
Chapt~r 6

CentraI Collineations and
Desarguesian N ets.

Central collineat.ions have a strOl,lg bearing on the planes npon which they
act.. In t,his sedion we stndy centraI collineations nsing two parallel bnt
distinct approaches: the qnasifield approach amI the spreadset approach,

The machinery developed providcs nsefn! characterizations of rat-ìonal De­
sargncsian nel" those nets that are isomorphic 1.0 the nets defined by the par­
alleI classes of snbplanes of a Dcsargncsian piane. Note that rationa! partial
spreads were int.rodnced in defintion 5.7.2 and the associated nets, particn­
Iarly the associated rational Desargncsian net.s will be fnrther considered in
6.3.

6.1 CentraI Collineations in Standard Form.

In this section, 1T(Q) is a translation pIane coordinat.izeel by a qnasifield
(Q, +, o). So the associated spreael on Q@Q has as its components X = Q@O
and Y = OEEi Q and ali snbspaces y = x om, m E Q; thns, m = Ocorresponds
1.0 X.

\Ve shall investigate affine affine centra! collineations when their axes anel
coaxes are chosen canonically. Specifically, when dealing with homoIogies,
we assnme t.hat the axis and coaxis have been chosen from the two standard
C'omponents, X and Y, and when dealing with affine elations we take Y as
the axis.

Since ali snch collineations 9 are among the aelditive bijections of Q EEi Q
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t.hat. leave X ami Y illvariant., t.he act.ion of 9 on t,he affine pointset Q e Q is
spedfied by:

g: (x,O) >-+ (A(x),B(x))
Far aH x,m E Q: g: (O,x) >-+ (C(x),D(x))

9 : (m) >-+ (ms)

where A, B, C and D are all additive maps of (Q,+).

6.1.1 When 9 is a Y-elation of 1l'(Q).

, (6.1)

We consider the case when 9 is an elation with axis Y. So 9 fixes Y ident.ically,
ancl since (00) is the eenter, 9 [eaves the x-coordinate of aH poillts unchanged.
So t.he eqns (6.1) become:

g:(x,O)
Far all x,y,m E Q: g: (O,y)

g: (m)

>-+ (x, B(x))
>-+ (O, y)
>-+ (m S ),

and no\V the point (x, x o m), on the component. y = x o m, gets mapped onta
t.he point of (x, B(x) + x o m) and this musI.. lie on y = x o m S, thllS:

VX,m E Q: B(x) +xom =xomS,

ancl plltting OS := a, yields B:

'Ix E Q : B(l:) = X o a.

Hence:
VX,m E Q: xoa+xom = xomS,

ancl choosing x = e, a left, identity, yielcls a + m = mS , so:

Vx,m E Q: xoa+xom=xo (a+m).

ThllS, we may sllmmarize om cOlldusions as follo\\'s.

Theorem 6.1.1 Suppose Q is a q-uasifield such that in the associated trans­
lation piane 71'(Q) the full skears group with axis Y is G. Then 9 E G maps
the axis X onta a component y = x o a., a E Q, iff:

VX,m E Q: xo(a+m) = xoa+xom,
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nnd when this coudition holds the shear 9 is the collineation:

(x,y) (x,xoa+y)

(m) (m +71)

In particular, 9 maps the component y = x o m, fo,. m E Q, onto the compo­
nenty=xo(a+m).

6.1.2 When 9 is a Y-axis homology or 1r(Q).

We consider t.he case when .'I is a homology of 7f(Q) wit.h axis Y and cOlL'Cis X.
Sog fixes Y element.wise and, since (O) is t.he cent.er, 9 leaves t.he y-coordinat.e
of ali point.s 11Ilchanged. So t.he eqns (6.1) yield:

For ali a:, V, m E Q:
.'I: (:l', V)
g: (m)
g : (O)

...... (A(x), y)

...... (1,;5)

...... (OS) = (O)
,

and now t.he point. (x, x o m) on t.he component. y = x o m get.s mnpped 1.0
t.he point. (A(x),xom), alld since t.his must.lie on t.he component y = xoms,
we have:

"Ix,m E Q: A(x)oré = xom

alld writ.ing eS := f, ",here e i5 a right. ident.it.y for o, yields A = T/, so t.he
above eqllation be<:omes

