Chapter 9

Generalised André Systems and Nearfields.

In this section we introduce important classes of quasifields that do not coordinatize semifeld planes.

9.1 Construction Of Generalised André Systems.

Let F be an extension field of a field $K, \Lambda=\operatorname{Gal}(F / K)$, and let $\lambda: F^{*} \rightarrow \Lambda$ be any map such that the $\lambda(1)=1$. Then $Q_{\lambda}=(F,+, \circ)$ is defined by taking $(F,+)$ as the additive group of the field F and \circ is defined, in terms of field multiplication, so that for $x, f \in F$:

$$
\begin{aligned}
& x \circ f=x^{\lambda_{f}} f \quad f \neq 0 \\
& x \circ 0=0 .
\end{aligned}
$$

So Q_{λ} obeys the right distributive law, has a multiplicative identity, has a unique solution for $\square \circ f=g$, whenever $f \neq 0$, and multiplying by zero yields zero. Hence, in the finite case, Q_{λ} is a quasifield iff the equation $f \circ \square=g$ has a unique solution for \square when $f, g \in F^{*}$. For a treatment of the general case, including when K is a skewfield, see Lüneburg [31]. The system Q_{λ} is called a λ-system, or a generalized André system, if turns out to be a quasifield; the corresponding translation plane is called a generalized André plane.

We shall only consider finite generalized André planes here. An effective way to study them is to describe them in number-theoretic terms. We denote the set of the first k natural numbers $0,1, \ldots, k=1$ by I_{k}.

Definition 9.1.1 Let $F=G F\left(q^{d}\right) \supset K=G F(q), n=q^{d}>q$, and let $\rho: x \mapsto x^{q}$ be the generator of $\operatorname{Gal}(F / K)$. Choose a primitive generator ω of the multiplicative group F^{*}. Let $\lambda: i \mapsto \lambda_{i}$ be any map from I_{n-1} into I_{d} such that $\lambda_{0}=0$. Define $Q_{\lambda}:=(F,+, \circ)$, where + is field addition, and \circ is given by:

$$
\omega^{i} \circ \omega^{j}:=\left(\omega^{i}\right)^{q^{\lambda_{j}}} \omega^{j}=\omega^{i q^{\lambda_{j}}+j}
$$

and $x \circ 0=0=0 \circ x$ for all $x \in F$. We regard Q_{λ} as the λ-structure associated with $\left(\lambda, q, q^{d}\right)$.

We now consider which choices of λ make Q_{λ} a quasifield. As indicated above, Q_{λ} will be a quasifield provided the equation $f \circ \square=g$ has, for $f, g \in F^{*}$, a unique solution for \square, and by our finiteness hypothesis, this is equivalent to the the injectivity of all the maps $z \mapsto \phi \circ z$, for $\phi \in F^{*}$. However, this condition fails iff there exists $x, y \in I_{n}, x \not \equiv y(\bmod n)$, so wlog $\lambda_{x} \geq \lambda_{y}$, such that

$$
\begin{aligned}
& \exists f \in I_{n}: \omega^{f} \circ \omega^{x}=\omega^{f} \circ \omega^{y} \\
\Longleftrightarrow & \exists f \in I_{n}: f q^{\lambda_{x}}+x \equiv f q^{\lambda_{y}}+y \quad(\bmod n-1) \\
\Longleftrightarrow & \exists f \in I_{n}: x-y \equiv f\left(q^{\lambda_{x}}-q^{\lambda_{y}}\right) \quad(\bmod n-1),
\end{aligned}
$$

so Q_{λ} fails to be a quasifield is equivalent, for $\lambda_{x} \geq \lambda_{y}$, to the following onndition.

$$
\begin{equation*}
\Longleftrightarrow \exists f \in I_{n}: x-y \equiv f q^{\lambda_{y}}\left(q^{\lambda_{x}-\lambda_{y}}-1\right) \quad(\bmod n-1) \tag{9.1}
\end{equation*}
$$

But choosing $t=t_{(x, y)}=\operatorname{gcd}\left(\lambda_{x}-\lambda_{y}, d-1\right)$ in the above condition (9.1) above means that

$$
\frac{x-y}{q^{t}-1} \equiv f q^{\lambda_{y}} \frac{q^{\lambda_{x}-\lambda_{y}}-1}{q^{t}-1} \quad\left(\bmod \frac{q^{d}-1}{q^{t}-1}\right),
$$

and now, since by an elementary result 8.4.1, page 147, we have

$$
\operatorname{gcd}\left(q^{\lambda_{y}} \frac{q^{\lambda_{x}-\lambda_{y}}-1}{q^{t}-1}, \frac{q^{d}-1}{q^{t}-1}\right)=1,
$$

CHAPTER 9. GENERALISED ANDRÉ SYSTEMS AND NEARFIELDS. 154

a solution for f in equation (9.1) exists iff $\frac{x-y}{q^{t}-1}$ is an integer, that is $x \equiv y$ $\left(\bmod q^{t}-1\right)$. Thus, the condition that $z \mapsto \phi \circ z$ is injective for for all non-zero f, is equivalent to ensuring that $x \equiv y\left(\bmod q^{t}-1\right)$ cannot hold, unless $x \equiv y \quad(\bmod n)$. Thus we have

Theorem 9.1.2 (Fundamental λ-Law.) [12, Lemma 2.1] Let Q_{λ} be a λ structure on $G F\left(q^{d}\right)$, defined in terms of the field automorphism $\rho: x \mapsto x^{q}$ of $G F\left(q^{d}\right)$, and the primitive element ω of order $n-1, n:=q^{d}$. Assign to every two distinct integers $x, y \in I_{n}$:

$$
t_{x, y}:=\operatorname{gcd}\left(\lambda_{x}-\lambda_{y}, d\right)
$$

Then Q_{λ} is a quasifield iff:

$$
x \equiv y \quad\left(\bmod q^{t_{x, y}}-1\right) \Longrightarrow x \equiv y \quad(\bmod n-1)
$$

In particular, if λ yields a quasifield for some choice of the primitive ω then it works for all choices of ω. However, changing ω, while holding λ fixed, will in general yield non-isomorphic quasifields.

