Chapter 9

Generalised André Systems and Nearfields.

In this section we introduce important classes of quasifields that do not coordinatize semifeld planes.

9.1 Construction Of Generalised André Sys-

tems.

Let F be an extension field of a field K, $\Lambda = Gal(F/K)$, and let $\lambda : F^* \to \Lambda$ be any map such that the $\lambda(1) = 1$. Then $Q_{\lambda} = (F, +, \circ)$ is defined by taking (F, +) as the additive group of the field F and \circ is defined, in terms of field multiplication, so that for $x, f \in F$:

$$\begin{aligned} x \circ f &= x^{\lambda_f} f \quad f \neq 0 \\ x \circ 0 &= 0. \end{aligned}$$

So Q_{λ} obeys the right distributive law, has a multiplicative identity, has a unique solution for $\square \circ f = g$, whenever $f \neq 0$, and multiplying by zero yields zero. Hence, in the finite case, Q_{λ} is a quasifield iff the equation $f \circ \square = g$ has a unique solution for \square when $f, g \in F^*$. For a treatment of the general case, including when K is a skewfield, see Lüneburg [31]. The system Q_{λ} is called a λ -system, or a generalized André system, *if turns out* to be a quasifield; the corresponding translation plane is called a generalized André plane.

152

We shall only consider finite generalized André planes here. An effective way to study them is to describe them in number-theoretic terms. We denote the set of the first k natural numbers $0, 1, \ldots, k = 1$ by I_k .

Definition 9.1.1 Let $F = GF(q^d) \supset K = GF(q)$, $n = q^d > q$, and let $\rho : x \mapsto x^q$ be the generator of Gal(F/K). Choose a primitive generator ω of the multiplicative group F^* . Let $\lambda : i \mapsto \lambda_i$ be any map from I_{n-1} into I_d such that $\lambda_0 = 0$. Define $Q_{\lambda} := (F, +, \circ)$, where + is field addition, and \circ is given by:

$$\omega^i \circ \omega^j := (\omega^i)^{q^{\lambda_j}} \omega^j = \omega^{iq^{\lambda_j}+j},$$

and $x \circ 0 = 0 = 0 \circ x$ for all $x \in F$. We regard Q_{λ} as the λ -structure associated with (λ, q, q^d) .

We now consider which choices of λ make Q_{λ} a quasifield. As indicated above, Q_{λ} will be a quasifield provided the equation $f \circ \square = g$ has, for $f, g \in F^*$, a unique solution for \square , and by our finiteness hypothesis, this is equivalent to the the injectivity of all the maps $z \mapsto \phi \circ z$, for $\phi \in F^*$.

However, this condition fails iff there exists $x, y \in I_n$, $x \not\equiv y \pmod{n}$, so wlog $\lambda_x \geq \lambda_y$, such that

$$\exists f \in I_n : \omega^f \circ \omega^x = \omega^f \circ \omega^y \iff \exists f \in I_n : fq^{\lambda_x} + x \equiv fq^{\lambda_y} + y \pmod{n-1} \iff \exists f \in I_n : x - y \equiv f\left(q^{\lambda_x} - q^{\lambda_y}\right) \pmod{n-1},$$

so Q_{λ} fails to be a quasifield is equivalent, for $\lambda_x \geq \lambda_y$, to the following

$$\iff \exists f \in I_n : x - y \equiv f q^{\lambda_y} \left(q^{\lambda_x - \lambda_y} - 1 \right) \pmod{n - 1}. \tag{9.1}$$

But choosing $t = t_{(x,y)} = \gcd(\lambda_x - \lambda_y, d - 1)$ in the above condition (9.1) above means that

$$\frac{x-y}{q^t-1} \equiv fq^{\lambda_y} \frac{q^{\lambda_x-\lambda_y}-1}{q^t-1} \pmod{\frac{q^d-1}{q^t-1}},$$

and now, since by an elementary result 8.4.1, page 147, we have

$$\gcd\left(q^{\lambda_y}\frac{q^{\lambda_x-\lambda_y}-1}{q^t-1},\frac{q^d-1}{q^t-1}\right)=1,$$

a solution for f in equation (9.1) exists iff $\frac{x-y}{q^t-1}$ is an integer, that is $x \equiv y$ (mod $q^t - 1$). Thus, the condition that $z \mapsto \phi \circ z$ is injective for for all non-zero f, is equivalent to ensuring that $x \equiv y \pmod{q^t - 1}$ cannot hold, unless $x \equiv y \pmod{n}$. Thus we have

Theorem 9.1.2 (Fundamental λ -Law.) [12, Lemma 2.1] Let Q_{λ} be a λ -structure on $GF(q^d)$, defined in terms of the field automorphism $\rho : x \mapsto x^q$ of $GF(q^d)$, and the primitive element ω of order n - 1, $n := q^d$. Assign to every two distinct integers $x, y \in I_n$:

$$t_{x,y} := \gcd\left(\lambda_x - \lambda_y, d\right)$$

Then Q_{λ} is a quasifield iff:

$$x \equiv y \pmod{q^{t_{x,y}} - 1} \Longrightarrow x \equiv y \pmod{n - 1}.$$

In particular, if λ yields a quasifield for some choice of the primitive ω then it works for all choices of ω . However, changing ω , while holding λ fixed, will in general yield non-isomorphic quasifields.