"Ix,m E Q: (x)T;' ornS = x om

henc,,:
"la:, m. E Q : (x) o rnS = a;Tf o rn

so

anel x = e yielels
"1m E Q : m S = f o m,

so bot.h A alld S have bcell c!ct.errnined in t.erm, of f, where y = x o f is t.he
g-image of t.hc unit. !ine V = x o f. Thus .'I is t.he map:

g:(x,y)

.'I: (m)

-,
...... ((x)Tf ,y)
...... (10m)



CH.4.PTER 6. CENTR.4.L COLLINEATIONS AND DESARGUESIAN NETS.1l3

and so
(x,xom) ...... (xTj-1,:L' o m),

and t.he image c,m lies on thc component y = x o (f o m) only if

xTj - 1o (f o m) x o m,

=>xo(fom)=(xTf)om - (xoJ)om,

yielding:

Theorem 6.1.2 Let 11'(Q) be the translation piane associated with a quasi­
field (Q, +, o), with m'/lltiplicativc idcntity e. Let G be the group of affine ho­
mologies of11'(Q) ",ith axis Y anrI colL~is X. Then the G-orbit ofthe unit line
y=xoe eonsists ofall eomponents oftypey = xof, IVheref E Nm(Q)", and
now the unique 9 E G that maps the '/lnit /ine onto y = xof, for f E Nm(Q)",
is the eollineation:

g: (x, y) ((:e)T;', y)

9 : (m) (f o m),

where T j : x ...... x o f is the slo1'e of f. Moreove7', Ihe component y = x o m,
m E Q", is ma1'perI bg 9 onta fhe eom1'oI",nl Y = x o (f o m).

6.1.3 When 9 is an X-axis homology or 71'(Q).

Wc considee the case when 9 is " homology of ,,(Q) with axis X and coaxis
Y. So 9 fixes X e1erncnt.wisc ami, sillce (00) is t.he center, 9 leuves the
x-coordinate of ali pOillt.S llnchallged. So t.I1e eqns (6.1) yield:

il: (1',g) ...... (x,B(y))
'Vx,1I,m E Q: g: (m)...... (mS )

9 : (O) ...... (08
) = (O)

,

anel no\V t.he poillt. (J:, x o m) on t.he component y = x o m get.s mappecl ont.o
t.he point of (x, n(.~ c m)) allel this Illust lie on the componenl y = x c mS,
t.hus:

'Ix, 111. E Q : x o m S = B(x c rn)

and writ.ing eS := f, where e is the identity far o, yielels B = Sand so thc
abo\'e eqtlation becomes:

'Ix, m. E Q: xoms = (xcm)s
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and m = e gives x o f = (x)S so

\lx,m E Q: XO (mol) = (xom)of

and f E N;, yielding:

Theorem 6.1.3 Let 7I"(Q) be the translation piane associated with a quasi­
field (Q, +', o), with mllltiplicative identity e. Let G be the group of affine
homologies of 71" (Q) with axis X and coaxis Y. Then the G-orbit of the unit
liney= xoe consists ofall components oftypey =xof, wheref E N,(Qt,
and now thc uniquc [} E G that maps thc unit line onto y = x o f, for
f E N,(Q)', is the coUineation:

9: (x,y) (x,yol)

g: (m) (m o I),

where T, : x ...... X o f is the slope of f. Moreover, 9 maps the component
y = x o m, m E Q' ,onto the component y = x o (m o I).

6.2 CentraI Collineations In Matrix Form,

'vVe have jllst seen how the properties of a quasifield Q are related 1.0 eer­
t.ain 'standard' affine centrai collineation groups of 7I"(Q). V'le now repeat
t.he analysis for spreadscts coordinatizing a spread 71". One way t.o proceed
would be t.o express the reslllts of the last sect.ion in spread-theoretic t.erms.
BIlt. we prefer t.o direetly est.ablish these result.s so as 1.0 introduce the reader
t.o matrix'based t.echniqlles t.hat are indispcnsible in t.ranslat.ion piane the­
ory. For example, t.ransposing the mat.rices of a spreadset., sometimes leads
t.o a ncw translation piane wit.h dist.inct geometrie properties: this met.hod
of getting new-planes-from-old is noI. available withollt, stepping baek from
quasifields, and even translat.ion planes, to spreadsets.