The following exercise will be used in normalising λ-systems.
Exercise 9.1.3 Suppose

$$
G F\left(q^{d}\right) \supset G F\left(q^{s}\right) \supset G F(q)
$$

and let $\rho: x \mapsto x^{q}$ denote the primitive automorphism in $\operatorname{Gal}\left(q^{d} / q\right)$. Then:
(1) s divides d;
(2) If $\rho^{k} \in \operatorname{Gal}\left(q^{d} / q^{s}\right)$ then s divides k.

Proof: Part (1): the larger field is a vector space over the smaller field. Part (2): By Euclid algoritm $k=s x+y, 0 \leq y<s$, so $\rho^{k} \in \operatorname{Gal}\left(q^{d} / q^{s}\right)$ implies that ρ^{y} also lies in the same field, so y is a multiple of s, since the Frobenius automorphism for the field is ρ^{s}. Hence $y=0$.

Proposition 9.1.4 Let $\lambda: I_{q^{d}-1} \rightarrow I_{d}, q$ a prime-power, define the generalsied André system $Q_{\lambda}=(F,+, \circ)$ on $F=G F\left(q^{d}\right)$, based on the Frobenius automorphism $\rho: x \mapsto x^{q^{d}}$ and the primitive element $\langle\omega\rangle$. Then:
(1) $\Phi_{\lambda}:=F i x\left\{\rho^{\lambda_{i}} \mid i \in I_{q^{d}-1}\right\}$, is a subfield $G F\left(q^{s}\right)$ of F such that s divides d and also divides λ_{i}, for all $i \in I_{q^{d-1}}$; and
(2) The function $\mu: I_{q^{d}-1} \rightarrow I_{\frac{d}{s}}$ defined by $\mu: i \mapsto \frac{\lambda_{i}}{s}$ yields a λ-system $Q_{\mu}=(F,+, *)$ by:

$$
\omega^{i} * \omega^{j}=\left(\omega^{i}\right)^{R_{j}^{\mu}} \omega^{j}
$$

relative to ω and $R=\rho^{S}$, the Frobenius automorphism of $\operatorname{Gal}\left(q^{d} / q^{S}\right)$.
Moreover, $\Phi_{\mu}:=\operatorname{Fix}\left\{\rho^{\mu_{i}} \mid i \in I_{q^{d}-1}\right\}$, is the fixed field of the Frobenius automorphism $R: x \mapsto x^{q^{s}}$ defining Q_{μ} and $(F,+, *)=(F,+, \circ)$.
Proof: In view of the previous exercise, it essentially remains to verify that the two products coincide:

$$
\begin{aligned}
\omega^{i} * \omega^{j} & =\left(\omega^{i}\right)^{R_{j}^{\mu}} \omega^{j} \\
& =\left(\omega^{i}\right)^{\left.\left(\rho^{s}\right)^{(} \lambda_{j} / \mathcal{S}\right)} \omega^{j} \\
& =\left(\omega^{i}\right)^{(\rho)^{\left(\lambda_{j}\right)} \omega^{j}} \\
& =\omega^{i} \circ \omega^{j}
\end{aligned}
$$

as required.
Hence, any finite generalized André system may be expressed in the form $Q_{\lambda}=(F,+, \circ)$ where \circ is determined by a λ-function $\lambda: I_{q^{d}-1} \rightarrow I_{d}$, associated with $G F\left(q^{d}\right)$, such that

$$
\Phi_{\lambda}:=\operatorname{Fix}\left\{\rho^{\lambda_{i}} \mid i \in I_{q^{d}-1}\right\}=G F(q)
$$

the fixed field of the Frobenius automorphism $\rho: x \mapsto x^{q}$ used in defining \circ from λ.

Thus without loss of generality we assume that if $\lambda: I_{q^{d}-1} \rightarrow I_{d}$ defines a generalized Adré sysytem then the λ is chosen so that the fixed field of the group generted by $\left\{\rho^{\lambda_{i}} \mid: i \in I_{q^{d}-1}\right\}$ is just $G F(q)$, the fixed field of the Frobenius automorphism $x \mapsto x^{d}$.

9.2 No Shears In λ-Systems.

Proposition 9.2.1 In the λ-system Q_{λ} suppose $a, b, a+b \in Q_{\lambda}^{*}$ and that for all $c \in Q_{\lambda}$:

$$
c \circ(a+b)=c \circ a+c \circ b
$$

Then $\lambda_{a}=\lambda_{b}$.

