Chapter 11

Infinite Baer Nets.

In this chapter, we analyze the structure of a net embedded in a translation
plane which contains at least one Baer subplane. Actually, it is not necessary
that the translation plane be finite. In fact, we may analyze any vector space
net. containing a weaker version of subplane than Baer.

If a net contains a Baer subplane, it may contain exactly one. Or there
may be exactly two Baer subplanes in the given net such that the subplanes
share all of their parallel classes. In these lectures, we concentrate mainly
on the case where there are at least three Baer subplanes sharing an affine
point (the zero vector) and all of their infinite points (parallel classes).

11.1 Point-Baer And Line Baer Subplanes.

In any finite projective plane 7 of order n, a Baer subplane g is just a sub-
plane of order v/n. Hence, to extend the notion of a Baer subplane usefully
to the infinite case, it becomes necessary to replace the order-property of a
Baer subplane by a characterization that can be used to define this concept
in the infinite case. This lecture reviews some of the possible ways in which
this has been attempted and also introduces a structure theorem of nets con-
taining at least three Baer subplanes due to Johnson and Ostrom. This will
be used in the next two lectures to extend the comprhensive characterization
of such nets in the finite case, due to Foulser, to the infinite case.

A point-Baer subplane of a projective plane is a subplane such that every
point of the plane is incident with a line of the subplane. Similarly, a line-
Baer subplane is a subplane such that every line is incident with a point of
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1. Ao(f+g)=Aof+Aog;

2. (Ao f)og=Aofoy)

However, since A was chosen arbitrarily, and the above identities obviously
apply even when A is replaced by members of F', we conclude from the above
(plus the quasifield distributive law):

Lemma 10.5.8 F' is a field and Q) is a vector space over F [acting from the
left] of dimension N > 2. Moreover G is a linear group of this vector space.

Now view () as the projective space PG(N — 1,q) and observe that the
projective group G has two point orbits. Hence by an important result, G
also has two hyperplane orbits, one ot which must be all the hyperplanes
through the ‘point’ F'. The other hyperplane orbit must therefore include
all the hyperplanes ‘off’ a point: this is the same number as the number of

points off a hyperplane, viz., ¢¥~!. Thus we have shown

Lemma 10.5.9 If N > 2 then G contains a p-group of order ¢, p being
the characteristic of F'.

But now we have seen that this is impossible, unless ¢ = 2 and N = 4,
corresponding to the case when F = GF(2). It can be shown however, that
cven in this case AutQ) contains another subgroup H that H fixes a Baer
subfield K elementwise and acts transitively on ) — K, so in a technical
sense we still have a generalized Hall plane. However, the first choice of F
is also possible: corresponding to the Lorimer-Rahilly plane of order 16, and
this is the only known finite plane which is tangentially transitive relative to
a non-Baer subplane. Let us summarize our conclusions:

Theorem 10.5.10 A finite translation plane 7 is tangentially transitive rel-
ative to a subplane wy iff ™ 1s a generalized Hall plane and my s a Desargue-
sian Baer subplane (defining a derivable net) unless the order of the plane is
16 in which case my may taken as a plane of order to when m s the Lorimer-
Rahilly plane of order 16: and this is the only case where the non-Baer

possibility can occur.

Note that we have not verified here the claimed uniqueness of the Lorimer-
Rahilly plane, although this has been established in the literature, see Walker

[40)
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the subplane. Every finite point-Baer subplane is line-Baer and conversely.
However, in the infinite case, the concepts of point-Baer and line-Baer are
independent (Barlotti [3]). So, a subplane is Baer if and only if it is both
point-Baer and line-Baer. An affine point-Baer subplane is an affine plane
which is point-Baer when the plane is considered projectively. A collineation
o of an affine plane which fixes a point-Baer subplane pointwise is said to be
a point-Baer perspectivity if and only if the collineation fixes each subplane
of a set C of point-Baer subplanes which form a cover of the points of the
affine plane. The collineation ¢ is a point-Baer elation if and only if Fizo is
in C. Otherwise, ¢ is a point-Baer homology. C' is called the center of the
collineation, the elements of C are called the central planes and Fizo is the
axis.