The following exercise will be used in normalising λ -systems.

Exercise 9.1.3 Suppose

 $GF(q^d) \supset GF(q^s) \supset GF(q)$

and let $\rho: x \mapsto x^q$ denote the primitive automorphism in $Gal(q^d/q)$. Then:

(1) s divides d;

(2) If $\rho^k \in Gal(q^d/q^s)$ then s divides k.

Proof: Part (1): the larger field is a vector space over the smaller field. Part (2): By Euclid algoritm k = sx + y, $0 \le y < s$, so $\rho^k \in Gal(q^d/q^s)$ implies that ρ^y also lies in the same field, so y is a multiple of s, since the Frobenius automorphism for the field is ρ^s . Hence y = 0.

Proposition 9.1.4 Let $\lambda : I_{q^d-1} \to I_d$, q a prime-power, define the generalsied André system $Q_{\lambda} = (F, +, \circ)$ on $F = GF(q^d)$, based on the Frobenius automorphism $\rho : x \mapsto x^{q^d}$ and the primitive element $< \omega >$. Then:

(1) Φ_λ := Fix{ρ^{λi} | i ∈ I_{q^d-1}}, is a subfield GF(q^s) of F such that s divides d and also divides λ_i, for all i ∈ I_{q^d-1}; and
(2) The function μ : I_{q^d-1} → I_d defined by μ : i ↦ λ_i yields a λ-system Q_μ = (F, +, *) by: ωⁱ * ω^j = (ωⁱ)<sup>R^μ_jω^j,
</sup>

relative to ω and $R = \rho^S$, the Frobenius automorphism of $Gal(q^d/q^S)$. Moreover, $\Phi_{\mu} := Fix\{\rho^{\mu_i} \mid i \in I_{q^d-1}\}$, is the fixed field of the Frobenius automorphism $R: x \mapsto x^{q^S}$ defining Q_{μ} and $(F, +, *) = (F, +, \circ)$.

Proof: In view of the previous exercise, it essentially remains to verify that the two products coincide:

$$\omega^{i} * \omega^{j} = (\omega^{i})^{R_{j}^{\mu}} \omega^{j}$$

$$= (\omega^{i})^{(\rho^{S})(\lambda_{j}/S)} \omega^{j}$$

$$= (\omega^{i})^{(\rho)(\lambda_{j})} \omega^{j}$$

$$= (\omega^{i} \circ \omega^{j})^{(\rho)(\lambda_{j})} \omega^{j}$$

as required.

Hence, any finite generalized André system may be expressed in the form $Q_{\lambda} = (F, +, \circ)$ where \circ is determined by a λ -function $\lambda : I_{q^d-1} \to I_d$, associated with $GF(q^d)$, such that

$$\Phi_{\lambda} := Fix\{\rho^{\lambda_i} \mid i \in I_{q^d-1}\} = GF(q),$$

the fixed field of the Frobenius automorphism $\rho: x \mapsto x^q$ used in defining \circ from λ .

Thus without loss of generality we assume that if $\lambda : I_{q^d-1} \to I_d$ defines a generalized Adré system then the λ is chosen so that the fixed field of the group generted by $\{\rho^{\lambda_i} \mid : i \in I_{q^d-1}\}$ is just GF(q), the fixed field of the Frobenius automorphism $x \mapsto x^d$.

9.2 No Shears In λ -Systems.

Proposition 9.2.1 In the λ -system Q_{λ} suppose $a, b, a + b \in Q_{\lambda}^*$ and that for all $c \in Q_{\lambda}$:

$$c \circ (a+b) = c \circ a + c \circ b.$$

Then $\lambda_a = \lambda_b$.