工F. APTER 9. GENERALISED ANDRÉ SYSTEMS AND NEARFIELDS. 156

Proof: Solving for $\lambda_{(a+b)}$:

$$
c \lambda_{(a+b)}=\frac{(c) \lambda_{a} a+(c) \lambda_{b} b}{(a+b)}
$$

and writing $c=x y$ we get:

$$
(x y) \lambda_{(a+b)}=\frac{(x y) \lambda_{a} a+(x y) \lambda_{b} b}{(a+b)},
$$

and noting that all λ 's are multiplicative bijections:

$$
(x) \lambda_{(a+b)}(y) \lambda_{(a+b)}=\frac{(x) \lambda_{a}(y) \lambda_{a} a+(x) \lambda_{b}(y) \lambda_{b} b}{(a+b)},
$$

and by the formula for $c \lambda(a+b)$:

$$
\frac{(x) \lambda_{a} a+(x) \lambda_{b} b}{(a+b)} \frac{(y) \lambda_{a} a+(y) \lambda_{b} b}{(a+b)}=\frac{(x) \lambda_{a}(y) \lambda_{a} a+(x) \lambda_{b}(y) \lambda_{b} b}{(a+b)}
$$

yielding:

$$
(x) \lambda_{(a+b)}(y) \lambda_{(a+b)}=\frac{(x) \lambda_{a}(y) \lambda_{a} a+(x) \lambda_{b}(y) \lambda_{b} b}{(a+b)}
$$

and by the formula for $c \lambda_{(a+b)}$:

$$
\begin{aligned}
& \left((x) \lambda_{a} a+(x) \lambda_{b} b\right)\left((y) \lambda_{a} a+(y) \lambda_{b} b\right)= \\
& (x) \lambda_{a}(y) \lambda_{a} a+(x) \lambda_{b}(y) \lambda_{b} b(a+b)
\end{aligned}
$$ and expanding yields:

$$
\begin{aligned}
(x) \lambda_{a}(y) \lambda_{a} a^{2}+(x) \lambda_{b}(y) \lambda_{b} b^{2}+(x) \lambda_{a}(y) \lambda_{b} a b+(x) \lambda_{b}(y) \lambda_{a} a b & = \\
(x) \lambda_{a}(y) \lambda_{a} a(a+b) & +(x) \lambda_{b}(y) \lambda_{b} b(a+l
\end{aligned}
$$

yielding the field automorphism identity in x and y (zero values permitted):

$$
(x) \lambda_{a}(y) \lambda_{a}+(x) \lambda_{b}(y) \lambda_{b}=(x) \lambda_{a}(y) \lambda_{b}+(x) \lambda_{b}(y) \lambda_{a}
$$

and by Vaughan polynomials in two variables these additive identities cannot be equal unless $\lambda_{a}=\lambda_{b}$.

Corollary 9.2.2 A finite generalized André system cannot be a semifield unless λ is identically zero, in which case it is just a field.

CHAPTER 9. GENERALISED ANDRÉSYSTEMS AND NEARFIELDS. 157

Exercise 9.2.3 Let $n=q^{d}$, q a prime power, and suppose $\lambda: I_{n-1} \rightarrow I_{d}$ be a map such that $\lambda_{0}=0$. Put $t_{x y}=\operatorname{gcd}\left(\lambda_{x}-\lambda_{y}, d\right)$, for $x, y \in I_{n}$. Assume λ is a λ-system in the sense that:

$$
x \equiv y \quad\left(\bmod q^{t_{x y}}-1\right) \Longrightarrow x \equiv y \quad\left(\bmod q^{d}-1\right) .
$$

1. The zero map is a λ-function, and the corresponding quasifield Q_{λ} is a field.
2. Find all the λ-systems when $d=2$.
3. $t_{x y}=1$ for all distinct $x, y \in I_{n}$ iff d is prime.
4. If d is prime then λ is constant on the additive cosets of the ideal of I_{n} generated by $q-1$. Conversely, any function constant on the additive cosets of the principal ideal $I_{n-1}(q-1)$ is a λ function.
5. Show that, apart from fields, no quasifields Q_{λ} of order $n=2^{p}$ can exist if p is prime.
6. If $i \equiv j \quad\left(\bmod q^{t_{i j}}-1\right)$ for distinct $i, j \in I_{n-1}$ then $\lambda_{i}=\lambda_{j}$.

9.3 Cyclic Groups In λ-Sytems.

Proposition 9.3.1 (Period v_{λ} of a λ-system.) Call the integer $k \in I_{n-1}$ a scale for a λ function iff:

$$
x \equiv y \quad(\bmod k) \Longrightarrow \lambda_{x}=\lambda_{y} .
$$

Then the set of scales may be expressed as an ideal $v_{\lambda} I_{n-1}$ of I_{n-1}, where the integer $v_{\lambda} \mid n-1$. The integer $v:=v_{\lambda}$ is called the period of λ.

Proof: If k is a scale then $k a$ is a scale because $x \equiv y(\bmod k a)$ implies $x \equiv y(\bmod k)$. If m and k are scales we must show $m-k$, where $m \geq k$ wlog, is also a scale. Suppose $|x-y|=m-k$, and wlog $x=y+m-k$. Now $\lambda_{y}=\lambda_{y+m}$ because m is a scale, and $\lambda_{y+m}=\lambda_{x}$ because k is a scale. So $\lambda_{x}=\lambda_{y}$. Thus the scales form an additive subgroup of I_{n-1} and the rest follows because the integers form a principal ideal domain with I_{n-1} as an image.
The $v_{\lambda}:=v$ shows that Q_{λ} has a cyclic subgroup.

