
Contents

l André's Theory or Spreads. l
1.1 Affine l'lane, wit.h a Transit.ive Translat.ion Groups. l
1.2 Group Part.it.ions anci André Theory. 9
1.3 Spreadsets anel Part.ial Spreads. 17
lA Tut.oria! On Spreaelscts. .... 30

2 The Bruek-Bose Projeetive RepresentatiQn or Spreads. 35
2.1 FOllndat.iona! St.metmes In Finit.e Gcomet.ries: A neview. 35
2.2 Project.ive Spaee nepresent.at.ions: Bmck-Bose Theory. 43

3 Combinatories or Spreads: Nets and Packings. 48
3.1 neglllì anel Regular Sprcad,. . . . . . . . . . . . 48
3.2 Dcrivat.ion...................... 57
3.3 Direet. Produet.s of Affine l'lane> anel Packings. . 60

3.3.1 A regular parallclism in /-'G(3,2). 63
3.3.2 l'ran,pose. . . . . . . . 64

3.'1 Introelllctìon to Quadric, and Unitals. . 66

4 QuasifieIds And Their Variants. 75
4.1 QlIasigrollps anel Loops. 75
4.2 l'rans!ation Algebras ancl Quasifielcls. 77
4.3 S"hm's Lemma, Siope ~Iaps anel Kcrn. 81

5 Coordinatization. 86
5.1 Spreacls and QlIasificlels. 86
5.2 QlIasifielcis anel Spreadsets. . 88
5.3 SlIbstmrtmcs of QlIasifìclcls. 94
5.'1 Hall Syst.ems 99



C'ONTENT5 Il

5.5 Coordinat.izing Sprcads by Sprcadset.s. 103
5.6 Invent.ory of QnH.'iificlds Coordinat.izing a Fixed Spread. 1O~

5.6.1 Coordinat.izat.ion Algorit.hm. . . . 10-1
5.6.2 Propcrt.ics Of Coordinat.ization. . 106

5.7 Coordinatizing Rat.ional Partial Spreads. 107

6 Centrai Collineations and Desarguesian Nets.
6.1 Cent.ral Col1ineat.ions ili St.andard Form. . ..

6.1.1 V/hen 9 is a Y -elat.ion of ,,(Q). . ...
6.1.2 Whcn 9 is a Y-axis homology of ,,(Q).
6.1.3 When 9 is an X-axis hornology of ,,(Q).

6.2 Cent.ral Collineat.ions In f-.lat.rix Form.
6.3 Rationa! Dcsarguesian Part.ial Spreads. . ..

7 Simple T-extensions of Desarguesian Nets.
7.1 Sprcadsct.s Cont.aining Fiel,ls.
7.2 T -ext.cnsions of Ficlds. .

7.2.1 T-Derivations.
- ?? C'I' S 'fi II(._.... ,)'C le eml1C (s.
7.2.3 T-Cydic GL(2, lj)-spreads

8 Semifields.
8.1 Generai Remarks On Semifelds.
8.2 Thc "nul.h Comrrmtat.ivc Semificlds.
8.3 Twistcd Fields.

8.3.1 Polynollliai for P; Non-Commut.ivily of Selllifield.
8.4 Gcneralisccl Twist.ed Fields. ..
8.5 Somc Two-Dilllcnsional Selllificlds.

9 Generalised André Systems und Neurfields.
9.1 Const.mct.ion Of Generalisecl André Syst.ems.
9.2 No Shears In .\-Systems. . .
9.3 Cydie Groups In .\-Syt.ems. . .
9.4 André Syst.erns. . . . . .
9.5 Bighest. PrilTlc~Powcr Di"isors of a-I Dividing ad - l.
9.6 Dickson Nearfields. . ' ..

110
110
111
112
113
114
120

123
123
128
129
131
132

137
137
138
142
143
147
150

152
152
155
157
158
159
165



CONTE1\TS

lO Large Planar Groups.
10.1 Piallar alld Ant.omorphism Gronps.
10.2 I3aer Collillcat.ion Theor)". . .
10.3 Planar p-Gronps. . .
10.4 Klcin Gronps On Odd-Ordcr Sprcads.
10.5 Tangcntially Transit.i,·e Planes. . ...

11 Infinit.e Baer Net.s.
Il.1 Poinl.-Baer And Line I3acr Snbplancs.
11.2 Regnlar Direcl. Prodnct.s. . . .
11.3 I3aer Net.s: St.ruct.lITe Thcory.

.
12 Hering-Ost.rom Theory: Elation-Generated Groups.

12.1 Ficld Ext.ensions alld Sprcads...
12.2 Algcbra Gcneral.cd I3y I\lal.rix A.
12.3 Properl.ies of SL(lI, 1\) ..
12.4 Osl.rom's Thcorcm..
12.5 Gcncralizcd Elal.ions.

13 Foulser's Theorem: Baer-Elation Incompatibility.
13.1 Baer-Elat.ion Thcory: Odd Order Case. . . . . . . .
13.2 Incompal.ibilit.y Theory: E"cn Order 'IÌ"allslat.ion Plancs.

13.2.1 Maximal Elat.ìon Gronps and Bacr involnl.ions..
13.2.2 Large Bacr gronps and Elat.ions .

III

169
169
171
174
177
180

185
185
188
191

196
· 197
· 199
.200
.200
· 209

214
· 214
.220

· 221
· 224

14 The Translation Planes of order q2 that admit SL(2, q). 227
14.0.:] Dcsargucsian Planes. . . . . . . . . 227
14.0.4 Hall Plancs. . . . . . . . . . . . . . . . . 228
1~.O.5 Hering and Ott-Schaeffer Planes. ... . 228
1~.0.6 The Three Walkcr Planes of order 25. . . 230
1-1.0.7 The Translat.ion Planes wit.h Spreads in PG(3,q) ad-

mit.t.ing SL(2, q). . . . 231
1·1.0.8 Arbit.rary Dimcnsion. . 231
14.0.9 Applicat.ions. .... . 232



Chapter 1

André's Theory Of Spreads.

André's theory of spreads is arguably one of the most impOltant events in
finite geometry: hardly any finite projective planes were kno",n before André
seminaI 1954-paper, [2). André's paper is Illtimately responsible for the ex­
plosive growth in' the discovery of finite non-Desarguesian planes during the
last thirty years. Moreover, the theory of spreads, which reduces the stlldy of
t.ranslation planes 1.0 structures that live on vector spaces, has meant t.hat. ali
t.he macbinery of linear algebra, and hence also group repreent.ation theory,
can be brought 1.0 bear on the study of translation planes.

The lect1l1"es in this chapter will mainly be concerned wit.h developing
t.he André theory of spreads and its computational aspect - spreadsets of
mat.rices. In the next chapter, the associated theory of spreads as structures
that live in projective spaces will be emphasized.

1.1 Affine Planes with a Transitive Transla­
tion Groups.

In this first, lecture, we begin onr study of projective and affine planes. With
t.he exception of three infinite families of projective planes called the planes
of Hughes, Figlleroa, and Coulter-Matthews, all finite projective planes are
related t.o a class called 'translation planes.'

In t.his lect.nre, we consider a fundamental representation of a translation
pIane. This is the classical description of translation planes Ilsing vector
spaces due 1.0 André. In a later lectnre, we shall consider the Bruck-Bose
al'proReh Ilsing project.ive spaces.

l
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Less well known but. of increasing import.ance are what. might. be called
coordinat.e met.llOds. These include t.he st.udy of quasifields, spread set.s and
Oyama coordinat.es. Professor Jha will be lect.nring on some of t.hese topics
in t.hc algebraic tract.

\Ve begin wit.h the definit.ion of an affine pIane, which we st.at.e in t.erms of
an INCIDENCE STRUCTURE (P,.c,I). This means that. P and.c are disjoint
set.s of object.s called POINTS and LINES resp. and I C P x .c. To facilit.at.e
discussion we make ext.ensive use of geomet.ric terminology: any set of points
incident. wit.h t.he same line is said t.o be collinear, t.wo lines are DISJOINT

if they are not. incident. wit.h any common point. Similarly we use notation
based on geomet.ry and set. t.heory: we write P E p, or say the point. P LIES

ON t.he line P, if (P,p) E I, and if P, Q E P are distinct. point.s t.hat. share
exact.ly one line we writ.e PQ t.o denot.e t.he unique line t.hat they share.

Definition 1 .. 1.1 An affine l'lane 10 is an incidenee strueture (P,.c,I) U/ith
the 101l0win9 properties:

1. Given tU/o distinet points P Q E P, there exists a unique line p sueh
that (P,p) and (q,p) E I; thus PQ = p.

2. Given a point P and a line p sueh t/wt P is not ineident luith p, there
exists a unique !ine q disjoint lrom p such fhat P E q. '

3. The,.e e:rists at least three noncollinear points.

Two lines of an affine piane are said t.o be PARALLEL, if they are disjoint,
and t.he not.at.ion p Il q means t.hat lines p and q are parallel when p =J q.
HO\ve\"(~r, in order t.o farce Il t.o be an eqnivalence relation, '!Ve continue io
un'ite p Il q even ",hen p = q.

Remark 1.1.2 Let." = (P, .c,I) be an affine l'lane. Then Il is an equiva­
lenee 7dation on the set ollines. The equivalenee classes a7e called 'parallel
classes '.

Proof: ROlltine exercise. _
'Ve sh,ùl oft.en use variat.ions of the above t.enninology t.hat often arise in the
lit.erat.nre. For example t.he parallel classes of an affine plane is oft.en called
it.s SLOPESET, or it,s set. of 'infinte point.s' or it.s 'ideaI point.s'. Similarly, t.he
dass of any line is its SLOPE, or it.s 'point. at. infinit.y', et.c.

\Ve shall enCOllnt.er many incidence st.ructures related to affine planes:
project.ive plancs, Desarguesian affine and project.ivc spaces, nets, etc. "VVe
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t.herefore give a generai definit.ion of an isomorphism from one incidence
st.rnct.nre t.o anot.her.

Definition 1.1.3 Let 1I"i = (Pi, .ci, Ii), i = 1,2, be incidence structures.
Then an isomorphism from 11"1 onto 11"2 is an oroered pair 01 bijections

fram the points and lines 0111"1 onto the points and lines of 11"2 (respectively),
such that incidence is preserved in both directions:

(P, l) EII <=} (p(p),>'(l)) EI2 ·

An isomorphism lram an incidence structure 11" to itself is = an AUTOMOR­

PHJSM, and the graup of automorphism of1l" is usual/y denoted by Aut(1I").

An ant.omorphism of an affine piane is completely specified by its action on
the point.s: t.his is becanse t.wo point.s det.ermine a nnique line and every line
\ics on al. least. 1.\\"0 point.s. Thns we have

Remark 1.1.4 Let 1l" be an affine l,lane. Show that if (<1, T) and (<1, p) are
eol/ineations of" then T = p.

The above remark jnst.ifies the nsage of only the point-bijection 1.0 refer 1.0 the
antomorphism. This app\ies 1.0 allY incidence structure where the incidenee
is set-theoretie: this means t.hat \ines may be viewed as sets of points and
distinct. lines are associated with dist.inct sets of points. All the incidence
strnct.nres we enconllt.er may be regarded as being set-theoretic incidence
strnctnrcs. This allo",s ns 1.0 freely use set-theoretic language rather than
t.he more cnmbersome t.erminology associated with incidence.

Thns, in any set-t.heoret.ic incidence structure, an antomorphism (<P :
p -+ P,1/!: L -+ L) is fnll det.ermined by the action of t.he associated point­
bijection ti> : P -+ P; the action on the lines correspond t.o the nsual act.iOll
induced by </J on t.he powerset 2P • We shall refer t.o <!> as a col/ineation: thns
a collineation is the action on the points corresponding 1.0 an antomorphism
of a set-theoretic incidence structure. In particnlar:

Definition 1.1.5 A col/ineation of a set-theoretic incidence structure 7f is a
bijection of its points !hat extends to an automo7phism 01 7f. Aut". v-~1/ be
used to denote the col/inetaion group of 7f and a/so its automorphism group:
both groups are of course isomorphic.
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Thns, the collineation group in the above sense is the faithflù representation
of the automorphism graup on the points. Accordingly, we shall noI. attempt
1.0 seriously distinguish between the two concepts.

Exercise 1.1.6 Let '" be a bijeetion /rom the points oJ an affine piane A
onto the points oJ an incidence strueture B sueh that '" maps collinear sets
oJ points onto pairwise ineidence sets oJ points. Is it true in generai that
'" induees an isomorphism /rom A onto B? Show that '" does induce an
isomorphism when B is 000 an affine piane.

Definition 1.1.7 A TRAN5LATION oJ an affine piane is a collineation whieh
leaves eaeh pamllel c/oss invariant and fixes eaeh line oJ some parallel c/ass.

Onr goal is t.o verify t.hat. the translations of an affine piane form a gronp
and t.his granp act.s semircgnlarly on t.he affine points, that is, thc points
ot.her t.han t.hc parallei classes. Thc first. st.cp is t.o not.e t.hal. alI non-t.rivial
t,ranslations are semircgnlar:

Lemma 1.1.8 A tmnslation oJ an affine piane whieh fixes a point is the
identity.

Proof: Exercise.•
The following remark may be t.akcn as an alt.ernat.ive definition of a transla­
t.ion, eqnivalent. 1.0 definition 1.1.7 above.

Remark 1.1.9 Let a be a non-trivial eollineation oJ an affine piane A.
Then a is a tmnslation iff it fixes every pamllel classes oJ A and does not

fix any affine point.

Proof: => folIows from lemma 1.1.8 above. Conversely assume a leaves
invariant. every parallei class buI. does noI. fix any affine poinl.. So choosing
any affine point A, we have B := Aa is distinet from A, and leI. m be the
parallel class of AB. LeI. l be any other affine line in t.hc parallel class m.
It. is sufficient 1.0 show that sucb l are a-invariant. Choose an affine point
C E l. By hypothesis D = Ca f C. So CD is in t.he parallel class of m
anel, like l, cont.ains C. Hence both l and CD are lines in the class m that
cont.ain C, so t.hey coincide. Hence la = CD = l, since t.he image of any line
is completely det.ermined by the image of any one of il.ss affine poinl.s and
I.he image of it.s parallei class. Thns alIlines in the parallel class m are fixed
bya.•
Wc now consider collineat.ions of t.he abovc typc I.hat. might. noI. fix any par­
allei dass.
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Definition 1.1.10 A eollineation fixing ali the parallel classes 01 an affine
piane is ealled a DILATATION. Di/ations that are not translations are called
kem homologies.

So by remark 1.1.9 above, dilations ot.her than translations fix at least one
affine point point. If t.hey fix more t.han one affine point. t.hen t.he set. of fixed
point.s fonn a snbaffine pIane which act.nally coincides wit.h t.he parent. pIane.
Thus, if 7T is any affine pIane t.hen t,he dilations other than translat.ions, that
is, t.he kern homologies, fix exact.ly one affine point. Z, called it.s eente,..
lvIoreover, remark 1.1.9 flllther implies t.hat a non-t.rivial t.rans!at.ion fixes all
t.he lines of exaetly one parallel dass. This dass is called the eenter of t.he
translation. 'ATe Sl1mlnarize aH this.

Remark 1.1.11 Every non-tnvial dilation 01 an affine piane is eithe,. a
translation or a kem homology. Every non-t'rivial translation fue" ali the
lines 01 emetly one parallel class, ealled its Clà>JTEll, and no other' affine
lines or points, 1Vhile eve""J non-tnvial kem homology fixes exaetly one affine
point, ealled its CENTEll, and t/ze other affine line that it fixes ar'e just the
lines through its eenter.

Thns the set. of all dilations of an affine pIane form a gronp: t.he DILATION

gronp, and it. has as snbgronps: t.he TRANSLATION gronp ane! the KERN HO­

MOLOGY gronp. To discuss t.hesc fnrther we recall some st.alldard e!efinitions
from pcrmutat.ion gronps.

Defillition 1.1.12 Let G denote a permutation group aeting 071. a set n.
Then the G-orbit 01 x E n is denoted by

O"bc(x) := {xg I9 E G},

and the STABILIZER 01 x E n in G is denoted by:

Gx={gEGlxg=x},

In partieular, G is tmnsitive 071. n il it has only one orbit, or equivalently:

x, Y E n => 3g E G 3 x g = y.

G is llEGlILAll il additionally Ga is triviallor ali a E n. More generally. a
pennutation group G 071. n is SEMIllEGULAll ilonly the identity 01 G fixes
any clement in n.
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Using the above terminology, remark 1.1.11, yields:

Proposition 1.1.13 Let A be an affine piane and G its dilation g1'OUp. Then
the tmnslation subgroup T oJ G is nOlmal in Gand semi1'eg'ular on all the
affine poinls oJ A. G is the union oJ T and all its maximal gl0UpS oJ kern
homologies, and any two distinct groups in the union have tnvial intersection.

Proof: Exercise.•
The above resnlt is far from opt.imal, particnlarly in the finite case, where
the finite case where theory of Fì'obenins may be applied. Bnt the reader is
warned that glib generalizations 1.0 the infinite case might be da.llgerous.

\Ve may no", define translation planes.

Definition 1.1.14 A translation piane is an affine piane whose translation
g1'OUP act" transiti1le/y on the affine points.

As an iInnlediate conseqnence of remark 1.1.9 ,ve have

Remal'k 1.1.15 An affine piane is a transiation piane iff its translation
group is l'cguiar on the affine points.

A Frobenins group is a transit.ive permntation gronp in which the stabilser
of any t\Vo points is trivia1. By proposition 1.1.13 we have:

Remark 1.1.16 The dilation group oJ an affine piane acts, faithJully, as a
Frobenius g1'OUP on its affine point".

The point being made is that there is a deep and po\\'erful theory for finite
Fì:obcnillS grollps tha.t. has been exploit.ed ill finite traIlslat.ion pIane theory.

'Ve no\\' describe a simple constrnction for translation planes, and even­
tnally \Ve shall demonstrate that the constrnct.ion is generico The me.thod is
basee! on the not.ion of a sp'read, the most important concept in translat.ion
pIane t.heory. A spread is a partilion oJ the non-zelO points oJ a veclor space
by a collection oJ subspaces that pairwisc direcl-sum lo thc whole space.

The lines throngh the origin in the real piane !JI2 is the most farniliar
example of a spreae!:. the real translation piane consists of the cosets of the
eomponents of the spread.

Viewing m:2 as a veet.or space D"er the rat.ional field Q, 'we have a Q­
spreae! with the sanle components as before - the lines throngh the origin
- bnt no\\' these cOlllponents are infinite-dimensional snbspaces. One can
of C0111'88 generalize aH t.hìs: st.art wit.h a rank two vector space over a a
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skewfie!d F, t.hen t.he one-spaces form a spread, and if F is an ext.ension
of a s\lbskewfie!d J( t.hen the 'l-dimensiona! spread' F -spread becomes a d­
dimensiona! J(-spread, when dimK F = d, and t.he addit.ive coset.s define a
t.ranslat.ioll pIane.

Of conrse, t.he t.rans!at.ion planes described above are t.he familiar Desar­
gllesian planes, and indeed alle conid regard t.his const.rllct,ion as a definit.ion
of a Desarg\lesian spread: t.h\ls a Desarguesian l'lane is the affine piane con­
sisting of the cosets of the components oj a one-dimcnsional sp,.,;ad aver a
skewfield F.

\Ve s\lmmarize om t.erminology for spreads and re!ated it.ems:

Definition 1.1.17 Let V be a vector' space, and let S be a collection oj
mutually disjoint additive subgraups oj (V, +) such that 1/ = uS and the
sum oj cach distinct paù' oj additive subgoups of S is V. Then S is called a
SPREAD on V, O'" with AMBIENT SPACG V, and the subspaces on V m'e its
COMPONENTS. The associatcd incidence stlucture is defined to be

fIs := (17, C),

with pointset V, lineset

C := {x + SI S E S,,, E V},

and with set-theoretic incidence.
lfV is a vector space aver a specified skewfield K, such that ali the compo­

nents of S are themselves K-subspaces of V, then S is called a K-SPREAD;

this spread is called a d-DIMENSIONAI, ]{ -sprea.d if each component is K­
dimensionai as a ]{-vector space.

Remarks 1.1.18

1. lt ",ili often be uscful to draw uttention to the ambient space V, asso­
C"iated with a spread S, by rejerriny to the pair rr = (V, S) as a spread.
Thus, rr is viewed as beillg sy"onymO\lS wit.h S.

2. Every spread on V is a K -spl-ead when ]{ is chosen to be the prime
subfield oj the skcufields aver' which V is a vector space.

3. The direct-sum condition forces ali components of a ]{-spread to havc
the same dimension dover 1(: d has sometimes been called the Dstrom
dimension of the spr-ead, to distinguish it fram the dimension of the
ambient space V ,,'hich is 2d, far finite d.
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,Ve now note that the incidence struct.llre of a spread is always a translation
pIane, and later we shall establish that all translation planes arise in this
Inanner.

Theorem 1.1.19 Let S be a sp'read on an ambient vector space V. Then
the associated set-theorctic incidence structuTe, Il(V, S), dejìnition 1.1.17, is
a translation l'lane. The jull group oj translations oj Il(V, S i8 just the group
oj tmnslations oj V 1~garded as a vector space:

0:= T = {Ta : x I-> x + a I a E V}.

MOTeover, ij V is a vect07' space over a skewjìeld]( such that the components
m'e ](-subspaces, that is (\I, S) is a J( -spread, then the scalar action oj ]('
on V is a group oj kem homologies ojIl(V,S); tlius, the group oj bijections
on V

70 := {\Ix E V : x I-> (x)k I k E W},

where (x)k denotes the image oj x under k E ](, is a gTOUp oj kem-homologies,
ef, definition 1.1.10 oj the tmnslation piane I1(V,S).

Proof: Straightforwmd exercise. _
Of pmticular importance are the maximal skewfields ]( over which the com­
ponents are ](-spaces. It. will turn out that there is a unique maxima\ skew­
field with this property. This will become dear as we develop the theory
more fully.

Exercise 1.1.20 Let (V, S) be a spread and let T be the jull tmnslation
group oj the associated tmnsiation l'lane. To each component a E S asszgn
the subgroup T{a}, the global stabilser oj a in T. Show that

UuEsT{a} = T,

and that 7'" n Tv is the trivial gTOUp, wheneveT fJ., v E S are distinct compo­
nents.