Proof: Solving for $\lambda_{(a+b)}$:

$$c\lambda_{(a+b)} = \frac{(c)\lambda_a a + (c)\lambda_b b}{(a+b)},$$

and writing c = xy we get:

$$(xy)\lambda_{(a+b)} = \frac{(xy)\lambda_a a + (xy)\lambda_b b}{(a+b)},$$

and noting that all λ 's are multiplicative bijections:

$$(x)\lambda_{(a+b)}(y)\lambda_{(a+b)} = \frac{(x)\lambda_a(y)\lambda_a a + (x)\lambda_b(y)\lambda_b b}{(a+b)},$$

and by the formula for $c\lambda(a+b)$:

$$\frac{(x)\lambda_a a + (x)\lambda_b b}{(a+b)} \frac{(y)\lambda_a a + (y)\lambda_b b}{(a+b)} = \frac{(x)\lambda_a (y)\lambda_a a + (x)\lambda_b (y)\lambda_b b}{(a+b)},$$

yielding:

$$(x)\lambda_{(a+b)}(y)\lambda_{(a+b)} = \frac{(x)\lambda_a(y)\lambda_a a + (x)\lambda_b(y)\lambda_b b}{(a+b)},$$

and by the formula for $c\lambda_{(a+b)}$:

$$((x)\lambda_{a}a + (x)\lambda_{b}b)((y)\lambda_{a}a + (y)\lambda_{b}b) =$$

$$(x)\lambda_{a}(y)\lambda_{a}a + (x)\lambda_{b}(y)\lambda_{b}b(a + b),$$
and expanding yields:
$$(x)\lambda_{a}(y)\lambda_{b}(x)$$

$$\begin{aligned} (x)\lambda_a(y)\lambda_aa^2 + (x)\lambda_b(y)\lambda_bb^2 + (x)\lambda_a(y)\lambda_bab + (x)\lambda_b(y)\lambda_aab &= \\ (x)\lambda_a(y)\lambda_aa(a+b) &+ (x)\lambda_b(y)\lambda_bb(a+b) \end{aligned}$$

yielding the field automorphism identity in x and y (zero values permitted):

$$(x)\lambda_a(y)\lambda_a + (x)\lambda_b(y)\lambda_b = (x)\lambda_a(y)\lambda_b + (x)\lambda_b(y)\lambda_a$$

and by Vaughan polynomials in two variables these additive identities cannot be equal unless $\lambda_a = \lambda_b$.

Corollary 9.2.2 A finite generalized André system cannot be a semifield unless λ is identically zero, in which case it is just a field.

Exercise 9.2.3 Let $n = q^d$, q a prime power, and suppose $\lambda : I_{n-1} \to I_d$ be a map such that $\lambda_0 = 0$. Put $t_{xy} = \gcd(\lambda_x - \lambda_y, d)$, for $x, y \in I_n$. Assume λ is a λ -system in the sense that:

$$x \equiv y \pmod{q^{t_{xy}} - 1} \Longrightarrow x \equiv y \pmod{q^d - 1}.$$

- 1. The zero map is a λ -function, and the corresponding quasifield Q_{λ} is a field.
- 2. Find all the λ -systems when d = 2.
- 3. $t_{xy} = 1$ for all distinct $x, y \in I_n$ iff d is prime.
- 4. If d is prime then λ is constant on the additive cosets of the ideal of I_n generated by q 1. Conversely, any function constant on the additive cosets of the principal ideal $I_{n-1}(q-1)$ is a λ function.
- 5. Show that, apart from fields, no quasifields Q_{λ} of order $n = 2^p$ can exist if p is prime.
- 6. If $i \equiv j \pmod{q^{t_{ij}} 1}$ for distinct $i, j \in I_{n-1}$ then $\lambda_i = \lambda_j$.

9.3 Cyclic Groups In λ -Sytems.

Proposition 9.3.1 (Period v_{λ} of a λ -system.) Call the integer $k \in I_{n-1}$ a scale for a λ function iff:

$$x \equiv y \pmod{k} \Longrightarrow \lambda_x = \lambda_y.$$

Then the set of scales may be expressed as an ideal $v_{\lambda}I_{n-1}$ of I_{n-1} , where the integer $v_{\lambda}|n-1$. The integer $v := v_{\lambda}$ is called the **period** of λ .

Proof: If k is a scale then ka is a scale because $x \equiv y \pmod{ka}$ implies $x \equiv y \pmod{k}$. If m and k are scales we must show m - k, where $m \geq k$ wlog, is also a scale. Suppose |x - y| = m - k, and wlog x = y + m - k. Now $\lambda_y = \lambda_{y+m}$ because m is a scale, and $\lambda_{y+m} = \lambda_x$ because k is a scale. So $\lambda_x = \lambda_y$. Thus the scales form an additive subgroup of I_{n-1} and the rest follows because the integers form a principal ideal domain with I_{n-1} as an image. \blacksquare The $v_{\lambda} := v$ shows that Q_{λ} has a cyclic subgroup.

Corollary 9.3.2 $< \omega^{\nu_{\lambda}} > is$ a cyclic subgroup of Q_{λ} with the same multiplication when the field multiplication on $< \omega >$ is restricted to $< \omega^{\nu_{\lambda}} >$.

