just those of form y =zk, k€ A= K.

Next choose a matrix field 7 O A such that |F| = |F|*, so the associated
Desarguesian spread A r contains the partial spread associated with A, that
is the components of A/ that meet U mon-trivially, or equivalently, the com-
ponents of A that are the axis of non-trivial elations in the group G.
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Thus G = SL(2, K) leaves invariant a Desarguesian spread Az such that
the components of A/ that are the non-trivial elation axes of elements in G,
when G is regarded as acting on N, form the slopeset of a subplane of Ax.
'This may be esablished even without reference to ‘U’, since the only way
that SL(2, K) acts on a Desarguesian spread over a larger finite field ¥ D K

is to leave invariant the subplane K @ K.] m
Ostrom’s theorem needs to be slightly modified if we permit characteristic

p = 3. We summarize without proof the situation when p = 3 is permitted
in Ostrom’s theorem.

Theorem 12.4.11 Let 7 be a finite translation plane of odd order p™. Let o
and T denote two elations in the translation complement with distinct axes.
Then one of the two following situations occur:

1. {o,7) = SL(2,p%) for some positive integer z and the elation net is a
Desarguesian net which may be coordinatized by GF(p®).

2. {o,7) =2 SL(2,5) and p = 3 and the elation net is a Desarguesian net
which may be coordinatized by GF(9).

Finally, it is noted that Ostrom’s theorem is actually more general than con-
sidered above and can be more generally applied to collineation groups gen-
erated by Baer p-groups. Note that what needs to be considered is whether
the group generated by the set of all elations is also isomorphic to SL(2, p*)
for some positive integer w and what occurs when p = 2 or 3.

We also may observe that this result is generally valid over finite dimen-
sional vector spaces of characteristic p. The proof given uses the above result
to deal with the exceptional case when p = 3, but is otherwise self-contained
although it largely follows the Ostrom argument described above.

Theorem 12.4.12 Let & be a translation plane which is finite dimensional
over its kernel and let K be o subfield of the kernel of characteristic not 2.
Let o and 7 be affine elations with distinct ares in the translation com-
plement and let G = (o, 7). Let N denote the net each of whose components
are ares of elations in G.
If G is finite then the characteristic of m 1s p < oo and one of the two
follourng situations occur:

1. G =2 SL(2,p°) for some positive integer s. Furthermore, N is a Pap-
pian net which may be coordinatized by GF(p*).
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2. G = SL(2,5). In this case, N is a Pappian net which may be coordi-
natized by GF(9).

Proof: Assume the dimension of m over K is 2k. Represent o by (z,y) +——
(z, Az + y) and 7 by (z,y) — (= + y,y) where A is a k£ X k matrix with

elements in K.
Note that the order of ¢ is finite if and only if the characteristic is finite

P.
The proof of the theorem now follows from the following sequence of

lemmas.

Lemma 12.4.13 Let )\ be an eigenvalue of A in some extension field K()).
Then A and hence A has finite order and

F =GF(p)(A) =~ GF(p®),

for some positive integer s.

i - i .

Proof: Consider o7 = é /;1 § ? = ! _; A ;l . Now square o1
- 9 - = = - - ' -

to obtain Y ; IA—I)— ;—1}_ A +I?il+ A . Squaring this element, we note

that the entries in the (1,1) -position are always nontrivial polynomial in A
over GF(p). If this element has finite order, it follows that eventurally the
clement in the (1, 1)-entry is a polynomial in A over G F'(p) which is equal to
(1,1) -entry of a previous element in (o7). Hence, A satisfies a polynomial
over GF(p). Thus, the minimal polynomial for A has coefficients in GF(p)
so that every eigenvalue in an extension field does as well.

Consider the field GF'(p)(A) within K ()). Let the minimal polynomial
for A have degree n so that every element in GF(p)(A) may be written in
the form 31, Na; for oy € GF(p). Hence, GF(p)()\) = F is a finite field
isomorphic to GF(p°®) for some positive integer s.m

Lemma 12.4.14 Let V denote the underlying vector space over K and let
U be a 1-dimensional A-eigenvector in V @ K(A\) = V*. Then U & U is
G-invariant.

Proof: Realize ¢ and 7 as linear transformations over V* and apply the
form to conclude that U & U is G-invariant. m
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Lemma 12.4.15 U®U defines a Pappian plane which contains a G-invariant
Pappian subplane m, coordinatized by F.