However, working wit.h spreadsets of matriees becomes very messy ",hen
dealing with t.ranslat,ion planes t.hat. are infinit.e-dimensional over their kerns.
ThIlS, we shall only consider spreads t.hat. are finite dimensionai over a field
K, anelleave il. 1.0 t.he det.erminoo reader 1.0 consider more general sitllat.ions.
Henee, by the basis decomposition theorem we are ent.itled 1.0 focus on t.he con­
crete case, ",hen t.he spreaels are const.ructed on the ambient space Kn E& Kn,
anel allK-linear aut.omorphism and spreadset element.s are K-mat.riees.
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Thronghont. the seet.ion, T denot.es a spreadset. of n x n matrices, that.
indndes zero, over a field K, Md 1rT = (IV e IV, r T ) is an associat.ed spread,
where ~V = J(n, and t.he members of r T are Y = xT, T ET, along wi t.h x = O:
so t.he snbspaccs X = IV e o Md Y = o e IV are among the component.s.
Now an)' J(-linear ant.omorphism 9 of t.he spread 1rT may wiU be regarded as
a 2 x 2 bloe.k mat,rix, where each block is an n x n Illat.rix over J(.

Exercise 6.2.1 Any centrai coll-ineation oj the J( -spread 1fT (so the origin
is fixed by convention) is a K -linear mal' and hence may be Tepresented by a
2 x 2 block matrir.

Snppose E is t.he elat.ion gronp of 1rT wit.h axis Y. We shall describe E in
t.erms of t.he mat.riccs in T.

Lemma 6.2.2 Supppose A is a mat1ix such that A + T C T (or equivalently
A + T = T); so the matd:" A ET, and the additive matrix graup < A >
par·titions the set oj matrices T into a union oj coset" oj < A >.

Now the block matrix

g4:= (~ ~)
is a an e!ation with axis Y that maps y = xT, T E T, to Y = x(T + A).
Hence the orbit under' gA, oj any component y = xT, T E T, consists oj the
the components y = xC wher'e C range" aver the additive coset T + < A >.

Proof: For T E T, we have:

(x, XT)gA = (x, xT) (~ ~) = (x, x(A + T)).

Bnt. since by hypot.hesis A + T E T, t.he mapping 9..1 is an ant.omorphism of
t.he spread T t.hat. leaves Y element.wise fixed, and cannot. be a homology as
il. is semiregular on t.he ot.her component.s. The lemma follows easily.•
We now verify t.he converse of t.he lemma: ali elat.ions wit.h a,is Y have forlll
94, Assume 9 is any elat.ion wit.h axis Y. Tlms 9 fixes Y ident.ically so it.s
mat.rix on t.he st.andard ba.,;is has form

ami t.o det.ermine t.he t,wo npper blocks we not.e t.hat. 9 leaves t.he X -component.
of anr xey E vVe Ho" unchanged because t.he lines of forrn x = C pass t.hrongh
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t.he cent.er of 9. Thus!l fixes ident.ical!y t.he first. n clements of t.he canonica!
basis of 1(11 6 [(":

so 9 cnn no\\' be writ.t.CIl as

and t.his mat.rix maps t.he component. y = xi\! ont.o y = x(A! + A), so Al + A
must. be in "T, in arder that. 9 preserves t.he spread. Thus"T is dosed under
addit.ion by A, and, by lemma 6.2.2 above, t.his is snfficient. far 7fT t.o admit. 904
a."l an elat.ioll. ThllS all thc Y-axis clat.iolls are of fonn gAl where A nms over
the largest. subsct. et C "T such t.hat. CI: + "T C "T. No", Q is dearly an addit.ive
gl'Dnp of l"llat.rices alld t.hc IWl.P E E Q l----ò' 9E is an iSOlnorphi::ìlll from O' ont.a
t.he graup of al! Y -axis elat.ions of 1". Hence wc have obtained t.hc fol!owing
descriptioll o[ the grollp of Y -H.xis e1a.t.iolls in Inat.rix tenns.