Proof: By scaling law:

$$\lambda_{va} = \lambda_v = \lambda_0 = 0.$$

The following implies a lower bound for the cyclic group associated with v, as defined above.

Proposition 9.3.3 Let $u = \operatorname{lcm}\{q^m - 1 \mid m \mid d, 0 < m < d\}$. Then v_{λ} divides u.

Proof: We must show u is a scale: $x \equiv y \pmod{u}$ implies $\lambda_x = \lambda_y$. So assume $\lambda_x - \lambda_y \neq 0$, thus $t_{xy} = \gcd(\lambda_x - \lambda_y, d)$ is a non-zero divisor of d. If $x \equiv y \pmod{u}$, then every non-zero $q^{t_{ab}} - 1$, for distinct $a, b \in I_{n-1}$, divides u and hence also x - y. But for a = x, b = y we now have $x \equiv y \pmod{q^{t_{xy}} - 1}$. Now by the definition of a λ -system, we have, see theorem 9.1.2, $\lambda_x = \lambda_y$. The contradiction yields the result.

9.4 André Systems.

The following proposition introduces the original André systems in terms of generalized André systems.

Theorem 9.4.1 Define the map

$$\nu: I_{n-1} \to I_{q-1}$$
$$\nu(i) \equiv i \pmod{(q-1)}$$

and let $\mu: I_{q-1} \to I_d$ be an arbitrary map such that $\mu(0) = 0$. Then

- 1. $\lambda = \mu \nu()$ is a λ -function defining a quasifield Q_{λ} called an André system. The v for an André system divides q 1
- 2. Conversely, if a λ -system has v dividing q-1 then it must be a generalized André system.

3. In any André system $\lambda(x \circ y) = \lambda(xy)$. Hence the system is nearfield iff λ is a homomorphism from I_{n-1} to I_d .

Proof: If $i \equiv j \pmod{q^{t_{ij}} - 1}$ then certainly $i \equiv j \pmod{q - 1}$ and this implies $\lambda_i = \lambda_j$, by the definition of ν and μ , and now $t_{ij} = d$ so $i \equiv j$ (mod $q^d - 1$), and hence i = j. Thus an André system is a quasifield. Also if $i \equiv j \pmod{q-1}$ then the definition of an Andr'e system implies that $\lambda_i = \lambda_j$; but v is the least integer for which this holds. Thus v divides q - 1. The converse follows because v dividing q-1 means that λ is constant on points differing by multiples of q - 1: so choose μ to be the common value of such additive cosets of < q - 1 >.

To check $\lambda(x \circ y) = \lambda(xy)$ in additive form we write $x = \omega^X$, $y = \omega^Y$ and now we need to show

$$\lambda(Xq^{\lambda_Y} + Y) \equiv \lambda(X + Y).$$

But $Xq^{\lambda_Y} + Y \equiv X + Y \pmod{q-1}$ certainly holds, because $q \equiv 1$ (mod q-1), so the identity holds because the 'scale' v for λ divides q-1.

Highest Prime-Power Divisors of a-1 Di-9.5 viding $a^d - 1$.

Let u be a prime dividing a - 1. The aim of this section is to consider the highest power of u that divides $a^n - 1$, where n > 1 is an integer. A lower bound follows by a simple induction:

Lemma 9.5.1 If u^A divides a-1 and u^B divides n then u^{A+B} divides a^n-1 .

Proof: Write $n = u^B \delta$, where $gcd(u, \delta) = 1$. Apply induction on *B*. Since (a-1) is a factor of $a^n - 1$ the desired result holds for B = 0. Assume $u^{A+B} || a^n - 1$, when B = b. Then consider the next case B = b + 1 using:

$$a^{u^{b+1}\delta} - 1 = (a^{u^b\delta} - 1) \sum_{i=0}^{u-1} a^{u^b\delta i},$$

and now by the inductive hypothesis the term $(a^{u^b\delta} - 1)$ is divisible by u^{A+B} and the summation is $\equiv u \pmod{u}$ since each of the *u* terms involved in it

are $\equiv 1 \pmod{u}$. Thus the lhs is divisible by u^{A+B} , when B = b + 1. The desired conclusion follows.

In the somewhat vacuous case, when gcd(n, u) = 1, the lower bound above implies an exact value for the highest power of u dividing $a^n - 1$:

Corollary 9.5.2 Suppose u is a prime divisor of a - 1 such that $u^{\alpha} || a - 1$ and $u^{\beta} || n$. Then: $u^{\alpha+\beta} || a^n - 1$, and if $\beta = 0$ then $u^{\alpha+\beta} || a^n - 1$.

We adopt the hypothesis of the corollary for the rest of the section; $u^r || R$ means u^r is the highest power of the prime u dividing the integer R.

