Chapter 1
André’s Theory Of Spreads.

André’s theory of spreads is arguably one of the most important events in
finite geometry: hardly any finite projective planes were known before André
seminal 1954-paper, [2|. André’s paper is ultimately responsible for the ex-
plosive growth in the discovery of finite non-Desarguesian planes during the
last thirty years. Moreover, the theory of spreads, which reduces the study of
translation planes to structures that live on vector spaces, has meant that all
the machinery of linear algebra, and hence also group repreentation theory,
can be brought to bear on the study of translation planes.

The lectures in this chapter will mainly be concerned with developing
the André theory of spreads and its computational aspect — spreadsets of
matrices. In the next chapter, the associated theory of spreads as structures

that live in projective spaces will be emphasized.

1.1 Afhne Planes with a Transitive Transla-
tion Groups.

B

In this first lecture, we begin our study of projective and affine planes. With
the exception of three infinite families of projective planes called the planes
of Hughes, Figueroa, and Coulter-Matthews, all finite projective planes are
related to a class called ‘translation planes.’

In this lecture, we consider a fundamental representation of a translation
plane. This is the classical description of translation planes using vector
spaces due to André. In a later lecture, we shall consider the Bruck-Bose

approach using projective spaces.
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Less well known but of increasing importance are what might be called
coordinate methods. These include the study of quasifields, spread sets and
Oyama coordinates. Professor Jha will be lecturing on some of these topics
in the algebraic tract.

We begin with the definition of an affine plane, which we state in terms of
an INCIDENCE STRUCTURE (P, L,Z). This means that P and £ are disjoint
sets of objects called POINTS and LINES resp. and Z C P x L. To facilitate
discussion we make extensive use of geometric terminology: any set of points
incident with the same line 1s said to be collinear, two lines are DISJOINT
if they are not incident with any common point. Similarly we use notation
based on geometry and set theory: we write P € p, or say the point P LIES
OoN the line P, if (P,p) € Z, and if P,Q € P are distinct points that share
exactly one line we write PQ to denote the unique line that they share.

Definition 1.1.1 An affine plane « is an incidence structure (P, L,Z) unth
the following properties:
1. Given two distinct points P,QQ € P, there exists a unique line p such

that (P,p) and (Q,p) € Z; thus PQ) = p.

2. Given a point P and a line p such that P is not incident with p, there
exists a unique line q disjoint from p such that P € q.’

3. There exists at least three noncollinear points.

Two lines of an affine plane are said to be PARALLEL, if they are disjoint,
and the notation p || ¢ means that lines p and ¢ are parallel when p # q.
However, in order to force || to be an equivalence relation, we continue to
write p || ¢ even when p = q.

Remark 1.1.2 Let # = (P, L,I) be an affine plane. Then || is an equiva-
lence relation on the set of lines. The equivalence classes are called ‘parallel

classes’.

Proof: Routine exercise. m
VWe shall often use variations of the above terminology that often arise in the

literature. For example the parallel classes of an affine plane is often called
its SLOPESET, or its set of ‘infinte points’ or its ‘ideal points’. Similarly, the
class of any line is its SLOPE, or its ‘point at infinity’, etc.

We shall encounter many incidence structures related to athne planes:
projective planes, Desarguesian affine and projective spaces, nets, etc. We
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therefore give a general definition of an isomorphism from one incidence
structure to another.

Definition 1.1.3 Let m; = (P;, £L;,Z;), i1 = 1,2, be incidence structures.
Then an tsomorphism from 7 onto my is an ordered pair of bijections

(,O . p1 — PQ,)\ - £1 m— ﬁg),

from the points and lines of my onto the points and lines of my (respectively),
such that incidence is preserved in both directions:

(p,£) € I <= (p(p), A\(0)) € L.

An wsomorphism from an incidence structure w to itself is = an AUTOMOR-
PHISM, and the group of automorphism of m is usually denoted by Aut(rw).

An automorphism of an affine plane is completely specified by its action on
the points: this is because two points determine a unique line and every line
lies on at least two points. Thus we have

Remark 1.1.4 Let m be an affine plane. Show that if (o,7) and (o, p) are
collineations of @ then T = p.

The above remark justifies the usage of only the point-bijection to refer to the
automorphism. This applies to any incidence structure where the incidence
1s set-theoretic: this means that lines may be viewed as sets of points and
distinct lines are associated with distinct sets of points. All the incidence
structures we encounter may be regarded as being set-theoretic incidence
structures. This allows us to freely use set-theoretic language rather than
the more cumbersome terminology associated with incidence.

Thus, in any set-theoretic incidence structure, an automorphism (¢ :
P — P+ : L — L) is full determined by the action of the associated point-
bijection ¢ : P — P; the action on the lines correspond to the usual action
induced by ¢ on the powerset 2°. We shall refer to ¢ as a collineation: thus
a collineation is the action on the points corresponding to an automorphism
of a set-theoretic incidence structure. In particular:

Definition 1.1.5 A collineation of a set-theoretic incidence structure w is a
bijection of its points that extends to an automorphism of m. Autw will be
used to denote the collinetaion group of © and also its automorphism group:
both groups are of course isomorphic.
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Thus, the collineation group in the above sense is the faithful representation
of the automorphism group on the points. Accordingly, we shall not attempt
to seriously distinguish between the two concepts.

Exercise 1.1.6 Let ¢ be a byection from the points of an affine plane A
onto the points of an incidence structure B such that ¢ maps collinear sets

of points onto pairwise inctdence sets of points. Is it true in general that
¢ induces an isomorphism from A onto B? Show that ¢ does induce an

isomorphism when B s also an affine plane.

Definition 1.1.7 A TRANSLATION of an affine plane is a collineation which
leaves each parallel class invariant and fizes each line of some parallel class.

Our goal is to verify that the translations of an affine plane form a group
and this group acts semiregularly on the affine points, that is, the points
other than the parallel classes. The first step is to note that all non-trivial

translations are semiregular:

Lemma 1.1.8 A translation of an affine plane which fires a point is the
rdentity.

Proof: Exercise. m
The following remark may be taken as an alternative definition of a transla-

tion, equivalent to definition 1.1.7 above.

Remark 1.1.9 Let o be a non-trivial collineation of an affine plane A.
Then o is a translation iff it fizes every parallel classes of A and does not

fir any affine point.

Proof: = follows from lemma 1.1.8 above. Conversely assume o leaves
invariant every parallel class but does not fix any affine point. So choosing
any affine point A, we have B := Ac is distinct from A, and let m be the
parallel class of AB. Let ¢ be any other affine line in the parallel class m.
[t is sufficient to show that such ¢ are o-invariant. Choose an affine point
C € £. By hypothesis D = Co # C. So CD is in the parallel class of m
and, like ¢, contains C'. Hence both ¢ and CD are lines in the class m that
contain C, so they coincide. Hence fo = C'D = £, since the image of any line
is completely determined by the image of any one of itss affine points and
the image of its parallel class. Thus all lines in the parallel class m are fixed
by 0. m

We now consider collineations of the above type that might not fix any par-

allel class.
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Definition 1.1.10 A collineation fixing all the parallel classes of an affine
plane is called a DILATATION. Dtilations that are not translations are called

kern homologies.

So by remark 1.1.9 above, dilations other than translations fix at least one
affine point point. If they fix more than one affine point then the set of fixed
points form a subaffine plane which actually coincides with the parent plane.
Thus, if 7 is any affine plane then the dilations other than translations, that
is, the kern homologices, fix exactly one affine point Z, called its center.
Moreover, remark 1.1.9 further implies that a non-trivial translation fixes all
the lines of ezactly one parallel class. This class is called the center of the

translation. We summarize all this.