Thns the full translat.ion group T of a translation pIane admits a partition
by subgroups and thus appears 1.0 be analogous 1.0 the ambient space of a
spread on a vector space. Onr study of group partit..ions, in the next.. lectnre,
will show that such group partitions may be identified with spreads, and,
in part..icnlar, that any translation gronp T may be taken 1.0 be the additive
gronp of a vector space.
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1.2 Group Partitions and André Theory.

9

N
Nj~-~N2

A'O l

In this lect.nre \Ve develop André's fnndamental theory relating translation
planes 1.0 spreads. Onr st.arting point. is concernoo wit.h graup partit.ions: a
collect.ion of pairwise disjoint snbgrallps of a granI' G that. union 1.0 G.

A part.it.ion of a vedor space by its set. of one-spaces is an example of a
granI' part.ition. A less trivial example arises ",hen a field F is r-dimensional
over a snbfield J( for t.hen the additive gronp of F is part.itioned by it.s 1'­

dimensionai J(-spaces. Note, only t.he case r = 2 corresponds to examples of
spreads in t.he sense of definit.ion 1.1.17.

Definition 1.2.1 (Craup Partition.) Let G. be a glOUp. A PARTITION oj
C is a set N oj nontrivial pail'l1Iise disjoint praper' subgmups oj C sueh that
C = UN; the membel's oj N are the COMPONENTS oj the partition and ij ali
the eomponents in iV ""e nonnal in C, then N is a NORMAL PARTITION oj
C

'Ne have already not.ed that. many nonnal partit.ions do not yield spreads,
in t.he sense of definition 1.1.17. However, if t.he ambient granI' G of a
normal partit.ion is generat.ed by any t.wo of it.s element.s then this is the only
possibility, by t.he following fnndament.al charact.erizat.ion:

Theorem 1.2.2 Let C be a gmup and N a normal partition oj G sueh that

C =< N j ,N2 > 'dNr,N2 E N,N j =J N2 .

Then eaeh oj the jollowing is vahd:
(1) C is a direet pmd'uct oj any two distinct subgroups oj N.
(2) eaeh two distinct subgra1lps oj N are isom01phic and
(3) C is Abelian.

Proof: (1) This is element.ary as the element.s of disjoint. normal snbgronps
corrmmt.e.
(2) A gronp cannot. be expressed as t.he disjoint. nnion of two distinct snb­
granps. Hence N cont.ains at.least. t.hree members. So given distinct N j ,N2 E
N, we may choose a t.hird No E N, and now N = N j $ No and also
N = N2 $ No. Hence

as reqnired.
(3) Since C is t.he direet. sum of any t.wo distinet. members of N, we see that
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element.s from,dist.inct snbgronps of N commnt.e. So assnme x, y E A E N
and choose il nonident.it.y b E B E N - {A}, and observe

xyb - xby

=? xyb = byx since by <le A

=? xyb = yxb

=? xy = yx, as reqllired.

•
In view of t.he above it. is desirable t.o calI a normal part.it.ion N of a gronp
C a generating normal partit.ion if C is generat.ecl by every pair of dist.inct.
component.s N], N2 E N generat.e C as a grollp.

Theorem 1.2.3 Let N be the components oj a spread on a group C. Then
the sct-theoretic incùlence structure whose pointset is C and whose hnes are
the cosets oj the elcments oj N is an affine translation piane whose translation
group consists oj the bijeelions oj C, jor every a E C oj type:

C-C

9 I--> ga

Proof: A st.raight.forward conseqnence of t.he t.heorem above.•

Theol'em 1.2.4 Let C be u gro1Jp and iV a generating normal partition ojC.
Lei fC, dertOte the set oj 910UP endom01phisms which leave each component
irwm-iant.

Then fC is a skcwfield and C is a l'eetor space aver' fC.
The elements oj the skewfield fC al'e ml/ed the "kemel endomorphisms"

oj the partition. The skcwfield fC is eal/ed the "kemel oj the spread."

Proof: Since C is abelian by t.he previolls resnlt., t.he endomorphisms in fC
dearly form a ring. Hence it. is dearly sllfficient. t.o show that. ull t.he non­
zero maps <!> E fC are biject.ive. Snppose a~ = O for a l' O. Now we force
</J = O by demonst.rat.ing t.hut. c!> vanishes on every component. B l' A, where
a E A. \Ve not.e t.hat. t.his is more t.han sllfficient. t.o force </J = O since any
t.wo component.s of N generat.e C. As O= a~ = (a + b)" + (-b)~ t.hen (a + b)
und b are on C and B respect.ively which are dist.inct. component.s so t.hat.
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bO E il n C = O wheneyer b is in any tamponent B io A. Thus ali members
9 E K are inject.iye homomorphisms of C.

Next. we ehe<,k the c1ement.s <!> E K are smjective.
Given nonzero 11 E C, we require w E C SUdI t.hat. 11 = w~3<p E K. Let. V

denote t.he component. tant.aining v and let. u E U be a nonzcro elernent. in
some ot.her eomponent of iV, and define a t.hird component Z t.hat. cont.ainsu. -11. Now we c!aim t.hat. t.he required w is t.he unique point. in t.he set.
(Z +u) ri X. Not.e t.hat. t.he int.ersection is unique since it. is t.he intersection
of t.wo lines of the alfine point. associat.ed wit.h t.he spread N.

lt. is now sulfieient. t.o sho", t.hat. 1.' - w~ = O, and we dernonstrat.e t.his by
showing t.hat 11 - w. E Yn Z. Since w E V, v - w~ cert.ainly lics in V. Thus,
it is sulficient. t.o Yerify t.hat. v - wl.> E Z. But., by definition, u~ - "II E Z, so it.
is sufficient. to verify t.hat.(1.' - w?) - ('u9 - v) = (w - u)" E Z. This condit.ion
hoids because w E u+Z means that (w-u) E Z;and Z i8 <p-invariant.. Thus,
<!> is snrject.ive. _

The following st.andard not.at.ion conceming linear groups will be used
thoughout. om lect.nres.

Definition 1.2.5 Let V be a lcft vector space ave,. a skewfield J(. Let a be
an additive mapping on V. IVe shall say that a is J( -semi-linear if and only
if far ali a in J( and fa,. ali x in V then a(ax) = aPa(x) wheT'e p is an
automoTphism of J(. 11"e shall say that a is J( -lineaT' if and only if p = l.

The g"oup r L(V, J() of ali bijeetive ](-semi-linear mappings is called the
generai semi-lineaT' graup. The subgmup C L(V, K) of linea,. mappings is
called the generai linear gm·up.

Let F denote tlte pTime field of I<. Then r L(V, F) = C L(V, F). Since
any additive bijection ~, in C L(V, F), the notation CL(~f,+) is always used.

In!954, André proyicled t.he founclat.ion for t.he t.heory of t.ransiation planes
by proving t.hat. any t.rans!ation piane may be identified wit.h a norma! parti­
tiOIl of a group which act.ually t.ums out t.o be a veetor space over a ske",fielcl:

Theorem 1.2.6 (Thc Fundamental Theorem Of Translation Planes.)
Let" be a translation piane wdh translation graup T and let P denote the

set of parallel classes of"·
Let Tp denote the subgro'''p of T fiJ:ing ali thc lines of p, far p E P. Then ali
the following hold.
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1. r = U{Tp Ip E P} is a spread on T and hence T is a vector space over
the associated kernel K.

2. 7r is isomorphic to 7rr, the translation l'lane constrocted from the spread
alT.

3. The lull collineation group G ol7rr is TGo where Go is the lull sub­
grouI' 01 the grouI' GL(T, +), that l'ermutes the members 01 r among
thernselves. .

4· The lull collineation grouI' G ol7rr is TGo where Go is the full sub­
grouI' 01 the group r L(1', K) that l'ermutes the members 01 r among
themselves.

Proof: (1) Tp is t.he sllbgrollp of T flxing individllally all the lines through
p, hence it is trivialiy nonnaiized by T since T flxcs p. Since every translat.ion
in T has a Ilnique center, T gets partit.ioned by it-s nonnal sllbgrollpS of type
Tp . It remains to show that T = Tp El) Tq whencver p and q are distinct
points on the translation a,is. Lct t E T, and sllppose t : a >-+ b, where
a is any affine point, and assllme b f a, to avoid trivialities. Since Tp and
Tq are normai and disjoint, it is sllfficient to verify that t E< Tp,Tq >. Let
l'a n qb = x. Since 1'p has as its non-trivi,,1 orbits ali the affine on each line
throllgh p, there is a 9 E Tp sllch that. 9 : a >-> X and, similarly, there is an
h E 1'q sllch that h : x >-> b. Now cleariy agh = b. Bllt the regularity of T
now forces t = gh. ThllS T is generated by any two distinct Tp and Tq •

(2) Fix an affine point O of 7r, and to each affine point a of 7r llssign the
translation Ta E T that maps O ont.o a. Consider the bijection 8 : a >-+ Ta ,

from the affine points of 7r onto the points of the vector space 1'.
Consider the affine point Cl E A, where A is any affine line of 7r. Let Am

be t.he uniqlle line paraliel to A throllgh O with slope m. Clearly, Tm has
A", as its O-orbit" so (A",)8 = T",.

Next note that the points of A may be expre5sed as oroT.. , as the grollp
T", ads transitively on the affine points of each line throllgh m. Now the
image (oroT",) 8 = TaT"" i.e., a coset of T",. Thlls we have shown the
bijection e maps the lines of 7r t.o cosets of t.he spreads associated with T,
which means e i5 a biject.ion from thc affinc l'lane 7r onto the affine l'lane
associated with the spread on T that sends lines ont.o lines. Hence, 8 is an
isomorphism between the pianes.
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(3) The translation snbgronp of the full collineation gronp G of 1I"r may,
of course, be ident.ified with T itself. Let H = Go, so G = HT, by the
transitivity of T , and by its regnlarity we fnrther have H n T = {1} (the
identit.y element). We next verify that H is in GL(T, +).

We define addition in " as follows: a + x = T.(X). It follo\\'s that this
makes (11", +) isomorphie to T.

Sinee T is normal in the translation pIane 1I"r, we have for every a E T a
uniqne a' E T sneh that

so
hr.(x) = ro,h(x)ìfx E T

henee
h(a + x) = a' + h(x)\fx E T.,

Pntting x = O, we observe that a' = h(a) and so the above identity yields

h(a + x) = h(a) + h(x)

so h is additive and henee lics in GL(T, +), and permntes the members of r.
Conversely, any map with these two propertics also permutes the eosets of
the eomponents of r, and is t·hns a eollineation of 1I"r. Thns (3) is established.

(4) By (3), H is the largest snbgroup of GL(T, +) that permutes the
members of r among themselves, and the kernel of this representation of H
on r is thns normal in H and coincides with K.. by definition. The normality
of K. • now forees H to be semilinear over K..

'Ihis eompletes tilc proof of the theorem.•

Sinee the translation group of any spread (V, S), associated with a trans­
lation pIane 11", is additively isomorphie as an additive group to the translation
gronp of 11", ali snch spreads (V, S) havc isomorphie additive gronps (V, +).
The non-zero kernel endomorphisms of sneh spreads are permntation iso­
morphie to the the kern homologics, aeting on the pIane. This snggests that
ali sneh spreads, associatcd with a fixed translation pIane, are related by a
spread isomorphism semilinear over theh kern, and more generally that an)'
collincation the of the plancs assoeiatcd with the sprcads that sends zero to
zero mnst bc a semilincar map of the t.ype indieated. This is indeed the case
as we shall now verify.
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The main problem is 1.0 verify that sl1ch collineations are additive; we
shall verify this directly rather than attempting 1.0 derive il. ff€lm parI. (3) of
the fl1ndamental theorem above.

Theorem 1.2.7 Let (V S) and (IV, T) be spreads defining isomorphic trans­
lation planes, and suppose that W : IV ..... V is any isomo'rphism from the
tmnslation piane II(w,T) to the translation piane II(V,s) sueh that O 1-+0; '"
eIists sinee the planes admit point-transitive translation groups. Let J( and
L be respeetively the skewfields of kemel endomorphisms of the spreads (V, S)
and (IV, T). Then ther'e is bijeetive ring isomorphism '" : L ..... K sueh that
there is a K -L-semilinear bijeetion W: V ..... IV, satisfying W(aw) = a"'(w),
for ali w E IV, a E K.

Proof: Since thè translation grol1ps of the two planes are isomorphic, Vand
~V are isomorphic addit.ive grol1ps, so (V, +) cml be made into a K-vect.or
"pace sl1ch that a K-linear bijcction from V 1.0 IV exists ad this bijcetion
identifies the spread T with a spread on V, sl1ch that the components of T
are K -spaces, and that K is stili the fl1ll ring of kernel endomorphisms.

ThllS we consider S anel T 1.0 be spreads on the same vcetor space (V, +),
over K, sl1ch that, K is the largest ring leaving the components of T invariant.
Since W is a eollineation of the associateci planes il. ml1st map the components
of Tonto the components of S. Since the non-zero kernel endomorphisms of
I.he spreads are sl1bgrol1ps of GL(V, +) that leave its components invariant il.
is dear that the planar isomorphism Wmnst conj llgate the kernel endomor­
phisms of T 1.0 S, and since the planes are simorphic nnder W we actl1aly
have a field isomorphism '" : K ..... L, K 1-+ k~, snch that 'l'(av) = a"''l'(v),
for a E K, l' E V, and in particnlar that W( -x) = -W(x) for ali x E V.

]t remains 1.0 show I.hat W is bijcetive. II. preserves, in the associateci
affine plane, the pmallclogram O, a, b, a + b, whenever a mld b are in different
components of T, hence in sl1ch cases 'l'(a + b) = W(a) + 'l'(b). If they are
in same component ~V I.hen we esatblish this by choosing u fj IV and noting
t.hal.:

w(a + u + b) = W(a + u) + w(b) - 'l'(a) + W(u) + 'l'(b)

w(a + u + b) - W(u) = W(a + u) + w(b) - w(a) + w(b)

w(a + u + b) - w(+u) = W(a + u) + w(b) - W(a) + w(b)

w(a + b) + W(u) - W(+u) = w(a + u) + w(b) - w(a) + 'l'(b)

w(a + b) + W(u) - W(u) = W(a + u) + W(b) - W(a) + W(b)



CHAPTER 1. ANDRÉ'S THEORY OF SPREADS.

w(a + b) = w(a + u) + w(b) = w(a) + >1J(b)

15

provided u is further restricted not to lie in the component containing a + b.

•
As an immediate conseqllence we have:

Theorem 1.2.8 Let (V, S) and (IV, T) be spreads, lUith associated transla­
tion planes "'s and "'( IV, T). Let L and T denote the kemel endomorphism
rings oj (V, S) and (IV, T) respectively.
Let >1J : IV ---> V be an additive bijection. Then the jollo11ring a1Y~ equivalent:

1. W is an isomorphism /rom the spread (IV, T) onto the spread (V, T).

2. There is a bijective kem isomorphism t/J : J( ---> L sueh that W is a J(-L
semilinear' isom01pilism, 11rith companion isomorphism t/J, that induces
a spread isomorpilism /rom (IV, T) onto the spread (V,7).

3. >1J is an isomorpilism /rom the piane "'(H', T) onto tile piane ",(IV, T).

In view of the importance of the above reformll\ate as follows:

Theorem 1.2.9 (Isomorphism Tileorern For 1ì'anslation Planes.) Let cI> :=

II(V,s) be a tmnslation piane defined by a spread (V, S), where tile components
oj S are J(-subspaces oj tile J( -vector space V, where K is any skelUfield.
Suppose that there is an affine-piane isomorpilism:

from the translation piane cI> to a translation piane >1J := II,w,n) , defined by
a spread (IV, 'R.), whe,,,, the components oj'R. are L-subspaces oj the L-vector
space IV, where L is any skewfield.

1. Tilen. L and}, are Isomorpltic skewfields and </> may be considered a
semi-linear mapping /rom IV onto V.

2. Ij cI> = >1J then </> is an element oj t~e group r L(V, K).

3. The full a'utomoTpilism gmup G oj the translation piane", is a semi­
direci product oj the translation group T by the subg1'Oup Go ojrL(V, K)
which permutes tlte components oj the spread S. '
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The subgroup Go oj r L(V, K) is called the 'translation complement' oj G or
71'. Go n GL(V, K) is called the 'linear translation complemento '

Proof: See above. _

'Ve now make some convent.ions regarding the kernel of a spread, or its
kem, as we shall usually call il.. These relal.es l.o l.he facl. l.hat the components
of a spread S may be regarded as being subspaces of the ambient vector space
V,over any subfield F in the kern of S, in the sense of theorem l.2.6 above:
so in generaI there is a mull.it,ude of dimensions associated with a spread ­
depending on l.he field or skewfielcl over which we choose to represent il., If
the 'chosen field' is F, in l.he kern K of l.he spread S, l.hen we shall sometimes
call F the 'chosen kern', l.he 'component kern' or l.he 'inl.ended kern'.

Definition 1.2.10 Let V be a vecto,. space aver a skewfield F that contains
a spTead S), consisting oj F-subpaces; so F is the camponent kem. The
RANK OVER F oj (V, S) is the comman dimension oj the members oj S: so
an n-dimensionaI F -spread S has ambient space V with climension 2n; now
1r := (I/,S) IS REGARDED AS BEING AN F-SPREAD OF F-RANK n . .The
RANK oj S is its rank oveT K, the kem oj S ..

IAre ALL spreads rank ONE!? I (l.I)

SO we need l.o first, of all clescribe alI rank oue spreads, thal. is, spreads that are
rank one over l.heir jull kern. We begin by officially adopl.ing the definil.ion:

Definition 1.2.11 A rank one spread is called a DESARGUESIAN SPREAD.

A rank one spread is isomorphic t.o a spread oon l.he vector space V = K 2 ,

where

Since any rank two vecl.or space, over an arbil.rary skewfield K, partil.ions inl.o
a collecl.ion of rank one spaces, we conclude that one dimensionaI sp"eads
exist over every sfie/d! But, as indical.ed earlier, we may now regard l.hese
spreads as being F-spreacls of rank > 1 whenever F is a subfield of K. Thus
F-spreads of F-rank n exisl. in abunclance. This raises a problem - nol. l.oo
hard bul. cerl.ainly non-trivial - how do we know whet,her any spread l.hat,
we consl.rnct is nol. a rank-one spread in disguise? Pul.l.ing it, somewhal. more
provocal.ively:

l. K is a skewfield acl.ing wlog from the lefl. in the sl.andard way:

Vk k k E K . k(k k) = (kk kk)'J 1, 2 . l, 2 l, 2 l
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2. The components of fJ are the subspaces of type 'y=xm', m E K, and
x = 0, as in coordinat.e geometry.

The proof folIows from the fact that any rank two vector space may be re­
gardect as some ](2, with J( acting form the left, and all the rank-one spaces
musI. be component.s. The associat.ed affine piane consists of alI cosets of the
spread components and hence the lines are of form y = xm + b and y = c.
Thus rank-one spreads correspond 1.0 precisely the high-school interpretation
of the term. Hence we have jllst.ifìed onr terminology by showing that:

Remark 1.2.12 (Desarguesian Spreads.) Thefollowing are equiva/entfor
a spread S:

1. S is mnk one ovel' its kem;

2. The affine p/ane 7fs, associated I/Iith S, is a Desarguesian p/ane.

Note that we have now described alI one-dimensional spreads over any skew­
lield Kl In the finite case alI finite skewfields are Galois fields, so all mnk
one spreads are REALLY! knol/ln. So the obvious next step is:

IINVESTIGATE TIIE RANK Twa SPREADS aVER A GALOIS FIELD! I (1.2)

Dming the last t.wenty years a great deal of attention has been given 1.0 this
project; there are also associations with other areas of finite geometries, par­
ticularly flocks and generalized qlladrangles. Note that. the existence of rank
two spreads obviollSly set.ties aB a by-producI. the 'first question' for spreads,
see (1.1). The principal 1.001 for such investigations involve spreadsets, the
main concern of t.he next lectnre.

1.3 Spreadsets and Partial Spreads.

In the previous lectnre, we saw that by the fundamenta! theorem of transla­
tion planes, theorem 1.2.6, translation planes may be identified with spreads.
Here we introduce tools and concepts that arise inevitably in the study of
spreads. The concept of a partia/ spread describes colIections of subspaces
of a vector space that plltatively extend 1.0 a spread. The other concept that
we introduce aims at. 'coordinatizing' spreads and part,ial spreads by sets
of matrices (in the finite-dimensional case), explciit,ing the fact that spreads
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(and hence t.ranslation planes) are always associat.ed wit.h some vect.or space.
These set.s of matrices, or linear maps in t.he generai case, are called [part.ial)
spreadset.s: t.hey provicle t.he most. import.ant. computational 1.001 in the study
of t.rans!at.ion planes.

In the motivating case, a spreadset is a set ofq" matrices M C GL(n, q)U
{O} such that any two members of M differ by a non-singular matrix and
O E M. Such a set. yields a spread "M in V = GF(q)" ElJ GF(q)": the
components are y = xM, 1>1 E M and x = 0, mimicking the the construction
of element.ary coordinat.e geomet.ry. The spread "M actually t.urns aut 1.0 be a
generic form far any GF(q)-spreacl on V: sO spreads may be computat.ionally
investigat.ed via t.heir spreaclset.s of mat.rices.

The complet.e clefinition of a spreadset. is a routine generalization of the
above, assigning 1.0 any spread a spreadset of linear maps that represents
it.. As in t.he finite case, this associat.ion enables ali the major tools of linear
algebra 1.0 be brought 1.0 bear on t.he study of spreads. When the underlying
fielcl GF(q) is generalized 1.0 an arbit.rary skewfield ]( the cardinality and
dimensionality condition implicit in 1M I = 1](1" needs 1.0 be reformulated.
This will be achieved by defining the familiar concepts of semiregularity and
t.ransit.ivit.y from permutat.ion group theory sò as t.o apply 1.0 SETS of possibly
infinite bijections.

Accordingly, we begin by explaining what transitivity and regularity mean
in the context. of a set. of permutations on n, where lì may be an infinite seI..
The clefinitions here generalize the corresponcling definitions far permutat.ion
groups list.e<! in definii.ion 1.3.1.