If a collineation fixes a point-Baer subplane pointwise then, conceivably,
it is not a point-Baer perspectivity. However, the structure of point-Baer
collineations is essentially completely determined for translation planes. An
axial-Baer perspectivity o is a point-Baer perspectivity such that Fizo pro-
jectively nontrivially intersects each point-Baer subplane of the center.

The authors have recently provided a general structure theory for point-
Baer and line-Baer perspectivities. In particular, the following result is fun-

damental.

Theorem 11.1.1 (Jha, Johnson [22].) Let 7w be a translation plane and .
let o be a collineation which fizes a point-Baer subplane pointw:ise.

Then o is either a point-Baer homology (and hence an azial-Baer homol-
ogy) or ¢ is an axial-Baer elation and in this case all the planes of the center
are proper Baer subplanes. In particular, in all cases, the azris Fixo is a

proper Baer subplane of m and o has a unique center.

Let N be a vector space net which admits at least three distinct point-Baer
subplanes that share the same infinite points and mutually share an affine

point. Assume that N has exactly these same infinite points.

In [10], Foulser completely determined the structure of N, when the planes
are finite. In the section following this preliminary part, we show that this
theory can also be determined in the more general situation when [V 1s pos-
sibly infinite. When we can, we follow the general outlines of Foulser’s argu-
ment. However, there are some situations which require different approaches
so we will require a slightly different method paying particular attention to

commutativity properties.
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We have mentioned the notation of a direct product of affine planes. We
shall require the following results of Johnson and Ostrom [28].

Theorem 11.1.2 (Johnson-Ostrom [28, (4.20) and (5.1)].) Let M be an
Abelian translation net. If M contains three distinct point-Baer subplanes

incident with a point whose infinitte points are the infinite points of M then
M is a reqular direct product net and each pair of the planes are isomorphic.
Furthermore, M 1is then a vector space net over a field L and the point-
Baer subplanes may be considered L-subspaces.
If one of the subplanes w, has kernel K, and M 1is isomorphic to 7, X 7,

then M is a K,-vector space net.
At least three of the point-Baer subplanes of the net which share an affine
point and all of their parallel classes are K,-subspaces but not all point-Baer

subplanes are necessarily I- subspaces.

We point out that in (4.20) of [28], it is proved that L may be taken as the

prime field of any of the affine planes.
In the following result, we specialize to the situation we are discussing.

Theorem 11.1.3 (Johnson-Ostrom (5.2) [28].) Let M be a vector space
net over a skewfield K where M is a regqular direct product net of two iso-

morphic point-Baer subplanes with kernel K,.
Then M admits ' =2 GL(2, K,) as a collineation group that fixes an affine

point and fizes each parallel class.
Furthermore, I' is generated by the groups which fix point-Baer subplanes

poinlwise.
If M =m, X m, and K, 1s the kernel of =, as a left K,-subspace then the
action of an invertible element

a
C

.
d_

on M is (po,p1) — (ape + ¢p1,bp, + dp) for a,b,c,d in K, and p,, p; points
of m,.

Exercise 11.1.4 Suppose M 1is a regular direct product net of two Desar-
guesian affine planes of order q = p”. Using the above theorem, show there
s a group isomorphic to GL(2,q) acting on the net M.
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11.2 Regular Direct Products.

In this lecture, we consider a coordinate set for a regular direct product.
However, before doing this we need to consider in some detail the meaning
of the linear group GL(2, K) when K is a non-commutative skewfield.

When K, is a skewfield which is not a field, there are some important
differences between the commutative and noncommutative case with the con-
sideration of the group GL(2, K,). Actually, the use of the notation is a bit '
problematic as the elements are not necessarily K-linear mappings in the
traditional sense.

Consider a Desarguesian affine plane (z, y) considered as a 2-dimensional
left. vector space over a skewfield (K, +,:). Since we may also consider the
affine plane as a 2-dimensional right space over K, we take components to
have the form y = za for a in K and z = 0 and note that y = za and z = 0
are 1-dimensional left K-subspaces. We may consider the mappings called
the kernel mappings

Tp : (z,y) — (Bz, By).