Remark 1.1.11 Fuvery non-trivial dilation of an affine plane is either a
translation or a kern homology. FEvery non-trivial translation fives all the
lines of exactly one parallel class, called its CENTER, and no other affine
lines or points, while every non-trivial kern homology fizes exactly one affine
point, called its CENTER, and the other affine line that it fizes are just the
lines through its center.

Thus the set of all dilations of an affine plane form a group: the DILATION
group, and it has as subgroups: the TRANSLATION group and the KERN HO-
MOLOGY group. To discuss these further we recall some standard definitions

from permutation groups.

Definition 1.1.12 Let G denote a permutation group acting on a set §2.
Then the G-orbit of z € §) 15 denoted by

Orbg(zx) :={27 | g € G},
and the STABILIZER of x € ) in GG 1s denoted by:
G,={9€G|z%=zx}.
In particular, G is transitive on ) if it has only one orbit, or equivalently:
z,y€N=dge G2 =y.

(G is REGULAR 1if additionally G, is trivial for all a € Q2. More generally. a
permutation group G on ) is SEMIREGULAR if only the identity of G fixes
any element in §1.
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Using the above terminology, remark 1.1.11, yields:

Proposition 1.1.13 Let A be an affine plane and G its dilation group. Then
the translation subgroup T of G is normal in G and semiregular on all the
affine points of A. G is the union of T' and all its maximal groups of kern
homologies, and any two distinct groups in the union have trivial intersection.

Proof: Exercise. m
The above result is far from optimal, particularly in the finite case, where

the finite case where theory of Frobenius may be applied. But the reader is
warned that glib generalizations to the infinite case might be dangerous.
We may now define translation planes.

Definition 1.1.14 A translation plane is an affine plane whose translation
group acts transitively on the affine points.

As an immediate consequence of remark 1.1.9 we have

Remark 1.1.15 An affine plane is a translation plane iff its translation
group 1s reqular on the affine points.

A Frobenius group is a transitive permutation group in which the stabilser
of any two points is trivial. By proposition 1.1.13 we have:

Remark 1.1.16 The dilation group of an affine plane acts, faithfully, as a
Frobenius group on its affine points.

The point being made is that there is a deep and powerful theory for finite
Frobenius groups that has been exploited in finite translation plane theory.

We now describe a simple construction for translation planes, and even-
tually we shall demonstrate that the construction is generic. The method is
based on the notion of a spread, the most important concept in translation
planc theory. A spread is a partition of the non-zero points of a vector space
by a collection of subspaces that pairwise direct-sum to the whole space.

The lines through the origin in the real plane R? is the most familiar
example of a spread: the real translation plane consists of the cosets of the
components of the spread.

Viewing R* as a vector space over the rational field Q, we have a Q-
spread with the same components as before — the lines through the origin
— but now these components are infinite-dimensional subspaces. One can
of course generalize all this: start with a rank two vector space over a a
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skewfield F', then the one-spaces form a spread, and if F is an extension
of a subskewfield K then the ‘l1-dimensional spread’ F-spread becomes a d-
dimensional K-spread, when dimpF' = d, and the additive cosets define a
translation plane.

Of course, the translation planes described above are the familiar Desar-
guesian planes, and indeed one could regard this construction as a definition
of a Desarguesian spread: thus a Desarguesian plane is the affine plane con-
sisting of the cosets of the components of a one-dimensional spread over a

skewfield F'.
We summarize our terminology for spreads and related items:

Definition 1.1.17 Let V' be a wvector space, and let S be a collection of
mutually disjoint additive subgroups of (V,+) such that V = US and the
sum of each distinct pair of additive subgoups of S its V. Then § is called a
SPREAD on V', or with AMBIENT SPACE V', and the subspaces on V are its
COMPONENTS. The associated incidence structure is defined to be

[Is := (V,C),
with pointset V', lineset

C:={z+85|5€S,zeV},

and wnth set-theoretic incidence.

IfV 15 a vector space over a specified skewfield I\, such that all the compo-
nents of & are themselves K -subspaces of V', then S is called a K-SPREAD;
this spread s called a d-DIMENSIONAL K -spread if each component is K-
dimensional as a K-vector space.

Remarks 1.1.18

1. It will often be useful to draw attention to the ambient space V', asso-
ciated with a spread S, by referring to the pair # = (V,S) as a spread.
Thus, 7 is viewed as being synonymous with .

2. Every spread on V' 1s a K-spread when K 1s chosen to be the prime
subfield of the skewfields over which V' is a vector space.

3. The direct-sum condition forces all components of a K -spread to have
the sarme dimension d over K ; d has sometimes been called the Ostrom
dimension of the spread, to distinguish it from the dimension of the
ambient space V' which is 2d, for finite d.
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We now note that the incidence structure of a spread is always a translation
plane, and later we shall establish that all translation planes arise in this
manner.

Theorem 1.1.19 Let & be a spread on an ambient vector space V.. Then
the associated set-theoretic incidence structure, II(V,S), definition 1.1.17, is
a translation plane. The full group of translations of II{V, S is just the group
of translations of V regarded as a vector space:

OQ=T={T,:z—z+alaeV}.

Moreover, if V 1s a vector space over a skewfield K such that the components
are K -subspaces, that 1s (V,S) is a K-spread, then the scalar action of K*
on V is a group of kern homologies of II(V,S); thus, the group of bijections
on V

K*={VzeV:zm (2)k| ke K"},
where (z)k denotes the tmage of x under k € K, s a group of kern-homologzes,
c.f., definition 1.1.10 of the translation plane II(V,S).

Proof: Straightforward exercise. =

Of particular importance are the maximal skewfields K over which the com-
ponents are K-spaces. It will turn out that there is a unique maximal skew-
field with this property. This will become clear as we develop the theory

more fully.

Exercise 1.1.20 Let (V,S) be a spread and let T be the full translation
group of the associated translation plane. To each component o € & assign
the subgroup Tio}, the global stabilser of o in T. Show that

UJEST{H} = T:

and that T, NT, is the trivial group, whenever pu,v € & are distinct compo-
nents.

Thus the full translation group 7' of a translation plane admits a partition
by subgroups and thus appears to be analogous to the ambient space of a
spread on a vector space. Our study of group partitions, in the next lecture,
will show that such group partitions may be identified with spreads, and,
in particular, that any translation group 7' may be taken to be the additive
group of a vector space.
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1.2 Group Partitions and André Theory.

In this lecture we develop André’s fundamental theory relating translation
planes to spreads. Our starting point 1s concerned with group partitions: a
collection of pairwise disjoint subgroups of a group G that union to G.

A partition of a vector space by its set of one-spaces is an example of a
group partition. A less trivial example arises when a field F' is r-dimensional
over a subfield K for then the additive group of F' is partitioned by its -
dimensional K-spaces. Note, only the case r = 2 corresponds to examples of
spreads in the sense of definition 1.1.17.

Definition 1.2.1 (Group Paitition.) Let G be a group. A PARTITION of
G is a set N of nontrivial pairuise disjoint proper subgroups of G such that
G = UN; the members of N are the COMPONENTS of the partition and if all
the components in N are normal in (G, then N 1s a NORMAL PARTITION of

G.

We have already noted that many normal partitions do not yield spreads,
in the sense of definition 1.1.17. However, if the ambient group G of a
normal partition is gencrated by any two of its elements then this is the only
possibility, by the following fundamental characterization:

Theorem 1.2.2 Let G be a group and N a normal partition of G such that
G =< N{,N, >VN;,Ny € N, N, % Nos.

Then each of the follouing is valid:
(1) G ts a direct product of any two distinct subgroups of N .
(2) each two distinct subgroups of N are isomorphic and

(3) G is Abelian.

Proof: (1) This is elementary as the elements of disjoint normal subgroups
commute.

