
Chapter 1

André's Theory Of Spreads.

André's theory of spreads is arguably one of the most impOltant events in
finite geometry: hardly any finite projective planes were kno",n before André
seminaI 1954-paper, [21. André's paper is Illtimately responsible for the ex­
plosive growth in' the discovery of finite non-Desarguesian planes during the
last thirty years. Moreover, the theory of spreads, which reduces the stlldy of
t.ranslation planes 1.0 structures that live on vector spaces, has meant t.hat. ali
t.he macbinery of linear algebra, and hence also group repreent.ation theory,
can be brought 1.0 bear on the study of translation planes.

The leetmes in this chapter will mainly be concerned wit.h developing
t.he André theory of spreads and its computational aspect - spreadsets of
mat.rices. In the next chapter, the associated theory of spreads as structures
that live in projective spaces will be emphasized.

1.1 Affine Planes with a Transitive Transla­
tion Groups.

In this first, lecture, we begin our study of projective and affine plancs. With
the exception of three infinite families of projective planes called the planes
of Hughes, Figlleroa, and Coulter-Matthews, aH finite projective planes are
re!ated t.o a class caHed 'translation planes.'

In this lcct.nre, we consider a fundamental represent.ation of a translat.ion
piane. This is t.he classical description of translation planes Ilsing vector
spaccs due 1.0 André. In a later lectnre, we shall consider the Bruck-Bose
approach Ilsing projective spaces.

l
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Less well known bllt. of increasing import.ance are what. might. be called
coordinat.e met.\lOds. These include t.he st.udy of quasifields. spread set.s and
Oyama coordinat.es. Professor Jha will be lect.nring on some of t.hese topics
in t.hc algebraic tract.

\Ve begin wit.h the definit.ion of an affine pIane. which we st.at.e in t.erms of
an INCIDENCE STRUCTURE (P •.c,I). This means that. P and.c are disjoint
set.s of object.s called POINTS and LINES resp. and I C P x .c. To facilit.at.e
discllssion we make ext.ensive llse of geomet.ric terminology: any set of points
incident. wit.h t.he same line is said t.o be collinear. t.wo lines are DISJOINT

if they are not. incident. wit.h any common point. Similarly we llse notation
based on geomet.ry and set. t.heory: we write P E P. or say the point. P LIES

ON t.he line p. if (P,p) E I, and if P, Q E P are distinct. point.s t.hat. share
exact.\y one line we writ.e PQ t.o denot.e t.he llniqlle line t.hat they share.

Definition 1 .. 1.1 An affine l'lane 10 is an incidcnce structure (P •.c,I) with
thc lollowing l'roperties:

1. Given two distinct l'0ints P Q E P, there cxists a unique line P such
that (p.p) and (q,p) E I; thus PQ = p.

2. Given a point P and a line P such t/wt P is not incident luith P, there
exists a unique line q disjoint lrom P such ihat P E q. '

3. Tlte7'e exists at least tltree noncollinear points.

Two lines of an affine piane are said t.o be PARALLEL, if they are disjoint,
and t.he not.at.ion p Il q means t.hat lines P and q are parallel when P # q.
Howe\'er, in order to force Il to be an equivalence relation. we continue to
1II1ite p Il q even ",hen p = q.

Remark 1.1.2 Let" = (P, .c,I) be an affine l'lane. Tlten Il is an equiva­
lence ,dation on the set ollines. Tlte equivalence classes are called 'paralle!
classes '.

Proof: Routine exercise. _
\Ve sh,dl oft.en use variat.ions of the above t.enninology t.hat often arise in the
lit.erat.nre. For example t.he parallel classes of an affine pIane is oft.en called
it.s SLOPESET, or it,s set. of 'infinte point.s' or it.s 'ideaI point.s'. Similarly, t.he
elass of any line is its SLOPE, or it.s 'point. at. infinit.y', et.c.

\Ve shall enCOllnt.er many incidence st.rnctures related t.o affine planes:
project.ive plancs, Desarguesian affine and project.ivc spaces, nets, etc. \Ve
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t.herefore give a generai definition of an isomorphism from one incidence
strnctnre t.o another.

Definition 1.1.3 Let 1I"i = (Pi, .ci, Ii), i = 1,2, be incidence structures.
Then an isomorphism from 11"1 onto 11"2 is an ordered pair 01 bijections

lram the points and lines 0111"1 onto the points and lines 0111"2 (respectively),
such that incidence is preserved in both directions:

(p, l) EII': :. (p(p),>'(l)) EI2 ·

An isomorphism lram an incidence structure 11" to itsell is = an AUTOMOR­

PHJSM, and the graup olautomorphism 0111" is usually denoted by Aut(1I").

An antomorphism of an affine piane is completely specified by its action on
the point.s: this is becanse t.wo points det.ermine a nnique line and every line
lics on al. least t.wo points. Thns we have

Remark 1.1.4 Let 7r be an affine )Iane. Show that il (", T) and ('" p) are
eollineations 017r then T = p.

The above remark jnstifies t.he nsage of only the point-biject.ion 1.0 refer 1.0 the
antomorphism. This applies 1.0 allY incidence struct.ure where the incidence
is set-theoretic: t.his means t.hat lines may be viewed as set.s of points and
distinct. lines are associated with dist.inct sets of points. All the incidence
strnct.nres we enconllt.eI' may be regarded as being set-theoretic incidence
strnct.nres. This allo",s llS 1.0 freely use set-theoretic language rather than
the more cnmbersome t.erminology associated with incidence.

Thns, in any set.-t.heoret.ic incidence structure, an antomorphism (<P :
p - P,1/!: L - L) is fnll det.ermined by t.he action of t.he associated point­
biject.ion ti> : P - P; t.he action on the lines correspond 1.0 the nsual act.iOll
induced by </J on t.he powerset 2P . We shall refer t.o et> as a collineation: t.hns
a collineat.ion is the action on the point.s corresponding 1.0 an ant.omoI'phism
of a set-t.heoretic incidence structure. In particnlaI':

Definition 1.1.5 A collineation 01 a set-theoretic incidence structure 7r is a
bijection 01 its points that extends to an u.utom07phism 01 7r. Aut7r '/k~1I be
used to denote the collinetaion group 017r and also its automorphism group:
both groups are 01 course is071l0rph.ie.
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TIl1lS, the collineation group in the above seuse is the faithful representation
of the antomorphism group on the points. Accordingly, we shall noI. attempt
t.o seriously distinguish between the two concepts.

Exercise 1.1.6 Let </> be a bijection jrom the points oj an affine piane A
onto the points oj an incidence structure B such that </> maps collinear sets
oj points onto pairwise incidence sets oj points. ls it true in generai ·that
</> induces an isomorphism from A onto B? Show that </> does induce an
isomorphism when B is also an affine piane.

Definition 1.1.7 A TRANSLATION oj an affine piane is a collineation which
leaves each pamllel class inva1iant and fixes each line oj some parallel class.

Onr goal is 1.0 verify that the translations of an affine l'lane form a gronp
anel this gronp aets semireglllarly on the affine points, that is, the points
other t.han the parallei classes. Thc first stcp is 1.0 note that ali non-trivial
t.ranslations are sel11ircglllar:

Lemma 1.1.8 A translation oj an affine piane which fixes a point is the
identity.

Proof: Exercise._
The following remark may be taken as an alternative definition of a transla­
tion, eqllivalent 1.0 definition 1.1.7 above.

Remark 1.1.9 Let o be a non-tnvial collineation oj an affine piane A.
Then o is a translation iff it fixes every parallel classes oj A and does not

fix any affine point.

Proof: ~ follows from lemma 1.1.8 above. Conversely assume o leaves
invariant every paraliel class buI. does noI. fix any affine point. So choosing
any affine point A, we have B := Ao is distinct from A, and leI. m be the
l'aralie! class of AB. LeI. ebe any other affine line in the l'aralie! class m.
Il. is sufficient 1.0 show that snch i are o-invariant. Choosc an affine point
C E i. By hypothesis D = Co f C. So CD is in the parallel class of m
and, like i, contains C. Bence both eand C D are lines in the class m that
contain C, so they coincide. Bence eo = CD = e, since t,he image of any line
is completely determined by the image of any one of itss affine points and
t.he image of its parallel class. Thns alilines in the parallel class m are fixed
byo. _
We now consicler collineations of the above type that might noI. fix any par­
alleI class.
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Definition 1.1.10 A eollineation fixing ali the parallel classes of an affine
piane is ealled a DILATATION. Di/ations that are not translations are called
kem homologies.

So by remark 1.1.9 above, dilations ot.her than translations fix at least one
affine point point. If t.hey fix more t.han one affine point. t.hen t.he set. of fixed
point.s fonn a snbaffine pIane which act.nally coincides wit.h t.he parent. pIane.
Thus, if 7r is any affine pIane t.hen t,he dilations other than translations, that
is, t.he kern homologies, fix exact.ly one affine point. Z, called it.s eente,..
lvIoreover, remark 1.1.9 ftuther implies t.hat a non-t.rivial trans!at.ion fixes all
t.he lines of exaetly one parallel dass. This dass is called the eenter of t.he
translation. \Ve sl1mlnarize aH this.