It follows easily that {Ts | # € K}, forms a field isomorphic to K = (K, +, -)
and fixes each component. of the Desarguesian plane.
Now consider the mappings (z,y) — (za + yb,zc + yd) such that the

corresponding determinant det E 2 defined as ac™'d —b # 0 if ¢ # 0 and
.

ad # 0 otherwise. Then it follows easily that each mapping is a {T}-linear
mapping. Hence, we may justify the designation GL(2, K).

Traditionally, the kernel of a translation plane is the set of endomor-
phisms which leave each component of the plane invariant. Hence, {T5 | 8 €
K} = K° is the kernel of the Desarguesian plane n. Furthermore, the full
collineation group of # which fixes the zero vector (the translation comple-
ment) is 'L(2, K') or is 'L(2, K°). Since the use of K or K° = K is merely in
the distinction between K and the associated kernel mappings, we also refer
to K as the kernel of the plane. So, considering the translation complement
of 7 as 'L(2, K) then K° = K° — {T,} is a group of semilinear mappings
and as a collineation T is in 'L(2, K') but is in GL(2, K) if and only if 3 is
in Z(K,). That is to say that the elements of GL(2, K) are the elements of
I'L(2, K') which commute with K° and T3 commutes with K° if and only if
B is in Z(K). The notation can be particularly tricky if one considers Bz as
a linear mapping over the prime field P of K. For example, Sz is normally
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written z/3, when considering 3 as a P-linear endomorphism. Then consid-
ering an element v in K as a P-linear endomorphism, it follows then that
Bu = uf? when considering the elements as linear endomorphisms whereas it
is not necessarily the case that fu = uf when the operation juxtaposition is
considered as skewfield multiplication.

Note that elements of GL(2, K) act on the elements (z,y) on the right
whereas Tz acts on the elements (z,y) on the left.

In the statement of the above theorem, and we have 7, with kernel K,, we
have GL(2, K,) acting on the left side on a subnet instead of the right. If it
occurs that a subgroup R of this group acts as a collineation of a translation
plane ¥ with kernel K containing 7, , then R is a subgroup of I'L(¥, K).
We now consider this situation.

We shall consider an affine translation plane with kernel X as follows:
Let X be a left K-subspace and form V = X @& X. We denote points by
(z,y) for z,y in X.

When we have an affine translation plane 3 with kernel K, we similarly
consider the lines through (0,0) (components) in the form z = 0,y = zM
where M is a K-linear transformation. The kernel K then gives rise to a set

of kernel mappings
{Tp: (z,y) — (Bz,By) | Be K} = K°.

In the finite dimensional case, we may take M as a matrix with entries in K,
say as [a;;] and define aM = (z;, Ta,...2,) M as (Xx;a;, ..., 2T;Qn). 1t follows
that M becomes a left K-linear mapping with scalar multiplication defined
by Bz = (8z1, Bxs,...,0x,) and furthermore, {(z,zM)} is a left K-linear
subspace. In this case K° is a skewfield isomorphic to K and as a collineation
group of 2, K°* is a semilinear K -group. Similar to the Desarguesian case,
one may consider the left scalar multiplication as a linear endomorphism
over the prime field P of K. When we do this, we shall use the notation K.
Hence, the M's now commute with the elements of K.

To be clear, we now have three different uses of the term kernel of a trans-
lation plane. We always consider the translation plane as X & X where X is a
left vector space over a skewfield K, the kernel mappings are denoted by K°
and the component kernel mappings thought of as prime field endomorphism
are denoted by K,. All three skewfields are isomorphic and each is called
the kernel of the translation plane where context usually determines which

skewfield we are actually employing.
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We now consider a coordinate set for a regular direct product net.

We point out that in the proof of (4.20) of [28], it is noted that two
point-Baer subplanes that share the same infinite points and an affine point
sum to the entire vector space and furthermore their intersections on any
line concurrent with the common affine sum to the line.