Our principal aim is to show that the corollary 9.5.2 holds in the general case when $u^{\alpha} > 2$ and β is arbitrary: thus the exact value of the highest power of u dividing $a^n - 1$ is the lower bound given in the corollary, unless 2||a-1, in which case the lower bound $u^{\alpha+\beta}$ is not sharp for $\beta > 0$. We verify this first.

Remark 9.5.3 Suppose 2||a - 1, and write $n = 2^{\beta}\delta$, so δ is odd. Then, for $\beta \geq 1$:

$$n = 1 - 0 \quad (---- \lambda \quad 0\beta + 2)$$

$$a^{n}-1 \equiv 0 \pmod{2^{n+1}}$$
.

Proof: If $\beta = 1$ then

. .

$$a^n - 1 = (a^{d/2} - 1)(a^{n/2} + 1) \equiv 0 \pmod{8},$$

as required. The general case follows by induction on β : assume the result holds when $2^{\beta} \| n$, and consider the next case where $n = 2^{2^{\beta+1}\delta}$, δ odd.

$$a^{2^{\beta+1}\delta} - 1 = \left(a^{2^{\beta}\delta} - 1\right) \left(a^{2^{\beta}\delta} + 1\right) \equiv 0 \pmod{2^{\beta+2}2},$$

by the inductive hypothesis, so the desired result follows. Thus, the remark asserts that if u = 2 and $\alpha = 1$ then $u^{\alpha+\beta+1}$ divides $a^n - 1$, where $u^{\beta} \| n$. The rest of the section is concerned with showing that this does not happen in any other case, that is, we shall establish that:

$$u^{\alpha+\beta} \| a^n - 1 \Rightarrow u^\alpha = 2,$$

and this situation has been considered in remark 9.5.3 above.

We begin by noting that in all cases it is justifiable to assume $n = u^{\beta}$ whenever convenient:

Remark 9.5.4 When $u^{\beta} || n$ then $u^{A} || a^{n} - 1$ iff $u^{A} || a^{u^{\beta}} - 1$.

Proof: Defining m so that $n = u^{\beta}m$, we have gcd(u, m) = 1, and hence also

$$a^{n} - 1 = (a^{u^{\beta}} - 1) \sum_{i=0}^{m-1} a^{u^{\beta}i},$$

and since $a \equiv 1 \pmod{u}$ we now have

$$a^n-1=(a^{u^\beta}-1)m,$$

yielding the desired result, since gcd(u, m) = 1.

So to determine when $u^{\alpha+\beta} || a^n - 1$, we need to consider its negation, the following condition:

$$u^{\alpha+\beta+1}|a^{u^{\beta}}-1.$$
 (9.2)

As mentioned earlier, the condition cannot hold when $\beta = 0$. Thus if the condition (9.2) ever holds, for some u^{α} , then there is a maximum integer $b \ge 1$ such that condition (9.2) fails for $\beta := b$ but holds for $\beta = b + 1$. We have seen already, in remark 9.5.3, that if $u^{\alpha} = 2$ then b = 1 can be chosen, and condition (9.2) holds for $\beta \ge 1$. In order to show that condition (9.2) does not hold in any other circumstance we essentially need to establish if it fails for a given β (which it always does when $\beta = 0$) then it cannot hold for the next β , unless, as we have seen, $u^{\alpha} = 2$.

Lemma 9.5.5 Suppose that there is an integer $\beta \geq 0$ such that:

$$a^{u^{\beta}} - 1 \not\equiv 0 \pmod{u^{\alpha + \beta + 1}}.$$
(9.3)

$$a^{u^{\beta+1}} - 1 \equiv 0 \pmod{u^{\alpha+\beta+2}}$$
(9.4)

Then $\beta = 0$ and $u^{\alpha} = 2$.

Proof: Writing

$$a^{u^{\beta+1}} - 1 = \left(a^{u^{\beta}} - 1\right) \left(\sum_{i=0}^{u-1} a^{u^{\beta}i}\right),$$

we have by condition (9.4):

$$\left(a^{u^{\beta}}-1\right)\left(\sum_{i=0}^{u-1}a^{u^{\beta}i}\right)\equiv 0\pmod{u^{\alpha+\beta+2}}$$

and since by lemma 9.5.1 and condition (9.3)

$$u^{\alpha+\beta}\|a^{u^{\beta}}-1,$$

we now have

$$\sum_{i=0}^{u-1} a^{u^{\beta} i} \equiv 0 \pmod{u^2}$$
(9.5)

and we also have from lemma 9.5.1 that for each i:

$$a^{u^{\beta}i} \equiv 1 \pmod{u^{\alpha+\beta}},\tag{9.6}$$

and in particular:

If
$$\alpha + \beta \ge 2$$
 then: $a^{u^{\beta}i} \equiv 1 \pmod{u^2}$ (9.7)

which combines with (9.5) to yield:

If
$$\alpha + \beta \ge 2$$
 then: $u \equiv 0 \pmod{u^2}$, (9.8)

which is a contradiction, unless $\alpha + \beta \leq 1$.

