Chapter 6

Central Collineations and
Desarguesian Nets.

Central collineations have a strong bearing on the planes upon which they
act. In this section we study central collineations using two parallel but
distinct approaches: the quasifield approach and the spreadset approach.
The machinery developed provides useful characterizations of rational De-
sarguesian net, those nets that are isomorphic to the nets defined by the par-
allel classes of subplanes of a Desarguesian plane. Note that rational partial
spreads were introduced in defintion 5.7.2 and the associated nets, particu-
larly the associated rational Desarguesian nets will be further considered in

6.3.

6.1 Central Collineations in Standard Form.

In this section, w((}) is a translation plane coordinatized by a quasifield
(Q.+,0). So the associated spread on Q9@ has as its components X = Q%0
and Y = 06 Q and all subspaces y = zom, m € @Q; thus, m = 0 corresponds
to X.

We shall investigate affine affine central collineations when their axes and
coaxes are chosen canonically. Specifically, when dealing with homologies,
we assume that the axis and coaxis have been chosen from the two standard
components, X and Y, and when dealing with affine elations we take Y as

the axis.
Since all such collineations g are among the additive bijections of Q & Q
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that leave X and Y invariant, the action of g on the affine pointset QQ & () is
specified by:

g9:(z,0)
Forallz,me @: g:(0,z)
—r

(z), B
(z), D(z)) |, (6.1)
g:(m) S

6.1.1 When g is a Y-elation of n(Q).

We consider the case when g is an elation with axis Y. So g fixes Y identically,
and since (oc) is the center, g leaves the z-coordinate of all points unchanged.

So the eqns (6.1) become:

9:(2,0) — (z,B(z))
Forall z,y me @: ¢g:(0,y) — (0,y)
g:(m) ~— (m®),

and now the point (z,z om), on the component y = xom, gets mapped onto
the point of (z, B(z) + 2 o m) and this must lie on y = x o m5, thus:

Veim e Q:B(z)+zom=2z0m®",
and putting 0° := q, yields B:
Ve Q: B(a)=xoca.

Hence:
VimeQ:z0a+zom=x0m”,
and choosing z = e, a left identity, yields a + m = m?, so:
Ve,m € @ :xoa+xom=zxo(a+m).
Thus, we may summarize our conclusions as follows.

Theorem 6.1.1 Suppose Q is a quasifield such that in the associated trans-
lation plane w(Q) the full shears group with axisY is G. Then g € G maps
the axts X onto a component y =z oa, a € Q, tff:

Ve,m € Q:xo(a+m)=z0a+x0m,
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and when this condition holds the shear g is the collineation:
(z,y) — (z,x0a+y)
(m) — (m+a)

In particular, g maps the component y = xom, for m € QQ, onto the compo-
nent y = x o (a +m).

6.1.2 When g is a Y-axis homology of 7(Q).

We consider the case when g is a homology of 7(Q) with axis Y and coaxis X.
So g fixes Y elementwise and, since (0) is the center, g leaves the y-coordinate
of all points unchanged. So the eqns (6.1) yield:

g9:(z,y) — (Alz),y)
Forallz,yme Q): g¢: (‘IH) = (THS) )
g:(0) + (07)=(0)

and now the point (z,z o m) on the component y = z o m gets mapped to
the point (A(z), 2 0m), and since this must lie on the component y = zom?,

we have:

VimeQ:Alz)om® =z om
.y " . . . ; -1
and writing ¢” := f, where ¢ is a right identity for o, yields A = T, , so the
above equation becomes

V,m € (Q : (H:)Tfl om® =z om

hence:
S .
Ve,m € Q: (x)om” =a2Tsom

('I:)ﬂnf; = $TfTﬂL

and z = e yields

Vvme Q:m° = fom,
so both A and S have been determined in terms of f, where y = z o f is the
g-image of the unit line ¥y = x o €. Thus g is the map:

-1
g:(z,y) — ()T} ,y)
g:(m) — (fom)
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and so
x,xom)w— (xT L axom ;
( ) ( f

and the image can lies on the component y =z o (f om) only if

Ty ' o(fom) = zom,
=z o (fom)=(zTy)om (2 o f) om,

I

vielding:

Theorem 6.1.2 Let w(Q) be the translation plane associated with a quasi-
field (Q, +, o), with multiplicative identity e. Let G be the group of affine ho-
mologies of m(Q) with axis Y and coaris X. Then the G-orbit of the unit line
y = zoe consists of all components of type y = zo f, where f € N,,(Q)*, and
- now the unique g € G that maps the unit line ontoy = zo f, for f € N,,(Q)*,
is the collineation:

g:(zy) = ()T ,y)
g:(m) — (fom),

where Ty : x v— x o f 1s the slope of f. Moreover, the component y = x om,
m € Q*, is mapped by g onto the component y =z o (f om).

6.1.3 When g is an X-axis homology of 7(Q).

We consider the case when ¢ is a homology of #((Q) with axis X and coaxis
Y. So g fixes X elementwise and, since (oo) is the center, g leaves the
x-coordinate of all points unchanged. So the eqns (6.1) vield:

9:(x.y) — (2,B(y))
Vx,yyme@Q: g:(m) (%)
g:(0) +w (0%)=(0)

and now the point (2, x o m) on the component y = 2 o m gets mapped onto

the point of (2, B(z ¢ m)) and this must lie on the component y = z o m¥,

thus:
VimeQ:zom’ = B(x om)

and writing €% := f, where e is the identity for o, vields B = S and so the
above equation becomes:

VI?’H = Q M OTTLS = (:I}QTH)S



CHAPTER 6. CENTRAL COLLINEATIONS AND DESARGUESIAN NETS.114

and m = e gives T o f = (2)° so
Ve,meQ:zo(mo f)=(xom)o f

and f € N}, yielding:

Theorem 6.1.3 Let 7(Q) be the translation plane associated with a quasi-
field (Q, +,0), with multiplicative identity e. Let G be the group of affine
homologies of w(Q)) with aris X and coazis Y. Then the G-orbit of the unit
line y = zoe consists of all components of type y = zo f, where f € N,(Q)*,
and now the unique ¢ € G that maps the unit line onto y = z o f, for
f € N,(Q)*, is the collineation:

g:(z,y) — (z,yof)
g:(m) — (mof),

where Ty : x w— z o f is the slope of f. Moreover, g maps the component
y=zxzom, me Q,onto the component y =x0(mo f).

6.2 C(Central Collineations In Matrix Form.

We have just seen how the properties of a quasifield @) are related to cer-
tain ‘standard’ affine central collineation groups of #((Q}). We now repeat
the analysis for spreadsets coordinatizing a spread m. One way to proceed
wotlld be to express the results of the last section in spread-theoretic terms.
But we prefer to directly establish these results so as to introduce the reader
to matrixtbased techniques that are indispensible in translation plane the-
ory. For example, transposing the matrices of a spreadset, sometimes leads
to a new translation plane with distinct geometric properties: this method
of getting new-planes-from-old is not available without stepping back from
quasifields, and even translation planes, to spreadsets.

However, working with spreadsets of matrices becomes very messy when
dealing with translation planes that are infinite-dimensional over their kerns.
Thus, we shall only consider spreads that are finite dimensional over a field
K, and leave it to the determined reader to consider more general situations.
Hence, by the basis decomposition theorem we are entitled to focus on the con-
crete case, when the spreads are constructed on the ambient space K™ & K™,
and all K-linear automorphism and spreadset elements are K-matrices.
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Throughout the section, 7 denotes a spreadset of n X n matrices, that
includes zero, over a field K, and =, = (W & W, I';) is an associated spread,
where VW = K™, and the members of I'; are y = 2T, T' € 7, along with z = O:
so the subspaces X =W & O and ¥ = O & W are among the components.
Now any K-linear automorphism g of the spread #, may will be regarded as
a 2 X 2 block matrix, where each block is an n X n matrix over X.

Exercise 6.2.1 Any central collineation of the K-spread m, (so the origin
is fired by convention) is a K-linear map and hence may be represented by a

2 X 2 block matrix.

Suppose F is the elation group of m, with axis Y. We shall describe F in
terms of the matrices in 7.