We may identify any point-Baer subplane as 7, within the direct product
so that the points of the net have the general form (p;,p2) for p; and py in
7, and the lines have the form L; x L, for L; and L, parallel lines of m,. It
follows that the net M is 7, X m, with the identity mapping defined on the
set of parallel classes.

Considering the translation plane 7, with kernel K, , we specify two lines
incident. with the zero vector as x, = 0 and y, = 0. We further decompose
7, in terms of these two subspaces and write the elements of 7, as (z,, ¥,)
where z,, y, are in a common K,-subspace W, . We may take y, = z, as the
equation of a line of w, incident with the zero vector so that the remaining
lines are of the general form y, = z,Af where M is a K -linear transformation
of W, for M in a set Il,.

The points of the net now have the general form (z,,,,1,¥y1) Where
To, Yo, T1,y; are in W,. The lines of the net are as follows: (y, = z,M +¢,) X
(Yo = 2, M) +cy) for all M in I1, containing I and O and (z, = ¢,) X (z, = ¢;).

Note change bases by the mapping x : (%o, ¥, Z1,¥1) ¥ (Z0, Z1, Yo, ylj

Finally, we write (z,,2;) = = and (¥,,%1) = ¥ when (z,,v,,Z1,%1) is a
original point of the net or (z,, 1, ¥,, ¥1) is a point after the basis change.

Note that, before the basis change , the lines of the net are sets of points

{(zo, ZoM +Co, 21, T1 M 1) for all z,, 2, in Wo} , for fixed ¢, and ¢; in W,

and
{(¢o,y1,c1,y2) for all y;,ys in W,}, for fixed ¢, and ¢; in W,

Hence, after the basis change, the lines of the net have the basic form

M 0
T = (Cmcl) and y = 0 M : + (Cmcl)'

Before the basis change y, the point-Baer subplanes incident with the
zero vector which are in a GL(2, K,) orbit of 7, have the following form:



CHAPTER 11. INFINITE BAER NETS. 191

Poe = {(0,0,z1,3,) for all zy,y; in W,} and p, = {(z,, 21, @z,, azy) for
all z,,z, in W,} for each « in K,. We shall call these subplanes p.,, or
p. the base subplanes.

We now observe that the group GL(2, K,) acting on the right is repre-
sented by mappings of the form (z,, z1, ¥1, ¥2) — (az; +bxs, cx1 +dzs, ay; +

by, cy; + dya).

11.3 Baer Nets: Structure Theory.

As we indicated earlier, Foulser has completely determined in the finite case
the structure of vector space nets that admit at least three Baer subplanes
that share the same slopeset. In this lecture, we extend Foulser’s analysis to
the infinite case.

We assume that we have a translation plane 2 with kernel K and there are
at least three point-Baer subplanes as above with kernel K, which are left
invariant under the mappings K°* or equivalently are K-subspaces. Then
there is a regular direct product net N isomorphic to m, X 7, embedded
in X. The translation complement of ¥ is a subgroup of I'L(¥, K) with
the elements acting on the left. Furthermore, there is group of the direct
product net N which is isomorphic to GL(2, K,) and naturally embedded in
GL(4, K,) with the elements acting on the right. It is easy to see that if a
collineation g of ¥ fixes a K-subspace m, pointwise then ¢ is in GL(Z, K)
and hence commutes with the mappings 73. Now any kernel homology group
K°* induces a faithful kernel group on any invariant point-Baer subplane so
K may be considered a subskewfield of K.

We shall use the notation (oc0) to denote the parallel class containing
the line z = 0 and (0) to denote the parallel class containing the line y =
0. We shall use both the original direct product point notation and the
notation after the basis change x more-or-less similtaneously. After our
main structure theorem, we shall use the representation after the basis change

exclusively.

Lemma 11.3.1 Let ¥ be any point-Baer subplane incident with the zero
vector and sharing all parallel classes with the net. Then (0,z,,0,z;) is in
YN (x =0) if and only if (z,,0,2,,0) is in LN (y = 0).

Proof: Let the infinite points of z = 0,y =z Ag A{.]f be denoted by

-
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(oc) and (M) respectively.

