
Chapter 9

Generalised André Systems and
Nearfields.

In this section we introduce important classes of quasifields that do not CD

ordinatize semifeld planes.

9.1 Construction or .Generalised André Sys
tems.

Let. F be an extension field of a field K, A = Gal(FjK), and let À: F" -+ A
be any map such that t.he À(l) = l. Then Q~ = (F, +, o) is defined by taking
(F, +) as t.he additive group of the field F and o is defined, in t.erms of field
mult.iplicat.ion, so t.hat for x,f E F:

x o I X~f I I f O

x o O O.

SO Q~ obeys t.he right distributive law, has a mult.iplicative identity, has a
lIniqne solution for D o I = g, whenever I f O, and multiplying by zero
yields zero. Hence, in t.he fini t.e case, Q~ is a qnasifield iII the equation
I o D = 9 has a unique solution for D when I, 9 E F·. For a treatment
of the general case, including when K is a skewfield, see Liineburg [31J. The
system Q~ is called a À-system, or a generalized André system, il turns out
to be a quasifield; the corresponding translation pIane is called a generalized
André pIane.
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-.. . "j' .>"j'
w' o w' := (w,)q w' = w'q +] l

(mod n - l)

(mod 11 - l),
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We shall only consider finit.e generalized André planes here. An effect.ive
way t.o st.udy t.hem is t.o describe t.hem in number-t.heoret.ic t.erms. We denot.e
t.he set. of t.he first. k nat.ura! numbers O, l, ... , k ~ l by h.

Defin!t.ion 9.1.1 Let F = GF(qd) :J K = GF(q), n = qd > q, and let
p: x ...... x. be the generator ofGal(F/K). Choose a primitive generatorw
of the multiplicative group F'. Let.x : i ...... .xi be any map from In_1 into Id
such that.xo = O. Define QÀ:= (F,+,o), 1lIhere + is field addition, and ° is
given by:

and x ° O = O = O° X for all x E F. We 1"€gard QÀ as the .x-st.ruct.ure
associated 1lIith (.x,q,qd).

We now consider whkh choices of .x make QÀ a qnasifie!d. As indicat.ed
above, QÀ will be a qnasifie!d provided t.he eqnat.ion f °D = 9 has, for
J, 9 E F', a unique solnt.ion for D, and by onr finit.eness hypot.hesis, t.his
is eqniva!ent. t.o t.he t.he inject.ivit.y of ali t.he maps z ...... </J ° z, for </J E F'.
However, t.his condit.ion fails iff t.here exist.s x, y E In, X 1= y (mod n), so
wlog .xx > .xy , such t.hat.

3f E In : wl °W
X = wl °wY

-: ;. 3f E In: fq'" +x = fqÀ, +y

.; ;. 3f E In : X - Y = f (qÀ. - q"')

so QÀ fails t.o be a quasifie!d is equiva!ent., for .xx > .xv, t.o t.he following

-: ;. 3f E In: x - y = fqÀ, (q"'-À' -l) (mod n -l). (9.1)

But. choosing t = t(x,y) = gcd(.xx - .xy,d - l) in t.he above condition (9.1)
above means t.hat.

x - Y qÀ'-À, - l
-.,...---"- = f qÀ, -'---,--...,....-
q'-l- q'-l

qd _ l
(mod , ),

q - l

and now, since by an element.ary resu!t8.4.l, page 147, we have

(
qÀ.-À, -l qd_ l )

gcd q>"y t l t = 1,
q-l q-l
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a solution for j in eqllation (9.1) exists iff ;'~'i is an integer, that. is x _ y
(mod q' - l). Thus, the condition that z >--> <P o z is injective for for ali
non-zero j, is equivalent t.o ensuring t.hat x _ y (mod q' - l) cannot hold,
unless x = y (mod n). Thus we have

Theorem 9.1.2 (Fundamental À-Law.) /12, Lemma 2.1} Let Q~ be a À
structure on GF(qd), defined in term.s oj the field automorphism p: x >--> x'
oj GF(qd), and the primitive element w oj order n - l, n := qd. A.s.sign to
every two distinct integer.s x, y E I,,:

Then Q~ i.s a quasifield iff:

x = y (mod q"" - l) = x = y (mod n - l).