But since hypothesis u|a - 1, we must now have $\alpha = 1$ and $\beta = 0$, and condition (9.3) holds, as remarked earlier. In view of our hypothesis that $u^{\alpha} > 2$ we now also have:

$$u^{\alpha} = u$$
 is an odd prime divisor of $a - 1$ (9.9)

Moreover, the condition (9.4) reduces to

$$a^u - 1 \equiv 0 \pmod{u^3}.$$
(9.10)

and on applying (9.9) this yields

$$\sum_{i=0}^{u-1} a^i \equiv 0 \pmod{u^2}.$$
 (9.11)

Moreover,

$$\sum_{i=0}^{u-1} a^{i} = u + \sum_{i=1}^{u-1} (a^{i} - 1)$$
$$= u + (a - 1) \sum_{i=1}^{u-1} \sum_{j=1}^{i-1} a^{j},$$

and since $a-1 \equiv 0 \pmod{u}$ and $a^j \equiv 1 \pmod{u}$ we also have $(a-1)a^j \equiv (a-1)1 \pmod{u^2}$. Thus

$$\sum_{i=0}^{u-1} a^{i} \equiv u + \sum_{i=1}^{u-1} i \pmod{u^{2}},$$
$$\equiv u + (a-1)\frac{u(u-1)}{2} \pmod{u^{2}}$$

and since the LHS $\equiv 0 \pmod{u^2}$, by eqn (9.11), we now have:

$$1 + \frac{(a-1)(u-1)}{2} \pmod{u},$$

but since the prime u is an odd divisor a - 1 we have a contradiction. Combining lemma 9.5.5 with remark 9.5.3 yields, for $u^{\alpha} > 2$, $u^{\alpha+\beta}$ is the highest power of u dividing $a^n - 1$

Theorem 9.5.6 Suppose a > 1 and $n \ge 1$ are integers and u is a prime

divisor of a - 1 such that $u^{\alpha} || a - 1$ and $u^{\beta} || n$.

1. If
$$u^{\alpha} > 2$$
 or $\beta = 0$ then
$$u^{\alpha+\beta} \|a^n - 1.$$

2. If $u^{\alpha} = 2$ and $\beta \geq 1$ then

$$u^{\alpha+\beta+1}|a^n-1.$$

Our next objective is to apply the theorem above to show that under its hypothesis $a^k - 1/a - 1$ ranges over all residues mod N, as k varies. This is crucial in defining the Dickson nearfields.

Lemma 9.5.7 Let a > 1 and N > 1 be integers such that:

1. every prime divisor of N divides a - 1; and

2. if $a \equiv 3 \pmod{4}$ then $N \not\equiv 0 \pmod{4}$.

Then $a^N - 1 \not\equiv 0 \pmod{N(a-1)}$ for $1 \leq n < N$.

Proof: To obtain a contradiction assume that for some $n \in [1, N - 1]$:

$$a^n - 1 \equiv 0 \pmod{N(a-1)}.$$
 (9.1)

Since n < N, there is at least one prime divisor u of N such that for some integer $b \ge 0$, $u^b \| n$ and $u^{b+1} | N$. By theorem 9.5.6, $a^n - 1$ is divisible by $u^{\alpha+\beta}$, and this is the highest power of u dividing $a^n - 1$, unless $u^{\alpha} = 2$. So for $u^{\alpha} > 2$, $u^{\alpha+b} \| a^n - 1$, contrary to eqn (9.1). Thus we may further assume that $u^{\alpha} = 2$, So 2^{b+1} divides N, and this contradicts our hypothesis that $N \not\equiv 0 \pmod{4}$, when $2\|a-1$, unless b=0. But in this case theorem 9.5.6 still implies $u^{\alpha+b} \| a^n - 1$, again contradicting eqn (9.1). \blacksquare We now obtain the desired result, that $a^k - 1/a - 1$ ranges over the residues mod n as k ranges over $1 \dots n$.

Proposition 9.5.8 Let a > 1 and n > 1 be integers such that:

1. every prime divisor of n divides a - 1; and

2. if $a \equiv 3 \pmod{4}$ then $n \not\equiv 0 \pmod{4}$.

Then the *n* distinct integers:

$$1, \frac{a^2 - 1}{a - 1}, \frac{a^3 - 1}{a - 1}, \dots, \frac{a^n - 1}{a - 1},$$

constitute a complete set of n residues mod n. In particular, $a^n - 1/a - 1 \equiv 0 \pmod{n}$.