CHAPTER 9. GENERALISED ANDRÉ SYSTEMS AND NEARFIELDS. 158

Corollary 9.3.2 $<\omega^{v_{\lambda}}>$ is a cyclic subgroup of Q_{λ} with the same multiplication when the field multiplication on $\langle\omega\rangle$ is restricted to $\left\langle\omega^{\nu_{\lambda}}\right\rangle$.

Proof: By scaling law:

$$
\lambda_{v a}=\lambda_{v}=\lambda_{0}=0
$$

The following implies a lower bound for the cyclic group associated with v, as defined above.

Proposition 9.3.3 Let $u=\operatorname{lcm}\left\{q^{m}-1|m| d, 0<m<d\right\}$. Then v_{λ} divides u.

Proof: We must show u is a scale: $x \equiv y(\bmod u)$ implies $\lambda_{x}=\lambda_{y}$. So assume $\lambda_{x}-\lambda_{y} \neq 0$, thus $t_{x y}=\operatorname{gcd}\left(\lambda_{x}-\lambda_{y}, d\right)$ is a non-zero divisor of d. If $x \equiv y(\bmod u)$, then every non-zero $q^{t_{a b}}-1$, for distinct $a, b \in I_{n-1}$, divides u and hence also $x-y$. But for $a=x, b=y$ we now have $x \equiv y$ $\left(\bmod q^{t_{x y}}-1\right)$. Now by the definition of a λ-system, we have, see theorem 9.1.2, $\lambda_{x}=\lambda_{y}$. The contradiction yields the result.

9.4 André Systems.

The following proposition introduces the original André systems in terms of generalized André systems.

Theorem 9.4.1 Define the map

$$
\begin{gathered}
\nu: I_{n-1} \rightarrow I_{q-1} \\
\nu(i) \equiv i \quad(\bmod (q-1))
\end{gathered}
$$

and let $\mu: I_{q-1} \rightarrow I_{d}$ be an arbitrary map such that $\mu(0)=0$. Then

1. $\lambda=\mu \nu()$ is a λ-function defining a quasifield Q_{λ} called an André system. The v for an André system divides $q-1$
2. Conversely, if a λ-system has v dividing $q-1$ then it must be a generalized André system.
3. In any André system $\lambda(x \circ y)=\lambda(x y)$. Hence the system is nearfield iff λ is a homomorphism from I_{n-1} to I_{d}.

Proof: If $i \equiv j\left(\bmod q^{t_{i j}}-1\right)$ then certainly $i \equiv j(\bmod q-1)$ and this implies $\lambda_{i}=\lambda_{j}$, by the definition of ν and μ, and now $t_{i j}=d$ so $i \equiv j$ $\left(\bmod q^{d}-1\right)$, and hence $i=j$. Thus an André system is a quasifield. Also if $i \equiv j(\bmod q-1)$ then the defintion of an Andr'e system implies that $\lambda_{i}=\lambda_{j}$; but v is the least integer for which this holds. Thus v divides $q-1$. The converse follows because v dividing $q-1$ means that λ is constant on points differing by multiples of $q-1$: so choose μ to be the common value of such additive cosets of $\langle q-1\rangle$.
To check $\lambda(x \circ y)=\lambda(x y)$ in additive form we write $x=\omega^{X}, y=\omega^{Y}$ and now we need to show

$$
\lambda\left(X q^{\lambda Y}+Y\right) \equiv \lambda(X+Y)
$$

But $X q^{\lambda_{Y}}+Y \equiv X+Y(\bmod q-1)$ certainly holds, because $q \equiv 1$ $(\bmod q-1)$, so the identity holds because the 'scale' v for λ divides $q-1$.

9.5 Highest Prime-Power Divisors of $a-1$ Dividing $a^{d}-1$.

Let u be a prime dividing $a-1$. The aim of this section is to consider the highest power of u that divides $a^{n}-1$, where $n>1$ is an integer. A lower bound follows by a simple induction:

Lemma 9.5.1 If u^{A} divides $a-1$ and u^{B} divides n then u^{A+B} divides $a^{n}-1$.
Proof: Write $n=u^{B} \delta$, where $\operatorname{gcd}(u, \delta)=1$. Apply induction on B. Since ($a-1$) is a factor of $a^{n}-1$ the desired result holds for $B=0$. Assume $u^{A+B} \| a^{n}-1$, when $B=b$. Then consider the next case $B=b+1$ using:

$$
a^{u^{b+1} \delta}-1=\left(a^{u^{b} \delta}-1\right) \sum_{i=0}^{u-1} a^{u^{b} \delta i}
$$

and now by the inductive hypothesis the term $\left(a^{u^{b} \delta}-1\right)$ is divisible by u^{A+B} and the summation is $\equiv u(\bmod u)$ since each of the u terms involved in it
are $\equiv 1(\bmod u)$. Thus the lhs is divisible by u^{A+B}, when $B=b+1$. The desired conclusion follows.
In the somewhat vacuous case, when $\operatorname{gcd}(n, u)=1$, the lower bound above implies an exact value for the highest power of u dividing $a^{n}-1$:

Corollary 9.5.2 Suppose u is a prime divisor of $a-1$ such that $u^{\alpha} \| a-1$ and $u^{\beta} \| n$. Then: $u^{\alpha+\beta} \mid a^{n}-1$, and if $\beta=0$ then $u^{\alpha+\beta} \| a^{n}-1$.