(2) A group cannot be expressed as the disjoint union of two distinct sub-
groups. Hence IV contains at least three members. So given distinet Ny Ny €
N, we may choose a third Ny € N, and now N = N; & Ny and also

N = N, & Ny. Hence
o N
Nl - ﬁr — ATQ?
0

as required.
(3) Since G is the direct sum of any two distinct members of IV, we see that
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elements from distinct subgroups of N commute. So assume 2,y € A € N
and choose a nonidentity b € B € N — {A}, and observe

by

zyb
xyb = byzx since by ¢ A
ryb = yxb

L 44

Ty = Yz, as required.

]
In view of the above it is desirable to call a normal partition NV of a group

G a generating normal partition if G is generated by every pair of distinct
components Ny, N, € N generate G as a group.

Theorem 1.2.3 Let N be the components of a spread on a group G. Then
the set-theoretic incidence structure whose pointset is G and whose lines are
the cosets of the elements of N is an affine translation plane whose translation
group consists of the bijections of G, for every a € G of type:

G — G
g ga

Proof: A straightforward consequence of the theorem above.m

Theorem 1.2.4 Let G be a group and N a generating normal partition of G.
Let K, denote the set of group endomorphisms which leave each component
wmnvariant.

Then K 1s a skewfield and G 1s a vector space over K.

The elements of the skewfield K are called the “kernel endomorphisms”
of the partition. The skewfield K is called the “kernel of the spread.”

Proof: Since G is abelian by the previous result, the endomorphisms in X
clearly form a ring. Hence it is clearly sufficient to show that all the non-
zero maps ¢ € K are bijective. Suppose a? = 0 for a # 0. Now we force
¢ = 0 by demonstrating that ¢ vanishes on every component B # A, where
a € A. We note that this is more than sufficient to force ¢ = 0 since any
two components of N generate G. As 0 = a? = (a+ b)° + (=b)? then (a + b)
and b are on C and B respectively which are distinct components so that
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b € BN C = 0 whenever b is in any component B # A. Thus all members
¢ € K are injective homomorphisms of G.

Next we check the elements ¢ € K are surjective.

Given nonzero v € G, we require w € G such that v = w®3¢ € K. Let V
denote the component containing v and let u € U be a nonzero element in
some other component of N, and define a third component Z that contains
u? — v. Now we claim that the required w is the unique point in the set
(Z+u)N X. Note that the intersection is unique since it is the intersection
of two lines of the afhine point associated with the spread N.

It is now sufficient to show that » — w? = 0, and we demonstrate this by
showing that v —w?® € VN Z. Since w € V, v — w? certainly lies in V. Thus,
it is sufficient. to verify that v —w® € Z. But, by definition, u? —v € Z, so it
is sufficient to verify that(v — w?) — (v —v) = (w —u)® € Z. This condition
holds because w € u+ Z means that (w—u) € Z and Z is ¢-invariant. Thus,
¢ 1S surjective. m

The following standard notation concerning linear groups will be used
thoughout our lectures.

Definition 1.2.5 Let V' be a left vector space over a skewfield K. Let o be
an additive mapping on V. We shall say that o is K -semi-linear if and only
if for all @ in K and for all x in V then o(azx) = afo(x) where p is an
automorphism of K. We shall say that o s K-linear if and only if p = 1.

The group 'L(V, K) of all bijective K -semi-linear mappings is called the
general semi-linear group. The subgroup GL(V,K) of linear mappings is
called the general linear group.

Let F' denote the prime field of K. Then UL(V, F) = GL(V, F). Since
any additive bijection is in GL(V, F'), the notation GL(V,+) is always used.

In 1954, André provided the foundation for the theory of translation planes
by proving that any translation plane may be identified with a normal parti-
tion of a group which actually turns out to be a vector space over a skewfield:

Theorem 1.2.6 (The Fundamental Theorem Of Translation Planes.)
Let w be a translation plane with translation group T and let P denote the

set of parallel classes of 7.
Let T,, denote the subgroup of T' firving all the lines of p, forp € P. Then all
the following hold.
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1. T=U{T, |p € P} is a spread on T and hence T is a vector space over
the associated kernel K.

2. w 1s 1somorphic to mp, the translation plane constructed from the spread
of T

3. The full collineation group G of ar is TGo where Go is the full sub-
group of the group GL(T,+), that permutes the members of I' among
themselves.

4. The full collineation group G of wr is TGo where G is the full sub-
group of the group I'L(T, K) that permutes the members of I' among
themselves.

Proof: (1) 7, is the subgroup of T fixing individually all the lines through
p, hence it is trivially normalized by 7" since T fixes p. Since every translation
in 7" has a unique center, 7" gets partitioned by its normal subgroups of type
1,. It remains to show that T' = T, ® 1, whenever p and ¢ are distinct
points on the translation axis. Let { € T, and suppose t : a — b, where
a is any affine point, and assume b # a, to avoid trivialities. Since 7, and
T, are normal and disjoint, it is sufficient to verify that t €< T,, 7, >. Let
pa N gb = z. Since T, has as its non-trivial orbits all the affine on each line
through p, there is a g € 7, such that g : a = z and, similarly, there is an
h € T, such that h : z — b. Now clearly a9 = b. But the regularity of T
now forces t = gh. Thus T' 1s generated by any two distinct 7,, and 7.

(2) Fix an affine point O of @, and to each affine point a of 7 assign the
translation 7, € T that maps O onto a. Consider the bijection O : a — 7,
from the affine points of = onto the points of the vector space T

Consider the affine point a € A, where A is any affine line of 7. Let A,
be the unique line parallel to A through O with slope m. Clearly, T,, has
A,, as its O-orbit, so (A,,)© = T,,..

Next note that the points of A may be expressed as O™ as the group
T, acts transitively on the affine points of each line through m. Now the
image (OT“T"‘) © = 71,1, 1.e., a coset of T,,. Thus we have shown the
bijection © maps the lines of @ to cosets of the spreads associated with T,
which means © is a bijection from the affine plane 7 onto the affine plane
associated with the spread on 7' that sends lines onto lines. Hence, © is an
iIsomorphism between the planes.
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(3) The translation subgroup of the full collineation group G of 7r may,
of course, be identified with T itself. Let H = Gpo, so G = HT, by the
transitivity of T, and by its regularity we further have H N T = {1} (the
identity element). We next verify that H is in GL(T, +).

We define addition in = as follows: a + 2 = 7,(z). It follows that this

makes (,+) isomorphic to 7.
Since 7' is normal in the translation plane 7, we have for every a € T a

unique @’ € T such that
h1, = Toh

S0
hto(z) = Toh(x)Vz € T

hence
hia+z)=a + h(x)Vz €T

Putting £ = O, we observe that o’ = h(a) and so the above identity yields
h(a + z) = h(a) + h{z)

so h is additive and hence lies in GL(T,+), and permutes the members of T.
Conversely, any map with these two properties also permutes the cosets of
the components of I', and is thus a collineation of 7. Thus (3) is established.

(4) By (3), H is the largest subgroup of GL(T,+) that permutes the
members of I' among themselves, and the kernel of this representation of H
on I' is thus normal in H and coincides with £* by definition. The normality
of K * now forces H to be semilinear over K.

This completes the proof of the theorem. =

Since the translation group of any spread (V,S), associated with a trans-
lation plane 7, is additively isomorphic as an additive group to the translation
group of 7, all such spreads (V,S) have isomorphic additive groups (V, +).
The non-zero kernel endomorphisms of such spreads are permutation iso-
morphic to the the kern homologies, acting on the plane. This suggests that
all such spreads, associated with a fixed translation plane, are related by a
spread isomorphism semilinear over their kern, and more generally that any
collineation the of the planes associated with the spreads that sends zero to
zero must. be a semilinear map of the type indicated. This is indeed the case

as we shall now verify.
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The main problem is to verity that such collineations are additive; we
shall verify this directly rather than attempting to derive it from part (3) of
the fundamental theorem above.