Definition 1.3.1 Let G denote a set of bijeetions of a set lì. Then the
G-orbit AT x E lì is

O"ba(x) := {x9 19 E G}.

G is ralled a TRANSITIVE set of maps on lì if O"ba(x) = n for all x E n.
The set G is ealled semi-regular- iI

(x, y) E n x lì =;. 31g E G 3 xg = y,

and G is a REGULAR set of bijeetions of lì if it semir-egular and transitive on
lì.

Far finite sets, il. is st.raight.forward t.o check that. ali of the above concepts
eoincide provided G ancl n have the same size:
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Remarks 1.3.2 If C is a set of bijections on a finite set n and ICI = Inl
then the following are equivalent:

(a) C is semiregular;

(b) C is regular;

(c) C is transitive.

Note that condition (b) above implies ICI = IKI, even in the infinite case,
and hence we shall lise it as the basis of onr general definition of a spread.
However, we begin by int,rodllcing spreadsets, not in their most generai form,
but rat.her in the form that. t.hey are most freqllent.\y encollnt.ered: as set.s of
qn matrices in CL(n, q) := CL(n, q)U{O} t.hat, oct. regularly on CF(q)n_{o}.

Definition 1.3.3 An n x n SPltEADSET OF MATRICES over CF(q) is a set
ofmatrices

{O} C M C CL(n,q)

such that (1) IMI = qn,. (2) Any two distinct member of M differ by a
non-singular matrix.

It is immediat.e that the action of the above M' := M-{O} on CF(q)"-{O}
is reglliar and that. the reglllarity ofM' is act.lIally equivalent to the definition
of a finite spreadset,s. Tlms the concept of a spreadset, as inclicated earlier,
can be generalized to arbitrary vector spaces over any skewfield as follows:

Definition 1.3.4 Let K be any skewfield, and V a vector space over K. A
K -SPREADSET of V is a set M of linear maps:

{O} C M C CL(V,K)

such that M' acts as a regular set of maps on V'.

Thlls, a finite set. of matrices over K = CF(q), is a spreadset of matrices in
t.he sense of defintion 1.3.3 iff it is a spreadset. of linear maps in the sense of
dèfinition 1.3.4 above: jllst apply remark 1.3.2 above.

It is import,ant to realise that the non-singlllarity-of-difference condition,
in the definition of finite matrix spreadsets, definition 1.3.3, may be used in
characterising general spreadset.s:
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Remark 1.3.5 Let K be any skewfield, and V a vector space aver K. A set
M oj linear maps oj V satisjying:

{O} C M C GL(V, K)

is a spreadset iff:

1. A, B E M are distinct then A - B E GL(V, K),.

2. Ij (x, y) E V' x V' then there is an element lvI E M such that xlvI = y.

In pariicular, a set M oj n x n matrices aver GF(q) is a spreadset iff they
jorm a matrix spreadset in the sense oj definition 1.3.3, that is, M has q"
elements, including zero, any two oj which differ by a non-singular matrix or
zero.

Proof: The second eondit.ion means t.hat. M' is t.ransit.ive on V', and the
first. eondit.ion means that. M' is semiregular on V', since otherwise x(A - B)
would be zero for some x E V' .•

vVit.h every spreadset. we shall assodat.e a collect.ion of subspaces which
t.urn out. t.o be spreads. The not.at.ion t.hat. we use here is suggested by ele­
ment.ary coordinat.e geomet.ry, and similar not.ation \ViU be used t.hroughout
t.hese notes, sometimes without. explicit. definit.ion.

Definition 1.3.6 Let W be a vector space aver a skewfield K and let M be
a K -spreadset on W. Then 10M is a col/ection oj subsets oj V = W ffi W
defined by

10M := {Y} U {y = xM 1M E M},

where Y = °ffi W and y = xM, m E M, denotes the subset {(w,wM) I
w E W} oj V - so y = 0, also cal/ed X, is in 10M. The col/ection 10M is
cal/ed the SPREAD ASSOCIATED WITH M.

We now just.ify t.he t.erminology by verifying t.hat. 10M is a genuine K -spreacl:

Remark 1.3.7 Let W be a vector space aver a skewfield K. Let M is a
K-spreadset on W. Then its associated spread 10M, definition 1.3.6 above,
is a collection oj K -subspaces oj V that jorm a K -spread, in the standard
sense, with ambient space V = W ffi W.
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Proof: The linearity of M over J( ensnres that {(x, xl\I) I x E W} is a
K-snbspace of V = W $ W - t,he !inearity means that the K-action on
W commntes with the lII-action. Next we note that y = xJl,f and y = xN,
where M, N E M, are disjoint K-snbspaces of V, for M f N: for otherwise
M - N would be singnlar, contradicting M - N E GL(n, W), c.f., remark
1.3.5. Given (a, b) E W' ffi W', there is an M E M snch that b = aM, by
the transitivity condition on M. Hence, il. easily follows that the snbspaces
in the structnre 1r{M} form a pairwise disjoint cover of V'. It remains 1.0

check that V is a direct snm of any two of the 'components' in 1r{M}. (This
is obvions if W is finite dimensionai over K, in particnlar if M is finite.)
The main case is when the components are y = xlvI and y = xN, where
O f M f N f O, and here we need 1.0 show tImI. any (a, b) E V !ies in the
S\!ln of y = xM and y = xN. Thns, we need tò show that

(a,b) = (u,uM) + (v,vN)3u,v E W,

or, eqnivalently, for some u, 11 E ~V:

a - u + l'

b - uM+vN

and this means b - aN = u(M - N), which can be solved for u by the non­
singnlarity condition on M - N, remark 1.3.5, and the desired res,ilt follows
easily.•
Thus 1.0 find a spread, and hence a t.ranslat.ion piane of order qn, il. is snfficient
1.0 find a seI. of qn - l rnatrices in GL(n, q) snch that any two of them differ by
a non-singnlar matrix. This follows from the above, also c.L defintion 1.3.3.
We illnstrat.e this with an important example, discovered first by Donald
Knnth.

Example 1.3.8 (Knuth's ì-sp,-eads.) LeI. K ::: GF(q) be a finite field,
where q = pr > p is odd. LeI. ì be a fixed nonsqnare in K, and (j E Gal(K)'
Then

M= { [~ ì~'] \fu, t E K} .
Proof: Becallse ì is non-sqnare, the determinant u2 - ìt«(j + l) cannot be
zero nnless u = t = O. Thns we have an additive gronp of matrices whose
non-zero elements are non-singular. This means that the difference between
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any t,wo distinct members of M are non-singular, and since we have qn = q2
such matrices M is a spreadset by remark l.3.5.•
This is the first spread of rank 2 t,hat we have displayed, although we have
not yet. shown t.hat. it. is not Desarguesian, i.e. a rank-one spread in disguise.
Once we have developed some more machinery this will become immediately
obvious. At. t.his stage more compuational effort is teqnired: as an exercise the
reader is invited to verify that t.he group of kern-homologies is not transitive,
as a gronp of homolgies: this means t.he spread cannot be Desarguesian. and
hence must. be rank two - t.hereby answering the 'first question' ·(l.I), and
also cònt.ribnt.ing to (l.2).

Not.e also t.hat t.he argnment. used in example l.3.8 above yields a more
generai result.: t.he proof is left, as an exercise, and involves recalling the
connect.ion bet.ween spreads and t.ranslation planes:

Proposition 1.3.9 An additive groupM of n x n matrices over GF(q)
is a spT'eadset iff the group has orde1' qn and its non-zero elements are alt
nonsingular. Moreover, the associated spread '/l'M corresponds to a translation
piane that admits a group of kem homologies of order q - l.

The spreadset.s of t.he above type are called additive spreadset.s, and will be
t.reated in det.ail lat.cr ono They form a major branch of t.ranslation piane
theory with their o\Vn met.hodology, related to non-associative divisOll ring
t.heory.

"Ve no'" t.urn t.o t.he converse of remark l.3.7. The eventual goal is t.o
show t.hat. every spread is associat.ed wit.h a spreadset. But. we first take
t.he opport.llnity t.O WOl'k from more generaI preInises) by int.roducing partial
spreae!s and the paltial spreadset.s that coordinatize them.

Definition 1.3.10 Let T be a non-empty coltection of subspaces of a vector
space V aver a skewfield J(. Then T is a PARTIAL SPREAD on V, and its
membe1's aTe its COMPONENTS ifV = AEfiB far every pair of distinct A, BE'
T, and if ITI :5 2 assume explicitly that V/A ~ A fo1' A E T.

Of course, V/A ~ A applies aut.omat.ically if T has al. least. three component.s.
Not.e also t.hat alt.hough subset.s of spreae!s are always partial spreads, there
are many part.ial spreads that cannot be extended t,o spreae!s: t.hus, there are
ma.ximal partial spreads t.hat are not spreads.

To construct part.ial spreads, we generalize, in obvious ways, the notation
ane! concept.s that. relat.e spreadsets to spreads in e!efinition l.3,6. "Ve cont.inue
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with onr convention of applying the language of coordinate geometry to any
direct sum V = W $ W, c.f. definiton 1.3.6.

Definition 1.3.11 Let W be a vector space over a skewfield K. Then a
non-empty set 7' C CL(V, K) U {O} is a PARTIAL K-SPREADSET if

TI ,T2 E 7' = TI - T2 E CL(V,K).

The associated structure of 7' is the collection of subspaces of V = W $ W
given by:

7fT := {y = xT I T E 7'} U {Y}.

In genero!, 7' C C L(V, K) U {O} is a SPREAD SET if 7' is a K -spread where
K is the prime field over which V is a vector space.

Note that we have included {Y}, as om ear.lier convention l'equil'es us to do
this if 7' is a spreadset, c.f., definition 1.3.6. Stating the obvious:

Remark 1.3.12 If 7' is a partia! spreadset on a vector space W then 7fT is
a partia! spread on V = IV $ W, and 1rT is a spread iff 7' is a spreadset.
Hence 1rT is called the PARTIAL SPREAD ASSOCIATED WITH THE PARTIAL

SPREADSET 7'.

It is worth restressing that the above remark assumes that the spread on
W $ W by a spreadset 7' of W always includes Y := O $ W, unless the
contrary is indicated: without this assumption 1rT fails to be a spread when
T is a spread.

The following easy exercise emphasizes that in the finite case a partial
spreadset is just a seI. of non-singular matrices, possibly augmented by O,
sllch that any two differ by a non-singular matrix.

Remark 1.3.13 Let V be a vector space over a skewfield K. A non-empty
set T C C L(V, K) is a partia! spread iff 7" is semiregu!ar on V'.

In particu!ar, if 7' C CL(r>., q) is a non-empty set of matrices then 7' is a
partial spreadset iff and the difference between any two distinct matrices in
T is non-singular.

Proof: Exercise._
We now introduce the notion of isomorphic partial spreads, generalising the
corresponding notion for a spread.
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Definition 1.3.14 Let ?Ti = (Vi, Ti), i = 1,2, be paTtial spTeads, where VI

and V2 are the underlying vector spaces aver a common skewfield K. Then a
K -linear bijection ili : VI -> V2 is A K-L1NEAR ISOMORPHlSM Irom?T1 to ?T2,
or TI to T2, iff it bijectively maps the components TI onta those 01 T2·

More general/y, an ISOMORPHISM lrom?Tl onta ?T2 is an additive isomor­
phism Irom VI onta V2 that maps components onta components.

There are of comse a ll11mber of eqllivalellt. ways of defining isomorphisms
among partia! spreads, for example an additive isomorphism from V, onto
V2 is an isomorphism of the associated spreads iff il. maps components onto
components. The uSlla! termino!ogy associated with isomorphism, alltomor­
phism etc. will be llsed without. fmther commento

The following t.heorem implies that. ali spreads arise from spreadsets:
t.here is an isomorphism from any K -sprcad (or part.ial spread) t.o t.he spread
arising from a spreadset (or part.ial spreadset.). This is one of the most im­
pOltant connections in trans!at.ion pIane t.heory.

Theorem 1.3.15 ( Equiva!ence Of (Part.ial) Spreads and Spreadsets
Let V be a vector space aver a skewfield K, and let T a paTtial spread 01 sub­
spaces, with at least tltree components X, Y! W, .... Choose a K-linear
bijection IDENTIFYING Y with X:

ili : Y ---> X.

Tlten relative to (X,Y, ili):

1. Far eveT1J W E T \ {Y} the map TI\' : X -> Y specified by:

TU" : X ---t Y

X f---> yç>xEllyEW

is a linear bijection lrom X onta Y wlten W i' X (TX = O) and hence
IlITI\': X -> X, WRITTEN D'w, is an element oIGL(V,K); D'w is cal/ed
tlte SLOPE MAP, or the SLOPE ENDOMORPHISM, olW, relative to AXES

(X, Y) (via.the identification ili : Y -> X).

2. Far ftxed X and Y and any cltoice 01 W E T \ {X, Y}, ili can be
chosen so that D'w = 1; in lact ili = Tw- 1
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3. The set of all endomorphisms of T:

ar := {ali' I W E T \ {Y} }

25

corresponds, "/ter dcleting the zero mal', to a semiregular subset of
GL(X, I<) on X'.

4· The paltial sp"ead dete'rmined by ar, viz. 1raT , cf, definition 1.3.11
and ,."mark 1.3.12, is isomorphic to the given spread T. In fact, the
linear bijection Ix $ W-l:

X$X ---> X$Y
a e b f---O a El) (b) W-I

is a linea'r isomorphism from the (partial) spr'Cad 1raT onta the (parti"l)
sl'read T that maps X $ O a.nd O S X onta X and Y respcctively,
that is, the iSOmOl]!hism can be chosen so that the X and l' 'axes' are
preserved.

Moreover, if thc o.1:cs-identifying' linea.. bijcction W: X --+ l' is speci­
fied by W:= TW '-1, whcre TW : X --+ l' is the linear bijection associated
with W E T \ {X, l'}, then the 'unit component' Z:= {(x,x) I x E X}
is assigncd, by the parl.ial sl'read isomor]!hism Ix ew-I , to the chosen
componenl tV E T.

To summarize, T may be identified, via a linear' bijection A : V --+

X EilX, with a. partial spread:l'T on X ex, cOlTesponding to a spreadset
r an .\"", such that tlte idenNficotion sends respectively the components
X and l' of T onta respcctivc/y thc x-a.tis, i. e. X e O, and the y-aJ:is,
i. e. O e X. iIIarcvCT', the mal' <I> : Y --+ X that A induces naturally
fmm l' to X, dp.jined by ,."stlictiing it to l':

<1> := AlI' --+ O S X n~l X

can be chosen, far appropriate A := A4;, so that <I;> = W-I, where W :
l' --+ X is the given identification; and if now W is taken a.s TW -I then
A additionally maps the component W, distinct from X, l', onta the
unit line Z defined above.

5. If T is a spread then the following are equivalent:
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(a) The set oJ slope endomorphisms aT is a spreadset on X.

(b) a;' is regular on X'.

(e) a;' is transitive on X'.

Proof: (l) We first show that TW is a map. Consider TW (x). If Yl and
Y2 are dist.inct elements of Y such t.hat x + Yl E W and x + Y2 E W, then
Yl - Y2 E IV, and t.ltis is a contradict.ion because the components of a partial
spread do not overlap. Since X El) Y is the whole space we certaiIÙY have
x + y E W, for some y E Y. Hence TW : X ---> Y is a map, and it is
equally straightforward to check that this map is linear and injective, for
W 1. {X, Y}.

To verify that TW is bijective, for W distinct from X and Y, consider
y E Y. If Y f TW(U) for all U E X then U + y ~ W for alI U E X, so
y 1. X El! W, contradict.ing t.he fact that any two components must direct­
sum to t.he whole space V. Hence (1) holds, since it, is trivial that TX = O.
(2) This case is immediate.
(3) Now consider TA and TB, where A and Bare distinct components, other
t.han X and Y. If TA - TB(X) = 0, for x 'f 0, t.hen x El) TA(X) E A n
B, contradicting the fact that. distinct components do noI. over lap. Thus
WTA(X) f WTB(X), for x f 0, which means aA(x) f aB(x), and hence aT is
a semiregular spreadset. in GL(V, K).
(4) The part.ial spread 1fuT associated with aT, in the sense of remark 1.3.12,
has components {(x, XTwW) I x E X}, for W E T The linear bijection Ix El)

",-l defined by

XEl)X ---> XEl)Y

a El) b >-----> a El) (b)W- l

maps (x, xaw) = (x, XTwW) onto the component (x, XTw) and O El) X onto
O El) Y.

The 'summary' is just à restateIllent. of the facts established about Ix El)

",-l : X El) X ---> X El) Y, in terms of its inverse map A : X El) Y --.; X El) X.
(5) The equivalence of the conditions follows from remark 1.3.2, giving the
corresponding equivalences for arbitrary set.s of permutations, together with
t.he fad t.hat a partial spreadset is a spread iff it is regular on X', c.f. defi­
nition 1.3.4.•
Thus, the fundamental identification of partial spreads with partial spread­
sets corresponds to a generalization of the situation in elementary coordinate
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geometry: sets of lines throllgh t.he origin are identifed with the seI. of their
gradient.s, t.he subspace y=xm being identified with its slope m. Moreover, we
have shown, as in element.ary ge0metry, that any two lines may be taken as
the x and y aris, and t.hat. by rescaling (recall the identification cI> : Y -> X)
on the y axis we can further force any chosen third line through the origin
1.0 be the uniI. line.

Note however that in our case the 'points' of the x-axis are used as coordi­
nate values, whereas in element,ary geometry. a distinct seI., viz. the reals, are
used as coordinate values. It is often convenient 1.0 mimic this setup in our
situation by allowing the chosen components, X and Y, 1.0 be coordinatized
by an arbitrary vector space R, isomorphic 1.0 the components of the given
spread.

For example, the natural choice for R, when the components are n­
dimensionai over a field I<, is t.o t.ake R = I<", and now X and Y are
identified with W by specifying bases (e1,e2, ... ,e" and (/l,h, ... ,j" re­
spect.ively; in t.his set.up the 'axes-identifying' linear bijection ([! : Y -> X is
tacitly t.aken t.o be t.he linear map sending j; >-> ei, for l < i < n. Now the
associated [partial] spreadset becomes a seI. of mat.rices M and the 'canon­
ica!' fOIm of t.he given [partial] spread is in I<" E9 I<", and the components
are y = xM, M E M, plus the Y-axis.

Recall that 1.0 also force a component W, of the given spread, t.o become
the unit. line under the chosen coordinatizat.ion, il. becomes necessary 1.0 fix
t.he axes identifier map ([! : Y -> X - W = 7W -1, in the sense of the theorem.
However, since by om convent.ion W is fi:red by the chosen basis of X and Y
we can specify the required W by t.aking an appropriate basis (/l, h, ... , jn)
of B so that the unique linear bijection specified by the basis image e, >-> f;,
for ali i, c.oincides wit.h W.

The above, analysis can be repeated for arbitrary vector spaces over a
skewfield I<. The basis for X and Y are then families (e, )iO and (/;)'E"­
(respect.ively), indexed by a possibly infinite seI. À. As before, a component
W can be forced 1.0 be the ident.ity by choosing an appropriate (I;)iE" Note
that. if I< is a non-commut.at.ive skewfield and t.he chosen space R is taken 1.0
be the space I<", the 'À-t.uples' over I<, then il. might be necessary 1.0 specify
whet.her I<' is regarded as a left. a righI. I<-space.

We summarize our conclusions as follows:

Corollary 1.3.16 (Basis Decomposition Theorem.) Let V be a vector
space aver a skewfield I<, and suppose T is a paTtial spread on V with at
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least three distinct components X, Y, W . . .. Let Z be any vector space that is
isomorphic to the components of T. Then

1. There is a paTtial spreadset T on Z that contains the identity map 1z
and a J{ -linear isomorphism

A:V=>ZEBZ

such that A IS a J{ -linea1 paTtial spread isomorphism from T to 11:,

satisfying:

A(X) = Z EB 0, A(Y) = °EB Z and A(W) = {(z EB z I Z E Z}.

In fact, to each J( -linear bijection a : X --> Z there corresponds a
J( -linear bijection f3 : Y --> Z such that

A = a EB f3 : V => Z EB Z.

2. Let Bx := (e;);EÀ be a basis of X and for any basis By := (f;);EÀ; so
the juxtapostion Bv := (Bx ;By) is a basis of V. Define the canonical
J{ -linear isomorphism f3x : X --> J(À, f3y : Y --> J{À, and f3x EB f3y -->

X El Y --> J{À $ J(À. (N.B. If J{ is non-commutative, J{À is made into
a left or a right vector space, depending on whichever guarantees the
required J( -linear isomorphisms with X and Y.)

Then there is a partial spreadset T on J{À such that the J( -linear bijec­
tion

f3x $ f3y : V --> X $ Y --> J(À $ J(À

defines an isomorphism from T to "" the paTtial spread on J(À EB J{À

associated with T.

Mo,·eove,·, any component WE T \ {X, Y} can be mapped to the unit
line x = y of J(À $ J(", thus ensuring l E T, for any choice of the basis
Bx, and for some choice of By (depending on the Bx selected.

Proof: By t.he preceding remarks. _
For emphasis we restat.e what. this means for finit.e-dimensiona! spreads.

Proposition 1.3.17 Let V be a vector space of dimension 2n, n a positive
integer, over a field J{, and that T is a pa,tial spread of K -subspaces of V
with at least three distinct components X, Y, Z . ... Ghoose a K -basis Bx :=
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(el,e2"" ,en) of X and K-basis B y := (/I,h,···,fn) ofY, and let Bv :=
[Bx ,By] denote the associated K -basis of V, obtained by juxtaposition, thus:

Then there is a basis By of Y such that relative to the basis [Bx , By] of V
the canonical l-inear bijection:

maps X onto Kn e 0, Y onto °e K", and Z onto the UNIT LINE

{(x, x) I x E K n
} .

.
Proof: The proposit.ioll is Il special case of t.he result. above, corollary 1.3.16.

•
We conclude wit.h a basic isomorphism result.

Theorem 1.3.18 Let 7T be a translation piane with spread S,ofXeX = V
where X is a left K -vector spaceand let p be a translation piane with spread
Sp of Y e Y = IV wher'e Y is a left L-vector space. Assume that K and L
are the component kemels of 7T and p respectively.