Proof: The difference of two distinct terms of the above list, associated with i > j, yields:

$$\frac{a^{i}-1}{a-1} \equiv \frac{a^{j}-1}{a-1} \pmod{n}$$

$$\Rightarrow a^{j}\frac{a^{i-j}-1}{a-1} \equiv 0 \pmod{n}$$

$$\Rightarrow \frac{a^{i-j}-1}{a-1} \equiv 0 \pmod{n},$$

contradicting lemma 9.5.7. Thus each of the *n* listed terms is a distinct residue mod *n*. Moreover, $a^n - 1/a - 1 \equiv 0 \pmod{n}$ follows directly from theorem 9.5.6.

9.6 Dickson Nearfields.

Let $F = GF(q^n)$, and assume (q, n) is a Dickson pair: so the prime divisors of n divide q - 1, and if $q \equiv 3 \pmod{4}$ then $n \not\equiv 0 \pmod{4}$.

Hence $(q^n-1)/n$ is an integer because the maximum prime-power divisors of n divide $q^n - 1$. So the cyclic group F^* has a unique subgroup N of order $q^n - 1/n$, and on applying proposition 9.5.8, to the cyclic group F^*/N^* of order n, we may write F^* as a union of cosets of N in the form:

$$F^* = \theta N \bigcup \theta^{\frac{q^2 - 1}{q - 1}} N \bigcup \theta^{\frac{q^3 - 1}{q - 1}} N \bigcup \dots \bigcup \theta^{\frac{q^n - 1}{q - 1}} N$$

where $\theta \in F^* - N$ is such that θN generates the cyclic group F^*/N . Lemma 9.6.1 Suppose $b, c \in F^*$ are given by:

$$b = \theta \frac{q^{\beta} - 1}{q - 1} y, \exists y \in N;$$

$$c = \theta \frac{q^{\gamma} - 1}{q - 1} z, \exists z \in N.$$

Then

$$b^{q^{\gamma}}c \in \theta^{\frac{q^{(\beta+\gamma) \bmod n}-1}{q-1}}N.$$

Proof:

$$\begin{split} b^{q^{\gamma}}c &= \left(\theta^{\frac{q^{\beta}-1}{q-1}}y\right)^{q^{\gamma}}\theta^{\frac{q^{\gamma}-1}{q-1}}z \\ &= \theta^{\frac{q^{\beta+\gamma}-q^{\gamma}}{q-1}}y^{q^{\gamma}}\theta^{\frac{q^{\gamma}-1}{q-1}}z \\ &= \theta^{\frac{q^{\beta+\gamma}-q^{\gamma}+q^{\gamma}-1}{q-1}}y^{q^{\gamma}}z, \\ &\in \theta^{\frac{q^{\beta+\gamma}-1}{q-1}}N, \text{by invariance of } N \text{ under group homomorphisms,} \\ &= \theta^{\frac{q(\beta+\gamma) \mod n-1}{q-1}}N, \end{split}$$

the desired result. \blacksquare

Definition 9.6.2 (Dickson Nearfields.) Let (q, n) be a Dickson pair. Then $q^i - 1$ for $m \in \theta \ q^{-1} N$, define the field automorphism $\lambda(x) \in \text{Gal}(GF(q^n)/GF(q))$ by:

$$\lambda(m): x \mapsto x^{q^*}, i \in \{1, 2..., n\},\$$

and the product (F, \circ) , $f = GF(q^n)$, by $x \circ 0 = 0$, for $x \in F$ and: $x \circ m = \begin{cases} x^{\lambda(m)}m & \text{if } m \in F^* \\ 0 & \text{if } m = 0 \end{cases}$

We call all any such $(F, +, \circ)$ a Dickson nearfield, associated with λ and θ .

It is a tautology to claim that any Dickson nearfield is a generalized André plane. However, we have yet to establish that $(F, +, \circ)$ is always a nearfield. This is our goal for the rest of the section, so we assume the notation of definition 9.6.2. To establish that the product \circ yields a quasifield essentially involves showing that 'slopemaps' of the non-identity elements of F^* , relative to \circ , are semiregular on F^* .

Lemma 9.6.3 Suppose: $x \circ m = x$ for some $x, m \in F^*$. Then m = 1.

Proof: Suppose $x \circ m = x$. Writing $x = \theta^{\frac{q^{j}-1}{q-1}}$ and $y = \theta^{\frac{q^{i}-1}{q-1}}$, where $i, j \in [1, n]$, we have

$$\begin{pmatrix} \theta^{\frac{q^{j}-1}{q-1}} \end{pmatrix}^{q^{i}} \theta^{\frac{q^{i}-1}{q-1}} \equiv \theta^{\frac{q^{j}-1}{q-1}} \pmod{N},$$

$$\text{so } \theta^{\frac{q^{j+i}-1}{q-1}} \equiv \theta^{\frac{q^{j}-1}{q-1}} \pmod{N},$$

$$\text{so } \theta^{\frac{q^{i}-1}{q-1}} \in N,$$

$$\text{so } \left(\theta^{\frac{q^{i}-1}{q-1}}\right)^{q^{j}} \in N,$$

$$\text{so } \theta^{\frac{q^{i}-1}{q-1}} \in N.$$

yielding i = n. So $1 = x \circ m = xm$, and we have m = 1 as required. To show that (F^*, \circ) is a group we first note that it is an associative binary system with identity. The proof depends on extensive tacit use of the 'product' computed in lemma 9.6.1.