Remark 1.1.11 Every non-tnvial dilation of an affine piane is eithe,. a
translation or a kem homology. Every non-t'l"vial translation fue" ali the

•
lines of emetly one parallel class, ealled its CENTEll, and no other' affine
lines or points, 1Vhile eve""J non-tnvial kem homology fixes exaetly one affine
point, ealled its CENTEll, and t/ze other affine line that it fixes ar'€ just the
lines through its eenter.

Thns the set of all dilations of an affine pIane form a gronp: t.he DILATION

gronp, and it. has as snbgronps: t.he TRANSLATION gronp ane! the KERN HO­

MOLOGY gronp. To discuss t.hesc fnrther we recall some stalldard e!efinitions
from pcrmutat.ion gronps.

Defillition 1.1.12 Let G denote a permutation group aeting 011. a set n.
Then the G-orbit of x E n is denoted by

O"bc(x) := {x9 I9 E G},

and the STABILIZER of x E n in G is denoted by:

Gx ={gEGlx9 =x},

In particnlar, G is tr'ansitive 011. n if it has only one orbit, or eq'uivalently:

x, Y E n => 3g E G 3 x9 = y.

G is llEGULAll if additionally Ga is tT"vial for all a E n. More generally. a
pennntation gronp G 011. n is SEMlllEGULAll if only the identity of G fixes
any clement in n.
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Using the above terminology, remark 1.1.11, yields:

Proposition 1.1.13 Let A be an affine l'lane and G its dilation g1'OUp. Then
the tmnslation subgroup T of G is n01mal in Gand semi1'eg'ular on all the
affine points of A. G is the union of T and all its maximal g1'OUPS of kern
homologies, and any two distinct groups in the union have tnvial intersection.

Proof: Exercise.•
The above reslllt is far from opt.imal, particlllarly in the finite case, where
t.he finit.e case where theory of Fì'obenills may be applied. BilI. the reader is
warned t.hat. glib generalizations t.o t.he infinite case might be da.ngerous.

\Ve may now define t.ranslation planes.

Definition 1.1.14 A translation l'lane is an affine l'lane whose translation
g7'OU1' acts tmnsiti1le/y on the affine points.

As an iInnlediate conseqncnce of remark 1.1.9 ,ve have

Rema.rk 1.1.15 An affine l'lane is a translation l'lane iff its translation
gl'OUp is 1'cgular on the affine points.

A Frobenills group is a t.ransit.ive permlltat.ion grollp in which the st.abilser
of any t.\Vo points is t.rivia1. By proposit.ioll 1.1.13 we have:

Remark 1.1.16 The dilation group of an affine l'lane acts, faithfully, as a
Frobenius g1'OUP on its affine points.

The point. being made is t.hat t.here is a deep and powerful t.heory for finite
Frobenills grollps t.hat. ha.5 been exploit.ee! in finite translat.ion l'lane t.heory.

'Ve 11m\' clescribe n sinlple constrllct.ion far translation planes, auci even­
t.llally \Ve shall e!emonst.rate t.hat t.he const.rnct.ion is generico The me.t.hoe! is
basee! on t.he not.ion of a sp'read, t.he most. import.ant. concept. in t.ranslat.ion
l'lane t.heory. A spread is a pal'tition of the non-ze1'O points of a vector space
by a collection of subspaces that pairwisc direct-sum to the whole space.

The lines throllgh t,he origin in t.he real l'lane !JI2 is the most familiar
example of a spreae!: t.he rea! t.ranslat.ion l'lane consists of t.he coset.s of the
eomponent.s of t.he spread.

Viewing m:2 as a veetor space D"er the rational field Q, 'we have a Q­
sl'read wit.h t.he sanle component.s 11S before - t.he lines t.hrollgh the origin
- bllt. no\\' t.hese components are infinit.e-dimensional sllbspaces. One can
of (:0111'88 generalize aH t.hìs: st.art wit.h a rank two vector space over a a
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skewfield F, t.hen t.he one-spaces form a spread, and if F is an ext.ension
of a s\lbskewfield J( t.hen the 'l-dimensionaI spread' F -spread becomes a d­
dimensionai J(-spread, when dimK F = d, and t.he addit.ive coset.s define a
t.ranslat.ioll pIane.

Of conrse, t.he t.ranslat.ion planes described above are t.he familiar Desar­
gllesian planes, and indeed alle conid regard t.his const.rllct,ion as a definit.ion
of a Desarg\lesian spread: t.h\ls a Desarguesian l'lane is the affine piane con­
sisting of the cosets of the components of a one-dimensional sp,.,;ad aver a
skewfield F.

\Ve s\lmmarize om t.erminology for spreads and relat.ecl items:

Definition 1.1.17 Let V be a vect01' space, and let S be a collection of
mlLtlLally disjoint additive subgTOlLps of (V, +) slLch that 1/ = uS and the
SlLm of cach distinct pa;,' of additive slLbgolLps of S is V. Then S is called a
SPREAD on V, O'" with AMBIENT SPACG V, and the subspaces on V ar'e its
COMPONt:NTS. The associated incidence structlLre is defined to be

ITs := (17, C),

with pointset V, lineset

C := {x + SI S E S,,, E V},

and with set-theoretic incidence.
lfV is a vector space aver a specified skewfield J(, slLch that ali the compo­

nents of S are themselves J(-slLbspaces of V, then S is called a K-SPREAD;

this spread is called a d-DIMENSIONAI, J( -sprea.d if each component is J(­
dimensionai as a J( -vector space.

Remarks 1.1.18

1. lt ",ili often be lLscful to draw uttention to the ambient space V, asso­
ciated with a spread S, by referring to the pair rr = (V, S) as a spread.
Thus, rr is viewedllS beillg synonymO\lS wit.h S.

2. Every spread on V is a J( -spI'Cad when f{ is chosen to be the prime
slLbfield of the skeufields aveI' which V is a vector space.

3. The direct-slLm condition forces ali components of a f{ -spread to have
the sarne dimension dover 1(: d has sometimes been called the Dstrom
dimension of the spT'ead, to dist-inguish it fram the dimension of the
arnbient space V ,,'hich is 2d, far finite d.
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\Ve now note that the incidence struct.llre of a spread is always a translation
l'lane, and later we shall establish that all translation planes arise in this
Inanner.

Theorem 1.1.19 Let S be a sp'read on an ambient vecior space V. Then
the associated set-theorctic incidence structuTe, Il(V, S), definition 1.1.17, is
a translation l'lane. The jull group oj translations oj Il(V, S i8 just the group
oj tmnslations oj V 1~garded as a vector space:

o := T = {Ta : x I-> x + a Ia E V}.

MOTeover, ij V is a vect07' space over a skewfield J( such that the components
m'e J( -subspaces, that is (\I, S) is a ](-spread, then the scalar action oj J('

on V is a group oj ke17/. homologies ojIl(V,S); tlius, the group oj bijeciions
on V -g' := {\Ix E V : x I-> (x)k I k E W},

1lIhere (x)k denotes the image oj x under k E J(, is a gmup oj kcm-homologies,
cf, definition 1.1.10 oj the tmnslation planc I1(V,S).

Proof: Straightforwmd exercise. _
Of pmticular importance are the maximal skewfields J( over which the com­
ponents are J(-spaces. It. will turn out that there is a unique maximal skew­
field with this property. This will become dear as we develop the theory
more fully.

Exercise 1.1.20 Let (11, S) be a spread and let T be the jull tmnslation
group oj the associated tmnslation l'lane. To each component a E S assign
thc subgroup T{u}, thc global stabilser oj u in T. Sh01ll that

UuEsT{a} = T,

and that 7'" n Tv is the trivial gmup, wheneveT fJ-, v E S are distinct compo­
nents.

Thns the full translat.ion group T of a translation l'lane admits a partition
by subgroups and thus appear8 to be analogous to the ambient space of a
spread on a vector space. Onr study of gronp partit..ion8, in the next.. lectme,
wiU show that 8nch group partitions may be identified with spreads, and,
in part..icnlar, that any translat..ion gronp T may be taken 1.0 be the additive
gronp of a vect.,or space.
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1.2 Group Partitions and André Theory.

9

N
NI~-f'"'o,.Jl\r2

1\'0 l

In this lect.nre we develop André's fnndamental theory relating translation
planes 1.0 spreads. Onr st.arting point. is concernec\ wit.h graup partit.ions: a
col1ect.ion of pairwise disjoint snbgrallps of a granI' G that. union 1.0 G.

A part.it.ion of a vedor space by its set. of one-spaces is an example of a
granI' part.ition. A less trivial example arises ",hen a field F is r-dimensional
over a snbfield J( for t.hen the addit.ive gronp of F is part.itioned by it.s "­
dimensionai J(-spaces. Note, only t.he case r = 2 cOffesponds to examples of
spreacls in t.he sense of definit.ion 1.1.17.

Definition 1.2.1 (Croup Partition.) Let C. be a group. A PARTITION oj
C is a set N oj nontrivial paù-wise disjoint proper' subgmups oj C such tlwt
C = UN; tlre member's oj N ar'e the COMPONENTS oj the partition and ij ali
the components in iV ""e nonnal in C, then N is a NORMAL PARTITION oj
C

'.Ne have already not.ed that. many normal partit.ions do not yield spreads,
in the scnse of definition 1.1.17. However, if t.he ambient granI' G of a
normal partit.ion is gcncrat.ed by any two of its elements then this is the only
possibility, by l,he fol1owing fnndamental charact.erization:

Theorem 1.2.2 Let C be a gmup and N a normal partition oj G such that

C =< N I ,N2 > 'dNI ,N2 E N,NI =J N2 .