In part.icular, if À yields a quasifield for some choice of the primitive w then
it works for ali choices of w. However, changing w, while holding Àfixed, will
in general yield non-isomorphic quasifields.

The following exercise will be used in norma!ising À-systems.

Exercise 9.1.3 Suppo.se

GF(qd) ::> GF(q') ::> GF(q)

and let p: x >--> x' denote the primitive automorphi.sm in Gal(qd/q). Then:

(l) s divides d;

(2) Ij pk E Gal(qd/q') then s divides k.

Proof: Part (l): t.he larger field is a vect.or space over the smaller field.
Part (2): By Euclid algorit.m k = sx + y, O < y < s, so pk E Gal(qd/q')
imp!ies t.hat. p" also !ies in the same field, so y is a m,ùt.iple of s, since the
Frobenius automorphism for t.he field is p". Hence y = O.•

Proposition 9.1.4 Let À : 1"_1 -> Id, q a prime-power, define the gener
alsied André system Q~ = (F, +, o) on F = GF(qd), based on the F'robenius
automorphism p : x >--> x" and the primitive element < w >. Then:
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(1) <Il" := Fix{p'" I i E Iq'-d, is a subfield GF(q') of F such that s divides
d and also divides Ai, for all i E 1'1'-1; and

(2) The function J1. : 19"-1 -+ I. defined by J1. : i ...... ~ yields a A-system
•

Qp=(F,+,*) by:
wi * wi = (wi)Rjwl I

relative to w and R = pS, the F'robenius automorphism ofGal(if'/qS).
Moreover, <Ilp := Fix{PP' I i E Iq,-d, is the fixed field of the F'robenius

autornorphism R: x ...... xqS defining Qp and (F,+,*) = (F,+,o).

Proof: In view of the previolls exercise, it essentially remains to verify that
the t,wo prodllct.s coincide:

wi *wi (wi)Rjwi

(wi)(pS)("j(SJwi

__ (wi)(p)("j)wi

as reqllired.•
Rence, ,any finite generalized André system may be expressed in the form
Q" = (F, +, o) where ° is determined by a A-f1illction A : 1,,'_1 -+ Id, associ
ated with GF(qd), such that

<Il" := Fix{p'" I i E Iq'-I} = GF(q),

t.he fixed field of the Frobenius automorphism p : x ...... xq lIsed in defining °
from A.

Thlls wit.hout loss of generalit,y we assume that if A : 1'1'_1 -+ Id defines
a generalized Adré sysyt.em then the A is cbosen so that the fixed field of
the group genert.ed by {p'" I: i E Iq'-I} is jllst GF(q), the fixed field of the
fì'obenius automorphism x ...... x d

9.2 No Shears In À-Systems.

Proposition 9.2.1 In the A-system Q" suppose a, b, a + b E Q~ and that for
allCEQ,,:

co(a+b) =coa+cob.
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Proof: Solving for À(aH):

À _ (c)Àaa + (c)Àbb
c (aH) - (a+b) ,

and writing C = xy we get:

( )
À _ (xY)Àaa + (xy)Àbb

xy (,H) - (a + b) ,

and noting that aH À's are multiplicat.ive bijections:

( )
À ()À _ (x)Àa(y)À,a + (x)Àb(y)Àbb

x (,H) y (.H) - (a + b) ,

and by thc formula for cÀ(a + b):

yielding:

(x)À.a + (x)Àbb (Y)À.a + (y)Àbb (x)À.(y)À.a + (x)Àb(y)Àbb
-

(a+0 (a+b) (a+b)