We adopt the hypothesis of the corollary for the rest of the section; $u^{r} \| R$ means u^{r} is the highest power of the prime u dividing the integer R.

Our principal aim is to show that the corollary 9.5 .2 holds in the general case when $u^{\alpha}>2$ and β is arbitrary: thus the exact value of the highest power of u dividing $a^{n}-1$ is the lower bound given in the corollary, unless $2 \| a-1$, in which case the lower bound $u^{\alpha+\beta}$ is not sharp for $\beta>0$. We verify this first.

Remark 9.5.3 Suppose $2 \| a-1$, and write $n=2^{\beta} \delta$, so δ is odd. Then, for $\beta \geq 1$:

$$
a^{n}-1 \equiv 0 \quad\left(\bmod 2^{\beta+2}\right)
$$

Proof: If $\beta=1$ then

$$
a^{n}-1=\left(a^{d / 2}-1\right)\left(a^{n / 2}+1\right) \equiv 0 \quad(\bmod 8)
$$

as required. The general case follows by induction on β : assume the result holds when $2^{\beta} \| n$, and consider the next case where $n=2^{2^{3+1} \delta}, \delta$ odd.

$$
a^{2^{3+1} \delta}-1=\left(a^{2^{\beta} \delta}-1\right)\left(a^{2^{\beta^{\delta}} \delta}+1\right) \equiv 0 \quad\left(\bmod 2^{\beta+2} 2\right)
$$

by the inductive hypothesis, so the desired result follows.
Thus, the remark asserts that if $u=2$ and $\alpha=1$ then $u^{\alpha+\beta+1}$ divides $a^{n}-1$, where $u^{\beta} \| n$. The rest of the section is concerned with showing that this does not happen in any other case, that is, we shall establish that:

$$
u^{\alpha+\beta} \| a^{n}-1 \Rightarrow u^{\alpha}=2
$$

and this situation has been considered in remark 9.5 .3 above.
We begin by noting that in all cases it is justifiable to assume $n=u^{\beta}$ whenever convenient:

Remark 9.5.4 When $u^{\beta} \| n$ then $u^{A} \| a^{n}-1$ iff $u^{A} \| a^{u^{\beta}}-1$.

CHAPTER 9. GENERALISED ANDRÉ SYSTEMS AND NEARFIELDS. 161

Proof: Defining m so that $n=u^{\beta} m$, we have $\operatorname{gcd}(u, m)=1$, and hence also

$$
a^{n}-1=\left(a^{u^{\beta}}-1\right) \sum_{i=0}^{m-1} a^{u^{\beta}} i
$$

and since $a \equiv 1(\bmod u)$ we now have

$$
a^{n}-1=\left(a^{u^{s}}-1\right) m,
$$

yielding the desired result, since $\operatorname{gcd}(u, m)=1$.
So to determine when $u^{\alpha+\beta} \| a^{n}-1$, we need to consider its negation, the following condition:

$$
\begin{equation*}
u^{\alpha+\beta+1} \mid a^{u^{\beta}}-1 . \tag{9.2}
\end{equation*}
$$

As mentioned earlier, the condition cannot hold when $\beta=0$. Thus if the condition (9.2) ever holds, for some u^{α}, then there is a maximum integer $b \geq 1$ such that condition (9.2) fails for $\beta:=b$ but holds for $\beta=b+1$. We have seen already, in remark 9.5 .3 , that if $u^{\alpha}=2$ then $b=1$ can be chosen, and condition (9.2) holds for $\beta \geq 1$. In order to show that condition (9.2) does not hold in any other circumstance we essentially need to establish if it fails for a given β (which it always does when $\beta=0$) then it cannot hold for the next β, unless, as we have seen, $u^{\alpha}=2$.

Lemma 9.5.5 Suppose that there is an integer $\beta \geq 0$ such that:

$$
\begin{align*}
& a^{u^{\beta}}-1 \equiv \equiv 0 \tag{9.3}\\
& a^{u^{\beta+1}}-1 \equiv 0 \quad\left(\bmod u^{\alpha+\beta+1}\right) \tag{9.4}\\
&\left(\bmod u^{\alpha+\beta+2}\right)
\end{align*}
$$

Then $\beta=0$ and $u^{\alpha}=2$.
Proof: Writing

$$
a^{u^{\beta+1}}-1=\left(a^{u^{\beta}}-1\right)\left(\sum_{i=0}^{u-1} a^{u^{\beta}} i\right),
$$

we have by condition (9.4):

$$
\left(a^{u^{\beta}}-1\right)\left(\sum_{i=0}^{u-1} a^{u^{\beta} i}\right) \equiv 0 \quad\left(\bmod u^{\alpha+\beta+2}\right)
$$

and since by lemma 9.5 .1 and condition (9.3)

$$
u^{\alpha+\beta} \| a^{u^{\beta}}-1
$$

we now have

$$
\begin{equation*}
\sum_{i=0}^{u-1} a^{u^{\beta}} i \equiv 0 \quad\left(\bmod u^{2}\right) \tag{9.5}
\end{equation*}
$$

and we also have from lemma 9.5 .1 that for each i :

$$
\begin{equation*}
a^{u^{\beta} i} \equiv 1 \quad\left(\bmod u^{\alpha+\beta}\right) \tag{9.6}
\end{equation*}
$$

and in particular:

$$
\begin{equation*}
\text { If } \alpha+\beta \geq 2 \text { then: } a^{u^{\beta} i} \equiv 1 \quad\left(\bmod u^{2}\right) \tag{9.7}
\end{equation*}
$$

which combines with (9.5) to yield:

$$
\begin{equation*}
\text { If } \alpha+\beta \geq 2 \text { then: } u \equiv 0 \quad\left(\bmod u^{2}\right) \tag{9.8}
\end{equation*}
$$

which is a contradiction, unless $\alpha+\beta \leq 1$.
But since hypothesis $u \mid a-1$, we must now have $\alpha=1$ and $\beta=0$, and condition (9.3) holds, as remarked earlier. In view of our hypothesis that $u^{\alpha}>2$ we now also have:

$$
\begin{equation*}
u^{\alpha}=u \text { is an odd prime divisor of } a-1 \tag{9.9}
\end{equation*}
$$