Then each oj the jollowing is vahd:
(1) C is a direct pmd'uct oj any t100 distinct subgroups oj N.
(2) each t100 distinct subgro1lps oj N are isomorphic and
(3) C is Abelian.

Proof; (1) This is elementary as the elements of disjoint normal snbgronps
corrmmt.e.
(2) A gronp cannot. be cxpressed as the disjoint union of two distinct snb­
granps. Hence N conl.ains at.least. three membcrs. So given distinct N I ,N2 E
N, we Illay choose a l.hird No E N, and now N = N l $ No and also
N = N2 $ No. Hcnce

as reqnired.
(3) Since C is the direel, sum of any l.wo distinct. members of N, we see thal,
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element.s from,dist.inc:l, subgroups of N commut.e. So assume x, y E A E N
and choose EL nonident.it.y b E B E N - {A}, and observe

xyb xby

=? xyb = byx since by <le A

=? xyb = yxb

=? xy = yx, as reqnired.

•
In view of t.he above it. is desirable t.o calI a normal part.it.ion N of a group
C a genemting normal part.it.ion if C is generat.ecl by every pair of dist.inct.
component.s Nr, N2 E N generat.e C as a gronp.

Theorem 1.2.3 Let N be the components oj a spread on a group e. Then
the sct-theo!'etic incùlence structure whose pointset is C and whose hnes are
the cosets oj the ele'Olmts oj N is an affine translation piane whose translation
group consists oj the bijeclions oj C, jor every a E C oj type:

9 I--> ga

Proof: A st.raight.forward consequence of t.he t.heorem above.•

Theol'em 1.2.4 Let C be u gro1Jp and iV a generating normal partition oje.
Lei fC, dertOte the set oj group endornorphisrns which leave each cO'Olponent
irwm-iant.

Then fC is a skewjield and C is a l'ector space aver' fC.
The ele'Olents oj the skewjield fC m'e ml/ed the "kemel endo'Olorphis'Ols"

oj the partition. The skcwjield fC is cal/ed the "kernel oj the spread. "

Proof: Since C is abelian by t.he previons resnlt., t.he endomorphisms in fC
dearly form a ring. Bence it. is clearly snfficient. t.o show thaJ all t.he non­
zero maps <!> E fC are biject.ive. Suppose a~ = O for a # O. Now we force
</J = O by demonst.rat.ing t.hat. c!> vanishes on every component. B # A, where
a E A. 'Ve not.e t.hat. t.his is more t.han snfficient. t.o force </J = O since any
t.wo components of N generat.e e. As O= a~ = (a + b)" + (-b)~ t.hen (a + b)
and b are on C and B respect.ively which are dist.inct. component.s so t.hat.
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bO E il n C = Owhencycr b is in any tomponent B io A. Thus ali members
9 E K are inject.iye homomorphisms of C.

Next. we cheà the c1ement.s <!> E K are snrjective.
Given nonzero 11 E C, we require w E C SUdI t.hat. 11 = w~3<p E K. Let. V

denote t.he component. tont.aining v and let. u E U be a nonzcro elelllent. in
some ot.her component of iV, and define a t.hird component Z t.hat. cont.ainsu. -11. Now we c!aim t.hat. t.he rcquircd w is t.he uniqllc point. in t.he set.
(Z +u) n X. Not.e t.hat. t.he int.ersection is unique since it. is t.he intersection
of t.wo lines of the affinc point. associat.ed wit.h t.he spread N.

lt. i5 now sufficient. t.o sho", t.hat. v - w~ = O, and we dernon5trat.e t.his by
5howing t.hat 11 - w. E Y n z. Since w E V, v - w" cert.ainly lics in V. Thus,
it i5 sufficient. t.o verify t.hat. v - w" E Z. But., by definition, u~ - "II E Z, so it.
i55llfficient. to verify t.hat.(v - w?) - (·u" - v) = (w - u)" E Z. This condit.ion
hoicl5 because w E ti +Z mcans that (w - ti) E Z. and Z is <p-invariant.. Thus,
<!> i5 5nrject.ive. _

The follo"'ing st.andard not.at.ion conccrning linear groups will be used
thOllghout. onr lect.nres.

Definition 1-2,5 Let V be a lcft vector space ave,. a skewfield J(. Let a be
an additive mapping on V. IVe shall say that a is J( -semi-linear if and only
if far ali a in J( and fa,. ali x in V then a(ax) = aPa(x) wher·e p is an
autoTn01phism of J(. 11"e shall say that a is J( -linear· if and only if p = l.

The group r L(V, J() of ali bijeetive ](-semi-linear mappings is called the
generai semi-linear· gmup. The subgmup C L(V, K) of linea,. mappings is
ealled the generai linear gmup.

Let F denote tlte prime field of I<. Then r L(V, F) = C L(V, F). Since
any additive bijection ~, in C L (V, F), the notalion C L(~f, +) is always used.

Inl954, André proyicled t.he foundat.ion for t.he t.heory of t.ranslation pianes
by proving t.hat. any t.ranslation pianc may bc iclentified wit.h a normal parti­
tiOIl of a group whidI act.ually t.llrns Ollt t.o be a veetor 5pace ovcr a skewfielcl:

Theorem 1-2,6 (Thc Fundamental Theorem Of Translation Planes.)
Let" be a translation piane urith translation group T and let P denote the

set of parallel classes of"·
Let Tp denote the subgro·up of T fi:L'ing ali the lines of p, far p E P. Then a.ll
the following hold.
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1. r = U{Tp Ip E P} is a spread on T and hence T is a vector space over
the associated kernel K.

2. 7r is isomorphic to 7rr, the translation l'lane constmcted from the spread
011'·

3. The lull collineation group G ol7rr is TGo where Go is the lull sub­
grDUI' 01 the grouI' GL(T, +), that l'ermutes the members 01 r among
thernselves.

4· The lull collineation grouI' G ol7rr is TGo where Go is the full sub­
grouI' 01 the group rL(1', K) that l'ermutes the members 01 r among
themselves.

Proof: (1) Tp is t.he sllbgrollp of T flxing individllally all the lines through
p, hence it is trivialiy nonnalized by T since T flxes p. Since every translat.ion
in T has a Ilnique eenter, T gets partit.ioned by it-s nonnal sllbgrollps of type
Tp . It remains to show that T = Tp El) Tq whenever p and q are distinct
points on the translation a,is. Let t E T, and sllppose t : a >-+ b, where
a is any affine point, and assllme b f a, to avoid trivialities. Since Tp and
Tq are normal and disjoint, it is sllfficient to verify that t E< Tp,Tq >. Let
l'a n qb = x. Since 1'p has as its non-trivial orbits all the affine on each line
throllgh p, there is a 9 E Tp sllch that. 9 : a >-> X and, similarly, there is an
h E 1'q sllch that h : x >-> b. Now elearly a9h = b. Bllt the regularity of T
now forces t = gh. ThllS T is generated by any two distinct Tp and Tq •

(2) Fix an affine point O of 7r, and to each affine point a of 7r llssign the
transiation Ta E T that maps O onta a. Consider the bijection e :a >-+ Ta ,

from the affine points of 7r onta the points of the vector space 1'.
Consider t.he affine point Cl E A, where A is any affine line of 7r. Let Am

be t.he uniqlle line parallel to A throllgh O with slope m. Clearly, Tm has
A", as its O-orbit" so (Am)e = Tm.

Next note that t,he points of A may be expressed as oroT... , as the grollp
Tm'ads transitively on the affine points of each line throllgh m. Now the
image (oroT",) e = TaT"" i.e., a coset of T",. Thlls we have shown the
bijection e maps the lines of 7r t.o cosets of t.he spreads associated with T,
which means e is a biject.ion from the affine l'lane 7r onta the affine l'lane
associated with the spread on T that sends lines ont.o lines. Hence, e is an
isomorphism between the planes.



•
CHAPTER 1. ANDRE'S THEORY OF SPREADS. 13

(3) The translation snbgronp of the full collineation gronp G of 1rr may,
of course, be ident.ified with T itself. Let H = Go, so G = HT, by the
transitivity of T , and by its regnlarity we further have H n T = {1} (the
identit.y element). We next verify that H is in GL(T, +).

We define addition in " as follows: a + x = r.(x). It follo\\'s that this
makes (1r, +) isomorphie to T.

Sinee T is normal in the translation pIane 1rr, we have for every a E T a
uniqne a' E T sneh that

so
hr.(x) = ro,h(x)Vx E T

henee
h(a + x) = a' + h(x)Vx E T.,

Pntting x = O, we observe that a' = h(a) and so the above identity yields

h(a + x) = h(a) + h(x)

so h is additive and henee lies in GL(T, +), and permntes the members of r.
Conversely, any map with these two properties also permutes the eosets of
the eomponents of r, and is t·hns a eollineation of 1rr. Thns (3) is established.

(4) By (3), H is the largest snbgroup of GL(T, +) that permutes the
members of r among themselves, and the kernel of this representation of H
on r is thns normal in H and coincides with K.. by definition. The normality
of K. • now forees H to be semilinear over K..