Lemma 9.6.4 (F^*, \circ) is an associative binary system with identity $1 \in F$. **Proof:** Since $a \circ b \in F^*$ whenever $a, b \in F^*$ we have a binary system, and the multiplicative identity of F^* is the identity for (F^*, \circ) by the definition of \circ . To show \circ is associative, we represent $x, y, z \in F^*$ in the form:

$$\begin{aligned} x &= \theta^{\frac{q^a - 1}{q - 1}} n_y, \exists n_x \in N; \\ y &= \theta^{\frac{q^b - 1}{q - 1}} n_y, \exists n_y \in N; \\ z &= \theta^{\frac{q^c - 1}{q - 1}} n_z, \exists n_z \in N, \end{aligned}$$

where $a, b, c \in \{1, ..., n\}$. Applying lemma 9.6.1 repeatedly to the definition of \circ , we have

$$\begin{aligned} x \circ (y \circ z) &= \left(\theta^{\frac{q^{a}-1}{q-1}} n_{x}\right) \circ (y \circ z) \\ &= \left(\theta^{\frac{q^{a}-1}{q-1}} n_{x}\right)^{q^{(b+c) \mod n}} \theta^{\frac{q^{(b+c) \mod n}-1}{q-1}} n_{y}^{q^{c}} n_{z} \\ &= \theta^{\frac{q^{(a+b+c) \mod n}-q^{(b+c) \mod n}}{q-1}} \theta^{\frac{q^{(b+c) \mod n}-1}{q-1}} n_{x}^{q^{(b+c) \mod n}} n_{y}^{q^{c}} n_{z} \\ &= \frac{\theta^{q^{(a+b+c) \mod n}-1}}{q-1} n_{x}^{q^{(b+c) \mod n}} n_{y}^{q^{c}} n_{z}, \end{aligned}$$

and similarly:

$$\begin{aligned} (x \circ y) \circ z &= \left(\theta^{\frac{q^{(a+b) \mod n_{-1}}}{q^{-1}}} n_x^{q^b} n_y \right) \circ z \\ &= \left(\theta^{\frac{q^{(a+b) \mod n_{-1}}}{q^{-1}}} n_x^{q^b} n_y \right) \circ \theta^{\frac{q^c - 1}{q^{-1}}} n_z \\ &= \left(\theta^{\frac{q^{(a+b) \mod n_{-1}}}{q^{-1}}} n_x^{q^b} n_y \right)^{q^c} \theta^{\frac{q^c - 1}{q^{-1}}} n_z \\ &= \left(\theta^{\frac{q^{(a+b+c) \mod n_{-q^c}}}{q^{-1}}} n_x^{q^{(b+c) \mod n}} n_y^{q^c} \right) \theta^{\frac{q^c - 1}{q^{-1}}} n_z \\ &= \theta^{\frac{q^{(a+b+c) \mod n_{-1}}}{q^{-1}}} n_x^{q^b + q^c} n_y^{q^c} n_z, \end{aligned}$$

and the associativity of \circ follows on comparing the values of $(x \circ y) \circ z$ and $x \circ (y \circ z)$ obtained above.

The maps $T_m : x \mapsto x \circ m$, for $m \in F^*$, are obviously in GL(F, +) and lemma 9.6.4 above implies that such maps are closed under composition, thus:

$$\tau = \{T_m : x \mapsto x \circ m \in GL(F, +) \mid m \in F^*\}$$

is a subgroup of GL(F, +), and by lemma 9.6.3 every T_m , $m \in F^* - \{1\}$, is semiregular on F^* . This forces the difference between any two distinct members of τ to be a non-singular map of (F, +), since otherwise a nonidentity element of τ would fix some element of F^* . Thus τ together with the zeromap forms a spreadset that is multiplicatively closed. Now by this alone (or alternatively by lemma 9.6.4 above) $(F, +, \circ)$ is a nearfield. Thus we have established:

Theorem 9.6.5 Given a Dickson pair (q, n) and $(F, +, \circ)$ be as in definition 9.6.2. Then $(F, +, \circ)$ is a generalized André system relative to the given λ that is associative. Such generalized André systems are called Dickson nearfields.

.