( )
\ ()À (x)À.(Y)À.a + (x)Àb(y)Àbb

x ,,(,H) Y (aH) = (a + b) ,

and by t,he formula for CÀ(aH):

,

«x)À,a + (x)Àbb) «y)À,a + (y)Àbb)

(x)À.(y)À.a + (x)Àb(y)Àbb(a + b),
and expanding yields:

(x)À,(Y)À.a2+ (x)Àb(y)Àbb
2+ (x)Àa(y)Àhab + (x)Àb(y)À.ab -

(x)À.(y)À.a(a + b) + (x)Àb(y)Àbb(a +1

yielding the field automorphism ident,ity in x and y (zero values pcrmitted):

and by Vaughan polynomials in two variables these additive identities cannot
be equal Imless À. = Àb••

Corollary 9.2.2 A finite genera/ized André system cannot be a semifie/d
un/ess À is identical/y zero, in which case it is just a fie/d.
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Exercise 9.2.3 Let n = qd, q a prime power, and suppose À : In- 1 -> Id be
a map such that Ào = O. Put tx , = gcd(Àx - Ày, d), for x, y E In. Assume À
is a À-system in the sense that:

x = y (mod q"y - 1) ==> x = y (mod qd - 1).

1. The zero map is a À-function, and the corresponding quasifield QA is a
fie/d.

2. Find oli the À-systems when d = 2.

3. txy = 1 for ali distinct x, y E In iff d is prime.

4· If d is prime then À is constant 01\ the additive cosets of the ideaI of In
generated by q-l. Conversely, any function constant on the additive
cosets of the principal ideaI In_I (q - 1) is a À function.

5. Show that, apa,.t from fields, no quasifields QA of order n = 2P can exist
if p is prime.

6. Ifi _ j (mod q/'i - 1) for distinct i,j E l n- 1 then Ài = Àj .

9.3 Cyclic Groups In .\-Sytems.

Proposition 9.3.1 (Period VA of a À-system.) Cali the integer k E In- l
a scale for a À function iff:

x = y (mod k) ==> Àx = Ày .

Then the set of scales may be expressed as an ideaI vAln_1 of In-l, where the
integer vAln - 1. The integer V := VA is called the period of À.

Proof: If k is a scale then ka is a scale because x _ y (mod ka) implies
x = y (mod k). lf m and k are scales we must show m - k, where m > k
wlog, is also a scale. Suppose Ix - yl = 171 - k, and wlog x = y + m - k.
Now Ày = Ày+m because 171 is a scale, and Ày+m = Àx because k is a scale.
So Àx = Ày . Thlls the scales form an additive subgroup of I n - 1 and the rest
follows becallse the integers fonn a principal ideai domain with In-I as an
lmage.•
The VA := Il shows t.hat QA has a cyclic sllbgroup.
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CorolIary 9.3.2 < w·À > is a eyclie subgroup of Q, with the same multi
plieation when the field multiplieation on < w > is restrieted to < wVÀ >.

Proof: By sealing law:

À v• = Àv = Ào = O.

•
The following implies a lower bound for the eyc!ie group associated with v,
as defined above.

Proposition 9.3.3 Let u = lcm{qm -11 mld,O < m < d}. Then v, divides
u.

Proof: \Ve must show u is a scale: x _ y (mod u) implies Àx = Ày. So
't%Ulne Àx - Ày f O, t.hus txy = ged(Àx - Ày , d) is a non-zero divisor of d.
If x = y (mod u), t.hen every non-zero q'.' - l, for distinct a, b E In-l,
divides u and hence also x - y. But. for a = x, b = y we now have x = y
(mod q'" - l). Now by t.he definition of a À-syst.em, we have, see theorem
9.1.2, Àx = Ày . The cont.radiction yields the result..•

9.4 André Systems.

The following proposition int.roduces the originai André systems in terms of
generalized André syst.ems.