Let p and 10 be isomorphic by a bijective incidence presering mapping </>.

(1) Then L and K are isomorphic skewfields and </> may be considered a
semi-linear mapping from IV onto K.

(2) If 10 = P then </> is an element 01 the gTO'UP r L(V, K).
Furthermore, the full automorphism group G of the translation piane 7T

is a semi-direct prod'uct of the translation group T by the subgroup Go of
r L(V, K) which permutes the components of the spread S.

The subgroup Go of r L(V, K) is called the 'translation complement' of G
or 7T. Go n GL(V, K) is called the 'linear translation complemento '

Proof: We have seen (2) previously. We note that if 9 is in the kernel
endomorphism skewfield K of 7T t.hen g-I</>g is in the kernel endomorphism
skewfield L of p. Hence,

K ::: K ::: L ::: L.
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1.4 Thtorial On Spreadsets.

3D

This tntorial discnsses important. aspect.s of the above theory: low rank
spreads; regnli. The latter suggests the need for introducing a projective­
space version of the theory of spreads and partial spreads. This Bruck-Bose
t.heory wi!! be syst.emaically introdnced later ono The focus in the tntorial is
on t.he motivating cases rather than the generaI case. The reader is invited
1.0 tidy np the sketchy treatment presented and 1.0 anticipate developments.

Rank-Two Spreads.

\Ne have mentioned on several occasions that ali rank-one spreads have been
described. It is th\lS nat.ural 1.0 turn 1.0 rank two spreads. The literat.ure
concerned wit.h this area of translation planes is enormons; part. of the interest
stems form it.s connection wit.h the theory of fiocks, generalized qnadrangles
and packing problems that are t.hemselves associated with highly interesting
higher rank spreads.

By specialising the above we can rednce the stndy of rank two spreads 1.0

spreadsets indicated in t.he following theorem. This theorem nnderpins the
enormons literature concerning two-dimensional spreads; the theorem also
provides a pathway 1.0 the theory of fiocks and certain types of generalized
qnadrangles.

Theorem 1.4.1 Let 1T := (V, S) be a spread 01 rank < 2 over a skewfield K.
Then there are funetions g and I Irom K x J( to K sueh that

.M [
g(t, u) I(t, u) ] "'t .}(

(g,/) t uv,u zn

is a spreadset, and there is a K -linear spread isomorphism \li lram 1T onto the
spread 1rM('./l' vewed as a K-spread sueh that any ordered triple (X, Y, Z),
eonsisting 01 three distinet eomponents 011T, get mapped under \li onto the
triple (y = D,x = D,y = x): that is, the image under \li 01 X, Y and Z are
resp. the x-axis, the y-axis and the the unit line 01 \li.

Proof: By the above we know that atl isomorphism farm 1T 1.0 1rM exists
for some two-dimensional spreadset. So the only qnestion is whether il. has
the given formo Sinee the differenee bet.ween distinct members in .M are
1.0 be non-singnlar, distinet members of .M have different first rows and
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also dist.inct. second rows. (For skelllfields consider t.he image of (l, O) 1lnder
dist.inct. members of M t.o get. distind first. ro,,·s, and similarly 1lse (O, l) for
t.he second row). l\loreover, t.he reg1llarit.y condition on a spreadset. means
t.hat. t.he image of (O, l) I111lSt. range aver 1\2, so t.he second row ranges over aH
of 1(2 Moreover, for any given val1lc of t.hc second row (u, v) E 1\2 we m1lst.
have 1lniq1le val1les g(u, 1') and f(1I, v) in posit.ions (l, l) aud (1,2) resI'. , for
ot.herwisc t.he facto t.hat. distiuct component.s havc dist.inct second rows get.s
violat.cd. Hence 9 and fare single-val1led, which is t.he desired res1llt. •
The idcnt.ification abovc may be exprcsscd by interchanging thc t.\Vo rows of
M. Gne \Vay t.o est.ablish t.his is t.o appropriat.ely modify t.hc proof of t.he
above. l'his is left. as exercise. Not.e t.hat. t.hc 'new' spreadset. is thc same one
as before bnt. expressed different.ly.

Remark 1.4.2 The sl'1"cadsef M, faI" the given (X, Y, Z), can be alterna­
tively wliten as M

, A [' "] ..., .]'/v'(g.!) = g(t,1I) f(t, u) vt, U In \

We end wit.h some simple, bnt. import.ant., exercises on finite rank two spreads,
or l'at.her on spreacls that. have a l'anI-\: bvo reprcsentation - so as not exeludc
t.he Desargnesian casco The l'cader is encollraged to consider how far t.lte
rcsn!ts generalize: (l) to finit.e spreads of arbit.rary rank; (2) spreads of rank
t.\\'o over comnmative fields and skewfields, ct.c.

Exercise 1.4.3 Let 1\ = GF(q), q = p'.. Let M be o.. 2 x 2 sp1"ea.dset with
ent,ies in IC Then:

1. Let A and B be non-sing·ular matl"ices in GL(2, q). ThenN:= A-I /\.1B
is a spreadset and thC"le is o.. 1\-/inear spread-isamorphism from 7J"M to
"N. In fact the mapping

A El) B : 1(2 El) 1\2 ----> 1(2 e 1(2

is the r·eq·uired isomoll,hism.

2. Suppose M and N are spreadsets such that one is obtained flOm the
other by a sequence of T010 andlor column tmnsfolmations (so each
tmnsfol1n IJ in tlte scquence must be o..pplied to eve,·y member of the
sp,·eadset being conside,·ed). 'l'iwn thcre is a /{-lìnear spread isomor­
phisrn from 7J"M to 7J"N such that tlw x-aris and the y-o:Lis are both
p,·eserocd.
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3. lfM is a spreadset then so is M', obtaned by transposing every member
ofM.

The Regulus

In the following exercises on partial spreads and partial spreadsets, we in­
troduce the regulus. They provide one of the most import.ant. tools for the
constrnction and allalysis of spreads, and hence translat.ion planes. A sys­
tematic treatment. of reguli will follow lat.er, based on t.he projective space
approach to [part.ial] spreads. T/le treatment. provided here elearly indicates
the desirability for int.roducing project.ive language instead of always work­
ing direct.ly wit.h vect.or spaces. This approaeh, the Brnck-Bose version of
Alldré's theory, will be int.roduced syst.emat.ically in sect.ion 2.2.

Exercise 1.4.4 Lct iC denote the scala1' reg'Ulus in gn El) gn, g a field; thus
iC has the scala!' ficld g :'S GL(a, g) as its paltial spreadset; iC = "K' }jere
g is identifed with tlte a x n scalar matrii field with entrics in g.

1. Show thatfo1' A E GL(a, g), {kA I k E g} is the partial spreadset of a
regulus R A that contains y = xA, and shares x = O and y = O with the
scalar regulus iC. Conve1'scly, cvery reg'Ul'Us in gn El) gn, that contains
the x-axis and y-axis, is of the forr" R A, for some A E GL(a, g).
(Apply thc linea1' bijection Diag [1, AJ to the scalar regulus; also re­
member that a 1'eg'Ulus is deterrnincd by any thrce of its components.)

2. For A, B non-singular',

RAnRB={X=O,y=O} or RA=RB

3. In PG(2a - l, g), let R x .y be tthe sct of ali reguli Rx,Y that share
two /i:J;w. componeats, X and Y. Then Rx,Y induces a partition on ali
the subspaces of PG(2a - l, K), that have projective dimension a - l,
and are distinct f1'Om X and Y, and the subgmup G of PGL(a, g) that
fires X identically and leaves Y invariant induces a transitive g1'O'Up
on Rx,Y, and the global stabilizer in G of any R E Rx,Y acts sharply
transitively [i. e. 1'cgularly] on R \ {X, l'}.
(Interpr'Ct the earher parts projectivcly; observe that G is sharply tran­
sitive on iC \ {X, l'}.)
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We can no,," est.ablisb t.bat. om definit.ion of regnlns coincides wit.b t.be classical
definition, used in finit.e gc'Ometry.

Exercise 1.4.5 A ",gulus in PG(2n - l,q) is a pa.rlial spread with q + l
camponents such that a line meeting tftr-ee 01 the components meets ali 01
them.

We note in passing t.bat wben n = l, tben t.be regulns coincides wit.b a ruling
class of a byperbolic quadric.

Exercise 1.4.6 A spr-ead S is called r-egular- iff R. C S, whenever- R. is the
regulus containing three distinct components 01 S. In PG(2n - 1,2) every
spread is regular·.

Reguli In Projective Spaces.

Any vedor space V over a skewfield K may be viewed as project.ive spcae
PG(V, K) wbose point.s are t.be rank one K subspaces of V and wbose lines
are t.be rank two subspaces; in generai t.be projective dimension of a rank
k-sllbspace W of V is k - l by definition. Using t.bis t.erminology tbe fnnda­
mental t.beorcm of spreads and partial spreads may be expressed in t.erms of
projective spaces, wbich is t.be Bruck-Bose mode!. Ali t.bis will be developed
in tbe nexl. section on t.bc basis of a syst.emat.ic review of projective spaces.

The goal here is 1.0 considcr certain aspects of part.ial spreads called regllli:
tbcse are t.he most. important. part.ial sprcads arising in t.ranslat.ion piane
t.beory.

Exercise 1.4.7 A regulus in PG(2n - l, K), K a field, is a parlial spread S,
01 the associated vector- space V, such the set 01 projective lines meeting three
distinct components 01 S cover the same pl'Ojective points as are covered by
the members oiS. Show that when V =XeX then y = xk, k E K, together
with x = O, lorm a regulus called the scalar regnlus on X e X.

What il K is a non-commutative skewfield?

Proof: The rank t\\'o space i u , u E K, spanned by {ueO, OEllu} meet.s ever
component in a rank one space, and t.be t.ot.alit.y of point.s covered are ali t.be
projective point. of t.ype [tu, uk)], u, k E K and t.be points on t.be y-axis. If K
is noto commut.at.ive t.ben y = xk is addit.ive but. not a K-space if K operates
from tbe rigbl. as (xa, xka) is noI. on y = xk if a is not. centralized by K.
So, alt.bough tbe covering is t.bere and t.be spread y = xk are bot.b t.here, t.he
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cmnponents of the spreads are Bot always ]<-spaces: they are spaces Qver
fielels in t.he cent.er of f{ .•
1'hl15 thc scalm- rcglÙl1S is a. genuine regllins iff t.he scalar field ]( is a co'm­
mutative fielels!

Now consider any regnlns 5 in PG(2n-l, f{), t.he nnelerlying veetor space
being V, I( any fielel. So we have a J(-linear isomorphism Wont.o a regnlns in
f{n f!iJ J(n sneh t.hat. a t.riael of distinet. component.s (X, Y, Z) of 5 get. mappecl
ont.o t.he t.riael (y = 0, x = 0, y = x); aIso aline cover of 5 get.s mappecl ont.o
aline eover of t.he image 11'(5). I3nt. any line meet.ing ali t.hree members of
the t.riael (y = 0, x = 0, y = x) mnst. meet. every set. y = xk, for k E J(, anel
lies in t.he tot.ality of sneh snbspaees. TllllS t.he regnlils 11'(5) must. concide
wit.h t.he scalar regnhls. Bence we have establisheel several faet.s: (l) every
regullls o\'er a. field Inay be viewed as a scalar reg11111s and three cornponeq.ts
of a part.ail spreael over a fìelellie in a uniqne regnlns (which may noI. be in
t.he partial spread).

Thns we have est.ablisheel

Rernark 1.4.8 In PG(2n - l, f{), far J( a commutative field, the1'e is a
linear bijection from any re(Jltlus onta the scala,. regulus and this bijection
can be chosen so that any tMec components may be mapped respectively onta
the x-axis, the y-a:Lis, and. the unit ine of the scalar regulus. M01'eover, three
components 01 a pa1'tial spread lie in a unique 1'egullLs and hence the subgroup
01 PGL(2n - 1,K) jì.?:iny a rcgu.lus is triply tmnsitive on its components.

\Ve shall eventnally eleal wit.h t.he most. generaI case Msociat.ecl wit.h t.he above
resnlt.: J( any skewfielel wit.h infinit.e dimensions allowecl. This is essent.ially
a repeat of t.he above bnt with nlare attent.ion to some details.



Chapter 2

The Bruck-Bose Projective
Representation Of Spreads.

In t.his ehapt.er, wc shall be disenssing a model of t.ranslation planes, dne
t.o Brnek and Bose, whieh mainly nses project.ive space", rat.her than \'Cet.or
spaces, so we obtain what. amonnt.s t.o a project.ive version of the resnlt.s
of André discnssed above. However, the Brnck-Bose model and the André
model are 'eqnivalent.' onl)' in t.lw sense that. vcct.or spaces and projective
spaces are 'cquivnlcnt'.

2.1 FoundationaI Struetures In Finite Geome­
tries: A Review.

In t.he first. chapt.er, see l'age 2, we introdnced t.he basic not.ion of an inci­
dence st.ructurc, althollgh so far the only incidente strllctures we have C011­
sidered explicit.ly have been affine planes. To eonsider project.ive versions of
spread theory, wc shall need t.o consider Desargnesian spaces - affine and
project.ive - and abo arbit.mry project.ive planes beeanse t.hey cOl'l'espond
t.o t.he 'dasnre' of arbit.rary affine planes. In t.his lect.nre, we shall review
t.hese concept.s and int.rodnce some not.at.ional devices nsefnl for the st.ndy of
t.rans!at.ion planes.

All these concept-s are dosely relat.ed to generalizations of affine planes
c.alled net.s: lat.er we shall stndy these t.oo.

35
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Definition 2.1.1 Let N:= (P, L, C, 1) be a quadruple, lOhere P, L, C, and
I are pair/liise disjoint sets consisting of POINTS, LINES, PARALLEL CLASSES,

and INCIDENCE, respectively, and where I C P x L; so (P, L, 1) is an inci­
dence st'ructure in the usual sense. Then N is a NET if

1. C is a partition of the lineset L, based on an cquivalence relation called
PARALLELISM, and the members of C are called PARALLEL CLASSES..

2. Each point is incident lUith exactly one line of each parallel class.

3. Givcn a point p and a line A such that p and A are not incident, there
is a unique line B l'aralieI to A which is incident with p.

4. Two lines from distinct parallel classes have a unique comman incident
point.

If there ar-e TI. points per' line and k = ICI pamllel classes, the net is said to
have ORDER n and DEGREE k

It follo\\'s immediat.ely:

Remark 2.1.2

1. Every affine l'lane A is a nct.

2. Let D C C, where C is the set of pamllel classes of any net A. Then
the points of A and the lines covered by the members of D for-m a net
- a subnet of A - pT'Ovided D is appropriotely non-degenerate, e.g.
IDI ~ 3

3. An affine l'lane of arder n is a net of arder n with degree n + 1, and
every net with these parameler's is an affne l'lane of order n.

4. Let M be a partial spr'ead on a vector space V. Then the net with
pointset V whose lines are additive cosets of the members of M form
a net; this net is called the net of the pariial spread M, and which we
dcnote by II.'v/: the parallel classes may be identified with the members o}
M: so if M is a spread then the net II,'v/ coincides with the translation
l'lane II,'v/' (See exercise 2.1.5 far details).
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The PROJECTIVE CLOSURE Jil of a net N = (P, L, C, 1) is t.he incidence
slructure obtained by adjoining t.o il,s point.set. t.he set. of it.s parallel classes
C and lineset. L u {eoe } as it.s lineset. and wit.h nat.mal incidence, i.e., t.he
nelV line Roe is adjacent. t.o ali t.he parallel classes only and every line in L is
incident wit.h it.s parallel class. When N is an affine piane then it.s project.ive
closme is defined t.o be a project.ive piane. \Ve adopt. a more explicit. and
homogenious version of t.his defint.ion.

Definition 2.1.3' A projective piane 1r is an incidence sructU7'e (P, L, 'I)
urith the following properiies:

1. Given t1/l0 distinct points P, Q ofP , '1here exists a unique line p s'Uch
that (P, p) and (Q,p) E 'I;

2. Given t",o dislinct lines p, q of L , there e:rists a uniq-ue point P such
that (P, p) and (P, q) E 'I;

3. Thenò e:rist fo'Ur points no thrce of which are incident with the same
line.

Illcidencc is clearly set.-t.heoret.ic, so we cont.inue wit.h t.he not.at.ional devices
far project.ive plancs t.hat. \Vere int.roduced eal'lier far set.-t.heoretic incidence
strnct.me, see page 2. The not.ion of a cent.ral collineation differs slightly far
project.ive plancs from t.he corresponding definition far an affine pIane.

Definit.ion 2.1.4 Let 9 be a collinealion of a projective piane 1T that fixes
ali the points of a line e and ali the lines thmugh a point P. Then 9 is a
CENTRAL COLLINEATION with AXIS eand CENTER P; 9 is a TRANSLATION

(resp. HOMOLOGY ) if P E e (resp. P f/: e).
Exploit.ing t.he point.-line dualit.y far project.ive planes it is clear t.hat. a cent.ral
collineation may be equivalently be defined to be one t.hat fixes ali the point.s
(lines) on aline (point). Note also that anI)' the trivial collineation is a both
an° elation and a homology.

\Ve have already indicat.ed, remark 2.1.2, how the 'closure' of a net when
applied to an affine pIane yields a proje<:tive piane. Far a project.ive pIane t.he
reverse also holds. The det.ails of ali this discussed in t.he following exercise.

Exercise 2.1.5 Let 1r be a projective piane. Choose any /ine eDC and form
Ihe incidence structur-e 1re~ of 'points' those points of 1r which are not on eDC

and lines of 1r not equal lo eDC • Incidence is defined as inherited from the
incidence of r.. r.e~ is called the affine 7'estriction of," with respect to e"".
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1. Show that 7Ol = is an affine piane.

2. Conve,'sely, ij <> l' an affine piane we may dejine a projective piane a+
as jollows: The points oj a+ are the points oj n and the pamllel classes
oj (l and thc lin"s oj n+ are the lines oj et and the set oj pamllel classes
oj n, The 'points' oj u+ whieh arc pamllel classes oj n are called the set
oj 'infinite points' and the line oj Cl+ which is the set oj parallel classes
oj et is called the 'line at infinity C"" ' oj n+, (We shall also ,'ejer to f oo

as thc 'line at infinity' oj the affine piane n).

Show ULat n + is a p,'vJective piane. n+ is called the projective clos'Ore
oj n.

3. Let n be an affine piane and 70 and p two p1'Ojective planes extending n
lf.'ith rcspect to the adjoinmcnt oj lines p and q oj" and p respectively.

(a) Show that the,'e is an isomo,phism j1'Om p to " which carries q to
p.

(b) Show that 70
"
~ pq ~ n,

4. Let n be an affine piane 'with cvllineation g1'O'OP G, Let n+ denote the
]Jrojective clos'O,'e oj Cl, and let (,'" be the line at infinity. Let G+ de'Ilote
the collineation g1'O"P ojn+. Show that G is isorrw']Jhic to the s'Obgro"p
Gt, the global stabilizer oj t oo

'Ve shall normally collsicler trans1at.ion pIalles " as affine planes alt.hollgh,
occasionally , we shall refer t.o t.he line at. infinity of 70 t.o mean t.he line
adjoined t.o " t.o prodllce Uw projective dosnre 70+ SimilarIy, we wiII lise
interchangeably t.he t.erms 'illfinit.e pOillt.' allei parallel Ch15S.

In the relnainder of oltr fL"'iew of fOlllldatioIlR.l Iuatters, we consider SOllle
of t.he fllnclament.aI concept.s relal.eel t.o affine anel projective spaces.

Definìtìon 2,1. 6 Let V be a vcctor space o'UCr a skcwfield J(. The corre­
sponding AFFINE SPACE AG(V, K) is the callection oj ali the J( -subspaees
W ~ V together 'tvith thei7' translates:

AG(V, l\) := {e + IV I e E V, H' ~ V} ,

The membe,'s oj AG(V, [(l are ealled the affine s'Obspaces oj V, and an affine
Sllbspace c + H' is rcga7'!led as having same dimension as H', v:hen vielf.'ed as
Il vector subspace oj F, The zero-dimensionai subspaces are called points, so
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V itself is the set of ali affine points, the one-dimensional subspaces aI"€ the
affine lines and the t'iliO dimensionai subspaces aTe the aJJine planes, etc.

The tmnslation group of AG(V, K) consists of ali the bijections of V that
hae the fOTrn Tv : x I-> x + ", fOT " E V, and t-wo subspaces aTe called parallel
if they lie in the same m"bit of the tmnslat-ion graup.

An incidence stmctuTe is CONSIDERED an aJJine space if it is isornOT­
I,hic to the subincidence st1UctuTe cO'rresponding lo the poinfs and lines of
AG(V, K), fOT some veeto'" spa.ce V oveT a skewfield K"

Il. is not. hard t.o charact.erise t.he snbspaces of an affine space AG(V, K) in
t.enns of it.s point.-line incidenee st.rnct.nrc (anel il:s collineat.ion gronp), ancl
also to det.ennine cOIllplet.ely t.he J( vcct.or spare V. Tlllls an inridence st.rnc­
t.nre cannot. be isomorphic t.o t.hc inridenre st.rnct.nre of more than one affine
.spare. Hence we shall let. the context. det.ennine whether we are ronsidering
_a Ist.andarcP affine pIane AG(F, ](), or an incidence strutture iSOl110rphic to
t.hat. of an affine spacco

The fllndamental ronnect.ions bet.ween affine and project.ive planes, devel­
oped in exercise 2.1.5: have st.raight.fonvi:\l'cl finnlogues re1ating affine and 1'1'0­

ject.ive spares. Far example, project:ive spaces cOllld be int.rodllced by adding
on t.hc eqllivalencc dasscs of affine spaccs as 'infìnite' sllbspaces. However,
as in thc planar case, we cho05e to int.roduce t.bis 'closure' of a11 affine spacé
by givillg a more homogeneons vcrsion of t.he defÌnit.ioll.

Definition 2.1. 7 Let IV be any K -vecto'!' space wheTe K is a skewfield. The
PROJECTIVE SPACE PG(lV, K) is the lattice of vecto,' spaees where incidence
is inhe,~ted fram that of W.