Moreover, the condition (9.4) reduces to

$$
\begin{equation*}
a^{u}-1 \equiv 0 \quad\left(\bmod u^{3}\right) \tag{9.10}
\end{equation*}
$$

and on applying (9.9) this yields

$$
\begin{equation*}
\sum_{i=0}^{u-1} a^{i} \equiv 0 \quad\left(\bmod u^{2}\right) \tag{9.11}
\end{equation*}
$$

Moreover,

$$
\begin{aligned}
\sum_{i=0}^{u-1} a^{i} & =u+\sum_{i=1}^{u-1}\left(a^{i}-1\right) \\
& =u+(a-1) \sum_{i=1}^{u-1} \sum_{j=1}^{i-1} a^{j}
\end{aligned}
$$

CHAPTER 9. GENERALISED ANDRÉSYSTEMS AND NEARFIELDS. 163

and since $a-1 \equiv 0(\bmod u)$ and $a^{j} \equiv 1 \quad(\bmod u)$ we also have $(a-1) a^{j} \equiv$ $(a-1) 1 \quad\left(\bmod u^{2}\right)$. Thus

$$
\begin{aligned}
\sum_{i=0}^{u-1} a^{i} & \equiv u+\sum_{i=1}^{u-1} i \quad\left(\bmod u^{2}\right) \\
& \equiv u+(a-1) \frac{u(u-1)}{2} \quad\left(\bmod u^{2}\right)
\end{aligned}
$$

and since the LHS $\equiv 0\left(\bmod u^{2}\right)$, by eqn (9.11), we now have:

$$
1+\frac{(a-1)(u-1)}{2} \quad(\bmod u)
$$

but since the prime u is an odd divisor $a-1$ we have a contradiction. Combining lemma 9.5 .5 with remark 9.5 .3 yields, for $u^{\alpha}>2, u^{\alpha+\beta}$ is the highest power of u dividing $a^{n}-1$

Theorem 9.5.6 Suppose $a>1$ and $n \geq 1$ are integers and u is a prime divisor of $a-1$ such that $u^{\alpha} \| a-1$ and $u^{\beta} \| n$.

1. If $u^{\alpha}>2$ or $\beta=0$ then

$$
u^{\alpha+\beta} \| a^{n}-1
$$

2. If $u^{\alpha}=2$ and $\beta \geq 1$ then

$$
u^{\alpha+\beta+1} \mid a^{n}-1
$$

Our next objective is to apply the theorem above to show that under its hypothesis $a^{k}-1 / a-1$ ranges over all residues $\bmod N$, as k varies. This is crucial in defining the Dickson nearfields.

Lemma 9.5.7 Let $a>1$ and $N>1$ be integers such that:

1. every prime divisor of N divides $a-1$; and
2. if $a \equiv 3(\bmod 4)$ then $N \not \equiv 0(\bmod 4)$.

Then $a^{N}-1 \not \equiv 0(\bmod N(a-1))$ for $1 \leq n<N$.

CHAPTER 9. GENERALISED ANDRÉ SYSTEMS AND NEARFIELDS. 164

Proof: To obtain a contradiction assume that for some $n \in[1, N-1]$:

$$
\begin{equation*}
a^{n}-1 \equiv 0(\bmod N(a-1)) . \tag{9.1}
\end{equation*}
$$

Since $n<N$, there is at least one prime divisor u of N such that for some integer $b \geq 0, u^{b} \| n$ and $u^{b+1} \mid N$. By theorem 9.5.6, $a^{n}-1$ is divisible by $u^{\alpha+\beta}$, and this is the highest power of u dividing $a^{n}-1$, unless $u^{\alpha}=2$. So for $u^{\alpha}>2, u^{\alpha+b} \| a^{n}-1$, contrary to eqn (9.1). Thus we may further assume that $u^{\alpha}=2$, So 2^{b+1} divides N, and this contradicts our hypothesis that $N \not \equiv 0(\bmod 4)$, when $2 \| a-1$, unless $b=0$. But in this case theorem 9.5.6 still implies $u^{\alpha+b} \| a^{n}-1$, again contradicting eqn (9.1).
We now obtain the desired result, that $a^{k}-1 / a-1$ ranges over the residues $\bmod n$ as k ranges over $1 \ldots n$.

Proposition 9.5.8 Let $a>1$ and $n>1$ be integers such that:

1. every prime divisor of n divides $a-1$; and
2. if $a \equiv 3(\bmod 4)$ then $n \not \equiv 0(\bmod 4)$.

Then the n distinct integers:

$$
1, \frac{a^{2}-1}{a-1}, \frac{a^{3}-1}{a-1}, \ldots, \frac{a^{n}-1}{a-1},
$$

constitute a complete set of n residues $\bmod n$. In particular, $a^{n}-1 / a-1 \equiv 0$ $(\bmod n)$.