Theorem 9.4.1 Define the map

v : I n - 1 -+ I q_ 1

v(i) =i (mod (q - l))

and let Il : 1.-1 --> Id be an arbitrary map sueh that 11(0) = O. Then

1. À = IlvO is a À-function defining a quasifield Q, ealled an André sys
temo The v for an AndTé system divides q - l

2. Converse/v, if a À-system has v dividing q - l then it must be a gener
alized André system.
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3. In any André system À(x o y) = À(xy). Hence the system is nearfield
iff À is a homomorphism from ln-l to Id'

Proof: If i _ j (mod q"i - l) then certainly i = j (mod q - l) and
this implies Ài = À;, by the definit.ion of 1/ and Jl, and now ti; = d so i = j
(mod qd - l), and hence i = j. Tlms an André system is a quasifield. Also
if i = j (mod q - l) then the defintion of ali Andr'e system implies that
Ài = À;; bnt v is the least int.eger far which t.his holds. Thns v divides q-L
The converse follows becanse v dividing q - l means that À is const.ant on
points differing by mnltiples of q - 1: so choose Jl to be the common value
of snch additive cosets of < q - l >.
To check À(x o y) = À(xy) in additive form we write x = wX , Y = wY and
now we need t.o show

À(XqÀY + y) - À(X + Y).

But XqÀ" + Y _ X + Y (mod q - l) certainly holds, because q = l
(mod q - l), so t.he identity holds because t.he 'scale' v far>' divides q-L •

9.5 Highest Prime-Power Divisors of a-l Di
viding ad - 1.

Let u be a prime dividing a-L The aim of this section is to consider t.he
highest. power of u t.hat. divides an - l, where n > l is an integer. A lower
bonnd follows by a simple induction:

Lemma 9.5.1 IfuA dividesa-l andu8 dividesti. thenuA+8 dividesan -1.

Proof: Write ti. = u 8 0, where gcd(u, o) = 1. Apply induction on B. Since
(a - l) is a fact.or of an - 1 the desired result holds for B = O. Assume
uA+8~an - l, when B = b. Then consider t,he next case B = b+ l using:

n-l
u"+16 l - (n'. 1) L u

b6ia --a- a ,
i=O

and now by the indnctive hypothesis t.he term (anb
• - l) is divisible by u A+B

and the snmmat.ion is = u (mod u) since each of the u terms involved in it.
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are = l (mod u). Thlls t.he Ihs is divisible by UMB , when B = b+ 1. The
desired conclusion follows.•
In the somewhat. vacuous case, when gcd(n, u) = l, the lower bound above
implies an exact. vaille for t.he highest. power of u dividing an - 1:

Corollary 9.5.2 Suppose u is a prime divisor of a - l such that uO!a - l
and u13lln. Then: uo +13 lan

- l, and if (3 = O then uo +13 lan
- l.

\Ve adopt. t.he hypothesis of the corollary for the resI. of the section; ur IR
means ur is t.he highesl. power of the prime u dividing the integer R.

01\1" principal aim is t.o show thanhe corollary 9.5.2 holds in the generai
case when U

O > 2 and (3 is arbitrary: thlls t.he exact value of the highest
power of u dividing an - l is the lower bOllnd given in the corollary, unless
211a -l, in which case t.he lower bound uo+13 is not sharp for (3 > O. We verify
this first..

Rernark 9.5.3 Suppose 211a - l, and write n = 2130, so O is odd. Then, for
(3)1:

an - l = O (mod 213+2).