This eompletes thc proof of the theorem.•

Sinee the translation group of any spread (V, S), associated with a trans­
lation pIane 1r, is additively isomorphie as an additive group to the translation
gl'Onp of 1r, ali sneh spreads (1/, S) havc isomorphie additive gronps (V, +).
The non-zero kernel endomorphisms of sneh spreads are permntation iso­
morphie to the the kern homologies, aeting on the pIane. This suggests that
ali sneh spreads, associatcd with a fixed translation piane, are related by a
spread isomorphism semilinear over theh kern, and more generally that an)'
collineation the of the planes assoeiatcd with the spreads that sends zero to
zero mnst be a semilinear map of the t.ype indieated. This is indeed the case
as we shall now verify.
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The main problem is 1.0 verify that snch collineations are additive; we
shall verify this directly rather than attempting 1.0 derive il. fwm parI. (3) of
the fnndamental theorem above.

Theorem L2.7 Let (V S) and (IV, T) be spreads defining isomorphic trans­
lation planes, and suppose that W : IV -+ V is any isomo'rphism from the
tmnslation piane IT(W,T) to the translation piane IT(V,S) sueh that O >-+0; '"
exists sinee the planes admit point-transitive translation groups. Let J( and
L be respeetively the skewfields of kemel endomorphisms of the spreads (V, S)
and (IV, T). Then ther'e is bijeetive ring isomorphism '" : L -+ K sueh that
there is a K -L-semilinear bijeetion W: V -+ IV, satisfying W(aw) = a"'(w),
for ali w E IV, a E K.

Proof: Since thè translation gronps of the two planes are isomorphic, Vand
VV are isomorphic aeldit.ive gronps, so (V, +) cml be made into a K-vect.or
space snch that a K-linear bijcction from V 1.0 IV exists ad this bijcetion
iclentifies the spreael T with a spreael on V, snch that the components of T
are K -spaces, anel that K is stili the fnll ring of kernel enelomorphisms.

ThllS we consieler S anci T 1.0 be spreaels on the saIlle vcetor space (V, +),
over K, snch that, K is the largest ring leaving the components of T invariant.
Since Wis a collineation of the associateci pianes il. mnst map the components
of Tonto the components of S. Since the non-zero kernel enelomorphisms of
t.he spreaels are snbgronps of GL(V, +) that leave its components invariant il.
is dear that the planar isomorphism W mnst. conj llgate the kernel endomor­
phisms of T 1.0 S, anel since the planes are simorphic nneler W we actnaly
have a fielel isomorphisIll '" : K -+ L, K >-+ k~, snch that w(av) = a"'W(v),
for a E K, ,.. E V, anel in particnlar that wl-x) = -W(x) for ali x E V.

It remains 1.0 show t.hat W is bijcetive. Il. preserves, in the associateci
affine piane, the pmallclogram O, a, b, a + b, whenever a mlel b are in elifferent
components of T, hence in snch cases W(a + b) = W(a) + W(b). If they are
in same component lV t.hen we esatblish this by choosing u fj IV and noting
t.hat.:

w(a + u + b) = W(a + u) + W(b) ­

w(a + u + b) - W(u) = W(a + u) + w(b) ­

w(a + u + b) - '1'(+u) = W(a + u) + w(b)

w(a + b) + W(u) - W(+u) = w(a + u) + w(b) ­

w(a + b) + W(u) - W(u) = W(a + u) + W(b)

W(a) + w(u) + W(b)

w(a) + W(b)

W(a) + W(b)

w(a) + 'l'(b)

W(a) + W(b)
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W(a + b) = W(a + u) + W(b) = W(a) + W(b)

15

provided u is fmther restricted not to Iie in the componenl. containing a + b.

•
As an immediate consequence we have:

Theorem 1.2.8 Let (V, S) and (W, T) be spreads, tuith associated transla­
tion planes 'lrs and "(W, T). Let L and T denote the kernel endomorphism
rings 01 (V, S) and (W, T) respectively.
Let W : W --+ V be an additive bijeetion. Then the 101l071ring aT'e equivalent:

1. W is an isomorphism 17'Om the spread (H~ T) onto the spread (V, T).

2. There is a bijective kem isomorphism 7/; : J( --+ L such that W is a K-L
semilinear isom01phism, 71Iith rompanion isomorphism 7/;, that induces
a spread isomorphism from (W, T) onto the spread (V, 7).

3. W is an isomorphism from the plane "( IV, T) onto the plane 'Ir(W, T).

In view of the importance of the above reformulate as follows:

Theorem 1.2.9 (Isomorphism Theorem POI' Tmnslation Planes.) Let cI> :=
II(V.s) be a tmnslation plane defined by a sp1'ead (V, S), where the components
oJ S are J( -subspaces 01 the J( -vector space V, 71Ihere J( is any skewfield.
Suppose that there is an affine-plane isomorphism:

lram the tmnslation piane cI> to a tmnslation plane W := n(w.n), defined by
a spread (IV, R.), where the components 01R. are L-subspaces 01 the L-vector
space VV, where L is any skewfì.eld.

1. Then Lana 1\ aT'e Isomolphic skewfields and q, may be considered a
semi-linear mapping 17'Om W onto V.

2. Il cI> = W then q, is an element olthe g7'OUP rL(V,K) .
•

3. The full automorphism gmup C 01 the tmnslation plane 'Ir is a semi­
direet p7'Oduct 01 the translation group T by the subgroup Co olrL(V, K)
71Ihich permutes the components 01 the spread S.
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Tlte subgroup Go oj r L(V, K) is called the 'translation complement' oj G or
11'. Go n GL(V, K) is called tlte 'linear translation complement. '

Proof: See above. _

'Ve now make some convcnt.ions regarding the kerncl of a spread, or its
kem, as we shall usually call il.. These relat.es t.o t.he fact. t.hat the components
of a spread 5 may be regarded as being subspaces of the ambient vector space
V,over any subfield F in the kcrn of 5, in the sense of theorem 1.2.6 above:
so in generaI thcrc is a mult.it,udc of dimensions associated with a spread ­
depending on t.hc field or skewfielcl over which wc choose to represent it., If
the 'chosen field' is F, in the kern K of the spread 5, then wc shall sometimes
call F thc 'chosen kern', the 'component kern' or the 'intcnded kern'.

Definition 1.2.10 Let V be a vector space aver a skewfield F that contains
a spTead 5), consisting oj F-subpaces; so F is the component kem. The
RANK OVER F oj (V, 5) is tlte comman dimension oj the members oj 5: so
an n-dimensionaI F -spread 5 has ambient space V with climension 2n; now
1r := (I/, 5) IS REGARDED AS BEING AN F-SPREAD OF F-RANK n . .The
RANK oj 5 is its rank oveT K, the kem oj 5 ..

IAre ALL srreads rank ONE!? I (1.1)

So we need t.o first, of all clescribe alI rank oue spreads, that. is, spreads that are
rank one over t.heir jull kern. We begin by officially adopt.ing t.he definit.ion:

Since any rank two vect.or space, over an arbitrary skewfield J{, partitions int.o
a collect.ion of rank one spaces, wc conclude that one dimensionaI sp"eads
exist over every sfield! But, as indicat.ed earlier, we may now regard these
spreads as being F-spreacls of rank > 1 whencver F is a subfield of K. Thus
F-spreads of F-rank n exist. in abundance. This rroses a problem - not too
hard but cert.ainly non-trivial - how do wc know whet,her any spread that,
we constrnct is not. a rank-onc sprcad in disguise? Put.ting it, somewhat. more
provocat.ively:

Definition 1.2.11 A rank one spread is called a DESARGUESIAN SPREAD.

A rank one spread is isomorphic t.o a spread oon t.he vector space V = J{2,

where

1. K is a skewfield act.ing wlog from t.he left. in the st.andard way:

Vk k k E K . k(k k) = (kk kk)'J 1, 2 . l, 2 l, 2,
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2. The components of oare the subspaces of type 'y=xm', m E K, and
x = 0, as in coordinat.e geometry.

The proof folIows from the fact that any rank two vector space may be re­
gardect as some K 2

, with J( acting form the left, and all the rank-one spaces
musI. be component.s. The associat.ed affine piane consists of alI cosets of the
spread components and hence the lines are of form y = xm + b and y = c.
Thus rank-one spreads correspond 1.0 precisely the high-school interpretation
of the term. Hence we have jllst.ifìed onr terminology by showing that:

Remark 1.2.12 (Desarguesian Spreads.) Thefollowing are equivalentfor
a spread S:

1. S is mnk one ovel' ils kem;

2. The affine piane 7fs, associated I/Iith S, is a Desarguesian piane.

Note that we have now described alI one-dimensional spreads over any skew­
field K! In the finite case alI finite skewfields are Galois fields, so all mnk
one spreads are REALLY! knol/ln. So the obvious next step is:

IINVESTIGATE TIIE RANK Twa SPREADS aVER A GALOIS FIELD! I (1.2)

Dming the last t.wenty years a great deal of attention has been given 1.0 this
project; there are also associations with other areas of finite geometries, par­
ticularly flocks and generalized qlladrangles. Note that. the existence of rank
two spreads obviously settles as a by-producI. the 'first question' for spreads,
see (1.1). The principal 1.001 for such investigations involve spreadsets, the
main concern of t.he next lectllre.