Proof: The difference of two distinct terms of the above list, associated with $i>j$, yields:

$$
\begin{aligned}
\frac{a^{i}-1}{a-1} & \equiv \frac{a^{j}-1}{a-1} \quad(\bmod n) \\
\Rightarrow a^{j} \frac{a^{i-j}-1}{a-1} & \equiv 0 \quad(\bmod n) \\
\Rightarrow \frac{a^{i-j}-1}{a-1} & \equiv 0 \quad(\bmod n),
\end{aligned}
$$

contradicting lemma 9.5.7. Thus each of the n listed terms is a distinct residue $\bmod n$. Moreover, $a^{n}-1 / a-1 \equiv 0(\bmod n)$ follows directly from theorem 9.5.6.

CHAPTER 9. GENERALISED ANDRÉ SYSTEMS AND NEARFIELDS. 165

9.6 Dickson Nearfields.

Let $F=G F\left(q^{n}\right)$, and assume (q, n) is a Dickson pair: so the prime divisors of n divide $q-1$, and if $q \equiv 3(\bmod 4)$ then $n \not \equiv 0(\bmod 4)$.

Hence $\left(q^{n}-1\right) / n$ is an integer because the maximum prime-power divisors of n divide $q^{n}-1$. So the cyclic group F^{*} has a unique subgroup N of order $q^{n}-1 / n$, and on applying proposition 9.5 .8 , to the cyclic group F^{*} / N^{*} of order n, we may write F^{*} as a union of cosets of N in the form:

$$
F^{*}=\theta N \bigcup \theta^{\frac{q^{2}-1}{q-1}} N \bigcup \theta^{\frac{q^{3}-1}{q-1}} N \bigcup \ldots \bigcup \theta^{\frac{q^{n}-1}{q-1}} N
$$

where $\theta \in F^{*}-N$ is such that θN generates the cyclic group F^{*} / N.
Lemma 9.6.1 Suppose $b, c \in F^{*}$ are given by:

$$
\begin{aligned}
& b=\theta^{\frac{q^{\beta}-1}{q-1}} y, \exists y \in N \\
& c=\theta^{\frac{q^{\gamma}-1}{q-1}} z, \exists z \in N
\end{aligned}
$$

Then

$$
b^{q^{\gamma}} c \in \theta^{\frac{q^{(\beta+\gamma) \bmod n-1}}{q-1}} N .
$$

Proof:

$$
\begin{aligned}
b^{q^{\gamma}} c & =\left(\theta^{\frac{q^{\beta}-1}{q-1}} y\right)^{q^{\gamma}} \theta^{\frac{q^{\gamma}-1}{q-1}} z \\
& =\theta^{\frac{q^{\beta+\gamma}-q^{\gamma}}{q-1}} y^{q^{\gamma}} \theta^{\frac{q^{\gamma}-1}{q-1}} z \\
& =\theta^{\frac{q^{\beta+\gamma-q^{\gamma}+q^{\gamma}-1}}{q-1}} y^{q^{\gamma}} z \\
& \in \theta^{\frac{q^{\beta+\gamma-1}}{\beta-1} N, \text { by invariance of } N \text { under group homomorphisms, }} \\
& =\theta^{\frac{q^{(\beta+\gamma) \text { nucn }-1}}{q-1}} N,
\end{aligned}
$$

the desired result.

Definition 9.6.2 (Dickson Nearfields.) Let (q, n) be a Dickson pair. Then for $m \in \theta^{\frac{q^{i}-1}{q-1}} N$, define the field automorphism $\lambda(x) \in \operatorname{Gal}\left(G F\left(q^{n}\right) / G F(q)\right.$ by:

$$
\lambda(m): x \mapsto x^{q^{i}}, i \in\{1,2 \ldots, n\}
$$

CHAPTER 9. GENERALISED ANDRÉSYSTEMS AND NEARFIELDS. 166

and the product $(F, \circ), f=G F\left(q^{n}\right)$, by $x \circ 0=0$, for $x \in F$ and:

$$
x \circ m= \begin{cases}x^{\lambda(m)} m & \text { if } m \in F^{*} \\ 0 & \text { if } m=0\end{cases}
$$

We call all any such $(F,+, \circ)$ a Dickson nearfield, associated with λ and θ.
It is a tautology to claim that any Dickson nearfield is a generalized André plane. However, we have yet to establish that $(F,+, \circ)$ is always a nearfield. This is our goal for the rest of the section, so we assume the notation of definition 9.6.2. To establish that the product o yields a quasifield essentially involves showing that 'slopemaps' of the non-identity elements of F^{*}, relative to \circ, are semiregular on F^{*}.
Lemma 9.6.3 Suppose: $x \circ m=x$ for some $x, m \in F^{*}$. Then $m=1$.
Proof: Suppose $x \circ m=x$. Writing $x=\theta^{\frac{q^{j}-1}{a-1}}$ and $y=\theta^{\frac{q}{i}^{\frac{i^{j}-1}{q-1}}}$, where $i, j \in[1, n]$, we have