Theorem 1.2.7 Let (V,S) and (W, T) be spreads defining isomorphic trans-
lation planes, and suppose that ¥ : W — V is any isomorphism from the
translation plane w1y to the translation plane 1l sy such that O — 0O; 9
exists since the planes admit point-transitive translation groups. Let K and
L be respectively the skewfields of kernel endomorphisms of the spreads (V,S)
and (W, T). Then there is bijective ring isomorphism v : L — K such that
there is a K —L-semilinear bijection ¥ : V — W, satisfying ¥(aw) = a¥(w),
forallwe W, a€ K.

Proof: Since the translation groups of the two planes are isomorphic, V and
W are isomorphic additive groups, so (V,+) can be made into a K-vector
space such that a K-linear bijection from V to W exists ad this bijection
identifies the spread 7 with a spread on V, such that the components of 7
are K-spaces, and that K is still the full ring of kernel endomorphisms.

Thus we consider & and 7 to be spreads on the same vector space (V, +),
over K, such that K is the largest ring leaving the components of 7" invariant.
Since W is a collineation of the associated planes it must map the components
of 7 onto the components of S. Since the non-zero kernel endomorphisms of
the spreads are subgroups of GL(V, +) that leave its components invariant it
is clear that the planar isomorphism ¥ must conjugate the kernel endomor-
phisms of 7 to &, and since the planes are simorphic under ¥ we actualy
have a field isomorphism 1 : K — L, K — k¥, such that ¥(av) = a¥¥(v),
for a € K, v € V, and in particular that U(—z) = —¥(z) for all x € V.

It remains to show that W is bijective. It preserves, in the associated
afhne plane, the parallelogram 0, a, b, a + b, whenever a and b are in different
components of 7, hence in such cases ¥(a + b) = ¥(a) + ¥(b). If they are
in same component 1 then we esatblish this by choosing © ¢ W and noting
that:
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U(a+b)=V(a+u)+¥(b) = U(a)+U(b)

provided u is further restricted not to lie in the component containing a + b.

E
As an immediate consequence we have:

Theorem 1.2.8 Let (V,S) and (W, T) be spreads, with associated transla-
tion planes s and #(W,T). Let L and T denote the kernel endomorphism
rings of (V,S) and (W, T) respectively.

Let V. W — V be an additive bijection. Then the following are equivalent:

1. ¥ 1s an isomorphism from the spread (W, T) onto the spread (V, T).'

2. There is a byjective kern isomorphism v : K — L such that U is a K-L
semilinear isomorphism, with companion isomorphism 1, that induces
a spread isomorphism from (W, T) onto the spread (V,T).

J. ¥ 1s an isomorphism from the plane (W, T') onto the plane (W, T).
In view of the importance of the above reformulate as follows:

Theorem 1.2.9 (Isomorphism Theorem For Translation Planes.) Let ® :=
) be a translation plane defined by a spread (V,S), where the components
of S are K-subspaces of the K -vector space V, where K is any skewfield.
Suppose that there s an affine-plane isomorphism:

f: P — Y

jrom the translation plane ® to a translation plane ¥ := Ik, defined by
a spread (W, R), where the components of R are L-subspaces of the L-vector
space W, where L 1s any skewfield.

1. Then L and K are 1somorphic skewfields and ¢ may be considered a
semi-linear mapping from W onto V.

2. If @ =W then ¢ is an element of the group TL(V, K).

3. The ful! automorphism group G of the translation plane m is a semi-
direct product of the translation group T by the subgroup Gy of TL(V, K)
which permutes the components of the spread S.
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The subgroup Go of 'L(V, K) 1s called the ‘translation complement’ of G or
w. GoNGL(V, K) is called the ‘linear translation complement.’

Proof: See above. m

We now make some conventions regarding the kernel of a spread, or its
kern, as we shall usually call it. These relates to the fact that the components
of a spread S may be regarded as being subspaces of the ambient vector space
V, over any subfield F' in the kern of §, in the sense of theorem 1.2.6 above:
so in general there is a multitude of dimensions associated with a spread —
depending on the field or skewfield over which we choose to represent it. If
the ‘chosen field’ is F', in the kern K of the spread S, then we shall sometimes
call F' the ‘chosen kern’, the ‘component kern’ or the ‘intended kern’.

Definition 1.2.10 Let V be a vector space over a skewfield F' that contains
a spread S), consisting of F-subpaces; so F' is the component kern. The
RANK OVER F' of (V,S) is the common dimension of the members of S: so
an n-dimensional F-spread S has ambient space V with dimension 2n; now
7 := (V,8) IS REGARDED AS BEING AN F-SPREAD OF F-RANK n. The

RANK of § is its rank over K, the kern of S.”

Since any rank two vector space, over an arbitrary skewfield K, partitions into
a collection of rank one spaces, we conclude that one dimensional spreads
exist over every sfield! But, as indicated earlier, we may now regard these
spreads as being F-spreads of rank > 1 whenever F' is a subfield of K. Thus
F-spreads of F-rank n exist in abundance. This raises a problem — not too
hard but certainly non-trivial — how do we know whether any spread that
we construct is not a rank-one spread in disguise? Putting it somewhat more

provocatively:

Are ALL spreads rank ONE!? (1.1)

So we need to first of all describe all rank one spreads, that is, spreads that are
rank one over their full kern. We begin by officially adopting the definition:

Definition 1.2.11 A rank one spread is called a DESARGUESIAN SPREAD.

A rank one spread is isomorphic to a spread é on the vector space V = K?,
where

1. K is a skewfield acting wlog from the left in the standard way:

vk! kl'.r kﬂ S I{ . k(kln kg) — (kkl? kkz)i
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2. The components of ¢ are the subspaces of type ‘y=xm’, m € K, and
x = 0, as In coordinate geometry.

The proof follows from the fact that any rank two vector space may be re-
garded as some K?, with K acting form the left, and all the rank-one spaces
must be components. The associated affine plane consists of all cosets of the

spread components and hence the lines are of form y = zm + b and y = ¢.
Thus rank-one spreads correspond to precisely the high-school interpretation
of the term. Hence we have justified our terminology by showing that:

Remark 1.2.12 (Desarguesian Spreads.) The following are equivalent for
a spread S:

1. § is rank one over its kern,

2. The affine plane s, associated with S, is a Desarquesian plane.

Note that we have now described all one-dimensional spreads over any skew-
field K! In the finite case all finite skewfields are Galois fields, so all rank

one spreads are REALLY! known. So the obvious next step is:

INVESTIGATE THE RANK TWO SPREADS OVER A GALOIS FIELD!| (1.2)

During the last twenty years a great deal of attention has been given to this
project; there are also associations with other areas of finite geometries, par-
ticularly flocks and generalized quadrangles. Note that the existence of rank
two spreads obviously settles as a by-product the ‘first question’ for spreads,
see (1.1). The principal tool for such investigations involve spreadsets, the

main concern of the next lecture.

1.3 Spreadsets and Partial Spreads.

In the previous lecture, we saw that by the fundamental theorem of transla-
tion planes, theorem 1.2.6, translation planes may be identified with spreads.
Here we introduce tools and concepts that arise inevitably in the study of
spreads. The concept ot a partial spread describes collections of subspaces
of a vector space that putatively extend to a spread. The other concept that
we introduce aims at ‘coordinatizing’ spreads and partial spreads by sets
of matrices (in the finite-dimensional case), exploiting the fact that spreads
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(and hence translation planes) are always associated with some vector space.
These sets of matrices, or linear maps in the general case, are called [partial]
spreadsets: they provide the most important computational tool in the study
of translation planes.