Theorem 6.2.3 Let T be a sp7wdset of matriees, that incudes zero, and let
7fT be tlw assoeiated standar'd spread. Let

and defìne far each .4. E E the bloek mairix (ali blocks wiih same Mder):

( lA)9,\:= O l .

Then

1. E is an additive !lmup and"T is the union of a set of additive E-cosets,
includin9 E.

2. Il eollineation 9 nf 7fT is an elatior, lUith axis Y if ami only if 9 = !lA,
f01" some A in E; !lA maps X onio the component y = xA.

3. 7'he mal' A ...... 9.4 defines an isomorphisrn fmm the additive gmup of
matric"s E onta thc full gmuJl ofY-elations of'irT •

4· Lct S < E be an additive subgroup of E and 9s be the c07TCsponding
elation 9rouP, defined by A ...... 9A. Then tlLe component M'bits of 9s,
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other than Y, are in natural one-one correspondence with the additive
cosets 01 S in l', that union to l': thus il t E l' then the coset t + S
defines the components 01 the gs-orbit 01 the component y = xt to be
the set al ali components y = X", " E t + S.

Corollary 6.2.4 A tmnslation l'lane admits a transitive group 01 affine ela­
tions iff it is isomorphic to the translation l'lane associated urith a spread roT'

where l' is a matrix sprearL,et closed "ndel' addition.

The following cxcn:ise c:onsiders thc extcllsion of thc abovc to t.hc infinite­
diInensional case.

Exercise 6.2.5 Let V be a finite-dimensionai vector space aver any (skew]
•

fie/d J(. Define a. sp,,:adset to be a shall,ly one-transitive set Suppose l' E
GL(V. X) be a. sha/l,lv one-tmnsiti1:e set ollinea'r bijections al V: tltis means
tlwt 101' anv x, V E V" tltere is a uniqae t E l' sllch that ,,' = y. Determine the
elation subgroup 01 the a..ssociated roTo in terms 01 l', by venemlising the above.
Hence prove caTOlIary 6.2.4101' tltis case. Are there any prablems in proving
this corollarv when fhe finite-dimensionai rest7'iction is removed? What hap­
pens ilI( i.s commutative b"t the vector space V is infinite-dimensionai aver
l '?\ .

Now wc t.nrn t.o t.he fllll grollp of homologies of 1fT wit.h a"is Y alld wit.h coaxis
X. \Ve follow t.he procedure for t.he e1at.ion case, bilI. we shan insist. t.hat. l'

cont.ains t.hc mlllt.iplicat.ivc ident.it.y (t.o sll1Jst.it.llt.e for t.he addit.ive ident.it.y in
t.he elat.ion case).

Lemma 6.2.6 Asmme the sp"ear/-sel l' cantins the identity matrix. Supp­
pose A is a non-zero matri,t such tltat Al' C l'; thus A E l', A is non-singular
and hencc Al' = r.

NOlll fhe block matrix

(A-IO)
hA := O 1

is a homology wi!h axis Y and coa.tis X. Hence the ol'bit unda h..I , 01 any
non-zéro camponent y = xT. T E l'", consists 01 the components y = xC
tuhere C ranges aver the multiplicative coset T < A >, 01 the multiplicative
!J7'O"i' < A >.
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Proof: The map hA sends t.he component y = xT ont.o t.he subspace y =
xAT, so AT E T. Now continue arguillg as in lemma 6.2.2, t.o get the desired
result" _
Conversely suppose t.hat h is allY homology wit.h a.xis Y and coaxis X. Thus h
has mat.rix Diag(H, 1), for some 1I01l-singular H corresponding t.o hlX. Now
t.he component, y = xi\! maps t.o t.he subspace y = xH-I!vI, so H = A-l !vI.
Now, if T contains the matl'ix 1, t.hell H E T-I. Now repeat.illg t.he argumellt.
llsed ili t.he elation case we get. ali allalogue of t.he t.heorem above.

Theorem 6.2.7 Let T be a spreadset of matrices, that incllldes zero and the
identity matrix. Let 'lrT be the associated standal'd spread; so Z = {(w, w) Iw E Kn},
fhe llnit line is in 'IrT' Let:

Al" = {A E T' I Ar' C T'} ,

and define for each A E Jv[' the blocl.: mM/ix (ali blocl.:s with same order):

(A-IO)
hA := O 1 .