Lemma 6.2.2 Supppose A is a matriz such that A+ 7 C 7 (or equivalently
A+ 71 = 7); so the matriz A € 7, and the additive matriz group < A >
partitions the set of matrices T into a union of cosets of < A >.

Now the block matriz
‘_ 1 A
g2 =1 0 1

is a an elation with axis Y that maps y = 2T, T € 7, toy = z(T + A).
Hence the orbit under g4, of any component y = x1, T' € 7, consists of the
the components y = xC where C' ranges over the additive coset T+ < A >.

Proof: For T € 7, we have:

(z,2T)gs = (z,2T) ( é’ ;1 ) = (z,z(A+T)).

But since by hypothesis A + T € 7, the mapping g4 is an automorphism of
the spread 7 that leaves Y elementwise fixed, and cannot be a homology as
it is semiregular on the other components. The lemma follows easily. =

We now verify the converse of the lemma: all elations with axis Y have form
g4. Assume g is any elation with axis Y. Thus g fixes Y identically so its
matrix on the standard basis has form

(01)

and to determine the two upper blocks we note that g leaves the X-component
of any &y € W unchanged because the lines of form « = C pass through
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the center of g. Thus ¢ fixes identically the first n clements of the canonical
basis of K™ & K™:
e; 0, 1=1,...n,

(1 A
g/l'_* 01 t

and this matrix maps the component y = zAf ontoy = (M + A),so M + A
must be in 7, in order that g preserves the spread. Thus 7 is closed under
addition by A, and, by lemma 6.2.2 above, this is sufficient for 7, to admit g4
as an elation. Thus all the Y-axis clations are of form g4, where A runs over
the largest subset o C 7 such that a + 7 C 7. Now « is clearly an additive
group of matrices and the map F € o — gg is an isomorphism from o onto
the group of all Y-axis elations of 7. Hence we have obtained the following
description of the group of Y-axis clations in matrix terins.

SO g can now be written as

Theorem 6.2.3 Let 7 be a spreadset of matrices, that incudes zero, and let
7. be the associated standard spread. Let

E={Ae7|A+7C7},

and define for each A € E the block matrix (all blocks with same order):
1 A
931 .= ( O 1 ) .

1. E 15 an additive group and T is the union of a set of additive E-cosets,
including E.

Then

2. A collineation g of 7, 1s an elation with azis Y if and only if g = ga,
for some A in E; ga maps X onto the component y = zA.

3. The map A v g4 defines an isomorphism from the additive group of
matrices E onto the full group of Y -elations of «,.

4. Let S < E be an additive subgroup of E and gs be the corresponding
elation group, defined by A — g4. Then the component orbits of gs,
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other than Y, are in natural one-one correspondence with the additive
cosets of S in T, that union to 7: thus if t € T then the coset t + S
defines the components of the gs-orbit of the component y = xt to be
the set of all components y =au, uet+ 9.

Corollary 6.2.4 A translation plane admits a transitive group of affine ela-
tions iff it is isomorphic to the translation plane associated with a spread 7.,
where T s a matrix spreadset closed under addition.

The tollowing exercise considers the extension of the above to the infinite-
dimensional case.

Exercise 6.2.5 Let V' be a finite-dimensional vector space over any [skew/
field K. Define a spreadset to be a sharply one-transitive set Suppose T €
GL(V, K) be a sharply one-transitive set of lincar bijections of V': this means
that for any x,y € V* there is a unique t € 7 such that »* = y. Determine the
elation subgroup of the associated 7., in terms of T, by generalising the above.
Hence prove corollary 6.2.4for this case. Are there any problems in proving
this corollary when the finite-dimensional restriction is removed? What hap-
pens if I is commutative but the vector space V' is infinite-dimensional over

K?

Now we turn to the full group of homologies of w, with axis ¥ and with coaxis
X. We follow the procedure for the elation case, but we shall insist that 7
contains the multiplicative identity (to substitute for the additive identity in

the elation case).