$$
\begin{aligned}
&\left(\theta^{\frac{q^{j}-1}{q-1}}\right)^{q^{i}} \theta^{\frac{q^{\frac{q^{-1}}{q-1}}}{q-1}} \equiv \theta^{\frac{g^{j}-1}{q-1}} \quad(\bmod N), \\
& \text { so } \theta^{\frac{q^{j+i}-1}{q-1}} \equiv \theta^{\frac{q}{}_{j}^{q-1}} \\
& \text { so } \theta^{q^{\frac{q^{j}+i-q^{j}}{q-1}}}(\bmod N), \\
& \text { so }\left(\theta^{\frac{q^{i}-1}{q-1}}\right)^{q^{j}} \in N, \\
& \text { so } \theta^{\frac{q^{i}-1}{q-1}} \in N,
\end{aligned}
$$

yielding $i=n$. So $1=x \circ m=x m$, and we have $m=1$ as required.
To show that (F^{*}, \circ) is a group we first note that it is an associative binary system with identity. The proof depends on extensive tacit use of the 'product' computed in lemma 9.6.1.
Lemma 9.6.4 (F^{*}, \circ) is an associative binary system with identity $1 \in F$.
Proof: Since $a \circ b \in F^{*}$ whenever $a, b \in F^{*}$ we have a binary system, and the multiplicative identity of F^{*} is the identity for (F^{*}, o) by the definition of o . To show \circ is associative, we represent $x, y, z \in F^{*}$ in the form:

$$
\begin{aligned}
& x=\theta^{\frac{a^{\frac{a}{a}-1}}{q-1}} n_{y}, \exists n_{x} \in N ; \\
& y=\theta^{\frac{g^{\frac{b}{a}-1}}{q-1}} n_{y}, \exists n_{y} \in N ; \\
& z=\theta^{\frac{a^{\frac{c}{c}-1}}{q-1}} n_{z}, \exists n_{z} \in N,
\end{aligned}
$$

CHAPTER 9. GENERALISED ANDRÉ SYSTEMS AND NEARFIELDS. 167

where $a, b, c \in\{1 \ldots, n\}$. Applying lemma 9.6 .1 repeatedly to the definition of o, we have

$$
\begin{aligned}
x \circ(y \circ z) & =\left(\theta^{\frac{q^{a}-1}{q-1}} n_{x}\right) \circ(y \circ z) \\
& =\left(\theta^{\frac{q^{a}-1}{q-1}} n_{x}\right)^{q^{(b+c) \bmod n}} \theta^{\frac{q^{(b+c) \bmod n-1}}{q-1}} n_{y}^{q^{c}} n_{z} \\
& =\theta^{\frac{q^{(a+b+c) \bmod n-q^{(b+c) \operatorname{mud} n}}}{q-1}} \theta^{\frac{q^{(b+c) \bmod n-1}}{q-1}} n_{x}^{q^{(b+c) \bmod n}} n_{y}^{q^{c}} n_{z} \\
& =\frac{\theta^{q^{(a+b+c) \bmod n}-1}}{q-1} n_{x}^{q^{(b+c) \bmod n}} n_{y}^{q^{c}} n_{z},
\end{aligned}
$$

and similarly:

$$
\begin{aligned}
(x \circ y) \circ z & =\left(\theta^{\frac{q^{(a+b) \bmod n-1}}{q-1}} n_{x}^{q^{b}} n_{y}\right) \circ z \\
& =\left(\theta^{\frac{q^{(a+b) \bmod n-1}}{q-1}} n_{x}^{q^{b}} n_{y}\right) \circ \theta^{\frac{q^{c}-1}{q-1}} n_{z} \\
& =\left(\theta^{\frac{q^{(a+b) \bmod n-1}}{q-1}} n_{x}^{q^{b}} n_{y}\right)^{q^{c}} \theta^{\frac{q^{c}-1}{q-1}} n_{z} \\
& =\left(\theta^{\frac{q^{(a+b+c) \bmod n-q^{c}}}{q-1}} n_{x}^{q^{(b+c) \bmod n}} n_{y}^{q^{c}}\right) \theta^{\frac{q^{c}-1}{q-1}} n_{z} \\
& =\theta^{\frac{q^{(a+b+c) \bmod n-1}}{q-1}} n_{x}^{q^{b}+q^{c}} n_{y}^{q^{c}} n_{z},
\end{aligned}
$$

and the associativity of \circ follows on comparing the values of $(x \circ y) \circ z$ and $x \circ(y \circ z)$ obtained above.
The maps $T_{m}: x \mapsto x \circ m$, for $m \in F^{*}$, are obviously in $G L(F,+)$ and lemma 9.6.4 above implies that such maps are closed under composition, thus:

$$
\tau=\left\{T_{m}: x \mapsto x \circ m \in G L(F,+) \mid m \in F^{*}\right\}
$$

is a subgroup of $G L(F,+)$, and by lemma 9.6 .3 every $T_{m}, m \in F^{*}-\{1\}$, is semiregular on F^{*}. This forces the difference between any two distinct members of τ to be a non-singular map of $(F,+)$, since otherwise a nonidentity element of τ would fix some element of F^{*}. Thus τ together with the zeromap forms a spreadset that is multiplicatively closed. Now by this alone (or alternatively by lemma 9.6 .4 above) $(F,+, \circ)$ is a nearfield. Thus we have established:

CHAPTER 9. GENERALISED ANDRÉ SYSTEMS AND NEARFIELDS. 168

Theorem 9.6.5 Given a Dickson pair (q, n) and $(F,+, \circ)$ be as in definition 9.6.2. Then $(F,+, \circ)$ is a generalized André system relative to the given λ that is associative. Such generalized André systems are called Dickson nearfields.