Let A be any X-vecto,' subspaee of Il'. Then A ami FG(A., K) a7"€ both
regaTded as being thc 'same' pmjcctilJe s"uspaces of PG(IV K) .. and the [pm­
jeetive} dimension of A is a - l ",hc"e a io9 the mnk of A. as a K -vector space;
so PG(lV, K) ha.s dimension diml( IV - l.

The [p-rDjective} POINTS of PG(IV, K) ore the subspaces 1lIilh prajective
dimension le1'O, the LlNES are the s"bspaces that have' projective dimension
one, lhe PLANES have p1'Ojective dimcnsion t",O and lhe HYPERPLANES II
are the slLbspaces of PG(lV, K) that are maximal in IV: so hyperplanes II
aTe veetor sv.bspaces of W that have codirnension one in H-'.

An incidence structure is COi':SlD8RED a pTojective space if it is isornOT­
phic to the sabincidence structure c017'€sponding to lhe points and lines of
PG(I'V, X), far some vecto'" space V ove,- a skewficld K.
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Remarks 2.1.8 A ]i1ojeclive "pace PG( IV, K) has ali it 'ltbspaee8 dci",··
utincu. by lite ùtcidencc structun; ul it,'; point::.i lLnd l'ine:;: a set S oj lJ1'Ujcdive

poirLls L'i (L .'iubspace ilf 8 coniains l/u.: ]J(rints 0/ eve"7J fine.'!. l/ULt nu:ct... il Ùt

al lcast l'ilio poàtls.

Howcvcr, it. still relllains t.o exc!uùe t.hc po,"ibilit.y that project.ivc sl",ces
that. are i~orllorphic as incidellce :-;tructure.'j arise from non-isornorphic vcc­
t.or sp'u:~, po,"ibly evell dclineù over ùifferellt. fidds. vVe do t.his by first.
con~trllcting t.hc a.'}sociat.ed affine pIaneti.

Definition 2.1.9 Let PG(W, J() be a pmjeetive 'pace (J.Ssoeiated 1.lIith a vee·
to,/' spaee ~V delined ave" a skewjicld K. Let V be tl'/l.y hype'/])lane 01 W.
Then PG(W, J(t is the incùlcnec stmet't,,·c whosc ]wùds m'C thc ]'/rojcciivc
]winl.s in PG(W, I{) - PG(1I, J() U'/uJ whose fincs aTC ali the 8cl.' 01 poi"ts 01
type e' = e\ {L}, wherc eis any line 11.01 in V t/w.t mccts V in l.Iu: jJmjccUve
jJllinl L.

\Ve llQW c.stablish thc eqllivalcllCc l>d;wccn aflillc alItI projcctivc IjpaCCS I gCll­
crali:-;ing l.1JC COlTcsponùiug l'esuli, for planc:i.

Olle approa.cl1to t.hi~ wOllld be to follo\\' t.lle proecdnrc of exerdse 2.1.5:
ddine paralld cla",e" 101' thc line.> of AG(1I, J(), and "ho\\, that. the i.I",ociateù
pl'ojcctivc closl1n: is t.lle inddcucc stl'nctlln: or a projc('l,ive spacco 1311t: thc
lat.ter inciucnec st.rlldllrc nccus 1:0 be axiol11at:ically l'ccogubablc 1 a.s in tlw
planar casco SilHX~ al t.llis st,age t.heBC axioms are noI'. available (l'or dimcll­
sion > 2), we shall follolV an alt.ernat.ive approach based on thc met,llOd of
bOIIlogenco\ls cool'dinat,cs, but. aJapted for t.hc infinit.e-dirllcnsional case.

This lllethod ha" I.he advallt.age of providing a concrcf;e link A : AG(V, I()'" ~
PG(V"',]{) betwccn the projective cloenre (which we "hall define) of the
afIinc space AG(1I, K) and t.he projeetive space dciineù over V'" = V x J( a
r~lllk one ext.ension of 11. I3a.sically A iti t.bc l1niqllc cxl.cnsioll of thc aHine­
space isolllorph!slll v """ ('/I, l), from AG(V, J() to PG(V"', I()H~, where
Hoo = V x O, ench that t.he 'slope' (~V) of a coset. e + lV maps IInùe,. A
to Hl X 0, iu thc hyperplanc Hoc. \\'c IlOW S\1Il1IlH\rizc aH I.his aud a f(:vv'
rdat.ed propert.i~:

Theorem 2.1.10 (Holl1ogeneous Coordinates.) Lct \f ve a veetor ;paee
D'Ocr a 8/,,,.,,;jicld ]{; su thc di'reet ]iwduet V'" := V x 1\, v'iewed 0"' a J( -S)laee,
contuin.s Itypc."1Jla1W

Hoo := (\I) := {(/', O) I v E V} 2! 1'G(1I, J()
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Dc}inc tlte cO]J'ics (V) := {(v) I V E V} llIul Vo := {(li, O) I 'II E V} (- H~) 01
V, an<l lct (W) an<l Wo be the nat:aml ima!]e 01 anv subspace W :::; V in (II)
an<l Vo ,·especli'llciv.

Let AG(V, K)O := AG(V, g) \ V <lenote set the set 01 aU the alfine sab­
"]Jaces 01 AG(V, K) mdh I.hc alfine poi ilI." eXc!lldL'<1. Dc/ine thc GliAllll,NT

O'" SLOPI:': MAl-':

\1 : AG(V,!{)" -> PG((V),!{)

c+ W ...... (W).

Then the loU01lling ho/<l.

1. \1(AG(V, K)O) = PG((V), g); the image \1(e + W) = (W) ·;s caUed
tlte SLOPIl 01 ti", "l/ù", "ltbs]lO.ee c + IV, IOT c E Il, O i IV :::; V.
The l'TOJeclive sl'au; PG((V), g) is lite llYPlèHPLANIl 11.'1' INFINITY lor
AG(V, g).

2. D{·:fine the stTuetUlc AG(V, K)+ consist'ing 01 POINTS an<l SUBSP!l.CES

11Ihe"'e, tlte l'0int set is <le}ined bV

p= [AG(V, g)] U [\1(.4G(V, gt)L

an<l lite sub"paces 01 AG(I/, K)+ an; (1) thc lIlembe."s 01 P; (2) the
S'abspaees 01 the pmjecti'Oe "po.ee PG((I/), K); an<l (3) subset" 01 p
l!tat may be C:l..7Jres::;ed in tlLl~ furm:

(e + 1'1')+ := (c -/- W) U {(W)},

whc"e Hl is anv non-t.,.;vial vecto'" ",,,,bspaee 01 V an<l c E V. T/le
,abspaee (c + W)+ i> caUed tlte (projective) CLOSUliE 01 c -/- IV (and
<loes not <lepen<l on the clwiec 01 the eoset Tepn;sentitive c); (W) is the
SLOPE or GllADmNT 01 e + W.

17,en AG(V, g)+ '" a lattice, n:lative to eontainment, and the do>wc
01 anv affine subspace c + W is lI,e >1ILUllest lattice dement containing
"U the p{)'int> in it.

3. l'lH:rc i.s il nniquc lattice i,sUT/W11Jhisrlt

/\.: fIG(V,!{),' -> PG(V''',K),



ClI.,' PTER 2, TUE I31WCI\-J30SE P1W,mCTIVE REPRESENTATlON 01" SPTlEA DS.<I1

ii'Uch lhal its reiil'riction lo Ure poiut:" 01 AG(V, K) defineii Ure 101l01lling
iii01n011,hiii11L À 01 amne spaees:

À : AG(V, K) ~ l'G(V+, K)II=

n >-> (n,I).

1\ maps lhe dosu1'C 01 evelY affine subspace c+ W 01 AG(V, K), W =J O,
into the s'Ubspace 01 PG(V+, K) that meets H oo in Wo: that is, 1\ maps
the s/ope (W) 01 any affine s'Ubspace 01 AG(V, J() into ils 'copy' W x O
in thc hype1plane 1100 :5 PG(V+,K).

4, E:Lp/ic'it/y, 1\ is an iso,no17,hism /rom ti", p10jcctive space AG(V, I<)+
onta U", pro}ective space PG(V+, K) given by:

AG(V,I<)+ ~

(W +et H

(W) H W X O.

PG(V+,K)

(IV, O) (]j (c,I)

Proof: Far eonvcniCllce aSSllIllC alI vcctor spaccs a.re takcn a.':i right. ](
'pace:;. (1) i, trivial, it. is rcnlly ouly couccrned with i11t.rodlIcing defilIi­
tiono. (2) is a "traightforward verification. (3) is essenl,ially l'm'l. 01' 1.1", next.
case: ('I), Here the 11lain point. is l,o reahse thal, il' VV + c is a coset. 01' n
Slio"l'ace of W 01' V t.he11 in t.he lat.t.ice PG(V+, J():

[(W, O) ED (c, I)K] = (c + W, 1) U (W x O),

wherc [X] denote:; the set. of projedive l'oiuts in X E PG(V+, K), and that
1\ 111llpo the t.he atliue slIbopace c + IV 'of AG(V, K) out.o (c + VV, 1), ami its
dosme (W) ont.o W x O :5 H"". The proof follows casil)'. _
The abov" t.heorelll contains wit.hill il: the eqlIiv,tle11ce bel.we,," projc<:t:ive
and affiue spaces, "pecifieally, t.hat: PG(V", J() \' "" AG(V, K) whenever V
hati codilllcn:;ion ane in V:

Corollary 2.1.11 (The Theorem 01' Veblen, [39].) Sappose V+ iii a vec­
tor spacc aver a8/.;cwjield K olTUIl/.; > l; thus V+ = V(]j < c >, lor s'ubs])().ces
V and < c > that hu;ue Te:;]). codùncTlsion (J,nd dimcw:iùnt O1W in V.

FonT! UrI' pl'Ojeclive space AG(V, K)+, the cloii",.e 01 AG(V, K), obtained
by dejining ]JOùrts at inJinity l,o k lhc parallel clo-siic, 01 U", lùrcii o.ntl '/lIilh
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cacI. line assigned an cxlra J1oint, viz., do J1nmllel claos. Let PG(V+, [{l
be Iile incidence stmcture nssociated with the lnttice oj [{ -oubspnces oj 11+.
Then 'Wc havc thc /olluwing incidence 8tructm'c isu'rrUJ11Jhis7ns:

1. AG(V, [{)+ :: PG(V+, K);

2. AG(V, J() :: PG(V+. J()"'.

It is worth stressillg:

Remark 2.1.12 The nfIine space AG(V, K) has the same dùncnsiun no Il
,"Ilereas PG(IV, J() has dimcnoiun the dimcnsion oj a hv]!e17Jlane [{(W) of
W; ther'e is ,m ufTine space isorrw'7Jhism:

PG(W, [{)"" :: AG(ff(W), [{l.

2.2 Prajective Space Representatians: Bruck­
Base Theary.

In t,his leet.ure, we shall oe. disCllssillg a mode! of translat.ioll plaU!,"" dlle to
Bruek alld Bo~e, which lml.inly ll.sCS pl'ojedivc spaces, rat.hcr t.hall ved:or
Hpaces, so we ootain what anlOu.llt.::; to a projectivc ver.siOll of thc l'esult.::;
of André disellosed above. Howcvcr, t.he Bmck-Bosc modcl and t.he André
mode! _ne 'cquivalcnt,J only iu t.hc .sensc t.hat vceLor space:J alld proj(x~tivc

spaecs are 'cql1ivalent' .
Wc first iulroùllce tlw IJl'ojectivc space vCl'sion 01' aH AndrL'-l,ypc t'p1"lxul;

this is es,cntially a rcsta1.cment of thc HSHal defiHi tion of a sprcad in project.ive
spaee tcrminology.

Definition 2.2.1 Let E = PG(V, K) be a.n n1"bitnL'f'i! ]!1'Ojcelivc space, asso­
ciated (l veelor space V ove1· a skellifìcld 1\, o.nd let P dcnote " collectiun oj
{at least t'Wo/ 1Il'1Llually 0!:e1ll ,mbs}Jacco oj 2:,. l'h"" P 'io ca/Lcd (lpRO.JlòCTIVI::

l'ArmAI, spitEAD ow;h t/wt viven anV t1ll0 diotinct o,"b",])nces L, M E P ancl
any lJOint ]l E L: not on L 01· Al l thcre is fl uuiquc line e which contains ]l

and intcr',ccts both L and 1\1.
1j jurthemwre t/w puints oj P j017n (l covcr uj the poinls oj E then P 'is

called a pROJECTIVE SpREAD.
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II; is illlnwdiat.c t,hat. a projcdivc [partial] "prcad in PG(V, J() is jnst a vcdor
"pace [part.ial] sprcad of J(-snbspaccs of thc J(-vcctor spacc V, <Uld conversdy
t.hat. cvcry "pacc [part.ial] spread cOll'ist.ing of J(-snbspaccs oI V is a [part.ial]
[projcet.ivc] spread in PG(V, K): t.hc existcm:c of 'f' cnsmcs t.hal. t.wo dist.iud.
:-;nbspaccs always dircd.-S11111 t.o thc wholc Sp<:lCC, and hcnce when at. lc(~t

threc cornponcnt./j are present., alI thc c01l1pOncllt.s have 'hale t.lte dirncnsion
or thc a..'>.':iociatcd VL'<.:tor spacco

Tlms 'ordiuary' auci 'projccl.ivc' [partial] ~preaù.s are ctiliclltially t.he ::i<.lIlW

objccts buI: viewed frOlIl diffcrcllt. pcrspL'Ct.ivcs; wc Barman)' do Hot dist.in­
gnish uetwccu t.helll. Beace, a sprcad is ddined by its context cithcr vcdo­
rially or projcct.ively. Accordingly, wc shall not. repeat. for projc'Ct.ive spaces
aH t.hc tcnnillology that: wc illtroc1uccd far ordillary sprcads; when interprct.­
iug sprca.dl) in projrx:l".ive spacc.s, wc shall sOlnctìulCS lIse thc t-cnn 'prujectivc
:-;pread'.

Ddorc lllovillg 011, we (;ollsidcr as an excrcisc a IBore generaI, Lut pu­
tativcly cqllivaicnt form, Ior t.hc definition of a [partial] spread: insl.cad of
rcquiring thc dirccl; tilllll coudit.ioll conld wc rcplacc it. by t.he \\'cakcr-t:o-~tato

condil.ion tllal. iI V -: X CD X thcn a eollccl:ion of pairwioc skc\V onbopacco
isoUlorphic t.o X, a.o.; projL'(~l:ive I\-~pace, l'onll Ho part.ial tiprcad?

Tlw following exmnple tihowti that. the indicatcd gcncralif;ation doe::> uot.
(:ilara(:t.crisc partial sl)realb, :;at.isfyillg thc staudard ddìnit.iol1.

Example 2.2.2 Let W be a veetol' spaee uve,' any s/':e'/[}field J(, lIIith an
injinil.e I\-basis '(C"C1'" .). No'/[} on 11 = IV (i) W ta/':e any spT'Cad S t/wt
ùu:!u.tlr:" X := IV C1J O, Y := O(D l'Vanti Z := (u> (j) 'IV I 'IV E W}. Nu'/[} lei. II,,
!l, and H, be hY/"'T1J!u.ncs uf tlte th"ee componen!:; X, Y and Z, l'CSl,ceti've/y,
ulitaine<! whcn (O,ed, (C1,0) and e, an: deleteri. TI"m

'Ii := (S \ {X, Y, Z}) U (Hl, !l" II:.}

'" a cuUcctù"" of painoise disjoinl J( -subspaccs uf V caeh of lIIlticlt are iso­
m017Jhic tu l-lf, and V = Hl (D lV. l1uwc-vc1', V CANNO'!' o.lw(l.Y:; be e:J.jJn:.:sscd
o,s lite dir'cct sum lif any t(110 7I!c7l!bc,'s uf 'Ii.

Thc exalllple sho\V" that 'Ii is a parl.ial spremi on V = W ED IV, il! thc ,cnse
tImI. aH itti melubers are pairwisc disjoillt. aud 'lmlf-dilllcnsional'; howcvòr 7-l
is Bot" a partial spremI, uecordillg to t.hc sl.a.udard lllcanillg, sillce t.hc dircd.
SIlIn conclition is reqllircd 1:0 hald.
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Howevcr, thc cxample docs not settie tbe qllc-:;tion when ti is a 'spread'
in t,hc sense t.hat ali its components form a covcing of PG(V, J(). Wc !cave
this mat.ter for t.bc reader 1.0 resolve:

Exercise 2,2.3 Let be V = IV ED IV a vector space, aver' a skewjìeld, such
that eve,.,) po'int 'is cave'led bV e:cactlv one J{ -subsp(Lce from a fam'ilv of such
subsp(f.ces H, s'U(:h that cve,'V II E 7i 'is :::: IV a5 a J( -space. Is 'il th" cose
that 7i is a sp,md, 'i.c., is V the di"ect sam of eve,'V pIÙ,. of dist'inct membe,'s
of S.?!

Note t.hat. thc answer is dcarly in t.he aflirmàtive if t.he projcct.ive space bcing
cow;idcrcu is finite'-ditncn::iional.

We now t,11m t.o t.he 13rnck-13ose modcl of a spread: it. is dosely related
to the project.ive version or An<1ré's ddintion 12.4.12 above, b1lt it. enablcs
tlw ]Jl'ojcdive piane <.us,sociat-cd wi t11 a t.ral1~latiol1 piane t.o be vi8wed H•.'> ilIl

iudùclll;C 5I1ustrllc.t.l1rc of a project.ivc space.
If S is a spread of J(-sllbspac:cs, of a vc~:tor space V over a skcwJiclrl J(,

then thc alfine trallslation piane IIs lw.' V as it.s point.s and t.he lines of Ils are
t.he additive coset, of t.he component.s of S. Tlms the lines of the translat.ion
planes mc t.he set. of all t.he altine s1lbspaces of AG(V, J{) tbat. are pmalicl to
t.IlC members of 5. 'l'lms in AG(V, J{)+ t.he sllbspaces of AG(V, J{) I.hat are
the lilles of the 1'.rall~lal.ioll pIalle ils havc a.'i thcir dosare t.hc lict or sllbspaccs

(5)= {(5) 15 E 5},

on t:he hyperpiane at. infinit.y (V).
1311t "ach (8) E (5) may also be reganl"rJ as t,Il" l'aint. at inhnity of tlw

lines of fls t.hat. are parallel t.o (8), amI (5) as tlie lille al. infinit.y, c-f., exercise
2.1.5. Tlllt~ wc have cst.abli1::ihed:

Theorcm 2.2.4 (Embcdding 'l\'ansiation Pianes in Projective Spaces,)
Lei j/ be a ,"cdo,. "pace 01ler n skewjielri K lL'f"l 5 a -,]"md of K ->ubspace
01 V. Then ti,,: ]lm)ccti,"I: closarc of tiu: tmn"lation pinne 11s , w'ilh poùl.lscl
j/ Imri lù":,, the eoseL, of 5' E 5, 'i" )"sl. ti", pro)ecti'lie dO"ILre 11+ of 11s i"
AG(\I, 1{)+, when ti", pointe, nnd lùws 01 rIs ({:re 1'I:yanled ns affine sILb-'paces
of AG(V,K).

Mor'e c:f,]!lictlV, lhe hV/wI]!I,we nt injinity ofIIs in 11+ i> tiw "ILb>]!nee (V),
a 'coPV' 01 V, nssnciateri /IIith tiLC ]!1'O)ective 8f1ace rG( (V), K) ::: PG(V, K),­
thl: iu.Jin'ilc ]Ioiuls n'rc ti,,: 1IIe1llbe,." (5) E (5), ti", finite point" nrl: 1IIC1IIbeTS
01 \I anri lite clo"aTe of I.he li"e c + 5 is (e + 5) u 5.
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Since AG(V, [()+ i, isolllorphic to a projective 'pace PG(V+, [(l, wllere V+
flS a hyperplane, the t.Iworem implies that any translation plane associatcd
1l1ith a sp11~ad is a snoincidencc stroctnre of a plOjcctivc spacc; here a SUUIN­

CIDENCE STIUJCTURC: :J of a projec:tive 'pace P meaJ1S that point.s ancllines
of J .wc sc1cet(x:1 from P l vicwed as a lat.t.iec, aud incidcncc is cont.a.iUll1Cllt
(t:reat...'Ù synunetrically). More explicit.!y

Corollary 2.2.5 Every pTOjective tmnsl"tion piane I1s is isomorph'ic to an
incidenee snOstructm-c oJ PG(V'[() ,such that the affine poin!s oJ I1s an; the
)iOints oJ l1w affine spnee PG(V+, [(l 1/, H a hYl'erplane is the linc at infiTL'ity,
the paints at infinity ar'e the components oJ a pTOJective spread So ~ S in H,
and alt thc other lines w'e tlw suOspaces mceting H in " mcmber' oJ S.

\Vc 'IllnlIlarize what. we have done. Any spread (V, S) delines a translation
l'lane 11 in AG(V, K) whose lines are the coset.s of the lIlembers of S. The
projeet:ive dosme 11+ of 11 lies in the projecf;ive dosmc space AG(V, J<)+,
the dosme of AG(V, [(), and t.he line at infinit.y II,,,, of 11+ is t.he hyperpJ.ane
at. infinity of AG(V, [(l; II,,,, has a copy So of S sllch t.hat. ali t.he lines parallel
to S E S have ,., thcre slopc t.he COITcsponding Su E So. Henee, since evcry
truu:;la.tion pIane arbes frOlli a sprcad we eOlldllde t.hat cvery translation
filane is a snoincidencc st"uc/.nm of a p7'Ojectivc spacco

'A'e have :;CCIl I.hat. thcrc j::; a uaturai j:;omorphi:;IIl betwccn thc dO::illre of
alline spaces AG(V, [()+ and t.he assoe;iated projeet:ive space latt.ice PG(V+, X),
V+ IV :: K, h"sed on hornogeneolls coordinat.es. Tlms theorem 2.2.4 above,
t.hat embeds an affine l'lane" int.o its proje<:tive dosme AG(V, J<)+, may
he IIsed to detine a generic emhedding of a project.ive t:ranslation l'lane in
PG(V+, J<) in t.cnns of a proj(~:tive spremI S in PG(V, K) that. delines t.he
l'lane 1T. This is the Urnck-13ose lllode!, aud it. follows iuullediat.e1y frorn
t.heorelll 2.2.'1.