Lemma 6.2.6 Assume the spread-set T contins the identity matriz. Supp-
pose A 1s a non-zero matrix such that At C 1; thus A € 7, A s non-singular

and hence At = .
Now the block matrix

(o )
h = o 1

is a homology with axis Y and coaxis X. Hence the orbit under h, of any
non-zero component y = 1T, T € 1%, consists of the components y = zC
where C ranges over the multiplicative coset T' < A >, of the multiplicative

group < A >.
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Proof: The map h4 sends the component y = 27T onto the subspace y =
AT, so AT € 7. Now continue arguing as in lemma 6.2.2, to get the desired

resuit. =
Conversely suppose that A is any homology with axis Y and coaxis X. Thus A

has matrix Diag(H, 1), for some non-singular H corresponding to h|X. Now
the component y = A maps to the subspace y = 2H M, so H = A71M.
Now, if T contains the matriz 1, then H € 77!. Now repeating the argument
used in the elation case we get an analogue of the theorem above.

Theorem 6.2.7 Lel 7 be a spreadset of matrices, that includes zero and the
identity matriz. Let w, be the associated standard spread; so Z = {(w,w) | w € K"},

the unit line is in .. Let:
M ={Aer | A" C 1"},

and define for each A € M?* the block matriz (all blocks with same order):

(o 7)
hai= o 1}

Then

1. M* 1s a multiplicative group of matrices such that T is the union of a
set of right multiplicative M*-cosets, including M*.

2. A collineation h of 7, is a homology with aris Y and coazis X if and
only if h = hy, for some A in M; hy maps X onto the component
y =zA.

3. The map A — h, defines an tsomorphism from the multiplicative group
of matrices M* onto the full group of homologies, of w,, with azxis Y
and coaris X.

4. Let § < A be a multiplicative subgroup of M* and hs the correspond-
ing homology group, defined by A v hs. Then the component orbits of
hg, other than X and Y, are in natural one-one correspondence with
the left multiplicative cosets of S in 7, that union to 7: thus if tv then
the left coset tS defines the components of the hg-orbit of the component
y = xt to be the set of all components y = zu, u € tS.
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Corollary 6.2.8 A translation plane admits a transitive group of affine ho-
mologies sharing the same axis and coaxis iff it is isomorphic to the trans-
lation plane associated with a spread m,., where T is a matriz spreadset such
that 7* is a multiplicative group.

Next consider the situation when X is the axis and Y the coaxis of the
homology group. Using a slightly ‘dualised’ version of the above analysis we
get results similar to the above. For example, the general form the homologies
being considered are matrices of type Diag(1, A) and this maps a component
y = 1 onto y = 2T°A, so 7 is closed under multiplication by A from the

right. Continuing in this way we obtain:

Tlleorém 6.2.9 Let 7 be a spreadset of matrices, that includes zero and the
identity matriz. Let 7, be the associated standard spread; so Z = {(w,w) | w € K™},

the unit line s in m,. Let:
L*={Aer|"xAC 1"},

and define for each A € L* the block matrix (all blocks with same order):
A O
A7l 0 A )
Then

1. L* is a multiplicative group of matrices such that T is the union of a
set of right multiplicative L*-cosets, including L*.

S

A collineation h of m, is a homology with axis X and coazris Y if and
only if h = hy, for some A in M; hy maps I onto the component

y = xA.

3. The map A — h, defines an isomorphism from the multiplicative group
of matrices L* onto the full group of homologies, of 7., with azis Y and

coaris X.

4. Let S < L* be a multiplicative subgroup of L* and hg the corresponding
homology group, defined by A — h4. Then the component orbits of hg,
other than X and Y, are in natural one-one correspondence with the
multiplicative right cosets of S in T, that union to 7: thus if tT then the
right coset tS defines the components of the hg-orbit of the component
y = zt to be the set of all components y = zu, u € 5t.
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Corollary 6.2.10 A translation plane admits a transitive group of affine
homologies sharing the same axis and coaxis iff it is isomorphic to the trans-
lation plane associated with a spread 7., where T 1s a matriz spreadset such

that 7* 1s a multiplicative group.