In the motivating case, a spreadset is a set of ¢" matrices M C GL(n, q)U
{O} such that any two members of M differ by a non-singular matriz and
O € M. Such a set yields a spread mpq in V = GF(q)" & GF(q)™: the
components are y = M, M € M and z = 0, mimicking the the construction
of elementary coordinate geometry. The spread w4 actually turns out to be a
generic form for any GF'(q)-spread on V': so spreads may be computationally

investigated via their spreadsets of matrices.
The complete definition of a spreadset is a routine generalization of the

above, assigning to any spread a spreadset of linear maps that represents
it. As in the finite case, this association enables all the major tools of linear
algebra to be brought to bear on the study of spreads. When the underlying
field GF(q) is generalized to an arbitrary skewfield K the cardinality and
dimensionality condition implicit in |[M]| = |K|™ needs to be reformulated.
This will be achieved by defining the familiar concepts of semiregularity and
transitivity from permutation group theory so as to apply to SETS of possibly

infinite bijections.

~ Accordingly, we begin by explaining what transitivity and regularity mean
in the context of a set of permutations on {2, where {2 may be an infinite set.
The definitions here generalize the corresponding definitions for permutation

groups listed in definition 1.3.1.

Definition 1.3.1 Let G denote a set of bijections of a set ). Then the

G-orbit AT z € €0 is
Orbg(a:) = {29 | g € G}.

G is called a TRANSITIVE set of maps on Q if Orbg(z) = Q for all z € Q.
The set G s called semi-reqular if:

(z,y)) e O x Q= 3lg e G329 =y,

and G 1s a REGULAR set of bijections of §) if it semireqular and transitive on
Q.

For finite sets, it is straightforward to check that all of the above concepts
coincide provided G and {2 have the same size:
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Remarks 1.3.2 If G is a set of bijections on a finite set 2 and |G| = |2
then the following are equivalent:

(o) G is semiregular;
(b) G is reqular;
(c) G is transitive.

Note that condition (b) above implies |G| = |K|, even in the infinite case,
and hence we shall use it as the basis of our general definition of a spread.
However, we begin by introducing spreadsets, not in their most general form,
but rather in the form that they are most frequently encountered: as sets of
¢" matrices in GL(n, q) := GL(n,q)U{O} that act regularly on GF'(q)"—{0}.

Definition 1.3.3 An n X n. SPREADSET OF MATRICES over GF'(q) is a set
of matrices

{O} c M C GL(n,q)
such that (1) (M| = q"; (2) Any two distinct member of M differ by a

non-singular matriz.

It is immediate that the action of the above M* := M—{0} on GF(q)"—{0}
is regular and that the regularity of M* is actually equivalent to the definition
of a finite spreadsets. Thus the concept of a spreadset, as indicated earlier,
can be generalized to arbitrary vector spaces over any skewfield as follows:

Definition 1.3.4 Let K be any skewfield, and V' a vector space over K. A
K-SPREADSET of V 15 a set M of linear maps:

{0} Cc M CGL(V,K)
such that M™* acts as a reqular set of maps on V*.

Thus, a finite set of matrices over K = GF'(¢), is a spreadset of matrices in
the sense of defintion 1.3.3 iff it is a spreadset of linear maps in the sense of

definition 1.3.4 above: just apply remark 1.3.2 above.
[t is important to realise that the non-singularity-of-difference condition,

in the definition of finite matrix spreadsets, definition 1.3.3, may be used in
characterising general spreadsets:
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Remark 1.3.5 Let K be any skewfield, and V' a vector space over K. A set
M of linear maps of V' satisfying:

{0} c M C GL(V,K)

is a spreadset iff:
1. A, B € M are distinct then A— B € GL(V, K);
2. If (z,y) € V*xV* then there is an element M € M such thatz M = y.

In particular, a set M of n X n matrices over GF(q) is a spreadset iff they
form a matriz spreadset in the sense of definition 1.3.3, that is, M has q"
elements, including zero, any two of which differ by a non-singular matriz or

ZET0.

Proof: The second condition means that M?* is transitive on V*, and the
first condition means that M* is semiregular on V*, since otherwise z(A— B)

would be zero for somez € V*. m

With every spreadset we shall associate a collection of subspaces which
turn out to be spreads. The notation that we use here is suggested by ele-
mentary coordinate geometry, and similar notation will be used throughout

these notes, sometimes without explicit definition.

Definition 1.3.6 Let W be a vector space over a skewfield K and let M be
a K-spreadset on W. Then wa 15 a collection of subsets of V. =W @ W

defined by
m = {Y}U{y=zM | M e M},

where Y = O W and y = zM, m € M, denotes the subset {(w,wM) |
w € W} of V.—soy =0, also called X, is in mpq. The collection maq is
called the SPREAD ASSOCIATED WITH M.

We now justify the terminology by verifying that ma is a genuine K-spread:

Remark 1.3.7 Let W be a vector space over a skewfield K. Let M 1is a
K -spreadset on W. Then its associated spread maq, definition 1.8.6 above,
is a collection of K-subspaces of V' that form a K-spread, in the standard
sense, with ambient space V=W @ W.
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Proof: The linearity of M over K ensures that {(z,zM) | x € W} is a
K-subspace of V = W @ W — the linearity means that the K-action on
W commutes with the M-action. Next we note that y = zM and y = 2NV,
where M, N € M, are disjoint K-subspaces of V, for M # N: for otherwise
M — N would be singular, contradicting M — N € GL(n,W), c.f., remark
1.3.5. Given (a,b) € W* @& W=, there is an M € M such that b = aM, by
the transitivity condition on M. Hence, it easily follows that the subspaces
in the structure m¢M} form a pairwise disjoint cover of V*. It remains to
check that V' is a direct sum of any two of the ‘components’ in 7y M}. (This
is obvious if W is finite dimensional over K, in particular if M is finite.)
The main case is when the components are y = M and y = =N, where
O#M # N # O, and here we need to show that any (a,b) € V lies in the
sum of y = oM and y = zN. Thus, we need to show that

(a,b) = (u,uM) + (v,vN)Ju,v € W,
or, equivalently, for some u,v € W :

— u-|—1:
b = uM +ovN

and this means b — aN = u(M — N), which can be solved for u by the non-
singularity condition on M — N, remark 1.3.5, and the desired result follows
easily. m

Thus to find a spread, and hence a translation plane of order ¢", it is sufficient
to find a set of ¢" — 1 matrices in GL(n, ¢) such that any two of them differ by
a non-singular matrix. This follows from the above, also c.f. defintion 1.3.3.
We illustrate this with an important example, discovered first by Donald

Knuth.

Example 1.3.8 (Knuth’s y-spreads.) Let K = GF(q) be a finite field,
where ¢ = p" > p is odd. Let < be a fixed nonsquare in K, and ¢ € Gal(K)*

Then i ]
M:{ u ‘v’u,teff}.

t u

Proof: Because v is non-square, the determinant u? — vt{o + 1) cannot be
zero unless u = ¢ = 0. Thus we have an additive group of matrices whose
non-zero elements are non-singular. This means that the difference between
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any two distinct members of M are non-singular, and since we have ¢q" = ¢*
such matrices M is a spreadset by remark 1.3.5. m
This is the first spread of rank 2 that we have displayed, although we have
not yet shown that it is not Desarguesian, i1.e. a rank-one spread in disguise.
Once we have developed some more machinery this will become immediately
obvious. At this stage more compuational effort is required: as an exercise the
reader is invited to verify that the group of kern-homologies is not transitive,
as a group of homolgies: this means the spread cannot be Desarguesian and
hence must be rank two — thereby answering the ‘first question’ (1.1), and
also contributing to (1.2).

Note also that the argument used in example 1.3.8 above yields a more
general result: the proof is left as an exercise, and involves recalling the
connection between spreads and translation planes:

Proposition 1.3.9 An additive group M of n X n matrices over GF(q)
18 a spreadset iff the group has order q" and its non-zero elements are all
nonsingular. Moreover, the associated spread maq corresponds to a translation

plane that admits a group of kern homologies of order q — 1.