Theorem 2.2.6 (The Bruck-Bose Construction.) Let S Oe a projcctivc
spread in L; ::: PG(W, K) wheTe W 'is " f{ -vector "pace. Ernbed PG(W, K)
in a pmjective "pace L;+ -,o that PG(W, K) is a hyper]llane oJ L;+.
Dcfinc Uw inciclencc s17'ud:urc, d(~Jint:d by incl-usiun<, wJwse puinl-sel P is
t/w set oJ )lmicctivc point, P := L:+ \ 1:: and w/wsc l'inc-,et .c incl'UlLcs tlte
hyper]Jlanc L:, t/w 'infinite line', "nd the; othei memOer" oJ.c, the 'fi'inte
lincs', "Te the pTOjetl'i'Vc saOspaccs of L:+ t/wt contain some component of S
as a hypcr]Jlane.
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Then the incidenee slruelul'e wilh points (P), and line, (L) and wilh inci­
denee defincd by inet-usion is a pl'Ojecti-uc I:ramlation piane 7f. Thc t'I'Unslation
<LXis is L; and 7f i" i'01T"'11,hic: lo lhe ajJine tmn-slation piane on the ambicnt
veetor space V 01 S, whose line" are lhe co,ets 01 the members 01 S.

The ;'01l1011,hi,m ",ay be ehosen 80 l.1w.t lhe lines pamilcl to S E S ""'-]',,
lo the poinl S E S, i.e. i/:"clI11lh"" 'reyaTlled as a poinl on Ihe 'line' L; E L.
7r

Thc above t;hCOl'elIl, due t.o 13wck and 13o,e, lIlay be l'egal'ded a:; t;he pmje,,­
t.ive version or André's fundament.al t.heorem or t.nm,lat.ion l'lane. Alt.hollgh,
t.hc originaI Bnlck-Bose vcrsion consideretI 0111y finit.e dinlCllsiollal projcct.ive
spaccs, it. was thcir intcllt t.o rcpr~cJlt a tl'<Lnslation pIane projecti"ely amI
wit.hill a project.ive spacco It. will becOlue apparelll'. that this vicwpoint'. is
e.xt.rcmdy Ilseflll whcn cow:iicJcl'ing const:rlldioll prOCL'SSCS withill projcctive
planc...... l\:Iorcovcl'l olJject,s which ruight. be cOllsidcred "gL'ometTic') in sornc
8cnsc might be 11101'e COllvcllielltly vi::>w.l.lized wit.hill a projectivc ::>pacc as 01'­
pOticd {,o withiu Cl. vector :;l'ace w1Jere LIte projcd.ivc liuc is e~~cnl.ially lui::i::;iug.
Far eXiUnplc, thc notioa or dllalit.y cauuot cHi;ily be cxpres::icxl u::iing ved.or
spacc tiprcads wheree:.l.'i a. dllal trauslatioll pIane ha.~ au c1egaut. reprc::;entation
Ilsing thc projcct.ivc spacc projcctivc spreads.



Chapter 3

Combinatorics or Spreads:
Nets and Packings.

In this chapter, wc introduce some packing problems re1ated 1,0 translation
planes, via thcir sprcacls, so what we are concernccl with might. bc callecl
the combinatories of spreacls. The proce,s of clerivation, a powerful 1,001 for
constrllr:ting Ilew affine and projcdive plancs, is cssclltially a packing prob­
lem: points covered by certain scf.s of lines are replaeecl by sets of subplanes
c.overing t.he same points, 1,0 yield a new l'lane. In the context of spreacls in
projective spaccs l deri\"atiolls are c10scly associateci \vith reguli: and Desar­
guesiall sprcads may be combinatorially charact.erised in terrns of thc reguli
t.hcy cont.ain. Reguli ancl other partia! spreacls are also dosely rclatecl 1,0

nct-s aneI combinatoria} struct.nres called packings that are associateci with
t.hc COllstrllcl:ìoIl of except.ionally interestillg translat:ioll planes. The aim
of t:his chapt.(·r is 1,0 cxplore these combinatorial 1,0015, part.icularly in the
<:Ollt,('xt of trmlslat.ion pianes.

3.1 Reguli and Regular Spreads.

\Ve begin this lectlll'e ",it:h a brief review of t.he classical concept. of a regnlns
in PG(3, l,); t.hese regnli provide thc Illost important. t.ool for const.mcting
lillespreacls auci hellee two-dilncnsional t.ranslat.ion plancs. The overall aim of
the lecl.nrc is 1.0 cxten<! t.hc I.heory of regnli in PG(3, q) 1.0 regnli in arbitrary
project.ive spilces E = PG(V, In. The sl"f:tion ends wit.h t.he Bl'1lck-Bose
charact.crizat.ion of Desilrgll8sian sprcads in t.enns of regllli.

48
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A li11e t is called il trausversal ta a set of pairwise skc\v lines A, in any
projective space, if t nlC'ct.s cvery line of A. In PG(3, K), K a field, the points
of a hypcrbolic qnadrir: ean be writtcll a.c; a union of a set of lllllt.l1ally ske",
lines A auei aiso as t.hc ullicIl of aH t.he lines in A' l t.hc set. of t.ransversals to
t.he lineset. /I. In faet., it. t.mns out that. /I anel !l'are lineset.s such that each
is precise!y the the set. of transversals of thc ot.her; moreover every line of
each set. is covered by every line of the ot.her. The line eomplexes /I and !l'
are said t.o be mut.nally opposit.e regnli.

Not.icè t.hat. if 1: is a linespreael in PC(3, q) that contains a regnlns /I then
replacing /I in E by it.s opposit.e regnlus

E'= (E\/I)UII',

yielels a new spread, said t.o be derived from /I. One can go fmther: look
far a set. of k pairwise disjoinl: rcgnli in a spread ancl rcplace some or alI
of them yie!ding in all 2' dist.inct. spreads, alt.hough some of them lllay be
isomorphk. All of t.his reflects t.he faet t.hat. regnli l'by an indispensiblc r6le
in t.he const.rnct.ion anel analysis of t.ranslation planes. For the rest. of the
lect.l1l'c OUI' disc.llssion of regllii indndes noto just. arbit.rary odd-dirncnsional
projective spaces PC(2n. - l, K), bnt also t.he infinit.e-dimensional C'L'e ­
argnably, these are abmys oeld (anel even!) dimensionaI.

\Ve begin by defining a t.rallSveral t.o a collection of subspaces 8 t.o be any
line t.hat. mects all the lines of 8, bnt we shall also insist. that anv transversal
is covererl by E-), modif)'illg 011I" eadicr lIsage of t.hc tCflU:

Definition 3.1.1 Let 8 be a col/edion. of pairurise skeu' 8ubspaees of an1j
invjeetive space E. Il /ine ( 01 E is aLlled a TRANSVF;RSAL to e if { meets
evC1Y sùbspace in tlte col/eelion 8 and eve,p )!oinl of { /ics in some member
of8.

Not.e t.hat this is st.ill noto t.he most. gencral nseful fornI of a t.ransversaI. \Ve
(:onl<1 have introc1nced thc not.ioll of a pSC'lldo-transvcrsal to take care of t.hc
"mie \d10n E consist.s of additi\·e snll,paces of E = PC(V, K), rather t.han
K-sub,paces. Ho",cver, t.o focus on t.hc cssent.ials, we shall st.ick wit.h t.hc
above definit.ion.

\Ve now t.nrn t.o thc generai definit.ion of a regulus. The mot.ivat.ing ex­
ampIe} as inc1icatcc1 abovc, i:; et col1ect.ioll R of pairwise skew lines: in SOlne

PC(3, J{), t.hat are co\·ercd by t.he sct. of all lines t.hat. are t.ransversals t.o
R. 111 t.he generai case R is st.i!! reqnircd t.o be a part.ial spread of thc givcn
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projective space L: = [,G(V, K). So we need 1.0 reslove what. a partia! spread
is to Incan "in the context or infinit.e-dimensionai spaces.

There are two reasonable ways of defining R, a pairwise skew col1ection
or sllh,pnces of E, t.o be a partinl spread: both are motivated by the need
1.0 mak" t.he componcnts have 'half' the dimension of V, in thc infinite­
dimensionaI case. The more generaI method is t.o assllme that. ali the mem­
bers me isolflorphie t.o some X, where V = X 6 X; t.he alternative is to
regard R as a partial spread if E is a dircct. SUffi of any .t.wo c1istinct mernbers
of R, for IRI > 2. Wc shall follow the latter path sinee il. leads 1.0 tidier ancl
less t.erhnical-sollndiIlg reslllts; wc shall leave it to the illt.erested reader to
develop more generaI result.s t.hat. apply 1.0 'X-pmt.ial spreads'.

Definition 3.1.2 Let E be a pTOjective space and r any collect.ion 01 at least
thl'ee paù'lI'ise-skew slIbspaces. Then r is a called a pattial -'pn:ad il io each
triple (1:, U, \i), whel'e U, V E rare distiact and do not cont(tin 1:, there
conesponds a -uniq-ue line ell 01 E s'uch that 1: E E and E meets X and Y

\Ve can dcfìnc a. regul11s in thc generaI case.

Definition 3.1.3 Let E be any projective space and suppose R is a paTtial
-'pTmd in L: that has at lcast thT~e components. 'l'hm R is a RBGULUS 01 L:
iJ tlte lollowing hoId:

1. Ilo. /ine t 01 L: meets tI,ree members 01 n then t is a tmnsversal 01 R,
sec definition 3.1.1 above;

2. the points covered by R coincide 1I'ith the points covel'ed by the transver­
8018 to R.

We ilO\\" provide t.he alternat.i,·c Jdìnit.ion of a regnlns, inc1icated above, ba<;ed
on t.he possibility of tlle alternat.ive definition of a part.iai spread.

Definition 3.1'.4 Let L: be a projective spacc associated with a direct sllm
vedor space l-F = X El X, lI:hcrc X is ilny vcetOT' space ovcr.a skewfield [(.
Suppose n is a colleciion 01 pairwise skew subspaces 01 L: each 01 which is
[( -isomo'rphic to X. 'l'hcn R is an X -REGULUS 01 L: il the jollowing hold:

1. 11 a /ine t 01 L: mcets tlrrce members 01 R then t is o. tmnsversal to n,
see definition 3.1.1 abovc;

2. the point" 01 Rare covered by the transversals to n.
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Exercise 3.1.5 If R is an X -r'egul-us in E, in Ihe notatioll of definition 3.L{,
is W always the di'reet Sl1m of every pair' of dist'inet members of R, that is,
is ever"!! X-regu/u8 a r'Cgulus in the 'standard' sense of definition 3.1.3?

As already ment.ioned, we shall work wit.h regnli, in t.he sense of definit.ion
3.1.3, rat.her t.han wih X-regnli; ext.ending result.s eoncerning regnli 1.0 X­
regnli is left. 1.0 t.he int.erest.ed reader.

Exercise 3.1.6 Suppose R is a eolleetion of q+ 1 distinet subspaees PG(2n­
1, q) sueh that ever'y member of R has projeeti",e dimension n - l and that
R is eovel'ed by ali tmnsversal o.eross il. (1) Ar'e the membel's of R po.i,-wise
skew? (2) Is R o. r'egultts?

We now procee<l 1.0 a complete descript.ion of ali regnli in an arbit.rary pro­
jedi\'(' space PG(V, K), K a field. The prot.ot.ype for ali sneh regnIi is t.he
senlar' ",!/u/us, anel V = lI" 8 IV, H' any K-space; t.he component.s of t.he
scalar regulns are y = xk, k E K, t.oget.her wit.h Y = O El) H,. It. \Vill t.nm
aut. t.hat. ali regnii are essent.ially of t.his t.ype. lff{ above is permit.t.ed 1.0 be
non-commutative skewfield theu , as we shall Sl'e, a regllllls cannot oxist in
PG(V, K).

Howcvcl', thc abscnce of l'cglllì, \\'hen ]( is a non-commlltat.ive skew ficld:
is t.rue only in a t.ec!lllical sense: in t.his case aH t.he 'y = xk' st.ill t.um
aut. 1.0 be addit.ive snbgronps of V = IV EV W. and although they are noto
always K-spaces t.hey st.ill define a part.i"l sprend (when V is veiwed as a
vect.ar space over t.he prime fielel) t.hat. are covcreel by p"irwi5c skew lines of
PG(I/, K) t.hat. one lllight. caH trans\'('rsals. Wc shaH rcfcr 1.0 ,nch st.l'1lct.ures
as (sca.lar) psclldo-rcgllli aucI incorporat.e thCIIl in 0111' analysis; t.hey arisc in
t.hc classificat.ion of snhplanc co\·ereelnet.s, a fundamcnt.alrcsnlt. in t.he t.heory
of Ilets alld ùerivat.ioll.

To proYidc a lluifonn t.rcat:mcnt. of lcft. auei rigl.lt. vector spaces, and also
t.o tale iut.o acconnt. that. skc\dìdds br'come llu{lxoidable in Ollr analysis, we
eX]lress 'y = :rk' ns 11 = (x)l.:. (:c)k imlieating t.he aet.ion incinccd by k E K
on3:EV.

Definition 3.1.7 Lei L: := PG(V, I\) be a projectivc space aver" sl.:ewfield
[( s!leh that V = li' E2IV, ",hcr'C IV is (j K-space.
Thcn fvr any w E n'. (w)1.: denotcs wk (rcsp kw) depending on u,hether' lI'
~, taken to be a r'ight (1'f.sp. left) K-space and 11 = (o:)k, f01' k E I\ denotes
the additi've sl1bgronp {(w, (w)" I "E K} of V = IV Et; Il"
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The collection S 01 s'llbs]Jo.ccs 01 the K -s]Jace V given by:

S = {Y} U {'y = (x)k' I k E K},

where Y = O Efl W, is ca.lled the W -coordinatized SCALAR PSEUDO-REGULUS

in l'G(V,K). The rnembcrs 01 S are called its COhIPONENTS. S is called a
SCALAR regulus il it tUT'llS out lo be "egui-us in E.

Far all w E Il'', the lines 01 E ol101m let

and define the STANDARD COVER 01 the scalar pseudo-ngulus S, by

'T = {Tw I w E W}.

Not." t:hat. from om point. of vie", it. t.nms ont. t.o be qnit.e harmless to ignare
t.he dependcnce of sorne of t.he nbovc not.at.ion on IV; we assnme n fixed Il'
a8 om st.arting point.: we avoid refcrcnces t.o 'Il.'-defined' objects.

Wc now show t.hat. in project.ive space'S m'8l' a skcwfield K, the scalar
psendo-regnlns is a regnlns iiI K is a field, ami when t.hi8 is case, t.he standard
cover, delinition 3.1.7, t.mns ont. t.o be t.he set. of ite t.ransvcrsals. In t.he more
generaI sitllatioIl, when]{ is non-connTIntative, virt.llally the same conclllsions
wonld apply il the definition of n t.ran,,·ersal were t.o be appropriat.ely relaxed.

Theorem 3.1.8 (Scalar Pse-udo-Reguli.) Let S be the scalar pseudo-regulus
associal.ed with V = IV EflIV, lI:here IV is a vector space over a skewfield K.
Then

1. S is un additive partial spmad, ",ith ambienl space (V, +).

2. The eomponenl" 01 S are ]< -subspaees if] K i8 field.

3. The standard eover 'T is a collection 01 pai"u;ise-skew lines 01 PG(l', K)
such that Ur = uS, ",ith both sides viewed as subspaces 01 l'.

4. K is a field iff tlw pseudo-,cglllus S is a. reglllus and Ihe standard cove,',
definition 3.1.7, is its set 01 transversals.

Proof: (1) Let. A and B denot.e any two distinet component.s of S; the
mnin case is when thcy are, respeetive!y, y = (x)a and y = (x )b, .far distinct.
a, b E Je". Now t.hese two spa.ces have t.rivial int.ersection: so we have a
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pmtial spread provided A + B= V. For convenience, writ.e (x, V), x, Y E H'
ro dcnote x $11. Now (x,y) E A El B holds iII

3u, v E IV 3: (x, y) = (u, (u)a) + ((v, (v)b),

and t.his can casily be solved for u and v. Thlls S is an addit.ive spreadsct..
(2) Consider a non-zero w El (w)k E y = (x)k. Now for I E K,

(w ED (w)k)l = ((w)l@ ((w)k)1 = (w)1 El ((w)I)I-rkl,

t.hlls y= (x)k is left. invariant. nnder J( iII k is cent.ralizcd by K.
(3) Since Tw = Tw' holds iII w and iv' generat.e the same rank-one K-space
it follow5 t.hat. T is a collect.ion of pairwise-skew Iines of E.

Thc snbspace

Tw := {((w)k r, (w)k2 ) I kr , k2 E K}

mect.s Y when k2 = 0, and meet.s X := IV E9 vecO when k, = O. It. meets
every ot.hcr componcnt. y = (x)k of S at. (w, (w)k). Moreover Tw is covere<!
by thc components of S becanse ((w)kr, (w)k2), for kr 'f 0, may be expressed
as (wkr,wkri;T), for kr 'f 0, meet.s t.he component y = (x)k, k:= Z;, alld it.
of conrse mects Y as wel!. If s E V' is in some y = (x)k then s = w El (w)k,
w E IV', and t.his Iies in Tw . SO UT and uS coincide as snbsets of V.
(4) This follows from t.he abovc ca.~es. _
We now proceed t.owards showing that all reg1lli may be identified with t.he
scalar regnli, t.hat is, scalar psendo-regnli over a comm1lt.ative field. \Ve
shall not. consider here t.he more generai problem of providing a gl'Ometric
r1raracterization of all pse1ldoreg1lli.

Lemma 3.1.9 Let S be the scalar reg'ul-us in PC(V = W ffi W, [{), J( a
fie/d. Suppose R i8 uny regulus that shares the components Y = O ED IV,
X = O $ IV and at"least one other component. Then R = S.

Proof: Let. p E R - {X, Y}. So V is a dircct. snm of any t.wo distinct
mcmbers of t.he t.riad {X, Y, p}, hcnce, by Iinear algebra, there is a 1lniqne
linear bijection M r : IV -> W sllch t.hat.

p:= {(w,wMp ) I w E W}.

Sincc cvcry transvcrsal t of S meets at. least. t.hrce components of R, t mnst
also be a t.ransversal of R, by definition 3.1.3(def:regl). Bllt., by t.heorem
:U .8, t.he t.ransversals of S are of fonn
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Hml this meets p non-triviaHy iff for some k l E K' there conesponds a k2 E K
snch that wkjM = wk2 , and t.his implies that AI lem'es invariant the rank­
one space wl(, .and t.his to holds for aH w E W iff AI is projectively trivial
and hence of form y = (x)-m, for some m E lC. Thns H inclndes all the com­
ponents of Sand hence Illnst coincide with S: if H had more components
then the transversals of S wonld fail to be transversals of R. •
The following t.heorem assert.s t.hat any regnins H over a field may be iden­
tified \Vit.h t.he scalar regnlns S; in f"et. H may be coordinat.ized by S so
that any t.luee eomponent.s of n may be identifed with the three standard
component-s of S, viz., .,"<, Y ancl t.hc nnit line.

Theorem 3,1.10 (Standanl Coordinates Far flegu/i.) Let V = W Efl IV,
",here IV is a veeto,' space ave" a field I{, and let B be the associated projective
-'pace PG(V,I\). Let S denote the scalar rcgulus in B, relative 1.0 W. Then
given a.nv 1"egnlus n oj B, and an or'dered t'iple oj tltree dislincl companents
(A, D, C) oj n, therc is a nonsingulllr biject'ian 9 E GL(\', K) that maps the
t1iplc (A, D, C) onta (X, Y, Z), and tile 1"cgnlus R onta the scalar Tegulus S;
he1"e X, Y and Z Q1'e the 'standard components' oj S in the usnal sense:

X=WEflO, Y=OEf'U', and Z={(w,w)lwEW}.

Proof: It is a simple exereise in linear algebra to see t.hat the gronp GL(V, K)
is transitive on the set of aH ordered triples (A, B, C) snch that V is a direet.
snm of any t-wo members of t.hc t.riple. Thns choosing (A, D, C) t.o be t.hree
distinct. component, of n t.here is a linear bijection 9 of V snch that .9 maps
(A, D, C) onto (X, Y, Z), Hnd now the regnllls .9(H) satisfies thc conditions
of lemma 3.1.9 above, hence g(R) is the scalar regnllls.•
The following corollary is immediat.e:

Corollary 3.1.11 Ij a projeetivc spoce B, aver a field K, contains thrce
",ut"'1.l/y skeUl 1\-s1lbspaces A, D o:ad C s'uch thal onv two sum to B, then
the tJzr-e.e slLbpaces are. camponenls oj a un-iq'ue "egul"s in ~.

111 t.hc contcxt. of a projecti\'e space B = PG(V, g), t.he concept of a spread
and partial spreads only make sense if V = 1V Et' IV for some g-space H'.
Hel1ce wc shaH t.acit.l}" assume t.hat. L has t.his form, when we refcr to its
partial spreads.

Definition 3, L 12 Let B be u pnJjecth'e space aver a field. A sp"ead oj B is
cal/ed REGULAR ij the unique reglL/us contain-ing anv three mntnal/v distinct
spread components is conla-ined within Ihe spread.
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Every spread over GF(2) is regnlar:

Remark 3.1.13 Let K = GF(2) and suppose V is any vector space aver l,'.
7'hcn e'Very spread S in PG(V, K) is regular.

Proof: Sinee, c,f. eorollary 3.1.11, t.he regulns R determined by any t.hree
dist.inet r.omponents a, b, c E S coineides with R C S.•
Il. will bccame evident. t.hat. t.here are many non-isomorphie translat.ion planes
of even order 2" > 8, ane! t.hese may be ident.ified wit.h mnt.ually non­
isomorphic spreacls in PG(2n - 1,2).

The following t.heorem, clne t.o Brnek and Bose [5], implies t.hat in ev­
ery ot.her case ali finit.e regular spreacls of the same order are isomorphie.
The proof int.rodnces powerful eomput.ational t.echniqlles t.hat. will be sys­
t.emat.ically eonisdered in lat.er ehapt.ers. The t.heorem may be st.at.ed more
generally, wit.h appropriat.e moclificat.ions, so as lo indude t.he infinit.e case.

Theorem 3.1.14 A finite sprcad in PG(2k - l, q) and q # 2 is reg'UlaT il
and anly il lite associated translation plane is Desal'9'Uesian.