Proof: Since F = GF(p)()) is a subfield of K()), there is a Pappian

subplane 7, of U @ U.
Since the elements in G restricted to U @ U are all in Endgrp)m,, it fol-

lows that G leaves 7, invariant. =

Lemma 12.4.16 If G | 7, is G™ then either G™ ~ SL(2,p°) or p = 3 and
G™ ~ SL(2,5).

Proof: Since 7, is a finite translation plane of odd order, the result follows
from Ostrom’s theorem ([34] and [35]). =

Lemma 12.4.17 There are exactly 1 + p° elation azes in N when G™ 1s
SL(2,p°) and 10 elation azes in N when G™ is SL(2,5).

Proof: It follows exactly as in the previous section that every elation axis
of NV is also an axis of 7, . Since the group generated by the elations is tran-
sitive on the components of 7,(even in the case that the group is SL(2,5)
where F ~ GF(9) and there are 10 elations in $L(2,5)), we have that every
component of 7, is an elation axisof N. = |

Lemma 12.4.18 When the group G™ =~ SL(2,p°) then (| A |,p) = 1 and
z=0,y=2aM for all M in GF(p)[A] is a partial spread. Hence, GF(p)|A]
s a field.

Proof: The arguments of the previous section can be utilized in this case to

e
conclude that < AD ;?1 is a collineation group of the translation plane.

Hence, y = z maps to y = A% under the group and y = zA maps to
y = A%+, It follows that A7 — I is nonsingular or zero for each integer j. m

Lemma 12.4.19 When the group G™ ~ SL(2,5) then (| A|,p=3) =1 and
z =0,y =2zM for all M in GF(3)[A] is a partial spread so that GF(3)[A]
is a field.
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Proof: Hence, we may conclude that the net N is {z =0,y = z(zAa+[I)
for all o, 8 in GF(3)} assuming that the Ostrom theorem is proved for fi-
nite planes in this case. Moreover, although not a collineation necessarily of

- _ 1 AS++I
the plane, the net admits the group < 0 }!—7 0,7y € GF (p)> . Now
again apply the arguments of the previous section again, we may conclude

" 41
again that the group < AO E‘}l > acts on the elation net NV so that by the

above argument, (| A|,p=3)=1. =

Lemma 12.4.20 The elation net s a Pappian net and the group induced on
U U s faithful.

Proof: LetV = X®X. Then X is a semi-simple K (A)-module = 7 ; N,.

Let F; denote the restriction of K {(A) to N;. Then N; is a 1-dimensional F;
-algebra. Moreover, GF(p)[A] is a field which forms a partial spread set so

that GF(p)[A] acts faithfully on each N;. Since one of these N;’s may be

taken as U, it follows that GF(p)[A] is isomorphic to GF(p°) or GF(9) ex-

actly when the induced group on U & U is SL(2,p°) or GF(9). =

The main result theorem 12.4.12 has now been established.m -

12.5 Generalized Elations.

In this section, we present the preliminaries for the theorem of Foulser on
Baer p-groups acting on translation planes of order p”. When p 5 2, Foulser
showed that the Baer axes of two distinct Baer p-collineations in the trans-
lation complement are i1dentical or share exactly the zero vector. In the
previous section, Ostrom’s theorem was presented. This theorem can be
viewed as a theorem on partial spreads generated by certain automorphism
groups called generalized elations. Once this is achieved, it is possible to
show that Ostrom’s Theorem may be applied to conclude that the groups
generated by Baer p-elements are exactly those in the elation case. Using
the extension of Ostrom’s theorem, it is possible to extend Foulser’s work to
the finite dimensional case as well.
In this section, we follow Foulser’s work in [11].



CHAPTER 12. HERING-OSTROM THEORY: ELATION-GENERATED GROUPS.210

Definition 12.5.1 LetV be a vector space of dimensionn over K ~ G'F(p").
Let o be a linear transformation of V . Let Fixo denote the set of vectors
fired by 0. Then o is said to be a generalized elation of V' of type t if and
only if o fizes V/Fizo pointwise and the dimension of Fizo =t..

The subspace Fizo s called the ‘azis’of o and C(o) = (6 — 1)V 1s called
the ‘center’of o.

Remark 12.5.2 We have seen that elations are generalized elations of type
n/2. Consider a Baer collineation o of order p. We shall show that o a

generalized elation also of type n/2.
Note that o is a generalized elation if and only if (0 —1)> =0 .

Proposition 12.5.3 Let o be a generalized elation of V' of type t. Then
(1) The order of o is p;
(2) dim C(o) + dim Fizo = n,
(3) t >n/2 and

(4) If W is a complement of Fixo then, with respect to Fixoc @ W, o has
the following matrix representation

"
I -

T

|
where A is a t X (n — t) matriz.