The spreadsets of the above type are called additive spreadsets, and will be
treated in detail later on. They form a major branch of translation plane
theory with their own methodology, related to non-associative divison ring
theory.

We now turn to the converse of remark 1.3.7. The eventual goal is to
show that every spread is associated with a spreadset. But we first take
the opportunity to work from more general premises, by introducing partial
spreads and the partial spreadsets that coordinatize them.

Definition 1.3.10 Let 7 be a non-empty collection of subspaces of a vector
space V over a skewfield K.Then 7 is a PARTIAL SPREAD on V, and its
members are its COMPONENTS if V = A@® B for every pair of distinct A, B €
T, and if |T| < 2 assume explicitly that V/I A= A for A€ T.

Of course, V/A = A applies automatically if 7 has at least three components.
Note also that although subsets of spreads are always partial spreads, there
are many partial spreads that cannot be extended to spreads: thus, there are
maximal partial spreads that are not spreads.

To construct partial spreads, we generalize, in obvious ways, the notation
and concepts that relate spreadsets to spreads in definition 1.3.6. We continue
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with our convention of applying the language of coordinate geometry to any
direct sum V = W @ W, c.f. definiton 1.3.6.

Definition 1.3.11 Let W be a wvector space over a skewfield K. Then a
non-empty set T C GL(V, K)U {O} is a PARTIAL K-SPREADSET if

LlerT=1T1-1T5€ GL(V,K)

The associated structure of T is the collection of subspaces of V=W @ W

gen by:
m,={y=zT | T eT}uU{Y}

In general, r C GL(V, K) U {O} is a SPREAD SET if 7 is a K-spread where
K 1s the prime field over which V' 1s a vector space.

Note that we have included {Y}, as our earlier convention requires us to do
this if 7 is a spreadset, c.f., definition 1.3.6. Stating the obvious:

Remark 1.3.12 If 7 is a partial spreadset on a vector space W then m, is
a partial spread on V = W & W, and 7w, is a spread iff T is a spreadset.
Hence m, 1s called the PARTIAL SPREAD ASSOCIATED WITH THE PARTIAL

SPREADSET T.

It is worth restressing that the above remark assumes that the spread on
W @& W by a spreadset 7 of W always includes ¥ := O & W, unless the
contrary is indicated: without this assumption 7, fails to be a spread when

7 18 a spread.
The following easy exercise emphasizes that in the finite case a partial

spreadset is just a set of non-singular matrices, possibly augmented by O,
such that any two differ by a non-singular matrix.

Remark 1.3.13 Let V' be a vector space over a skewfield K. A non-empty
set T C GL(V,K) is a partial spread iff ™ is semireqular on V*.

In particular, if T C GL(n,q) is a non-empty set of matrices then T is a
partial spreadset iff and the difference between any two distinct matrices in

T 18 non-singular.

Proof: Exercise. m
We now introduce the notion of isomorphic partial spreads, generalising the

corresponding notion for a spread.
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Definition 1.3.14 Let m; = (V;, 1), i = 1,2, be partial spreads, where V;
and V, are the underlying vector spaces over a common skewfield K. Then a
K -linear bijection ¥ : Vi — V5 is A K-LINEAR ISOMORPHISM from m; to mo,
or 11 to T, iff it bijectively maps the components 71 onto those of 1.

More generally, an ISOMORPHISM from 7 onto ms ts an additive isomor-
phism from Vi onto V, that maps components onto components.

There are of course a number of equivalent ways of defining isomorphisms
among partial spreads, for example an additive isomorphism from V) onto
V5, is an isomorphism of the associated spreads iff it maps components onto
components. The usual terminology associated with isomorphism, automor-
phism etc. will be used without further comment.

The following theorem implies that all spreads arise from spreadsets:
there is an isomorphism from any K-spread (or partial spread) to the spread
arising from a spreadset (or partial spreadset). This is one of the most im-
portant connections in translation plane theory:.

Theorem 1.3.15 ( Equivalence Of (Partial) Spreads and Spreadsets.

Let V' be a vector space over a skewfield K, and let T a partial spread of sub-
spaces, with at least three components X, Y, W,.... Choose a K-linear

bijection IDENTIFYING Y with X:

v:Y — X.

Then relative to (X,Y,V):
1. For every W € T\ {Y'} the map 1w : X — Y specified by:

".-"1.1J'ZX e Y
r — y&SrzpyeWw

is a linear bijection from X onto Y when W # X (7x = O) and hence
Ury : X — X, WRITTEN oy, s an element of GL(V, K); ow is called
the SLOPE MAP, or the SLOPE ENDOMORPHISM, of W, relative to AXES
(X,Y) (via the identification ¥ : Y — X).

2. For fized X and Y and any choice of W € T \ {X,Y}, ¥ can be
chosen so that oy = 1; in fact ¥ = 1y~ L.
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3. The set of all endomorphisms of 7T :
or :={ow | W e T\ {Y}}

corresponds, after deleting the zero map, to a semiregular subset of
GL(X,K) on X~.

4. The partial spread determined by o7, viz. m,,., c.f., definition 1.3.11
and remark 1.8.12, is isomorphic to the given spread T. In fact, the

linear bijection 1x @ W™1:

XX — XY
a®b — ad (b)T!

is a linear isomorphism from the [partial] spread 7, onto the [partial]
spread 7T that maps X ®& O and O & X onto X and Y respectively,
that 1s, the isomorphism can be chosen so that the X and Y ‘azxes’ are

preserved.

Moreover, if the axcs-identifying’ linear bijection W : X — Y s speci-
fied by U := 1y, where Ty 1 X — Y s the linear bijection associated
with W € 7\ {X,Y}, then the ‘unit component’ Z := {(z,z) | x € X}
is assigned, by the partial spread isomorphism 1x @ U1, to the chosen
component W € 7.

To summarize, T may be identified, via a linear byection A : V —
XX, with a partial spread 7, on X & X, corresponding to a spreadset
T on X, such that the identification sends respectively the components
X and Y of T onto respectively the x-axis, i.e. X &0, and the y-aais,
i.e. O&X. Morever, the map ® : Y — X that A induces naturally
from Y to X, defined by restrictiing it to Y :

b:=AlY - 0 x "2 x

can be chosen, for appropriate A := Ag, so that ® = U~ where ¥ :
Y — X 1is the given identification; and if now V¥ is taken as 1w~ then
A additionally maps the component VW, distinct from X, Y, onto the
unit line Z defined above.

5. If T is a spread then the following are equivalent:
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(a) The set of slope endomorphisms o1 is a spreadset on X.
(b) o% s regular on X*.

(c) 0% is transitive on X*.

Proof: (1) We first show that 7y is a map. Consider 7w (x). If y; and
Yo are distinct elements of Y such that x +y, € W and z + y, € W, then
y; —y2 € W, and this is a contradiction because the components of a partial
spread do not overlap. Since X @& Y is the whole space we certainly have
z+vy € W, for some y € Y. Hence iy : X — Y 1is a map, and it is
equally straightforward to check that this map is linear and injective, for
We{X,Y}

To verify that 7y is bijective, for W distinct from X and Y, consider
yeY. Ify+# mw(u) for all u € X thenu+y ¢ W for all u € X, so
y ¢ X @ W, contradicting the fact that any two components must direct-
sum to the whole space V. Hence (1) holds, since it is trivial that 7y = O.

(2) This case is immediate.
(3) Now consider 74 and 75, where A and B are distinct components, other

than X and Y. If 74 — 78(z) = 0, for z '# O, then =z & T4(z) € AN
B, contradicting the fact that distinct components do not over lap. Thus
Ury(z) # Yrp(z), for  # 0, which means o4(z) # op(z), and hence o7 is
a semniregular spreadset in GL(V, K).