Proof: If (3 = l then

an
- l = (ad

/
2

- 1)(an
/

2 + l) = O (mod 8),

as reqllired. The generai case follo\Vs by induction on (3: assume the resllit
holds when 2f3 lln, and consider t.he next. case where n = 22'+1 6, Oodd.

a 2
8+

1
6 _ l = (a2PO _ l) (a2"0 + l) =O (mod 2f3+22) ,

by t.he indllctive hypothesis, so t.he desired result follows.•
ThIlS, t.he remark assert.s that. if u = 2 and a = l t.hen uo +f3+1 divides an - l,
wherc u·81In. The rest. of the sect.ion is concerned with showing that this does
not. happen in any ol.her case, t.hat. is, we shall establish that.:

uo+l3llan - l => U
O = 2,

and t.his sitllation has been considered in remark 9.5.3 above.
We begin by noting t.hat. in ali cases il. is just.ifiable 1.0 assume n = u13

\vhenever convenient.:
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Proof: Defining m so that n = uf3m, we have gcd(u, m) = l, and hence
also

m-l• ••an - l = (a" - l) L a" t,
;=0

and since a = l (mod u) we now have

•an
- l = (a" - l)m,

(9.2)

yielding the desired result, since gcd(u, m) = 1. •
So t.o determine when un+f3llan - l, we need to consider its negation,
following condition;

the

As mentioned earlier, the condition cannot hold when /3 = O. Thus if the
condition (9.2) ever holds, for some un, then there is a maximuffi integer
b > l such that condition (9.2) fails for /3 ;= b but holds for /3 = b + 1. We
have seen already, in remark 9.5.3, that if U O = 2 then b = l can be chosen,
and condition (9.2) holds for /3 > 1. In order to show that condition (9.2)
does not hold in any ot.her circumstance we essentially need to establish if it
fails for a given /3 (which it always does when /3 = O) then it eannot hold for
the next /3, unless, as we have seen, u'" = 2.

Lemma 9.5.5 Suppose that there is an integer /3 > O slLch that:

a'" - l ~ O

uP+1 l OlL -

Then /3 = O and u'" = 2.

Proof: Writing

(mod U o+f3+1 ).

(mod uo+f3+2)

(9.3)

(9.4)

we have by condition (9.4):
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and since by lemma 9.5.1 and condition (9.3)

we now have
"-l

"La" '= O (mod u2
)

1=0

and we also have from lemma 9.5.1 that for each i:

"aU
, = 1 (mod u"+/l) ,

and in part,iclllar:

"If Q + (3 > 2 then: a" , = 1 (mod u 2 )

which combines with (9.5) t.o yicld:

lE Q + (3 > 2 t.hen: u = O (mod u2
),

(9.5)

(9.6)

(9.7)

(9.8)

which is a cont.radiction, llnless Q + (3 < 1.
But sincc hypothesis ula - 1, we must now have Q = 1 and (3 = O, and
condition (9.3) holcis, as remarkcd earlier. In view of our hypothesis that
u" > 2 we now also have:

u" = u is an odd prime divisor oE a-l
•

Moreover, the condit.ion (9.4) redllces to

a" - 1 _ O (mod u3 ).

and on applying (9.9) this yields

"-lL ai _ O (mod u2).

1=0

IVloreover,

u-l u-l

Lai
- u+ L(ai -1)

1=0 1=1 .

tt-li-l

- u+(a-l)LLaj
,

i=1 j=1

(9.9)

(9.10)

(9.11)
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and sinee a -l _ O (mod u) and ai _ l (mod u) we also have (a - l)ai =
(a - 1)1 (mod u2). Thus

(mod u2
)

u-l

La'
i=O

u-l

_ U + L i (mod u2
),

i=1

( l )
u(u - l)

u+ a- 2

and sinee the LHS =O (mod u2
), by eqn (9.11), we now have:

1+ (a - l~U - l) (mod u),

but. sinee the prime u is ali odd divisor a - l we have a eont.radietion. _
Combining lemma 9.5.5 wit.h remark 9.5.3 y~elds, for U

O > 2, uo +tl is the
highest. power of u dividillg aU

- l

Theorem 9.5.6 Suppose a > l and n > l are integers and u is a prime
d'ivisor 01 a - l such that U

O ~a - l and utlin.