Let (z,,0,2;,0) be a point of ¥ N (y = 0). Form the line (c0)(z,, 0, z;,0)
= (z = (z,,2;)) and intersect the line y = z to obtain (z,, z,,z;,T;). Since
all such lines are lines of 32 , the intersection is a point of ¥. Now form the
line of ¥, (0)(z,, 0, 71,21) and intersect z = 0 to obtain (0,z,,0,z;) in

XN (z=0).

Exercise 11.3.2 Is there any difference between the proof of the above lemma
in the infinite case and in the finite case?

Lemma 11.3.3 Now assume the subplane ¥ is not a base subplane.
For (0,z,,0,z;) in XN (x = 0) define a mapping A on W, which maps z,
to xq.
Then A is a1 — 1 and onto additive transformation of W,.
Furthermore, £ = {(Zo, Yo, Ao, AYo) for all z,,y, in W,}.

Proof: It is easy to check that no two distinct point-Baer subplanes inci-
dent with a common affine point and sharing all of their parallel classes can
share two distinct affine points. Hence, z, = 0 if and only if z; = 0 when
(0, z,,0,z,) is a point of ¥ and ¥ is not the base subplane p., or p,.

It follows that the subplane X is a translation affine subplane and hence
a subspace of the underlying vector space taken over at least over the prime
field.

Hence, it follows that A is 1 — 1 since the intersections with any of the
base subplanes contain exactly the zero vector and it is also now clear that
A is additive. It remains only to show that A is an onto mapping.

From the above remarks, any two distinct point-Baer subplanes sharing
a common affine point and their infinite points sum to the vector space and
their intersections with a line incident with the common point sum to the
line. Hence, given any element z} of W, consider the vector (0,0, 0, ;) there
exists vectors (0,2%,0,0 ) in p,N(x = 0) and (0, z,,0,z;) in ¥N(z = 0) such
that

(0,0,0,z7) = (0,22,0,0) + (0, z,,0,z,).

It follows that x; = z} so there exists a vector (0, z,,0,z] in X. Hence, the
mapping A : z, — z; is onto.

If (0,z,,0, A\z,,0) is in Z N (z = 0) then (z,, 0, Az,,0) is in EN (y = 0) so
that (2, Yo, AZo, AY,) is in X for all z,, y, in W, as ¥ is the direct sum of any
two components. Let (z!,y>,z],vy;) be any point of ¥ then it follows that
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Y, also contains (0,0, Az} — z7, Ay, — y7) and since £ N p, = (0,0, 0,0) this
forms z] = Az} and y] = Ay}. This completes the proof of the lemma.m

Exercise 11.3.4 If the plane is finite, how would the above proof be able to
be simplified?

To see that it is not possible that ¥ is not a base subplane, we show that,
in fact, A is in K.

Lemma 11.3.5 Fory = x ]g z’Ef a line of the net and (z,,0,z1,0) in

> then (2o, ToM, 1,z M) is also in 3.

Proof: We have seen this previously in the preliminary section. We form

(20, 0,21,0)(00) = (z = (x,, 1)) and intersect y = ﬂg f{ to obtain

the point (z,, z,M, z1,z1M). Since all of the points and lines are points and
lines of 3, it follows that the intersection point is also in ¥. =

The previous lemma shows that if (z,,0, z,,0) isin X then so is (z,, z,M, 21, 2, M)
which, in turn, implies that (0, z,A,0,zyM) is in ¥. However, also we have
that 2, = Az, and we know that (0,z,M,0, A(z,M)) is in ¥. Subtracting,
since X is additive, we have that (0,0,0, (Az,)M — A(z,M)) is in X for all

T,. dince X N p,, = (0,0,0,0), it follows that (Az,)M) = A(z,M).

Let L, be any skewfield such that {M for M in II,} is a set of L,-linear
transformations. Then it follows that L, must be contained in the kernel K,
of m, = po. Hence, Aisin L, C K,.

Hence, we have proved the following result:

Theorem 11.3.6 Let M be any Abelian net which contains three point-Baer
subplanes that share the same affine point and share all of their parallel
classes.