1.3 Spreadsets and Partial Spreads.

In the previous lectnre, we saw t.hat by the fundament.al theorem of transla­
tion planes, theorem 1.2.6, translation planes may be identified with spreads.
Here we introduce tools and concepts that arise inevitably in the study of
spreads. The concept of a partial spread describes colIections of subspaces
of a vector space that plltatively extend 1.0 a spread. The other concept that
we introduce aims at. 'coordinatizing' spreads and part,ial spreads by sets
of matrices (in the finite-dimensional case), explciit,ing the fact that spreads. .
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(and hence t.ranslation planes) are always associat.ed wit.h some vector space.
These sets of matrices, or linear maps in t.he generai case, are called [paxt.ial]
spreadsets: t.hey provicle t.he most. import.ant. computational 1.001 in the study
of t.rans!at.ion planes.

In the motivating case, a spreadset is a set ofq" matrices M C GL(n, q)U
{O} such that any two members of M differ by a non-singular matrix and
O E M. Such a seI. yields a spread "M in V = GF(q)" ElJ GF(q)": the
components are y = xM, 1>1 E M and x = 0, mimicking the t.he construction
of element.ary coordinat.e geomet.ry. The spread "M actually t.urns aut. 1.0 be a
generic form far any GF(q)-spreacl on V: sO spreads may be computationally
investigat.ed via t.heir spreadset.s of matrices.

The complet.e clefinit.ion of a spreadset. is a routine generalization of the
above, assigning t.o any spread a spreadset of linear maps that represents
it.. As in t.he finit.e case, t.his associat.ion enables ali the major t.ools of linear
algebra 1.0 be brought. 1.0 bear on t.he stucly of spreacls. When the underlying
field GF(q) is generalized 1.0 an arbit.rary skewfield ]( the cardinality and
dimensionality condit.ion implicit. in 1MI = 1](1" needs 1.0 be reformulated.
This will be achieved by defining the familiar concepts of semiregularity and
t.ransit.ivit.y from permutat.ion group t.heory sò as 1.0 apply 1.0 SETS of possibly
infinite bijections.

Accordingly, we begin by explaining what. t.ransitivity and regularit.y mean
in the cont.ext. of a set. of permutations on n, where n may be an infinite set..
The clefinit.ions here generalize t.he corresponding definit.ions far permutat.ion
groups list.e<! in definii.ion 1.3.1.

Definition 1.3.1 Let G denote a set of bijeetions of a set n. Then the
G-orbit AT x E n is

O"ba(x) := {x9 19 E G}.

G is ralled a TRANSITIVE set of maps on n if O"ba(x) = n for all x E n.
The set G is ealled semi-regular- iI

(x, y) E n x n = 31g E G O) xg = y,

and G is a REGULAR set of bijeetions of n if it semir-egular and transitive on
n

Far finite sets, il. is st.raight.forward t.o check that. ali of the above concepts
coincide provided Gand n have the same size:
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Remarks 1.3.2 If C is a set of bijections on a finite set n and ICI = Inl
then the following are equivalent:

(a) C is semiregular;

(b) C is regular;

(c) C is transitive.

Note that condition (b) above implies ICI = IKI, even in the infinite case,
and hence we shall lise it as the basis of onr general definition of a spread.
However, we begin by int,rodllcing spreadsets, not in their most generai form,
but rat.her in the form that. t.hey are most freqllent.\y encollnt.ered: as sets of
qn matrices in CL(n, q) := CL(n, q)U{a} t.hat, oct regularly on CF(q)"-{O}.

Definition 1.3.3 An n x n SPltEADSET OF MATRICES over CF(q) is a set
of matrices

{a} c M C CL(n,q)

s"ch that (1) IMI = qn,. (2) Any two distinct member of M differ by a
non-singular matrix.

It is immediat.e that the action of the above M' := M-{a} on CF(q)"-{O}
is reglllar and that. the reglllarity ofM' is act.lIally equivalent to the definition
of a finite spreadset,s. Tlms the concept of a spreadset., as inclicated earlier,
can be generalized to arbitrary vedor spaces over any skewfield as follows:

Definition 1.3.4 Let K be any skewfield, and V a vector space over K. A
K -SPREADSET of V is a set M of linear maps:

{a} c M C CL(V,K)

sueh that M' acts as a regular set of maps on V'.

Thlls, a finite set. of matrices over K = CF(q), is a spreadset of matrices in
t.he sense of defintion 1.3.3 iff it is a spreadset. of linear maps in the sense of
dèfinition 1.3.4 above: jllst apply remark 1.3.2 above.

It is import,ant to realise that the non-singlllarity-of-difference condition,
in the definition of finit.e matrix spreadsets, definition 1.3.3, may be used in
characterising general spreadset.s:
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Remark 1.3.5 Let K be any skewfield, and V a vector space aver K. A set
M 01 linear maps 01 V satislying:

{O} C M C GL(V, K)

is a spreadset iff:

1. A, B E M are distinct then A - B E GL(V, K),.

2. Il (x, y) E V' x V' then there is an element lvI E M such that xlvI = y.

In pariicular, a set M 01 n x n matrices over GF(q) is a spreadset iff they
lorm a matrix spreadset in the sense 01 definition 1.3.3, that is, M has q"
elements, including zero, any two 01 which differ by a non-singular matrix or
zero.

Proof: l'he second condit.ion means t.hat. M' is t.ransit.ive on V', and the
first. condit.ion means that. M' is semiregular on V', since otherwise x(A - B)
would be zero for some x E V' .•

vVit.h every spreadset. \Ve shall associat.e a collect.ion of sllbspaces which
t.llrn out. t.o be spreads. The not.at.ion t.hat. we llse here is sllggested by ele­
ment.ary coordinat.e geomet.ry, and similar not.ation \ViU be llsed t.hrollghollt
t.hese notes, sometimes \Vithout. explicit. definit.ion.

Definition 1.3.6 Let W be a vector space over a skewfield K and let M be
a K -spreadset on W. Then "M is a collection 01 subsets 01 V = W EB W
defined by

"M := {Y} u {y = xM 1M E M},

where Y = ° EB W and y = xM, m E M, denotes the subset {(w,wM) I
w E W} 01 V - so y = 0, a/so called X, is in "M· The collection "M is
called the SPREAD ASSOCIATED WITH M.

We now just.ify t.he t.erminology by verifying t.hat. "M is a genuine K -spreacl:

Remark 1.3.7 Let W be a vector space over a skewfield J(. Let M is a
K-spreadset on W. Then its associated spread "/vi, definition 1.3.6 above,
is a collection 01 K -subspaces 01 V that lorm a K -spread, in the standard
sense, with ambient space V = W EB W.
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Proof: The linearity of M over J( ensnres that {(x, xl\I) I x E W} is a
K-snbspace of V = W $ W - t,he linearity means that the K-action on
W commntes with the lII-action. Next we note that y = x1l-f and y = xN,
where M, N E M, are disjoint K-snbspaces of V, for M f N: for otherwise
M - N would be singnlar, contradicting M - N E GL(n, W), c.f., remark
1.3.5. Given (a, b) E W' ffi W', there is an M E M snch that b = aM, by
the transitivity condition on M. Hence, il. easily follows that the snbspaces
in the structnre 1r{M} form a pairwise disjoint cover of V'. It remains 1.0

check that V is a direct snm of any two of the 'components' in 1r{M}. (This
is obvions if W is finite dimensionai over K, in particnlar if M is finite.)
The main case is when the components are y = xlvI and y = xN, where
O f M f N fa, and here we need 1.0 show that any (a, b) E V lies in the

• •s\lln of y = xM and y = xN. Thns, we need 1.0 show that

(a,b) = (u,uM) + (v, vN)3u, v E W,

or, eqnivalently, for some u, 11 E ~V:

a - u + l'

b uM+vN

and this means b - aN = u(M - N), which can be solved for u by the non­
singnlarity condition on M - N, remark 1.3.5, and the desired res,ùt follows
easily.•
Thus 1.0 find a spread, and hence a t.ranslat.ion piane of order qn, il. is snfficient
1.0 find a seI. of qn - 1 rnat,rices in GL(n, q) snch that any two of them differ by
a non-singnlar matrix. This follows from the above, also cL defintion 1.3.3.
We illnstrat.e this with an important example, discovered first by Donald
Knnth.

Example 1.3.8 (Knuth's ì-sp1-eads.) LeI. J{ ::: GF(q) be a finite field,
where q = pr > p is odd. LeI. ì be a fixed nonsqnare in K, and a E Gal(K)'
Then

M= { [~ ì~'] 'tu, t E K} .
Proof: Becal1se ì is non-sqnare, the determinant u2

- ìt(a + 1) cannot be
zero nnless u = t = O. Thns we have an additive gronp of matrices whose
non-zero elements are non-singular. This means that the difference between
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any t,wo distinct members of M are non-singular, and since we have qn = q2
sudi matrices M is a spreadset by remark l.3.5.•
This is t,he first spread of rank 2 t,hat we have displayed, although we have
not yet. shown t.hat. it. is not Desarguesian, i.e. a rank-one spread in disguise.
Once we have developed some more machinery this will become immediately
obvious. At. t.b..is stage more compuational effort is teqnired: as an exercise the
reader is invited to verify that t.he group of kern-homologies is not transitive,
as a gronp of homolgics: this means t.he spread cannot be Desarguesian. and
hence must. be rank two - t.hereby answering tbe 'first question' ·(l.I), and
also cònt.ribnt.ing to (l.2).