Then

1. J1;/' is a mllltiplicative grollp of matrices sllch that T is the llnion of a
set of right mllltiplica.tive M' -cosets, including AI'.

2. A collineation h of 'IrT is a homology with axis Y and coaxis X if and
only if h = hA. for some A in !vI; hA maps X onta the component
y = xA.

3. The map A >-> h" defines an isomorphism from the mllltiplicative grolLp
of matrices l'vI' onto the full group of homologies, of 'irTo with a,;tis Y
and coo.tis X.

4· Let S < AI' be a mllltiplicative sllbgrollp of Jv[' and hs the correspond­
ing homology gl'Ollp, defined by A >-> hA, Then the component orbits of
hs , other than X and Y, are in nat-uml one-one correspond.ence IVith
the left m-ult-iplicative cosets of S in T, that llnion to T: tI",s if tr then
the left coset tS defines the components ofthe hs-orbit ofthe component
y = xl to be the set oJ ali components y = Xll, IL E tS.
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Corollary 6.2.8 A translation pIane admits a transitive group of affine ho­
mologies sharing the same axi.s and coaxis iff it is isomorphic to the trans­
lation piane associated unth a spread 7r" where T is a matm spreadset such
that T' is a multiplicative group.

Ncxt. consider the sit.uat,ion when X is the axis and Y the coaxis of t.he
homo\ogy group. Using a slight1y 'dualised' vcrsion of t.he above ana\ysis we
gel. resu\ts similar 1.0 thc above. For example, t.he generai form the homo\ogies
being con,idered are matrices of type Diag(l, A) and this maps a component
y = xT ont.o y = a:TA, so T is closed under 1Il1l1t.iplicat.ion by A from the
righI.. Cont.inuing in this way we obtain:

Theorem 6.2.9 Let T be a spreadset of matrices, thç,t includes zero and the
identity matrix. Let 7r, be the associated standard spread; so Z = {(w, w) I w E K"},
the unit /ine is in 7r,. Let:

L' = {A E T' I T' * A C T'},

and define for each A E L' the block matm (ali blocks unth same order):

hA := (~ ~).

Then

1. L' is a multiplicative group of matrices such that T is the union of a
set of right multiplicative L' -cosets, including L'.

2. A collineation h of 7r, is a homology Vlith a.tis X and coaxis Y if and
only if h = h ..\, for some A in M; hA maps I onto the component
y = xA.

3. The map A f-> hA defines an isomorphism fmm the multiplicative group
of matrices L' onto the full group of homologies, of 7r" unth axis Y and
coaxis X.

4. Let S < L' be a multip/icative subgroup of L' and hs the corresponding
homology group, defined by A f-> hA, Then the component orbits of hs ,
other than X and Y, ar'e in natural one-one correspondence unth the
multiplicative right cosets of S in T, that union to T: thus iftT then the
right coset tS defines the components of the hs-orbit of the component
y = xt to be the set of ali components y = xu, u E St.
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Corollary 6.2.10 A translation piane admits a transitive group oj affine
homologies sharing the samc a.tis and coaxis iff it is isomorphic to the trans­
lation piane associated with a sprcad 1rT> wherc risa matm spreadset such
that r' is a multiplicative group.

Corollaries 6.2.8 and 6.2.10 arc cach eqnivalent t.o assert.ing that the non­
zero elements of a spreadset. form a mnlt.iplicat.iw group. Rence t.he spread
1rT admits a Y-axis-X-coaxis transitive homology gronp iff it admits an X­
axis-Y-coaxis t.ransitive homology grollp. So if a t.ranslat.ion pIane of order n
admits an affine homology gronp of order n - l t.hen it admit.s another with
axis and coaxis reversed! Thns we have;

Corollary 6.2.11 A translation piane admits a transitive group 111 oj affine
homologies with axis Y and coaxis X iff it admits another transitive homology
gTOUp L with with axis X and coa2is Y.