1. fluo> 2 or' j3 = O then

2. fluo = 2 and j3 > l then

O\ll' next. object.ive is t.o apply t.he theorem above t.o show t.hat. under it.s
hypot.hesis ak - l/a - l ranges over ali residues modN, as k varies. This is
crueial in defining t.he Diekson nearfields.

Lemma 9.5.7 Let a > l and N > l be integers such that:

1. every prime divisor 01 N divides a - l; and

2. il a = 3 (mod 4) then N ;;é O (mod 4).

Then aN
- l ;;é O (mod N(a - l)) lor l < n < N.
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Proof: To obtain a contradict.ion assume that for some n E [l, N-l]:

an -l =O (mod N(a-l)). (9.1)

Since n < N, t.here is at. least one prime divisor u of N such that for some
int.eger b > O, ublln and ub+JIN. By t.heorem 9.5.6, an

- 1 is divisible by
uo+fJ , and this is the highest power of u dividing a n - 1, unless Uo = 2. So
for Uo > 2, uo+b~an - 1, contrary to eqn (9.1). Thus we may further assume
t.hat. Uo = 2, So 2b+! divides N, and t.his contradicts our hypothesis t,hat
N t O (mod 4), when 211a - 1, unless b = O. But in this case theorem 9.5.6
still implies uoHian - 1, again contradicting eqn (9.1), •
\!ve now obt.ain the desired result., that ak

- l/a -1 ranges over the residues
modn as k ranges over 1 ... n.

Proposition 9.5.8 Let a > 1 and n > 1 be integers such that:

l. eve1"Y prime divisor oln divides a-l; and

2. il a = 3 (mod 4) then n t O (mod 4).

Then the n distinct integers:

a2 - 1 a3 - 1 an - 1
1, l' l"'" l'a- a- a-

constitute a complete set 01 n residues modn. In particular, an
- l/a - 1 =O

(mod n).

Proof: The difference of t.wo dist.inct terms of t.he above list, associated
with i > j, yields:

- O (mod n)

_ O (mod n),

a' -1
a-l

.ai - j - 1
=:>a' --a-l

a.i - j - 1

a-l

a' - 1
- a-l

(mod n)

cont.radict.ing lemma 9.5.7. Thus each of t.he n list.ed t.errns is a distinct
residue modn" Moreover, an

- l/a - 1 = O (mod n) follows direct.ly from
t.heorem 9.5.6.•
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9.6 Dickson Nearfields.

Let F = GF(qn), and assume (q, n) is a Dickson pair: so t.he prime divisors
of n divide q - l, and if q = 3 (mod 4) t.hen n jé O (mod 4).

Hence (qn -l) l'n. is au integer because the maximurn prime-power divisors
of n divide qn - 1. So the cyc!ic group F' has a uniqne subgroup N of order
q" -' l/n, and on applying proposit.ion 9.5.8, t.o t.he cyc!ic gronp F' / N' of
order n, we may write F' as a union of cosets of N in the formo

<i....=.l i...=...! <t'....=.l
F' = (iNueq~TNueq~TNU ...ue~ N,

whete e E F' - N is such that eN generat.es the cyclic gronp F'/N.

Lemma 9.6.1 Suppose b, c E F' are given by:

tL=l'
b - eq=T y,3y E N;

"' - leFz,3z E N.

Then

Proof:

"tI l "l' " .... l(e, , y)q e, , z
qfJ+"I Il"'l' "r q'" l

e ,l yq e ,-l z
"P+"Y q'l'+q"r_l ..,_ e q l yq z,
,,0+')' -1

E e ,l N, by invariauce of N nnder gronp homornorphisms,
q(P+"I') m",d n l

B q-l N,

the desired result. _

Definition 9.6.2 (Dickson Nearfields.) Let (q, n) be a Dickson pair. Then
• - l

form E (J0 N, define the field automorphism >.(x) E Gal(GF(qn)/GF(q)
by:

>.(m): x ...... xq
', i E {1,2 ... ,n},
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and the product (F,o), f = GF(qn), byxoO = O, forx E F and:

_ {x,(m)m ifm E F'
xom- O ifm=O

!Ve cali all any such (F, +, o) a Dickson nearfield, associated with À and O.