Not.e also t.hat t.he argnment. used in example l.3.8 above yields a more
generai result.: t.he proof is left, as an exercise, and involves recalling the
connect.ion bet.ween spreads and t.ranslation planes:

Proposition 1.3.9 An additive groupM of n x n matrices over GF(q)
is a spT-eadset iff the group has orde,. qn and its non-zero elements are alt
nonsingular. Moreover, the associated spread 7CM corresponds to a translation
piane that admits a group of kern homologies of order q - l.

The spreadset.s of t.he above type are called additive spreadset.s, and will be
t.reated in det.ail lat.er ono They form a major branch of t.ranslation piane
theory witb their own met.hodology, related to non-associative divison ring
t.heory.

"Ve no'" t.urn t.o t.he converse of remark l.3.7. The eventual goal is t.o
show t.hat every spread is associated with a spreadset. BuI. we first take
t.he opportnnity 1.0 work from more generaI premises, by introducing panial
spreacls and the paltial spreadsets that coordinatize them.

Definition 1.3.10 Let T be a non-empty coltection of subspaces of a vector
space V aver a skewfield J(. Then T is a PARTIAL SPREAD on V, and its
members aT-e its COMPONENTS ifV = AEfiB far every pair of distinct A, BE'
T, and if ITI < 2 assume explicitly that V/A ~ A fa,. A E T.

Of course, V/A ~ A applies aut.omat.ically if T has al. least. three components.
Not.e also that although subsets of spreads are always partial spreads, there
are many partial spreads that cannot be extended t,o spreads: thus, there are
ma.ximal partial spreads that are not spreads.

To construct. partial spreads, we generalize, in obvious ways, the notat.ion
and concept.s that. relat.e spreadsets to spreacls in definition l.3,6. "Ve continue
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with onr convention of applyìng the language of coordinate geometry 1.0 any
direct sllm V = W $ W, c.f. definiton 1.3.6.

Definition 1.3.11 Let W be a vector space over a skewfield K. Then a
non-empty set 7" C CL(V, K) U {O} is a PARTIAL K-SPREADSET il

T[,T2 E 7" =;lo TI - T2 E CL(V,K).

The associated structure of 7" is the col/eetion of subspaces of V = W $ W
given by:

7fT := {y = xT I T E 7"} U {Y}.

In genero!, 7" C C L(V, K) U {O} is a SPREAD SET if 7" is a K -spread where
K is the prime field over which V is a veetor space.

Note that we have included {Y}, as om earlier convention reqllires us 1.0 do
this if 7" is a spreadset, c.f., definition 1.3.6. Stating the obvious:

Remark 1.3.12 If 7" is a partia! spreadset on a veetor space W then 7f,. is
a partia! spread on V = IV $ IV, and 1rT is a spread iff 7" is a spreadset.
Hence 1rT is called the PARTIAL SPREAD ASSOCIATED WITH THE PARTIAL

SPREADSET 7".

It is worth restressing that the above remark assumes that the spread on
W $ W by a spreadset 7" of IV always incllldes Y := O $ W, unless the
contrary is indicated: withollt this assllmption 1rT fails 1.0 be a spread when
7 is a spread.

The fol1owing easy exercise emphasizes that in the finite case a partial
spreadset is jllst a seI. of non-singlliar matrices, possibly augmented by O,
snch that any two differ by a non-singular matrix.

Remark 1.3.13 Let V be a veetor space over a skewfield K. A non-empty
set 7" C C L(V, K) is a partia! spread iff 7"' is semiregu!ar on V'.

In particu!ar, if 7" C CL(r>., q) is a non-empty set of matrices then 7" is a
partial spreadset iff and the difference between any two distinct matrices in
7 is non-singular.

Proof: Exercise._
We now introduce the notion of isomorphic partial spreads, generalising the
corresponding notion for a spread.
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Definition 1-3.14 Let ?Ti = (Vi, Ti), i = 1,2, be paTtial spTeads, where VI
and V2 are the underlying vector spaces over a common skewfield K. Then a
K -linear bijection W: VI -> V2 is A K-L1NEAR ISOMORPHlSM Irom?T1 to ?T2,
or TI to T2, iff it bijectively maps the components TI onto those 01 T2·

More general/y, an ISOMORPHISM lrom?Tl onto ?T2 is an additive isomor­
phism Irom VI onto V2 that maps components onto components.

There are of comse a Ilnmber of eqnivalellt. ways of defining isomorphisms
among partia! spreads, for example an additive isomorphism from V, onto
V2 is an isomorphism of the associated spreads iff il. maps components onto
components. The llsnal terminology associated with isomorphism, antomor­
phism etc. will be nsed withollt. fmther commento

The following t.heorem implies that. ali spreads arise from spreadsets:
t.here is an isomorphism from any K -sprcad (or part.ial spread) t.o t.he spread
arising from a spreadset (or part.ial spreadset.). This is one of the most im­
pOltant connections in translat.ion l'lane t.heory.

Theorem 1-3.15 ( Equivalence Of (Part.ial) Spreads and Spreadsets
Let V be a vector space over a skewfield K, and let T a partial spread 01 sub­
spaces, with at least tltree components X, Y! W, .... Choose a K-linear
bijection IDENTIFYING Y with X:

W: Y , X.

Tlten relative to (X, Y, W):

1. For eveT1J W E T \ {Y} the map TW : X -> Y specified by:

Tnr : X ) y

x I l yç>xEllyEW

is a linear bijection lrom X onto Y wlten W i' X (TX = O) and hence
WTw: X -> X, WRITTEN O'w, is an element oIGL(V,K); O'w is cal/ed
tlte SLOPE MAP, or the SLOPE ENDOMORPHISM, olW, relative to AXES

(X, Y) (via,the identification '*' :Y -> X).

2. For ftxed X and Y and any cltoice 01 W E T \ {X, Y}, '*' can be
chosen so that O'w= 1; in lact W= Tw- 1
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3. The set of all endomorphisms of T:

Or := {DIV I ],V E T \ {Y} }

25

corresponds, "fier dcleting the zero mal', to a semiregular subset of
GL(X, I<) on X'.

4· The partial spr'ead dete'rmined by Or, viz. 1raT , cf, definition 1.3.11
anri r'Cmark 1.3.12, is isomorphic to the given spread T. In fact, the
lineaT' bijection Ix $ W-l:

X$X ---> X$Y
aeb I , a El) (b) W-I

is a linea'r isomorphism from the (partial) spr'Cari 1raT onto the (paT'tial)
spT'ead T that maps X $ D a.nd D S X onto X and Y respectively,
that is, the isomorphism can be chosen so that the X anri l' 'axes' are
preserved.

MoreoveT', if the a1:cs-identifying' linea.. bijcction W: X --+ l' is speci­
fied by W:= TW '-1, whcre TW : X --+ l' is the lineaT' bijection associateri
with W E T \ {X, l'}, then the 'unit component' Z:= {(x,x) I x E X}
is assigned, by the parl.ial sl'reari isomorphism Ix ew-I , to the chosen
component tV ET.

To summanze, T may be irientified, via a linear' bijection A : V --+

X EilX, wil.h o. partial -'preari :TT oa X ex, c01Tesponding to a spreadset
T on X, such that the ident·ificotion sends respective/y the components
X and l' of Tonto respectivcZy the x-atis, i. e. X e O, and the y-aJ:is,
i. e. o e X. iIIorever', the mal' <I> : Y --+ X that A induces naturally
fmm l' to X, rip.jined by r-estrictiing it to 1':

ean be chosen, for appropriate A := A<fl, so that <I;> = W-I, where W :
l' --+ X is the givert identification; and if now W is taken a.s TW -I then
A additionally maps the component W, distinct from X, 1', onto the
unit line Z defined above.

5. If T is a spread then the following are equivalent:
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(a) The set oJ slope endomorphisms aT is a spreadset on X.

(b) a;' is regular on X'.

(e) a;' is transitive on X'.

Proof: (l) We first show that TW is a map. Consider TW (x). If YI and
Y2 are dist.inct elements of Y such t.hat x + YI E W and x + Y2 E W, then
YI - Y2 E IV, and t.ltis is a contradict.ion because the components of a partial
spread do not overlap. Since X El) Y is the whole space we certaiIÙY have
x + Y E W, for some y E Y. Hence TW : X ---> Y is a map, and it is
equally straightforward to check that this map is linear and injective, for
W 1. {X, Y}.

To verify that TW is bijective, for W distinct from X and Y, consider
y E Y. If Y f TW(U) for all U E X then U + y ~ W for alI U E X, so
y 1. X El! W, contradict.ing t.he fact that any two components must direct­
sum to t.he whole space V. Hence (1) holds, since it, is trivial that TX = O.
(2) This case is immediate.
(3) Now consider TA and TB, where A and Bare distinct components, other
t.han X and Y. If TA - TB(X) = 0, for x 'f 0, t.hen x El) TA(X) E A n
B, contradicting the fact that. distinct components do noI. over lap. Thus
WTA(X) f WTB(X), for x f 0, which means aA(x) f aB(x), and hence aT is
a serniregular spreadset. in GL(V, K).
(4) The part.ial spread 1fuT associated with aT, in the sense of remark 1.3.12,
has components {(x, XTwW) I x E X}, for W E T The linear bijection Ix El)

W-I defined by

XEl)X ---> XEl)Y

a El) b I • a El) (b)w- l

maps (x, xaw) = (x, XTwW) onto the component (x, XTw) and O El) X onto
O El) Y.