(4) The partial spread 7, associated with o7, in the sense of remark 1.3.12,
has components {(z,z7w V) | x € X}, for W € 7 The linear bijection 1x &

U1 defined by

XX — XY
a®b — a® (b)¥!

maps (z,zow) = (z,zTw¥) onto the component (z,z7y) and O & X onto
OgY.

The ‘summary’ is just a restatement of the facts established about 1x &
1. XX - XaY,in terms of its inversemap A : X @Y — X @ X.
(5) The equivalence of the conditions follows from remark 1.3.2, giving the
corresponding equivalences for arbitrary sets of permutations, together with
the fact that a partial spreadset is a spread iff it is regular on X™*, c.f. defi-
nition 1.3.4. =
Thus, the fundamental identification of partial spreads with partial spread-
sets corresponds to a generalization of the situation in elementary coordinate
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geometry: sets of lines through the origin are identifed with the set of their
gradients, the subspace y=xm being identified with its slope m. Moreover, we
have shown, as in elementary geometry, that any two lines may be taken as
the x and y axis, and that by rescaling (recall the identification ® : Y — X)
on the y axis we can further force any chosen third line through the origin
to be the unit line.

Note however that in our case the ‘points’ of the z-axis are used as coordi-
nate values, whereas in elementary geometry.a distinct set, viz. the reals, are
used as coordinate values. It is often convenient to mimic this setup in our
situation by allowing the chosen components, X and Y, to be coordinatized
by an arbitrary vector space R, isomorphic to the components of the given
spread. |

For example, the natural choice for R, when the components are n-
dimensional over a field K, is to take R = K", and now X and Y are
identified with W by specifying bases (e;,es,...,e, and (f1, fo,..., fn TE-
spectively; in this setup the ‘axes-identifying’ linear bijection ¥ : Y — X is
tacitly taken to be the linear map sending f; +— e;, for 1 < ¢ < n. Now the
associated [partial| spreadset becomes a set of matrices M and the ‘canon-
ical’ form of the given [partial] spread is in X" @& K", and the components
arey =zM, M € M, plus the Y-axis.

Recall that to also torce a component W, of the given spread, to become
the unit line under the chosen coordinatization, it becomes necessary to fix
the axes identifiermap ¥V : Y — X — ¥ = 7~ in the sense of the theorem.
However, since by our convention ¥ is fized by the chosen basis of X and Y
we can specify the required ¥ by taking an appropriate basis (fi, f2,..., fa)
of B so that the unique linear bijection specified by the basis image e; — f;,
for all 7, coincides with W.

The above, analysis can be repeated for arbitrary vector spaces over a
skewfield K. The basis for X and Y are then families (e;)icx and {f:)ica
(respectively), indexed by a possibly infinite set A. As before, a component
W can be forced to be the identity by choosing an appropriate (f;)icx. Note
that if K is a non-commutative skewfield and the chosen space R is taken to
be the space K*, the ‘A-tuples’ over K, then it might be necessary to specify
whether K* is regarded as a left a right K-space.

We summarize our conclusions as follows:

Corollary 1.3.16 (Basis Decomposition Theorem.) Let V be a vector
space over a skewfield K, and suppose T is a partial spread on V with at
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least three distinct components X,Y,W .... Let Z be any vector space that is
1somorphic to the components of 7. Then

1. There s a partial spreadset T on £ that contains the identity map 1z
and a K-linear tsomorphism

A: V=767

such that A is a K-linear partial spread isomorphism from T to =,
satisfying:

AX)=Z®0O, AY)=0a0Z andAW)={(zz]|z€ Z}.

In fact, to each K-linear bijection oo : X — Z there corresponds a
K -linear byection B:Y — Z such that

A=a&f: V=767

2. Let Bx := (e;)icx be a basis of X and for any basis By := (fi)iex, s0
the juxtapostion By := (Bx; By) ts a basis of V. Define the canonical
K -linear isomorphism Bx : X — K?*, By : Y — K?*, and Bx & By —
XaoY — K*®K*. (N.B. If K is non-commutative, K* is made into
a left or a right vector space, depending on whichever gquarantees the
required K -linear isomorphisms with X and Y .)

Then there is a partial spreadset T on K* such that the K -linear bijec-
tion

Bx®Py:V-o-XoY > K @ K
defines an isomorphism from T to =,, the partial spread on K* & K*
associated with .

Moreover, any component W € T \ {X,Y} can be mapped to the unit
linex =y of K*@ K?, thus ensuring 1 € 7, for any choice of the basis
Bx, and for some choice of By (depending on the Bx selected.

Proof: By the preceding remarks. =
For emphasis we restate what this means for finite-dimensional spreads.

Proposition 1.3.17 Let V' be a vector space of dimension 2n, n a positive
integer, over a field K, and that 7 is a partial spread of K-subspaces of V
with at least three distinct components X,Y,Z .... Choose a K-busis By :=
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(e1,€2,...,€,) of X and K-basis By := (f1, f2,...,fn) of Y, and let By :=
[Bx, By] denote the associated K -basis of V', obtained by juztaposition, thus:

BV =< BX:BY >i= (81362: : ”:En:rflﬂf?: - ':fﬂ)'

Then there is a basis By of Y such that relative to the basis [Bx, By] of V
the canonical linear bijection:

g:V— Kt K",
maps X onto K" G O, Y onto O® K", and Z onto the UNIT LINE
{(z,z) |z € K"}.

Proof: The proposition is a special case of the result above, corollary 1.3.16.

|
We conclude with a basic isomorphism result.

Theorem 1.3.18 Let 7w be a translation plane with spread S, of XHX =V
where X 1s a left K -vector space and let p be a translation plane with spread
S, of Y @Y = W where Y 1s a left L-vector space. Assume that K and L
are the component kernels of m and p respectively.

Let p and 7 be isomorphic by a bijective incidence presering mapping ¢.

(1) Then L and K are isomorphic skewfields and ¢ may be considered a
semi-linear mapping from W onto K.

(2) If m = p then ¢ is an element of the group I'L(V, K).

Furthermore, the full automorphism group G of the translation plane w
is a semi-direct product of the translation group T by the subgroup Gy of
I'L(V, K') which permutes the components of the spread S.

The subgroup Gy of 'L(V, K) s called the ‘translation complement’ of G
or m. Go NGL(V, K) is called the ‘linear translation complement.’

Proof: We have seen (2) previously. We note that if g is in the kernel
endomorphism skewfield IC of 7 then g '¢g is in the kernel endomorphism

skewfield L of p. Hence,
KeEKx=eLsL.
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1.4 Tutorial On Spreadsets.

This tutorial discusses important aspects of the above theory: low rank
spreads; reguli. The latter suggests the need for introducing a projective-
space version of the theory of spreads and partial spreads. This Bruck-Bose
theory will be systemaically introduced later on. The focus in the tutorial is
on the motivating cases rather than the general case. The reader is invited
to tidy up the sketchy treatment presented and to anticipate developments.

Rank-Two Spreads.

We have mentioned on several occasions that all rank-one spreads have been
described. It is thus natural to turn to rank two spreads. The literature
concerned with this area of translation planes is enormous; part of the interest
stems form its connection with the theory of flocks, generalized quadrangles
and packing problems that are themselves associated with highly interesting
higher rank spreads.

By specialising the above we can reduce the study of rank two spreads to
spreadsets indicated in the following theorem. This theorem underpins the
enormous literature concerning two-dimensional spreads; the theorem also
provides a pathway to the theory of flocks and certain types of generalized

quadrangles.