Proof: We will prove t.his only in t.he case PG(3, K), K = GF(q), but. t.hc
proof remains valicl in generaI.

Let. S be a spreacl in PG(3, q). Choose any t.hree lincs of S ami writ.e the
l'lane veet.orially wit.h point.s (x, y) where x ancl y are 2-vect.ors over J( and
x = O, Y = O, Y = x are component.s. Then t.he regulns defined by the three
camponent.s has as it.s eomponent.s x = O ami y = xu for ali u in K. Let.

be any rDmponent. of t.he spread wit.h the ehoiee of t.hree component.s as
x = O, Y = O, Y = x. Change bases by

[
hO ]
O M-l

and not.e t.hat. t.he llnique regllllls eont.aining x = O, y = O ancl y = xli!
after t.he basis change also eont.ains y = x and henee rnust have the form
x = O, y = O, y = xk for ali k in K. Benee, we have that. y = xIvlk must
be in t.he spread, whenever y = xli! is in t.he spreacl. This implies that
g(t'W, uw) = g(t, u)w alld I(tw, uw) = I(t, u)w for ali u, t, w E K.
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Now rhoose x = 01 Y = :r:1IIJ ,1) and y = ·J.;Alt,u and determine the regulus

.. h tI C'I b l [h -/vI,.]cont.mnlng tese . lfec components. . Hlllge ascs JY o 1
2

' to re-

writ.e t.he spread in t.he form x = O, y = x(.Mk,w- M",,) = N. Use the previous

basis change wit.h [~ NO_l] to realizc t.he st.anc!ard form of t.he regu!us

cont.aining the thrce indicat.ed component.s. No,," re\'erse t.he basis changes
t.o obtain that. x = O and y = x ((M"" - A/.""),,, + M",,) are component.s for
ali t,11,S,V,W E K, provided (t, 11.) j (s,v). In part.icll!ar, ift = s but. 11 j v
t.hen t.his implies that the matrix

c!efincs a collineation for ali u in K. Simibrly, t.he previolls argmnent. shows
t.hat

[

1000]O l O O
OOwO
O O O w

defines a collineation for ali U! j °of K. Ilcncc, wC obtain g(t,11.) + w ­
9(t,11.+W) for ali u,t,u' in K so t:hat. iffollows t.hat.9(t,u) = t9(1,0)+u ane!
sirnilarly f(t,'u) = f(t,u+w) so that. f(t,11.) = f(t,O) = tf(l,O). Hence, the
spread has thc following form, for some constant., f ane! 9 in 1(:

[
t'i + U 11.1 ] ,x = 0.9 = 1: . t Ift,1t E IL

.. 'ti

•

Exercise 3.1.15 Sila.", tilat the matTices in the spr-cad define a field isomo1'­
phic to GF(q2).

Ilcnce, the spreae! consists of ali l-dimensiona! GF(q2)-spaces within a 2­
dimensiona! GF(q2)-vect.or space. That is, t.he spread is Desargllesian.•
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3.2 Derivatioll.

Wc have seen t.hat. a regnlns R in PG(3, I<), K a ficld, is covered by its
opposit.e rcgnlns R'. lf S is a spread of PG(3, K) t.hat. cont.ains R t.hen
(S \ R) U R' = S' is also a spread called t.hc sprcad 'derived' from S.

\\'e consider t.his Illorc generally, bnt. only for finit.e spreads.

Definition 3.2.1 If S is a spread in a p1'Ojective space E '" PG(2k - l, q)
and R is a lJO.rtial sl'read of S sueh that R is a ''l,galas in some PG(3, h)
?Vher'c h2 = qk then wc shall say that R is a 'del~vable partial spr'ead' of
S. T/w correspondin!J affine strueture in the associated tmnslation l'lane is
called a 'der~vablc net'.

Exercise 3.2.2 Let 1r be a tmnslation l'lane ?Vith an associated spread in
PG(3, I<), K _ GF(q). Sho", that a basis foro the veetor space can be ehosen
so that any dcrivable net D has the -'pr'Cad sct

x = O,y = 3: [~ ~.] for ali u in K and a in Gal(I\).

Exercise 3.2.3 Con8idcr the -'pread 3: = O, Y = x ['l~" '~P] for ali a, t in

K '" GF(q) , q add and tT, p in Gal(K) and '( is a nonsquare in K - {O}.
Find at least 2q delivable ncts in thc assoeiated translation piane. Show
that if neither (T noI' p is l that none of the deTivable nets is a regulus in
PG(3, K). For md. derivable net D, fimi a field I<D isomorphic to K such
that D dcfines a regulus in PG(3,J'D)'

Theorem 3.2.4 The namber of ,·egulo.1" sl'reads in PG(3, q) is

q'(q~ - l)(q - 1)/2.

Proof: Each regnlar spread defines a field ext.ension of I<, I<lt] ~ GF(q2).
By t.hc t.heorem of André, each t.wo Dcsargncsian affine planes are isomorphic
by an elemento of fL(4, I<). Thc fnllcollincat.ion gronp which fixes t.he zero
vcet.or of a givcn Desargnesian affine l'lane is dearl)' fL(2, Klt]), Klt] ~

GF(q2». Hence, t.hc Iltnllbcr of regnlar sprcads is

N= 1[[(4, q)1 = q'(q3 _ 1)( - 1)/2
IfL(2,q)l q,

and now it. is a simple excrcisc 1.0 \'erify t.hat. N = q'(q3 - l)(q - 1)/2.•
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Remark 3.2.5 The number oj reguli in any regular spread, contained PG(3, g),
is given by

Proof: Exercise.•

Theorem 3.2.6 Let R be any regulus in PG(3, g) and let Nn denote the
corTesponding net oj order g2 and degree g + 1. Let ebe any /ine oj PG(3, q)
so that R u {E} is a partial spread. Then there exists a unique regular spread
containing R U {f}.

Proof: Let K = GF(q) Represent R is st.andnrd form:

x = O, y = x [~ ~] \fu E J(

Let. Ebe represent.ed in t.he form

It. is immediat.e t.hat. bc =J O. Fnrt.hermore, t.he difference of t.hese mat.rices
ml1st be non-singlllar so that

[
a-u b ] 2cleto l = (o - u)(d - u) - bc = u - (a + d)u - bc =J O\fu E J(,

(; (-'U

Hence, t.he polynomial x 2 - (a +d)x - be is irredllcible over K. Writ.e d - u =
v, b = gto and t.hen e = a - d = fto . Now consider t.he set. of mat.rices

{ [
jt + v gt] l' l'}

t 1., t E \ .
V

,Ve have not.ed pre\'iollsly t.hat. t.his set. forms a field isomorphie t.o GF(q2)
so t.hat. t.here is a uniqne Desargnesian (regnlar) spreacl clefinecl by t.his field
of matrices. Henr.e, there is a nniquc regular spread containing R u {i} .•
In t.he next. t.heorem, we shall Beed t.o appeal t.o t.he following element.ary
faet.:
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Remark 3.2.7 The l1umber ofpolynomials x 2+ fx+g for 9 and fin GF(q)
1Uhich are GF(q)-irreducible is q(q - 1)/2.

Proof: Exercise.•

Theorem 3.2.8 Any reg"llius R in PG(3, g) can be embedded in exactly g(g­
1)/2 regular spreads.

Proof: Represent. R in t.he st.andard fonn x = O, y = x [~ ~.] for all 11­

in GF(g). Any regnlm- spread cont.aining'R corresponds t.o a Desargnesian
affine l'lane and 'hence a corresponding qnadrat.ic field ext.ension of GF(q).
The theorem follows by remark 3.2.7.•

•

Corollary 3.2.9 7'her'e ore exactly g'(g3 - l)(g2 + l) regu/i in PG(3,g).

Proof: Consider t.he incidence strllctllre of rcguli and regllhu spreads and
connt t.he incidence pairs (f1ags). Let k denot.e t.he nnmber of regnli in
PG(3, g). Then the nnmber of Desm-gnesian spreads times the nnmber of
regnli in eadl Desargnesian spread is eqna! t.o t.he nlllnber of regtùi t.imes t.he
Ilumber of Desargllesian spreacls cOIltaining a givcn reglllllS.

Hence,

k = (g4(g3 - I)(g - 1)/2)q(q2 + l) = g4(l- l)(q2 + l).
(q (q -- 1)/2)

•

Corollary 3.2.10 Let R be a reg,,/us in PG(3, g). Then, the order oJ the
col/ineation grOup oJ the corresponding regu/us net NR which fixes an affine
point is (q(q2 - IJJ2(q - I)r where q = p" and p is a prime.

Proof: Since any two Desargnesian spreads are isomorphic and since any
Desargncsian affine l'lane admit.s a collineation gronp which fixes the zero
vedor and aet.s t.riply transitive on t.he line at. infinity, il. follows t.hat.

q6(g' _ 1)(q3 _ l)(g2 _ I)(g - I)r
IfL(4,q)NRI = g4(q' _ 1)(g2 + l)) = (g(q2 - 1)J2(q -I)r
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•
\\'e shall see shortly that. the colhneat.ion group of a regulus net. which fixes an
affine point is isomorphic t.o GL(2, q)fL(2, q) where t.he product. is a cent.ral
product. of int.ersection t.he subgroup of order q - 1 of scalar mat.rices.

3.3 Direct Products of Affine Planes and Pack-.
mgs.

In l'G(3, q) linespreads have size ('12 + 1), and t.he t.otal number of !ines
is exac:tly ('12 + 1)('12 + q + 1). Thus one might ask far a colleetion C of
('12 + 'I + 1) spreacis such that every !ine belollgs 1.0 (exact.ly) one spread in
t.he collection C; one might. e,·en ask that. all the members in C be regular.
Such packings will be usecl in t.his section 1.0 const.rnct perhaps the two most
intriglling translat.ion planes: the Lorirner-Rahilly pIane of orcier 16 and its
transpose the Johnson-Walkcr plfUlC: these are the only known translation
planes admitting GL(3, 2). The concept. of a net. produc!o wil! be introduced
pmtly as an aid to t.he abon" and also becallse of pol:ential ap!ications in
wider contcxts; nct. prodllds are hclpflll in constrllctillg net-s with interest.ing
propertics.

Definition 3.3.1 Let L: be a projective space ,dative to a left K -vector space
XSx.

A PACKING (PAIlALLELlS~I) of L: is a set of spreads llIhich are disjoint
llIith '·Gsped lo subspaces K -isornoTllhic to X and s"/Lch that tlte union of
subspaces isom0111hic to X of Ihe sct af sl'reads is the set of ali J( -subspaces
isomorphic to X. Thc pacl.:ing L: i8 IlEGULAH if the psreads in it are ali
r·egular spreads.

Far example, a pac:king of l'G(3, q) is a set of l + '1+'12 spreads of '12 + 1
lines each. In particlllar, a rcglllar pncking in PG(3, q) gives rise to a set of
1 + Cf + (/ Desarguesian spreads of order '12 .

In t.he following, we shall reqnire the concept of the direct prodncl:. of nets
and affine l'lane:;. Thc notion of nel, was introdnced in defillitioll 2.1.1.

Definition 3.3.2 Let "I = (PI,LI,CIJd and "2 = (P2 ,L2 ,CI J2) be tUiO

translation lilane.>. Ld (T be a l - 1 correspondence fram tlte set CI of l'aralie!
classes of "I and the sct C2 of paralle! classes of "I. We form. tlte direct
product III X u 11"2 as follows:
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The 'points' are the elements 01 the cross product P, x P2 .

Let C, be a line 01 L, so that e,(J is a /inc 01 L 2 . Il {, is any /ine pamllel
ta {,(J, then the set olpoints 01 P, x P, incidcnt uri/h t, X t 2 is a '/ine' 01 the
diT'ect p10duct incidence struct'uTe.

Note th"t the eonstmction does not use finiteness. Il a is an isomorphism,
1/;C use the term 'regILlar dincet pmd'ad '.

Exercise 3.3.3 Show that il the planes are 01 order TI then "l x a 71"2 is a net
of arder n2 o.nd degree n + 1.

'l'heorem 3.3.4 Let T, o.nd T2 dellotc the 'tmnslation gmILps 01'" and "2

rcspectivcly. Then T, x T, is a translation granI' 01 "l x a "2·

Proof: Define t.he aetion of (!!"g,) on (0.,,0.2) for a, in P, for i = 1,2 by
(a"a,)(!!l ,g,) = (o'fll,a2!!')' LeI. t, be aline of L, anel (2 a Iille p,u-allel 1.0
(,(J. Thcll (,gI is parallel t.o t, alICi (,fl2 is parallcl t.o {, anel to (,a. 'l'hen
(,y, x t 2 g2 is aline of 71"1 Xd "2' To sho\V that (gl,!!,) is a t.ranslal:ion, simply
note t.hat. (fiI, g,) fixes cach parallel dass hnl. fixcs no affine poinl..

Definition 3.3.5 Let E ~ PG(2k - l, q). A (k - 1)-rcgnlu5 R(k_l) is a set
of q + I (k - I)-dimensionai pro)ective subspoces which are 17lntually skew
SlLeh alOt a.ny line al E which inte1'sects any three necessaril,!! intersects 0.11
etements 01 R(k_I)'

Note th.at a. regulus in PG(3, q) is a 1-legulus.

'l'heorem 3.3.6 If 71"1 and 71"2 are DeslI:ry·ucsio.n affine pianes 01 order q and
a 'is an iSOm017)},;i81ft DJ ';Ti onto ""1 thcn

(1) the1'e is a collineation fl1'OUP isomorphic to G L(2, q)rL(2, q) acting on
/Il X q 7.'2 and

(2) "I X d '" is a dcrivable net.
(3) If "l is a Dcsargueo<ian affine l'lane whose spread S, is in PG(3,q)

then 71", x 71', i8 a derivable net with partial spT'ead in PG(7,q) 1lIhich containo<
a 2-7·egulus.

Proof: \Ve iclcnt.ify 1T1 alleI 'iT2 aneI wit.hollt 10$$ of generality, we let a = l.
Wc not.e that. r L(2, q) is a collineat.ion gronp of 71",.

Exercise 3.3.7 For h in rL(2, q) sho," t/wt (h, h) is a collineation gro11p 01
1ilX7rl·
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No\V for a,/3,"I,O E GF(q) such that aO -/3"1 i o, wc define [~ ~] acbng

on (a" a,) 1.0 be (a,a + an, 0.,/3 + az) where the indicated mult.iplicat.ion is
scalar nmltiplication. Let L, is aline represented in the form y, = xJO" + p,
it. is easy t.o verify that L,c< is y, = x,,, +ap. II. follows that. L, x L 2 maps 1.0

(L,a + Ln) x (Ld3 + L 20) and (L,a + L2"1) is parallel t.o (L,/3 + L20). Note
t.hat. it. follo\Vs that. there is a gronp isomorphic t.o GL(2, q) whieh fixes each
line of t.he net. incident. wit.h (0,0). Hence, GL(2,q)rL(2,q) is a collineat.ion
group of t.he net. This proves (1).

Now (p, O) for ali point.s p of ", is a subplane isomorphic t,o 1f,. Fnr­
t.hermore, GL(2, q) aet.s t.ransit.ively on the point.s of each line thru (O, O),
Hence, t.he nel. is covered by subplanes isomorphic 1.0 1f,. This is enough 1.0
ensnre that. the nel. is a derivable nel.. However, if wc represent 1f, by the
component.s y, = x,c< and x, = O and "2 as yz = X2C< and X2 = O then the
point.s of t.he direct. produet. have t.he form ((x"yd, (xz.1/z)). Rerepresent.ing
t.he point.s in t.he fonn (X"X2,Y"Y2) t.akes t.he lines (YI = x,a) x (yz = xza)
t.o t.hc form Y = xa where (x" xz) and Y = (YI, yz).

Thus, the direct. product. net. may be coordinat.ized by a net. defined by
y = xC\", x = Owhich is dearly a reguhls in PG(3, q). This proves (1).

Now assume t.hat. ", is defined by a regular spread in PG(3, q) so t.hat
t.he order of ", is q2 Then if the associat.ed field if GF(q) [t) ~ GF(q2), the
previous argument shows that therc is a nel. of thc form y = xC\", x = Ofor
ali n in GF(q). Hcnce, t.his dcfines a 2-regulus in PG(7, q). This proves (2)
and (3).

'Ve now consider thc direct. product of two Desarguesian affine planes
whose corrcsponding regular spreads are in the same PG(3, q).

Proposition 3,3,8 Let S, and Sz be distinct reg-ular spreads in PG(3, q),
ld '" and "z denote the Desarg-ucsiaa offine planes corresponding to S, and
Sz respectively.

FO'T1H 7rl x 1Tl = DI and 7r2 x 7r2 =.D"]<
Thcn D, n D2 (the intersection DJ components) is a 2-reg-ulus R2 and

D,u Dz is a partial spread in PG(7,q) OJ2(q2 - q) + 1 + q components.
Hence, N(D1UD,) is a tramlation net (admits a translation group transitive
on its points) DJ order q' and degree 2(qZ - q) + 1 + q.

Proof: We note that. DJ Illay be coordinatizecl by a quadratic field exten­
sion of K ~ GF(q) say K[t,]. Similarly, Dz lllay be coordinatizecl by a
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quadrat.ic field ext.ension ]([t2) of ](. If SI and S2 are dist.inet., it. follows t.hat.
K[tr) n K[t2 ) = K. Each derivable net. has e.:,act.ly 1+ q2 component.s as "i

io a DeBargllesian affine l'lane of order q2 for i = l, 2.

The.ore.rn 3.3.9 Let P be a Tegular packing 0/1 +q+q2 spTeads in PG(3, q).
Let the cOITesponding Desarguesiìm translntion planes be denoted by "i for
·-1? l 2t- l-"'" +q+q.

(1) Then ul~iq+q')"i X "i is a tmnslat-ion piane of order q' whose spread
is in PG(7, q).

(2) The sprea.d consists of l + q + q2 de";vable nets each containing a
2-Tegulus Rz.

(.9) The coliineation gmup of the translation l'lane contains GL(2, q) in
its translation com.plemcnt. FarthermoTe, GL(2, q) is gcnerated by centrai
collineations a:nd lcave8 mch dclivahlc net invnriant.

Proof: From t.he precedillg, it. remains t.o show t.hat GL(2, q) is a collineation
gran]) of thc translation pIane.

'Wc not.e t.hat. t.he fllll grollp of each clerivable net t.hat. stabilizes the zero
\'ector is GL(2, K[ti])rL(2, K[t;J) where K[t;) is t.he qnadrat.ic field ext.ension
oC]{:: GF(q) whith coordillat,i~es"i anei 7ii x 'iT'i-

Clearly, nl+q+'PGL(2,K[ti ])rL(2,K[ti]) ::: GL(2,q)rL(2,q). However,
only t.he gronp isomorphic to GL(2, q) generat.ed by t.he scalar mappings
as noted abo\'e are rollineat.ions of t.he t.rallslat.ion piane (wit.h t.he possible
exeeption of t.he collincations indllced by field ant.omorphisms).

3.3.1 A regular parallelism in PG(3,2).

Lct. SI be any regnlar spreatl in PG(3, 2) we shall const.l'llct. a parallelism as
follow": Iet. C be a cyr:1ic grollp of order 2.1 - l = l + 2 + 22 = 7 in PG(4,2)
which fixes t.hree componcnt.s of SI t.hen UcSI17 is a regnlar parallelismo

Choose any point.X of PG(3, 2). There are exact.ly seven lines cont.aining
X and t.hc seVCll illvolllt.ions fixing thc lincs pointwise respectively generate an
elernent.ary Abelian grollp of order 3 (a 3-dimensional GF(2)-vect.or space)
.4 which is a normal sllbgroll]l of PGL(3,2)x. The granp indllced on A
t.nras olll t.o be isol1lorphic t.o SL(3,2) (see e.g. Walker [40]) which is also
isolJlorphic lo PSL(2, i).

The stabilizer of each line Li cont.aining X is isomorphic t.o S" and t.he
alt.ernat.ing gronp .4." fixing Li ftxes it. pointwise. For each each element. (j of
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oreler three in A4;, t.here is a unique line !vIi skew to Li which is a invariant.
It. tums out t.hat

{L; n M;S4; I i = 1,2, ... , 7}

is a spread and
U;{Li n M;S4; I i = 1,2, ... , 7}

is a regular parallelism of PG(3, 2).

Corollary 3.3.10 Corresponding to the regular parallelism of PG(3, 2) is
a translation piane of order' 16 with kemel GF(2). The piane admits a
collineation g1YJUp isomorphic to SL(2,2) x 2 7 , The full collineation group
is PSL(2, 7) x S3'

Now essentially the same const.ructioll on the elnal space of V4 produces
anot.her translat.ion pIane of order 16 from a corresponding regular paral­
lelism. Act.ually, this may be given a more generaI const.ruction.

3.3.2 'Iì:anspose.

Let. V2k = V be a 2k-dimensional left vector space over a skew field K and
let. V' clenot.e the clual space of linear functionals. Choose a basis {eili =
1,2, ... ,2k} ofV and let. {f;li = 1,2, ...2k} denote thednal basis of V', so

fj(e;) = 8;j for ali i,j = 1,2, ... ,2k.

Define
fo:(x) := f(x)cNf E V',o< E K,

so now V' becomes a 2k-dimensional right vector space over J{.

Represent. vectors of V by .

k 2k

tx,y) =(X',X2, ... ,Xk>yl,y2, ....yk) =Lx;e, + Ly;ei
l k+l

and represent vectors of V' by

k 2k
(z, w) _ (z" Z2, ... , Zk> Wl, W2, ... , Wk) =L fiZ; + L fiWi.

l k+l
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Define t.he annihilat.or mapping .l as fo11ows:

lV.l = {t E V' I f(w) = OV'w E W},

where 1>V is a snbspace of V. In t.ernlS of the basis then (Z1J Z2, .. "' Zk, Wl, W2, .. "' 'Wk)

annihilat.es (XI,X2, ... ,Xk,yl,y2, ....yd ifand only if

where t denot.es the t.ranspose matrix.
Now leI, S be a spreacl in PG(V,I\) t.hen {T.l; T E S} = S· is a seI, of k-l­

dimensionaI projective slIbspaces of PG(V', K) slIch that each hyperplane
of the projective space contains exact,]y one element of S'.