Exercise i2.5.4 Prove (1).

Exercise 12.5.5 Prove (2) noting that V/Fizo = (0 — 1)V.

Exercise 12.5.6 Use (2) to prove (8) noting that C(o) C Fizo.

Exercise 12.5.7 Prove (4)

Corollary 12.5.8 The group generated by a set of generalized elations with.
the same axis is elementary Abelian of order p® for some positive integer a.
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We now specialize to the case when o is a generalized elation which is
a collineation of a translation plane m of order ¢™/? with associated vector

space of dimension n over a field K ~ GF(qg = p").

We recall that if 7} is a projective subplane of order m of a projective
plane 7t of order w then m < {/w. Hence, if 7 is a planar collineation of
a translation plane then FizT has dimension less than or equal to half the

dimension of the underlying vector space.

Theorem 12.5.9 A generalized elation acting as a collineation of a finite
translation plane of order p° is either an elation or a Baer p-element.

Proof. Note that we must have that a generalized elation o is of type s if
the order of the plane is p* since the dimension of the vector space is 2s over

G F(p). Hence, the cardinality of Fizo is also p®.

Exercise 12.5.10 Show that if a collineation o of an affine plane of order
k fizes exactly k points then Fixzo is either a line or a Baer subplane.

It remains to show that a Baer p-element is a generalized elation.
Choose any complement W of Fixo so that with respect to the decom-
position Fizo & W, we have the following representation for o

A
_DB-

It remains to show that B = I. Note that the order of ¢ is p so we must
have BP = I

Suppose L and M are components intersecting Fizo in a s/2 -dimensional
subspace. Choose a basis for the intersections with Fizo and extend to a ba-
sis for L and M and hence for the translation plane. With the decomposition
L & M, we have a basis of 4(s/2)-vectors and letting x;, y; be (s/2)-vectors,
the representation is (21, Z2,¥1,y2) where M iszy =22 =0,Lisy; =92 =0
and Fizo is given by the equation 25 = 0 = y5. Without loss of generality,

we assume that y = z is a component of Fizo.
Now consider the p*/? + 1-components of the translation plane that lie

on Fizxo. These have matrix equations as follows z = 0,y = 0,y = z,y =
' By By |
0 By |
0,12 = 0,92 = x5 and generally y, = z2By; for i = 1, 2, P — 1.

x where it may be noted that the components of Fizo are z; =
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Since the collineation fixes x = 0,y = 0,y = x it follows that the form
for o is now

I E 0 0]
0 D 0 O
0 0 I E
0 0 0 D
. . . ' E 0
Note that comparing the previous decomposition, we have 0o E|= A
D 0] '
and 0 D = B.
. _ y I —ED'|[Byu Bu|[I E |
Since o fixes each line of Fizo so that 0 D-1 || o Bs|lo D
' By Boi | .. . . 1 :
=1 0 B which implies in particular that D~' By D = By;. Since {By;
4i

i = 1,2,...,p°/% — 1} defines a spread set, and a spread set acts transitively
on the non-zero vectors of the associated vector space Vo, it follows that
D centralizes an irreducible set of linear transformations of V;/,. By Schur’s
lemma, it follows that D belongs to a field (finite division ring) isomorphic
to GF(p®). In any case, since B? =1 also DP = 1 and hence D =1 so that
also B = 1.

We now may restate Ostrom’s theorem for generalized elations of vector
spaces provided the set of images of the fixed point subspaces is a partial
spread. The previous proof may be reread to prove the following theorem.

Theorem 12.5.11 LetV be a finite vector space of dimension 2k over GF(p).
Let o and T be generalized elations of V' with distinct azes.

Let S = {Fizo (o,p), Fizt (0,p)}.

Then the following are equivalent:

(1) (o, p) ~ SL(2,p*) for some positive integer z.

(2) S is a partial spread of V.

(3) Representing (, p) =< é ? | i ) >then GF(p)[A] is a field

isomorphic to GF(p*).

Furthermore, when the above conditions are satisfied then S is a De-
sarquesian partial spread coordinatizable by GF(p®) within the Desarguesian
plane coordinatized by GF(p*) and the unique involution in SL(2,p?) is the

kernel homology —1.
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The questions now are whether it can be guaranteed that two Baer p
-collineations always or ever have disjoint axes and if it is possible that, in
the above theorem o could be an elation while p is a Baer p-collineation.
Both of these questions have been resolved by Foulser when p > 3. Recall
that a Baer subplane of a finite projective plane of order n is a subplane of

order \/n.