Theorem 1.4.1 Let w := (V,S) be a spread of rank < 2 over a skewfield K.
Then there are functions g and f from K X K to K such that

= =

M. g(tt,u) f(iu) Vi, u in K

18 a spreadset, and there is a K -linear spread isomorphism ¥ from m onto the
spread maq, ,,, vewed as a K-spread such that any ordered triple (X,Y, Z),
consisting of three distinct components of &, get mapped under ¥ onto the
triple (y = 0,z = 0,y = x): that is, the image under ¥ of X, Y and Z are
resp. the z-axis, the y-axis and the the unit line of W.

Proof: By the above we know that at isomorphism form 7 to ma, exists
for some two-dimensional spreadset. So the only question is whether it has
the given form. Since the difference between distinct members in M are
to be non-singular, distinct members of M have different first rows and
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also distinct second rows. (For skewfields consider the image of (1,0) under
distinct members of M to get distinet first rows, and similarly use (0, 1) for
the second row). Moreover, the regularity condition on a spreadset means
that the image of (0, 1) must range over %, so the second row ranges over all
of K*. Morcover, for any given value of the second row (u,v) € K? we must
have unique values g(u,v) and f(u,v) in positions (1,1) and (1,2) resp., for
otherwise the fact that distinct components have distinct second rows gets
violated. Hence g and f are single-valued, which is the desired result. m
The identification above may be expressed by interchanging the two rows of
M. One way to establish this is to appropriately modify the proof of the
above. This is left as exercise. Note that the ‘new’ spreadset is the same one
as before but expressed difterently.

Remark 1.4.2 The spreadset M, for the given (X,Y,Z), can be alterna-
tively writen as M

{ U

Mon = | gt flew 70005

We end with some simiple, but important, exercises on finite rank two spreads,
or rather on spreads that have a rank two representation -— so as not exclude
the Desarguesian case. The reader is encouraged to consider how far the
results generalize: (1) to finite spreads of arbitrary rank; (2) spreads of rank
two over commuative fields and skewfields, etc.

Exercise 1.4.3 Let K = GF(q), q = p". Let M be a 2 x 2 spreadset with
entries in IS. Then:

1. Let A and B be non-singular matrices in GL(2,q). Then N := A~'MB
1s a spreadset and there 1s a IN-linear spread-isomorphism from waq to
wan. In fact the mapping

= - -~ - .-2
AGB:K°6K° — K°0K
15 the required isomorphism.

2. Suppose M and N are spreadsets such that one is obtained from the
other by a sequence of row and/or column transformations (so each
transform @ in the sequence must be applied to every member of the
spreadset being considered). Then there is a K-linear spread isomor-
phism from waq to war such that the x-axis and the y-axis are both
preserved.
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3. If M 1is a spreadset then so is M*, obtaned by transposing every member

of M.

The Regulus

In the following exercises on partial spreads and partial spreadsets, we in-
troduce the regulus. They provide one of the most important tools for the
construction and analysis of spreads, and hence translation planes. A sys-
tematic treatment of reguli will follow later, based on the projective space
approach to [partial] spreads. The treatment provided here clearly indicates
the desirability for introducing projective language instead of always work-
ing directly with vector spaces. This approach, the Bruck-Bose version of
André’s theory, will be introduced systematically in section 2.2.

Exercise 1.4.4 Let K denote the scalar requlus in K"® K™, K a field; thus
IC has the scalar field K < GL(n,K) as its partial spreadset; KC = wg. Here
K 1is identifed with the n X n scalar matria field with entries in K.

1. Show that for A € GL(n,K), {kA | k € K} is the partial spreadset of a
requlus R that contains y = A, and shares x = 0 and y = 0 with the
scalar requlus K. Conversely, every requlus in K™ & K™, that contains
the x-axis and y-axis, 1s of the form R4, for some A € GL(n, K).
(Apply the linear bijection Diag |1, A] to the scalar regulus; also Te-
member that a requlus is determined by any three of its components.)

2. For A, B non-singular,
RA!’-}RB = {IZO,T =O} or ’R.A :RB

3. In PG(2n — 1, K), let Rxy be tthe set of all requli Rxy that share
two fized components, X and Y. Then Ryxy induces a partition on all
the subspaces of PG(2n — 1, ), that have projective dimension n — 1,
and are distinct from X and Y, and the subgroup G of PGL(n, K) that
fires X tidentically and leaves Y invariant induces a transitive group
on Rxy, and the global stabilizer in G of any R € Rxy acts sharply
transitively fi.e. regularly] on R\ {X,Y}.

(Interpret the earlier parts projectively; observe that G is sharply tran-
sitive on K\ {X,Y}.)
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We can now establish that our definition of regulus coincides with the classical
definition, used in finite gecometry.

Exercise 1.4.5 A requlus in PG(2n — 1,q) is a partial spread with q + 1
components such that a line meeting three of the components meets all of

them.

We note in passing that when n = 1, then the regulus coincides with a ruling
class of a hyperbolic quadric.

Exercise 1.4.6 A spread S 1s called reqular iff R C S, whenever R s the
requlus containing three distinct components of S. In PG(2n — 1,2) every

spread s reqular.

Reguli In Projective Spaces.

Any vector space V' over a skewfield K may be viewed as projective spcae
PG(V, K') whose points are the rank one KX subspaces of V' and whose lines
are the rank two subspaces; in general the projective dimension of a rank
k-subspace W of V is k — 1 by definition. Using this terminology the funda-
mental theorem of spreads and partial spreads may be expressed in terms of
projective spaces, which is the Bruck-Bose model. All this will be developed
in the next section on the basis of a systematic review of projective spaces.
The goal here is to consider certain aspects of partial spreads called reguli:
these are the most important partial spreads arising in translation plane

theory:.

Exercise 1.4.7 A requlus in PG(2n—1,K), K a field, is a partial spread S,
of the associated vector space V', such the set of projective lines meeting three
distinct components of S cover the same projective points as are covered by
the members of S. Show that whenV =X & X theny = zk, k € K, together
with x = 0, form a requlus called the scalar regulus on X & X.

What if K is a non-commutative skewfield?

Proof: The rank two space £, u € K, spanned by {u®0,0®u} meets ever
component in a rank one space, and the totality of points covered are all the
projective point of type [(u,uk)|, u,k € K and the points on the y-axis. If K
is not commutative then y = xk is additive but not a K-space if K operates
from the right as (za,zka) is not on y = zk if a is not centralized by K.
So, although the covering is there and the spread y = xk are both there, the
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components of the spreads are not always K-spaces: they are spaces over
fields in the center of K. m

Thus the scalar regulus is a genuine regulus iff the scalar field K is a com-
rnutetive fields!

Now consider any regulus § in PG(2n—1, '), the underlying vector space
being V', I any field. So we have a I/{-linear isomorphism ¥ onto a regulus in
K™ & K™ such that a triad of distinct components (X, Y, Z) of S get mapped
onto the triad (y =0,z = 0,y = z); also a line cover of § gets mapped onto
a line cover of the image W(S). But any line meeting all three members of
the triad (y = 0,z = 0,y = z) must meet every set y = zk, for k € K, and
lies in the totality of such subspaces. Thus the regulus ¥(S) must concide
with the scalar regulus. Hence we have established several facts: (1) every
regulus over a field may be viewed as a scalar regulus and three components
of a partail spread over a field lie in a unique regulus (which may not be in
the partial spread).

Thus we have established

Remark 1.4.8 In PG(2n — 1,K), for K a commutative field, there is a
linear bijection from any requlus onto the scalar regulus and this bijection
can be chosen so that any threc components may be mapped respectively onto
the x-azxis, the y-axis, and the unit ine of the scalar requlus. Moreover, three
components of a partial spread lie in a unique requlus and hence the subgroup
of PGL(2n — 1, K) fizing a regulus is triply transitive on its components.

We shall eventually deal with the most general case associated with the above
result: /X any skewfield with infinite dimensions allowed. This is essentially
a repeat of the above but with more attention to some details.