Corollaries 6.2.8 and 6.2.10 are each equivalent to asserting that the non-
zero elements of a spreadset form a multiplicative group. Hence the spread
mr, admits a Y-axis-X-coaxis transitive homology group iff it admits an X-
axis-Y -coaxis transitive homology group. So if a translation plane of order n
admits an affine homology group of order n — 1 then it admits another with

axis and coaxis reversed! Thus we have:

Corollary 6.2.11 A {ranslation plane admits a transitive group M of affine
homologies with azis Y and coaxis X iff it admits another transitive homology

group L with with axis X and coazxis Y .

6.3 Rational Desarguesian Partial Spreads.

We have already encountered rational partial spreads in section 5.7. The
point being made there was that rational partial subspreads (and hence their
nets) are just those arising from a subquasifield of a coordinatising quasifield.
In this section we ficus on rational Desarguesian partial spreads. and the
point we make is that partial spreads defined by a Desarguesian subplane
need not be Desarguesian: that is, a partial spread with a Desarguesian

plane across 1t need not be embedable in a Desarguesian spread.

In view of the importance of this fact, we have kept this section indepen-
dent of our earlier treatment in section 5.7. The notation here also differs
slightly from our earlier notation: there is as yet no standard notation in this

area.
Definition 6.3.1 Let wa := (V,A) be a partial spread, or a spread, on
(V,+), the additive group of a vector space. Suppose W 1is any non-trivial

additive subgroup of V', such that W # V. Then the components of wa
DETERMINED BY W, or the components ACROSS W is the subset of the com-

ponent set A given by
Wa:={DeA|DNW # O},
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and the corresponding INDUCED STRUCTURE on W s wy := (W, Wa) where
WA consists of the non-trivial intersections of the components of wa with W :

Wa:={dnW |de W4},

The subspace W is called a SUBSPREAD of wa if the structure my induced on
it, 1s a spread in the usual sense, that is, every pair of distinct members of

Wa direct-sum to W.
To get. used to this terminology we observe:

Remark 6.3.2 A subspace W of a spread « = (V,A) is a subspread of mp
iff the components W2 across W induce a spread on it.

Note that the spread induced on W depends only on the set of components
across it, viz. W2, and not on any larger [partial] spread § D A. Such partial
spreads, defined by the components of a subspread of a [partial| spread are

called rational partial spreads.

Definition 6.3.3 A partial spread (V,A) of a [partial] spread wg = (V, O)
is a RATIONAL partial spread if an additive subspace W, of (V,+), is such
that: (1) W is a subspread of weo; and (2) the components of mg meeting W
non-trivially are precisely the members of the partial spread A.

A rational partial spread (V, A) is said to be a rational DESARGUESIAN
partial spread if A 1s a subset of a Desarguesian spread A on V.

Thus a rational Desarguesian partial spread is a partial spread obtained from
a Desarguesian spread 7 by taking as its components all the components
of some subsplane 7y of m. We shall usually follow the common practice
of calling a Desarguesian partial spread a Desarguesian net; thus rational
Desarguesian nets will mean the partial spread determined by a rational
Desarguesian partial spread, according to our convention, and will also mean
the net, in the strict sense of the word, determined by this partial spread.
If a subspace W of a partial spread defines a rational Desarguesian net
of a partial spread or a spread (V,A), then W is Desarguesian as it lies in
a Desarguesian plane. However, the converse is false: this will emerge from

the following exercise.

Exercise 6.3.4 In the following exercise assume all spreads etc. are finite.
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1. Let wp = (V,A) be a finite spread, two-dimensional over a kern field
K. Then a K-subspace W, of V, is either a component A or a Desar-

guesian Baer subplane of ma.

2. Let F be a subspreadset of a spreadset T, such that O,vecl € F. Then
the partial spread defined by F is a rational Desarguesian spread iff F
18 a field under matriz operations.

3. If Q is a right quasifield then w(F’) is a rational Desarguesian net iff Q
s a right vector space over F..

4. Let Q be a quasifield and K a kern field. Show that n(K) need not
* define a rational Desarguesian net.

5. Show that a spread (V,T') can contain a Desarguesian subplane W such
that the partial spread defined by W, viz., WY, need not be Desargue-

s1an.