6.3 Ratianal Desarguesian Partial Spreads.

Wc have already encollntered rat.ional partial spreads in section 5.7. The
point being made t.here was that. rat.ional partial snbspreads (and hence their
net.s) are jllst. those arising from a snbqnasifield of a coordinatising qnasifield.
In t.his scdion we hcns on rat.ional Dc.mrguesian partial spreads. and the
point. we lIlake is thal. part.ial spreads defined by a Desargllesian sllbplane
need not. be Desargnesian; t.hat, is, a part.ial spread wit.h a Desargllesian
piane across il. need not be embedable in a Desarguesian spread.

In vie\\' of the importance of tllis fact, we have kept this section indepen­
dcnt of onr earlier t.reatment in sect.ion 5.7. The not.at.ion here a1so differs
slight.ly from onr enrlier not..at.ion; t.here is as yet no st..andard notat.ion in this
area.

Definit.ion 6.3.1 Let 1rt>. ;= (V,6.) be a partial sprcad, or a spread, on
(V, +), the additive group oj a vector space. Suppose W is any non-trivial
additive subgroup oj ~r, such that W f V. Then the components oj 1rt>.

DETERMINED BY W, or the components ACROSS lV is the subset oj the com­
ponent set 6. given by

Wt>. ;= {D E 6. ID n W f a},
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and the cOT"Tesponding INDUCED STRUCTURE on W is 7iW := (W, W~) where
WA consists 01 the non-tnvial intersections 01 the components 01 70~ with W:

w~:={dnwldEIV~}.

The subspace W is calted a SUBSPREAD 01 7T~ il the str-ucture 7T1V indu.ced on
it, is a spread in the usual sense, that is, every pair 01 distinct members 01
W~ direct-sum to W.

To get. used t.o t.his t.erminology wc obscrve:

Remark 6.3.2 A subspace W 01 a spread 70 = (V, tl) is a subspread 01 7T~

iff tlte components IV~ acTOSS W induce a spread on it.

Not.e t.hat. t.he spread indllced on W depends only on t.he scI, of components
across il" ,·iz. W~, aucl noI, on any largcr [partial} spread 6 :::J tl. Such part.ial
spreads, dcfined by the componcnts of a subsprcad of a [part.ial] spread are
called rat.ional partial spreads.

Definition 6.3.3 A partial spread (V,1\) 01 a [partial} spread 70s = (V, 0)
is a RATIONAL partial spread il an additive subspace W, 01 (F,+), is such
that: (1) IV is a subspread ol70s; and (2) the components ol7Ts meeting IV
non-trivialty are precisely the members 01 the partial spread i\.

A mtional partial spread (l',1\) is said to be a mtional DESARGUESIAN

partial wread il1\ is a subset 01 a Desarguesian spread tl on l'.

Tlms a rational Desarguesian partial sprcad is a part.ial sprcad obtained from
a Desargucsian spread 70 by t.aking !lS it.s componcnt.s ali t.he componcnts
of some subsplane 7To of 7T. We shall llsually follow the connnon pract.ice
of calling a Desarguesian part.ial spread a Desarguesian net; t.hus rat.ional
Desarguesian nets wiU mean the partial spread determined by a rational
Desarguesian part.ial spread, according to Olll" convcntion, and wiU also mean
t.he nel" in t.he st.rict sense of the word, det.ermined by t,his partial spread.

If a subspace IV of a part.ial spread defines a rat.ional Desargucsian net
of a partial spread or a spread (V, tl), t.hen IV is Desarguesian as it lies in
a Desargnesian l'lane. However, t.he converse is false: t.his wiU emerge from
t.he following exercise.

Exercise 6.3.4 In tho loltowing exercise assume alt SlJreads etc. are finite.
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1. Let"." := (V, t>.) be a finite spread, two-dimensional over a kern fie/d
K. Then a K-subspace W, olV, is either a component t>. or a Desar­
guesian Baer subplane 01 ".".

2. Let F be a subspreadset 01 a spreadset T, such that O, vecI E F. Then
the paTtial spread defined by F is a rational Desarguesian spread iff F
is a field under matm operations.

3. Il Q is a right quasifield then ".(F) is a rational Desarguesian net iffQ
is a right vector space over F.

-4. Let Q be a quasifield and K a kern fie/d. Show that ".(K) need not
. define a rationa/ Desarguesian net.

5. Show tllat a spread (V, f) can contain a Desarguesian subplane W such
that the paTtial spread defined by W, viz., Wr, need not be Desargue­
slan.