It is a t.autology to claim t.hat any Dickson nearfield is a generalized André
piane. However, we have yet t,o establish t.hat (F, +, o) is always a nearfield.
This is OUI goal for t.he rest of t.he section, so we assume t.he notat.ion of'
definit.ion 9.6.2. To est.ablish t.hat. t.he product o yields a quasifield essent.ially
involves showing t.hat, 'slopemaps' of t.he non-identity elements of F', relative
t.o o, are semiregular on F'.

Lemma 9.6.3 Suppose: x o m = x for some x, m E F'. Then m'= 1.
9/_1 9'_1

Proof: Suppose x o m = x. \Vrit.ing x = 0,-' and y = 0,-' , where
i,j E [l,nJ, we have

( ,L,)"' ,'_. 'li -1

(mod N),B q l () q-l - Bq-l

'1i+'_1 'li -1

(mod N),so B q-l - eq-l

qHi_qi
so e q 1 E N,

(~t N,so eq-l E

9; -1

so () ,-, E N,

yielding i = n. So l = x o m = xm, and we have m = l as required. _
Th show that. (F', o) is a group we first. not.e t.hat. it is an associat.ive bi
nary system wit,h identit,y. The proof depends on ext.ensive tacit. use of the
'product' comput,ed in lemma 9.6.1.

Lemma 9.6.4 (F',o) is an associative bina"..,) system with identity l E F.

Proof: Since a o b E F' whimever a, b E F' we have a binary syst.em, and
the mult.iplicative ident.it.y of F" is t.he ident.it.y for (F', o) by t.he definition
of o. To show o is associative, we represent x, y, z E F' in the form:

q" l

X - () q-l nY1 3nz E N;
. - '1"-1

Y O,-. n", 311" E N;
90:_1

Z - eq-l nz ,3nz E N,
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where a,b,c E {l ... ,11.}. Applying lemma 9.6.1 repeatedly 1.0 t.he definition
of o, we have

(xoy)oz -

xo(yoz)

and similarly:

( " , )() ,-. 11., o (y o z)

(

,(0.+11) mud n-l b )

B q-l n~ T/,y O Z

(

9(0.+1» mud n 1 b) q<:-le Il 1 nq n o Bq-l nx Y z

,

(

,,( ... +b)nlUd n _ l " )q ,<:_1e 'l-l n~ ny oq-l nz

(

,(0+1>+<:) m"d "_'le (1)+<:) mud n c) 9<:_1
f} q l n~ n~ eq-l n z

9(0+1>+<:) nwd n_l b C C_ e q-l 11.9 +q nq n
x y Z t

and t.he associativity of o follows on comparing the values of (x o y) o z anel
x o (y o z) obtained above. _
The maps Tm : x ...... x om, for m E P', are obviously in GL(P, +) and lemma
9.6.4 above implies that. sueh maps are closed nncler composition, thus:

7={Tm :x ...... x o mEGL(P,+)lmEF"}

is a subgroup of GL(P,+), and by lemma 9.6.3 every Tm , m E P' - {l},
is semiregular on P'. This forces t.he difference bet.ween any two distinct.
members of 7 1.0 be a non-singular map of (P, +), since otherwise a non
iclent.it.y element. of 7 would fix some element. of P'. Thus 7 together wit.h
the zeromap forms a spreaclset. that is mult.iplicatively closed. Now by this
alone (or alt.ernat.ively by lemma 9.6.4 above) (P, +, o) is a nearfield. Thus
we have est.ablished:
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Theorem 9.6.5 Given a Dickson pair (q, n) and (F, +, o) be as in definition
9.6.2. Then (F, +, o) is a genemlized André system relative to the given >. that
is associative. Such generalized André systems are cal/ed Dickson nearfields.