Then there is a skewfield K, such that M is a K,- vector space net and
there 1s a K,-space W, such that the points of M may be identified with
Weaa W, W, e W,. The set of all point-Baer subplanes of M that share
the zero vector is isomorphic to the set {{(0,0,v,,v1) for all (yo,y1) in W, &®
Wo}t Uaer, {(Zo, Yo, @0, Yo ) for all (z,,y,) in W, & W, }}.
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Furthermore, there is a collineation group I' of the net isomorphic to
GL(2, K,) which fizes (0,0,0,0) and all parallel classes and acts triply tran-
sttively on the set of all point-Baer subplanes incident with (0,0,0,0). More-
over, if B denotes the set of all point-Baer subplanes of M and 'y, is the
pointwise stabilizer of a subplane ©, of B then

['= (Tr,) | 7% € B).

Exercise 11.3.7 Restate this theorem in the finite case assuming that M 1s
a net of degree q¢° and degree q + 1 that contains three Baer subplanes. Let
the kernel of any one of the subplanes be GF'(h). How many Baer subplanes
are 1n the net?

Corollary 11.3.8 Let M be Abelian net which contains three point-Baer
subplanes that share the same affine point A and all of their parallel classes.
If one of the point-Baer subplanes has kernel K, then the set of all point-

Baer subplanes of M incident with A is isomorphic to PGL(1, K,).

Proof: e consider the above representation after the basis change y. The
group

1

Dia
< iag K
fixes 7, = popointwise and acts doubly transitively on the point-Baer sub-

T . A 0
planes. Note that DiagA = 0 A J.

’; such that ).EKU> : <D-iug g ? such that feK, — {U}>

Exercise 11.3.9 Restate the corollary in the finite case assuming that one
of the subplanes has kernel GF'(h).

Below, we completely determine the collineation group of a net of type in
the statement of the above theorem. We first verify the following result.

Theorem 11.3.10 Let R be any Abelian net which contains three point-Baer
subplanes that share the same affine point A and all of their parallel classes.
Let w, be any point-Baer subplane incident with A. Then 7, is an affine
translation plane with kernel K,. Let G, denote the full linear translation
complement of 7,.

Then there is a collineation group of R isomorphic to G, which leaves
T, 1nvariant.
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Proof: We have noted that R is a regular direct-product net. The result
then follows from a previous exercise.m

Theorem 11.3.11 Let R be any Abelian net which contains three point-Baer
subplanes that share the same affine point A and all of their parallel classes.
Let w, be any point-Baer subplane incident with A.

Then m, is an affine translation plane with kernel K,. Let G™ denote the
full linear translation complement of 7, obtained as a collineation group of
R which leaves 7, invariant.

Then the full collineation group of R which fizes wy is isomorphic to the
product of G™ by GL(2,K,). The two groups intersect in the group kernel
of m, naturally extended to a collineation group of R.

Exercise 11.3.12 Assume that R is a finite net of order ¢* and degree g+ 1
and that the kernel of a Baer subplane is GF(q). Show the net defines a
regulus in PG(3,q). Consider the group of the regulus net acting in PG(3, q).
Show there is a subgroup isomorphic to PGL(2,q) x PGL(2,q).

Proof of the theorem: The group GL(2, K,) acts 3-transitively on the
point-Baer subplanes of the net R and fixes R componentwise. Hence, we
may assume that a collineation fixes the zero vector and permutes the point-
Baer subplanes 7., = {(0,p) such that p € n,}, 7y = {(p, A\p) such that
p € m, and A in the kernel of 7,} (when A = 0 the subplane , is identified
with m, x 0.

So, if a collineation g of R which fixes the zero vector then we may assume
that g leaves 7, m,, and m; invariant. Hence, ¢g is in G, as it acts faithfully
on 7.

Since GL(2, K,) fixes R componentwise, assume g fixes R componentwise.
Then ¢ induces the kernel mappings on 7, and on m; and is fixed-point-free
as it also leaves my, invariant. Thus, the faithful stabilizer of 7, in GL(2, K,)

G 0

which fixes 7., 7,, and m; is 0 3 such that eK, ) in this represen-

tation. It then follows that the collineation group of R is the product as
maintained.m