The 'summary' is just à restatement. of the facts established about Ix El)

W-l: X El) X ---> X El) Y, in terms of its inverse map A : X El) Y --.; X El) X.
(5) The equivalence of the conditions follows from remark 1.3.2, giving the
corresponding equivalences for arbitrary set.s of permutations, together with
t.he fad t.hat a partial spreadset is a spread iff it is regular on X', c.f. defi­
nition 1.3.4.•
Thus, the fundamental identification of partial spreads with partial spread­
sets corresponds to a generalization of the situation in elementary coordinate
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geometry: sets of lines throllgh t.he origin are identifed wit.h the seI. of their
gradient.s, t.he subspace y=xm being identified with its slope m. Moreover, we
have shown, as in element.ary ge0metry, that any two lines may be taken as
t.he x and y axis, and t.hat. by rescaling (recall the ident.ificat.ion cI> : Y -> X)
on t.he y axis we can further force any chosen third line through the origin
1.0 be t.he uniI. line.

Not.e however that in our case t.he 'points' of the x-axis are used as coordi­
nate vailles, whereas in element,ary geometrya distinct seI., viz. t.he reais, are
used as coordinat.e vallles. It is often convenient. t.o mimic t.his setup in our
situation by allowing t.he chosen component.s, X and Y, 1.0 be coordinatized
by an arbit.rary vect.or space R, isomorphic 1.0 t.he components of the given
spread.

For example, t.he nat.ural choice for R, when the components are n­
dimensionai over a field I<, is t.o t.ake R = I<", and now X and Y are
identified wit.h W by specifying bases (el,e2, ... ,e" and (h,h, ... ,f" re­
spect.ively; in t.his set.llp the 'axes-identifying' linear biject.ion ([I : Y -> X is
tacit.ly t.aken t.o be t.he linear map sending f; >-> ei, for l < i < n. Now the
associated [partial] spreadset. becomes a seI. of mat.rices M and the 'canon­
ica!' fDl'm of t.he given [partial] spread is in I<" E9 I<", and t.he components
are y = xM, M E M, plus t.he Y-axis.

Recall that 1.0 also force a component. W, of the given spread, t.o become
the unit. line under the chosen coordinat.izat.ion, il. becomes necessary t.o fix
t.he axes ident.ifier map ([I : Y -> X - W = 7W -I, in the sense of the t.heorem.
However, since by Dm convent.ion ([I is fi:red by the chosen basis of X and Y
we can specify t.he required ([I by t.aking an appropriate basis (h, h, ... , fn)
of B so t.hat. t.he uniql1e linear bijection specified by t.he basis image ei >-> fi,
for ali i, c.oincides wit.h ([I.

The above, analysis can be repeat.ed for arbit.rary vect.or spaces over a
skewfield I<. The basis for X and Y are t.hen families (ei )iO and (/;)iE"­
(respect.ively), indexed by a possibly infinite seI. À. As before, a component
W can be forced t.o be t.he ident.ity by choosing an appropriate (f;)iE" Note
t.hat. if I< is a non-commut.at.ive skewfield and t.he chosen space R is t.aken t.o
be t.he space I<", t.he 'À-t.llples' over I<, t.hen it. might. be necessary 1.0 specify
whet.her I<' is regarded as a left. a righI. I<-space.

We summarize our conclusions as follows:

Corollary 1.3.16 (Basis Decomposition Theorem.) Let V be a vector
space aver a skewfield I<, and suppose T is a partial spread on V with at
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least three distinct components X, Y, W . . .. Let Z be any vector space that is
isomorphic to the components of T. Then

1. There is a paTtial spreadset T on Z that contains the identity map 1z
and a J{ -linear isomorphism

A:V=>ZEBZ

such that A is a J{ -linea1 paTtial spread isomorphism from T to 11:,

satisfying:

A(X) = Z EB 0, A(Y) = °EB Z and A(W) = {(z EB z I z E Z}.

In fact, to each J( -linear bijection a : X --> Z there corresponds a
J( -linear bijection f3 : Y --> Z such that

A = a EB f3 : V => Z EB Z.

2. Let Bx := (e;);EÀ be a basis of X and far any basis By := (f;);EÀ; so
the juxtapostion Bv := (Bx ;By) is a basis of V. Define the canonical
J{ -linear isomorphism f3x : X --> J(À, f3y : Y --> J{À, and f3x EB f3y -->

X El Y --> J{À $ J(À. (N.B. If J{ is non-commutative, J{À is made into
a left or a right vector space, depending on whichever guarantees the
required J( -linear isomorphisms with X and Y.)

Then there is a partial spreadset T on J{À such that the J( -linear bijec­
tion

f3x $ f3y : V --> X $ Y --> J(À $ J(À

defines an isomorphism from T to "" the paTtial spread on J(À EB J{À

associated with T.

Mo,·eove,·, any component WE T \ {X, Y} can be mapped to the unit
line x = y of J(À $ J(", thus ensuring 1 E T, far any choice of the basis
B x, and far some choice of By (depending on the Bx selected.

Proof: By t.he preceding remarks. _
For emphasis we restat.e what. this means for finit.e-dimensiona! spreads.

Proposit.ion 1.3.17 Let V be a vector space of dimension 2n, n a positive
integer, over a field J{, and that r is a pa,tial spread of K -subspaces of V
with at least three distinct components X, Y, Z . ... Choose a K -basis B x :=
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(e], e2, ... ,en) 01 X and K -basis By := (/I, h,· .. ,In) 01 Y, and let Bv :=

[Bx , By] denote the associated K -basis 01 V, obtained by juxtaposition, thus:

Then there is a basis By 01 Y such that relative to the basis [Bx , By] 01 V
the canonical l-inear bijection:

maps X onto Kn e 0, Y onto °e Kn, and Z onto the UNIT LINE

{(x,x) I x E W} .
•

Proof: The proposit.iou is Il special case of t.he result. above, corollary 1.3.16.

•
We conclude wit.h a basic isomorphism result.

Theorem 1.3.18 Let 7r be a translation piane with spread 5,01XeX = V
where X is a left K -vector spaceand let p be a translation piane with spread
Sp 01 Y e Y = IV wher'e Y is a left L-vector space. Assume that K and L
are the component kemels 017r and p respectively.

Let p and 10 be isomorphic by a bijective incidence presering mapping </>.

(1) Then L and K are isomorphic skewfields and </> may be considered a
semi-linear mapping Irom IV onto K.

(2) 117r = P then </> is an element 01 the group r L(V, K).
Furthermore, the full automorphism group G 01 the translation piane 7T

is a semi-direct prod'uct 01 the translation group T by the subgroup Go 01
r L(V, K) which permutes the components 01 the spread S.

The subgroup Go 01 r L(V, K) is called the 'translation complement' 01 G
or 7T. Go n GL(V, K) is called the 'l-inear translation complemento '

Proof: We have seen (2) previously. We note that if 9 is in the kernel
endomorphism skewfield K of 7T t.hen g-]</>g is in the kernel endomorphism
skewfield L of p. Hence,
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1.4 Thtorial On Spreadsets.
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This tntorial discnsses important aspects of the above theory: low rank
spreads; regnli. The latter suggests the need for introducing a projective­
space version of the theory of spreads and partial spreads. This Bruck-Bose
theory will be systemaically introdnced later ono The focus in the tntorial is
on the motivating cases rather than the generaI case. The reader is invited
to tidy np the sketdw treatment presented and to anticipate developments.

Rank-Two Spreads.

'Ne have mentioned on several occasions that ali rank-one spreads have been
described. It is th\lS natural to turn to rank two spreads. The literature
concerned with this area of translation planes is enormons; part of the interest
stems form its connection with the theory of fiocks, generalized qnadrangles
and packing problems that are themselves associated with highly interesting
higher rank spreads.

By specialising the above we can rednce the stndy of rank two spreads to
spreadsets indicated in t.he following theorem. This theorem nnderpins the
enormons literatnre concerning two-dimensional spreads; the theorem also
provides a pathway to the theory of fiocks and certain types of generalized
qnadrangles.

Theorern 1.4.1 Let 1T := (V, S) be a spread of rank < 2 over a skewfield K.
Then there are funetions g and f from K x J( to K sueh that

.M [
g(t, u) f(t, u) ] "'t .}(

(9'/) t UV, U !Il

is a spreadset, and there is a K -linear spread isomorphism \li fram 1T onto the
spread 1rM('./l' vewed as a K-spread sueh that any ordered triple (X, Y, Z),
eonsisting of three distinet eomponents of 1T, get mapped under \li onto the
triple (y = D,x = O,y = x): that is, the image under \li of X, Y and Z are
resp. the x-axis, the y-axis and the the unit line of \lI_

Proof: By the above we know that atl isomorphism farm 1T to 1rM exists
for some two-dimensional spreadset. So the only qnestion is whether it has
the given formo Since the difference between distinct members in .M are
to be non-singular, distinct members of .M have different first rows and
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also dist.inct. second rows. (For skelllfields consider t.he illlage of (l, O) nnder
dist.inct. melllbers of M t.o get. distind first. ro\\'s, and silllilarly nse (O, l) for
t.he second row). l\loreover, t.he regnlarit.y condition on a spreadset. lIleans
t.hat t.he image of (0 , l) 11111St l'auge ovor /{2, so the second l'o\\' ranges aver a11
of 1(2 Morcover, for any given valne of t.he second row (u, v) E 1(2 we mnst.
have nniqne valnes g(u, 1') and f(1I, v) in posit.ions (l, l) and (1,2) resp., for
ot.herwise t.he faet. t.hat. distinct component.s have dist.inct second rOW5 get.s
violat.ed. Hence 9 and fare single-valned, which is t.he desired resnlt. •
The ident.ification above may be expressed by interchanging the t.\Vo rows of
M. Gne \Vay t.o est.ablish t.his is t.o appropriat.ely modify t.he proof of t.he
above. l'his is left. as exercise. Not.e t.hat. t.he 'new' spreadset. is the same one
as before bllt. expressed different.ly.

Remark 1.4.2 The sl'Tcadsef M, faI" the given (X, Y, Z), can be alterna­
tive/y wliten IlS M

M(9.fJ = [ g(/, 11) J(::U)] Vt, u in ]{

We end wit.h some simple, bllt. illlport.ant., exereises on finite rank two spreads,
or rat.her on spreacls that. bave a l'anI-\: bvo reprcsentation - so as not exeludc
t.he Desargnesian casco The l'cader is encollraged to consider how far t.he
rcslllts generalize: (l) to finit.e spreads of mbit.rary rank; (2) spreads of rank
t.\\'o over comnmative fields and ske",fields, et.c.

Exercise 1.4.3 Let l( = GF(g), g = p". Let M be o.. 2 x 2 spTea.dset with
ent,ies in 1(. Then:

1. Let A and B be non-sing'ular matl"ices in GL(2, g). Then N := A-IA1B
is a spreadset and thcm is o.. I( -/i'Lellr spread-isamorphism from 7fM to
"N. In fact the mapping

is the r'equircd isornoll,hisrn.

2. Suppose M and N are spread"ets s"ch that one is obtaincd flOm the
other by a sequence of T010 andjor column tmnsfolmations (so each
tmnsfol1n IJ in t/Le scguence must be applied to eve,'y member of the
"p"eadset being conside"ed) , 'l'iLen there is a [{-linea.r spread isomor­
phisrn from 7f/vl to 7fN sach that t/w x-aris and the y-o:Lis are both
p,'eseroed,
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3. Il M is a spreadset then so is M', oblaned by transposing every member
01 M.

The Regulus

In the following exercises on partial spreads and partial spreadsets, we in­
troduce the regulus. They provide one of the most import.ant. tools for the
c:onstrnc:tion and analysis of spreads, and hence translat.ion planes. A sys­
tematic: treatment. of reguli will follow lat.er, based on t.he projective space
approach to [part.ial] spreads. Tlw treatment. provided here dearly indicates
t.he desirability for int.roducing project.ive language instead of always work­
ing direc:t.ly wit.h vec:t.or spaces. This approac:h, t.he Brnc:k-Bose version of
André's theory, will be int.rodnced syst.emat.ically in sect.ion 2.2.

Exercise 1.4.4 Let iC denote the scala1' regulus in J<n EI)]{n, ]( a field; thus
iC has the scalai' ficlcl J< < GL(n, J<) as its paltial spreadset; iC = "K' Here
]( is identiled with t/te n x n scalar matrii field with entries in J<.

1. Show thatlo1' A E GL(n, ](), {kA I k E ]{} is the partial spreadset 01 a
regulus R A t/wt contains y = xA, and shares x = O and y = O with the
scalar regulus ic. Conve1'scly, every regulus in J<n El) J<n, that contains
the x-axis and y-a.tis, is 01 the lorr" R A, 101' some A E GL(n, J<).
(Apply the linea1' bijection Diag [1, AJ to Ihe scalar regulus; also re­
member that a 1'egulus is deterrnined by any three 01 its components.)

2. For A, B non-singular',

RAnRB={x=O,y=O} 01' RA=RB

3. In PG(2n - l, J<), let R x .y be tthe set 01 all reguli Rx,Y that share
two fixw. components, X and Y. Then Rx,Y induces a partition on all
Ihe s'ltbspaces 01 PG(2n - l, J(), that have projective dirnension n - l,
and are distinct 11'Orn X and Y, and the subgmup G 01 PGL(n, J<) that
fires X idenlically and leaves Y invariant ind'ltces a transitive g1'OUP
on Rx'y, and the global stabilizer in G 01 any R E Rx,Y acts sharply
transitively [i. e. 1'egularlyJ on R \ {X, Y}.
(Interpr'Ct the earl-ier palts projectivcly; observe that G is sharply tran­
sitive on ic \ {X, Y}.)
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We can no,," est.ablish t.hat. om definit.ion of regnlns coincides wit.h t.he classical
definition, used in finit.e gc'Ometry.

Exercise 1.4.5 A "egulus in PG(2n - l,q) is a pa.rtial spread with q + l
camponents such that a line meeting tftree 01 the components meets ali 01
them.

We note in passing t.hat when n = l, then t.he regulns coincides wit.h a ruling
class of a hyperbolic quadric.

Exercise 1.4.6 A spread S is called regular iff R. C S, whenever R. is the
regulus containing three distinct components 01 S. In PG(2n - 1,2) every
spread is regulm·.

Reguli In Projective Spaces.

Any vedor space V over a skewfield K may be viewed as project.ive spcae
PG(V, K) whose poiat.s are t.he rank one K snbspaces of V and whose lines
are t.he rank two snbspaces; in generai t.he projective dimension of a rank
k-subspace W of V is k - l by definition. Using t.his t.erminology the fnnda­
mental t.heorem of spreads and partia! spreads may be expressed in t.erms of
projective spaces, whidl is t.he Bruck-Bose mode!. Ali t.his wiU be developed
in the nexl. section on t.he basis of a syst.emat.ic review of projective spaces.

The goal here is 1.0 considcr certain aspects of part.ial spreads called regllli:
these are t.he most. important. part.ial spreads ansmg m t.ranslat.ion piane
theory.

Exercise 1.4.7 A l'egulus in PG(2n - l, K), K a fie/d, is a partial spread S,
01 the associated vector space V, such the set 01 projective lines meeting three
distinct components 01 S co'Ver the some projective points as are covered by
the members oiS. Show that when V =XSX then y = xk, k E K, together
with x = O, lorm a regulus called the scalar regnlus on X S X.

What il f{ is a non-commutative skewfield?

Proof: Thc rank t\\'o space ii., u E K, spanned by {uSO, OEllu} meets ever
component in a rank one space, and t.he t.ot.ality of points covered are ali t.he
projective point. of t.ype [tu, uk)], u, k E f{ and t.he points on t.he y-axis. If K
is noI. commutat.ive t.hen y = xk is addit.ive but. not a K-space if K operates
from the righI. as (xa, xka) is noI. on y = xk if a is not. centralized by K.
So, alt.hough the covering is t.here and t.he spread y = xk are bot.h t.here, t.he
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cmnponents of the spreads are Bot always ]<-spaces: they are spaces Qver
ficlds in t.he cent.er of K .•
Thl1s thc scalm- rcglÙl1S is a. genuine regllins iff t.he scalar field 1< is a co'm­

mutative fields!
Now consider any regnlns 5 in PG(2n-1, K), t.he nnderlying veetor space

being V, K any ficld. So we have a J(-linear isomorphism Wont.o a regnlns in
K" f!iJ J(n snch t.hat. a t.riad of dist.inct. component.s (X, Y, Z) of 5 get. mappOO
ont.o t.he t.riad (y = O, x = O, Y = x); also aline cover of 5 get.s mappOO ont.o
aline cover of t.he image 11'(5). I3nt. any line meet.ing ali t.hree members of
the t.riad (y = O, x = O, y = x) Innst. meet. every set. y = xk, for k E J(, and
lies in t.he totality of snch snbspaces. TIl1ls t.he regnlils 11'(5) must. concide
wit.h t.he scalar regnlns. Bence we have established several fact.s: (l) every
reg11111s o\'er a. field Inay be viewed as a scalar reg11111s and three cornponeq.ts
of a part.ail sl'read over a fìeld lie in a uniqne regllIlIs (which may not. be in
t.he part.ial "pread).

Thlls we have est.ablished

Remark 1.4.8 In PG(2n - l, K), for J( a commutative field, the1'e is a
linea1' bijection from any re(Jltlus onto the scala1' Tegulus and this bijection
can be chosen so that any tMee components rnay be rnapped Tespective/y onto
the x-M'is, the V-Mis, and. the unit ine of the scalar 1'egulus. MO"eover, three
components oj a pa7'tial spread lie in a unique "egullLs and hence the subgroup
oj PGL(2n - l, K) jì.?iny a rcgu.lus is triply transitive on its cornponents.

\Ve shall event.nally dcal wit.h t.he most. generaI case associat.OO wit.h t.he above
reslllt.: J( any skewfield wit.h infinit.e dimensions allowOO, This is essent.ially
a repeat. of t.he above bnt. wit.h more at.t.ent.ion 1.0 some det.ails.