Definition 3.3.11 Let IV = ZmZ be a L-vector space where L is a skewfield.
A dual spread of PG(W, L) is a set S of mutually skew subspaces each L­
isomorphic to Z such that eve,y hyperplane contains exactly one subspace of
S.

Hence, S· is a dllal spread of PG(V', J() if and only if S is a spreacl in
PG(V,K)

Exercise 3.3.12 Show that if {(x,xA)} is a spread component of S then
{(x,xA).l} = {(z, -zA-').

Exercise 3.3.13 Show that interchanging x = O and y = O by a basis change
(x, y) t----> (-y, x) maps a partial spread set {A I A E M} onto the pariial
spTead set {_A-I I A E M}.

Hencc, we obtain:

Theorem 3.3.14 Let S be a spread in PG(V, J() for V a 2k-dimensionalleft
vector space over a skewfield J(. Then there is a dual spread S· in PG(V', J()

where V' denotes the dual space· of V such that if {(x, xA) for A E M} is a
spread set for S then {(x, xA') for A E M} is a dual spread set for· S'.

Exercise 3.3.15 Show that any spread in PG(2k-l, q) is also a dual spread
and conve·tsely any dual spreacl is a sp,wd.

Given any infinite skewfielcl K, there is a spread which is noI, a dllal spread
dlle 1,0 the work of Bmcn and Fisher [6] and Bernardi [4).
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Corollary 3.3.16 Let S be o. sprcad in PG(2k - l, K) for K a field whieh
is a dual s)lr·ead.

If {x = 0, y = xA for A E .M} is a spread Tepr'esentation in the associated
"IIcet07' spacc then { x = 0, y = xA' far A E M} is also a spread callcd the
tmnsposed spread S'.

Exercise 3.3.17 Show that the full collineation group of a tmnsposed spread
is i80m077,hic to the group of the tmnsposed spread.

Exercise 3.3.18 Sh01V that the transposed partial spr'ead of a derivable net
is a der'ivable net.

Previonsiy, p 63, Wc have given an exarnpie of a regnlar parallelisrn in
PG(3,2) alleI hellce an associat.ed t.ran:::ilat.ioll pIane Il. There is a corre­
sl'oncling transposed piane ro" with the property that the spreacl far 1f' still
COldsts of seven derivable nets sharing a 2- regnins in PG(7,2). H follows
t.hat thcrc is a correspollding regular p().rallclism which we might callecl thc
tmnsposed parallelism.

Thc p1ane corrcsponding to the originai parallelism is callecl the LorirneT­
Rahillv piane of order 16 ilS il. was initially fonnd inclepenclently by Lorimer
and Rahilly. Sirniiarly., the tran,posed piane is callecl the Johnson- Walkcr
l'lane of arder 16 as it was cletermined by vVaiker nsing gl'onp thc'Ory ancl by
Johnson Ilsing clerivation of the semifield piane, of arder 16.

Ilemark 3.3.19 TheTe m'e exactlv three r'eguiar pamllelisms of even order;
t",o in PG(3, 2) and one in PG(3, 8). The con'esponding translation planes of
onler q4 ,,,ith spreads in PG(7, q) alI odmit the collineation gTOup SL(2, q) x
Zl~'I+q" Jha and Johllson (20) have sholl'n that tmnslation planes with such
wllincation groups m.ust cor7'cspo"d to regular packings in PG(3, q).

TheTc is cxactlv one kno1l'n regnlaT pamllelism of odd order which is in
PG(3, 5) and is due to A. Princ" ((36)). The collineation group has not Vet
becn fully deterrained.

3.4 Introduction to Quadrics and Unitals.

In t.his seetion we int.roduce SOlne standard concept,s and t.ools frOlu linear al­
gebra ancl projective spaces that have proYCn to be lIscflli in t.ranslat.ion pIane
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t.hcory. As an app!icat.ion, a t.heorem of Buckenhout., est.ablishing t.he exis­
t.ence ol unit.a!s in t.ranslat.ion planes associat.ed wit.h linespreads, is proved
using t.he Brnck-Bosc represent.at.ion ol t.ranslat.ion planes. The reader might.
consider skipping this sect.ion as not.hing in t.he sequel depends upon iL

Definition 3.4.1 A con'e/ation of any vector' space is an incidence r-eversing
b\jcction, Let 11" dcnote a corre/ation of a n-dimensionai J( -vector- space
wher'e J{ is a fie/d. So, a corTe/ation will map avcctor- to a hyperplane.

Wc r-cprcsent a vcctm' as a n-tuple (Xl, X" ,.. , X,,) and "ince a hyperplane is
given in telms of a linear equo.tion, a,x, +a2x,+ .. ,+a"x" '- O, we represent a
hyperplane by (al, et" ... ,et,)' whcre t denotes the tmnspose matr'i.?: operation.
Hence, a vector X is incident with a hyper7Jlane Y' if and only if XY' = O.

We define the following mapping: Let A be any nonsingular' k x k matrix
oveT J( and (1 any a-utomorl'hism of J{, lf X = (Xl, X" ... , X,,) define X· =

(X~,X21 ... 'X~).
Define bA,. as follows: bA(X) = Axta, Furthcnnore, the indueed rnap­

ping on Y' is bA,a(Y') = yaA-l,
We shall be interested in 'l'olarities' which aTe defined as corr-eiations of

ordeT 2 acting on the carrespanding projective space.

Exercise 3.4.2 Show t/wt bA is a correlation,

Remark 3.4.3 It can be shown that all cOTrelations an a finite dimensionai
vector space aveT a fie/d l,' can be r'Cpresented in the f017n bA,a' for some
matr'ix A and autom01phism (1 .

Proposition 3.4.4 A condation bA,. is a polarity if and only if (1' = l and
Aat. = kA for some" in J{ sach that ka+1 = 1.

Proof: b~.a(X) = 6(AXa') = (Axa')'a A-l In order 1.0 induce t.he ident.it.y
mapping on' t.hc projccti\'e space, if follo\\'s t.hat. t.his latter cquat.ion is kX for
sonle nonz"ro k of F. lIene", a polarity is obt.ained il and only if xa' = X
for alI X and Aa' = kA..

Exercise 3.4.5 Show that ka+l = 1.

Definition 3.4,6 A polal'itg b is snid to be 'orthogonal', 'symplectic', or
''UnitaT,!!' accol'dmgly as ((1, k) = (l, l), (l, -l) and (# 1. k).
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A subspaee W of Vn is said to 'totally isotropie', 'isotropie', or 'non­
isotrapic' if and only if W nW· = W, f O, or O respectively. If W is a
l-dimensionaI subspaee (point in the projective space) then a totally isotrapic
l-space is said to be 'absolute'.

Cone\at.ions are re\at.ed t.o sesquilinear forrns:

Definition 3.4.7 Let V be a vector space over a skewfield K. A mapping s
from V x Vinto K is called a sesquilineal' form if and only if

s(x + x', y + V') = s(x, y) + s(x', y) + s(x, V') + s(x', V')

and
s(ax, (Jy) = as(x, y){J"

where (J is an automorphism of K. A sesquilinear form is said to be non­
degenemte if and only if s(x, y) = O for all y in V implies that x = O and
s(x, y) = O fOl' all x in V impliesthat 11 = O.

It tU17lS out that correlations may always be defined frvm nondegenerate
sesquilinear fOl1ns as follo11'8:

IV· = {x E V I s(x, w) = 0\;111' E W}.

Conversely, given any eorrelation, ther'e is an associated non-degenerate sesquilin­
ear form 11'hich gives rise to it as abovc.

An orthogonal polarity corresponds to a symmetric, bilinear form (J = l)
and s(x, y) = s(y, x). A symplectie polmity eorresponds to a skew-symmetric
bilinear form where s(x, y) = -s(x, y) (for chamcteristic t11'o, s(x, x) f O for
some x is r'cqu;red), and a unitary polarity corresponds to a Hermitian form
1IIlie"e s(x, y) = s(y, x)" for some automorliism a of or'deT two.

Definition 3.4.8 A quadratic form Q is a mapping of Vinto K sueh that
Q(ox) = a 2Q(x) und Q(x+y) = Q(x)+Q(y)+s(x, y) 11'here s is a symmetrie
bilinea,- formo A quadrie is the set of points x in the associated prajeetive
spaee sueli that Q(x) = O. If the eharaeteristie is not t11'o then the fOl1n is
nondegenerate il and only if s(x, y) = O for all y in V if and only if x = O.
If the ehameteristie is t1ll0 then Q is nondegenerate if and only if Q (w) f O
11'hen s(w, x) = O foro all x.

The set {v; Q(v) = O and s(v, y) = Ofor' all y in V} is the set of singular
points.
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It turns out that when J( is not oj chamcteristic t<vo then the set oj
absolute points oj the associated symmetric bilinear jorm is the set oj points
oj the quadric.

Moreover, in any case, ali maximal subspaces contained in a nondegener­
ate quadric have the same rank (as do ali mo..timal totally isotropic subspaces
oj a polarity) which is called the index.

Definition 3.4.9 An ovoid in PG(3, q) is a set oj q2 + 1 points such that no
three al." collinear and jor any point P the set oj tangent lines jorms a piane
(hyperplane).

Ij Q is a nondegenerate quadric in PG(3, q) oj rank 1 then ,he quadric is
an ovoid.

Now leI. 1T be a Desargucsian projcct.ive piane of order q2 considered as
PG(2, q2). LeI. a denot.e t.he involut.ory automorphism of the associated field
F ~ GF(q2) coordinat.izing 1T and defined by z" = zq for al! z in F.

LeI. V3 denote the associat.ed 3-dimensional vector space whose lattice of
subspaces define PG(2, q2). LeI. A = lo and consider the unitary polarity
0[,".

The major facts about unitary polarities in V3 are as fol!ows: LeI. L; =
PG(2, q2).

Theorem 3.4.10 A unitary polarity oj V3 over GF(q2) has q3 + labsolute
points and q4 - q3 + q2 non-isotrapic lines in L;.

Assuming that the polarity is 0[,.. a point represented by (x, y, z) is abso­
Iute ij and only ij x"+! + y"+I + z"+! = O.

Exercise 3.4.11 Prove part (1) assuming DI,. represents the polarity.

Theorem 3.4.12 (1) Each non-isotrapic line contains q+ 1 absolute points
and evenJ two absolute points are incident with a unique non-isotrapic line.

(2) There are exactly q2 non-absolute lines on any absolute point. Hence,
there is a unique absolute line incident v.Jith any point.

Definition 3.4.13 A t-(v, k, À)-design is an incidence structure oj 'points',
'blocks', and 'incidence , wher'e ther." are v points, k points per block and any
set oj t distinci points is incident with exactly À blocks.

A 'unital' is defined to be a 2 - (q3 + 1, q + 1, l) -design.
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Hence, we see that the "bsolute points and non-absol-ute lines in E ~

PG(2, '/) for'm a unital called the classical unital. However', there are uni­
tals 1/:hich are noi classical some of ",hich cannot be embedded into projective
planes. But, if unital., are embedded into projective planes wheT"e the blocks
are lines, they shar" the ngularity canditions e.Thibited in the previo-us theo­
1'ern.

Theorem 3-4.14 Lel".+ denotc a p70jcctive l'lane of arder q. Assume t/wt
".+ contains a unital U as a 2 - (q3 + l, q + l, I)-design.

Then
(1) each point P of U lies on exactly q2 /ines of U which we call 'secant

lines '. The remaining /ine incident ",ilh P inlersects U in exactly P and is
called a 'tangent line '.

(2) Each line of".+ is eith.cr· a secant linc of a tangenllinc. T/wt is, each
/inc of the l'lane either intC7"scc/s U in onc of q + l points and ,in the latter'
case, is a /inc of Ihe design.

(3) Each point q of".+ - U is incident ",ith eo:actly q + l tangent lines
and q2 - q secant /in es. l'hc q + l intcrscct-ions of the tangents of q with U
o,.e called the feet of Q. IVhen the unital is classical, the /ine (h.ype·,pla.nc)
D/,q(q) is non-isotmpic so illlcrscets U in exactly q + l poinls which implies
that the fect of q ar'e collinca.r in thc classical situation,

Proof: \Ve cO\lnt. t.he finge (point. of U, line (block) of U) anel not.e t.hat. t.he
nnmber of points of U !.imes t.hc Il\nnber B of blocks per point. = (q3 + I)B =
t.he Il\nnber U of lines of U t.in",s t.he nnmber.of point.s ofU per line = U(q+ l).
Gi\'cn any point. Pane! any of Hw q' remaining point.s q of U, there is a nniqnc
line of t.he nnit.al cont.aining P "nel Q. I-!cnce, t.here are exactly q3 / q lines
illciclent. \\'it.h P \\'hi<:h are lines of t.he \lnit.a1. I-!cnce, it. follow5 t.hat. B = q3
so t.lmt. U = q4 - q3 + '/' Since t.here are exact.ly q4 + q2 + l lines of t.he
project.ive planeane! t.here are q' + l t.angent. lines by t.he above arg\lment.,
t.his acco\lnt.s far ali of t.hc lines of t.he pIane ane! proves (1) anel (2).

Exercise 3-4,15 Prove par·t (3).

The mot.ivat.ion far inel\lcing l1nit.als al. this !.ime is 1.0 employ the Bruck­
Bose represent.ation t.o show t.hcre exist. nnitals in any translation pIane of
oreler q2 wit.h spreael il1 PG(3, q),

The l'eaeler is referred 1.0 Bllckenhol1t. [71 for fmt.her ane! more complet.e
det.ails.
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Proposition 3.4.16 Let ;r be an affine Desarguesian translation piane oj
or'de,' q2 Ulith spread Sin PC(3,q). and let U be a classical unital embedded
in the p1YJjective piane ;r+

Realize;r and;r+ in PC(4, q) using the Bruck-Bose representation.
Wc note that the points on eoo are represented as the lines oj S in the

hype,plane PC(3, g).
Let A(U) = Un;r. Futhe,more, let

f',(U) := Jl(U) U {points on lines oj S corresponding to infinite points oj;r}.

1. Ij [00 is a tangent line to tlte unital then, in PC(4, q), I f',(U) 1= g3+q+ 1
and

2. ift"" is a secant line to the unital then, in PC(3,q), 1f',(U)1 = q"-g+
(q + 1)2.

Exercise 3.4.17 P1YJve the above pmposition.

Definition 3.4.18 In situation (1), tlte unitol is said to be '1'arabolic' and
in situotion (2), 'hyperbolic '.

Tile main t.hcorem or I3l1ckenhollt. is

Theorern 3.4.19 f',(U) is a quadric in PC(4,q).
(1) II U i8 parabolic then f', (U) has one singular 1'oint p and is the union

oj oliline.o joining l' to tlte 1'oint.o oj some 3·dimensional ovoid oj AG(4, q)
",ilh one point at infinity.

(2) ljU is hyperbol-ic then f',(U) is non-singular.

Proor: Wc sllall sket.eh the proof of (1). Tile praof or (2) is similar. Con­
sider t.hc rcgnlar sprcad

[
u + tq

x = O,y = x t' tj ] \fu, t E K ~ CF(q).
u

in PC(3, q). Not.e t.llat. x 2 - xg + j is a K -irredncible polynomial. By reslllts
from t.lle algebraie t.rac:t., we ext.end l( t.o a field I([e] sneh t.hat. e2 = eg - j
and mnlt,iplieat.ion in K[e] ~CF(q2) is given as follows:

(t"e+u')(te+u) = (t",u') [u~tg t!]
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written aver {e,l} for aH t*, u* l tI U of IC
LeI. (J denote t.he aut.omorphism of Kle] given by x" = x·.
Wc consider the classicalllnit.al U in t.he associat.ed Desarguesian projec­

t.ive piane PG(2, K[e] = F:::: GF(q2)) whose points are given homogeneously
by (x,y,z) for x,y,z in F and (x,y,z) # (0,0,0).

We choose z = O 1.0 be t.he line at. infinity {DO and z = 1 t.o denot.e the
affine point. of 1r. Fnrt.hermore, we ident.ify (x, y, 1) and (x, V). We choose
(x, l, O) = (x) and (0,1, O) = (00) on t.hc line at. infinit.y. We choose t.he
uniqlle point. on (DO of U as (00) = (0,1, O). We choose a matrix for the
lInit.ary polarit.y so t.hat. (O, l, O) is an absolllt.e point.. In part.icular, the

mal:rix [~ !~ ~] provides t.he form as {(x, y, z); X"+l + zy" + yz" = O}.

O O l O
Hcnce, wit.h onr notation, we have {(l:, V); X"+l + ya + y = O} U {(oo)} = U.

Now t.o fonn b.(U). We not.e t.hat. using t.he Brnck-Bose model, x = O
= (:t'l, X2) is a set. of q + 1 point.s of b.(U). Since x 2 - xg + f is irreducible,
it. fo11o\\'s t.hat. xi! - ";13:2g + x~ = Ois eqllivalent. t.o (X"X2) = O.

Exercise 3.4.20 Sholl' that e" = -e+g and e"H = -f. Letting x = x,e+X2
and y = y,e + Y2 5h011l that

Exercise 3.4.21 Embed t.he affine space AG(4,q) into PG(4,q) as fo11o\\'s:

and consider t.he point.s of PG(4, q) as t.hc 1-dimensional subspaces of a 5­
dimensionai K-vect.or space. Show t.hat

if and only if

Not.e t.hat t.he int.ersect.ion with the infinit,e point.s when z = Ois (x" X2) =°which is {(O, O, 1,0:), (O, 0, 0,1, O); Q E GF(q)}.
Hence, t.he above eqllation defines a quadric defining b.(U).
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Exercise 3.4.22 Show the quadric above is degenerate. Show the unique
singular point is (O, O, - 2, g, O) = p.

Now choose t.he hyperplane defined by y, = Oand not.e t.hat. int.ersect.ion
wit.h 6(U) is given by

{(Xl, X2, Yl, z); xi! - X,X29 + x~ + zYl9 = O.

Exercise 3.4.23 The above quadric in the hyperplane isomorphic to PG(3, q)
is nondegenemte and oJ index 1. Show this when q is odd.

Hence, ali point.s of 6(U) lie on Iines of p, t.here are exact.ly q2 + l point.s
of an ovoid of H in AG(4, q) and exact.Jy one infinit.e point. (O, O, l, O, O) of
H. Since each line is a 2-dimensional K-vect.or space and 6(U) is a quadric,
it. follows t.hat. t.here are cxact.ly q + l point.s of 6(U) on each line t.hru p.
Hencc, t.his account.s for t.he q3 + q + l point.s as (q2 + l)q + l points on lines
t.hru p. Hence, t.here is an ovoid O in PG(3, K) such t.hat. 6(U) Iies on pO.

Now, it. t.urns 011t. t,hat. 6(U) induces a unit.al in any t.ranslation piane
wit.h spread in PG(3, K).

Theorem 3.4.24 Let p be any tmnslation piane oJ order q2 with spread in
PG(3, q) then p contains a pambolic unital.

Proof: The idea of t.he proof is to show t.hat. 6(U) remains a unit.a! in p.
If (00) is t.he t.angency point., we may assume t.hat. X = O (L) is aline

common t.o p and' t.he Desarguesian affine piane 7r. We ident.ify t.he points of
r. and p so t.hat. we may consider 6(U) as a set. of points in p+ (t.he projective
ext.ension of p). We assert. t.hat. t.he Iines of p+ which join pairs of point.s of
6(U) is a 2 - (q3 + l, q + l, I)-design; a Imit.a!. Il. remains only to show that
t.he lines of p+ joining pairs of such points intersect 6(U) in exactly q + l
points.

First. consider a linc of p incident wit.h (00). Any s11ch line becomes a 2­
dimensionaI project.ive subspace which intersects the hyperplane al. infinity
in x = O which consist.s of q + l point.s of 6 (U).

S11ppose 0., bare point.s of 6(U) which are in r. so in p. The line ab
is a pIane of AG(4, K) and 6(U) is a q11adric. Assume that ab is not on
(00). Hence, t.he projective ext.ension ab+n 6(U) = C is a q11adric possibily
degenerate. In t.he former case, a nondegenerat.e quadric in a projective piane
PG(2, q) is a conic of q + l points. In the lat.ter case, it. is possible that Cis
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t.he union of t.wo lines of PG(4, K). lf C cont.ains aline of PG(4, K) t.hen it.
cont.ains a line eof AG(4, I,') which is cont.ainee! in aline Pe of t.he translation
pIane p. BuI., t.he project.i\·e extension of econtains a point. of !:J.(U) so t.hat
p, must. be inde!ent. wit.h (",,). This complet.es t.he proof. .

\Ve have not.ee! t.hat. an)' regnlus in PG(3, K) ean be embedded in a regular
sprcad. The sanle idea as above shows that any translation pIane with spread
Sin PG(3, K) sueh t.hat. S eont.ains a regulus in PG(3, K) forces t.he existence
of a hyperbolie unital in sueh t.ranslat.ion planes.

Theorem 3.4.25 Let p be a tmnslation piane lVìth spread S in PG(3, K).
1/ S contains a regulus then p+ contains a hyperbolic unital (eoo is a secant
line to the uni.tal).

There are many <]nest.ions ane! problems t.hat. might. be mentioned with
regare! t.o t.ranslat;ion planes ae!mitt.ing unit.als. However, here is a generai
problem.
LeI. r. e!enote a translation pIane with spread in PG(3, q) that admits
a unita!. When is thc unital a Buekenhout unita]?

Finall)', we point. out. t.hat. t:he const.rnct.ion given can be generalized and'
neec! not. e!cpend upon a classical unita!.



Chapter 4

Quasifields And Their Variants.

Qnasifields coordinatize translation planes. In the finite case, these are ba­
sically non-associat.ive division rings bllt possibly missing a distributive law
and a. ffilllt.iplicative ident.ity. Here ,ve consider, alternat.ive approaches to
the definition, and the problems tlmt. arise.in the infinite case.

4.1 Quasigroups and Loops.

A binary system (X, o) is a quasigroup if:

a, b, c E X==} 3!x, y E X :3 a o x = c /\ Y o b = c,

or
"Two in x o y = z fixes Third."

lf a two-sided mnltip!ieati,·e idenrity erists in a qnasigrollp then il. is a loop,
I.hns, loops additional1y sat.isfy:

3e E X:3 \/.7: E X : x o e = c = e o x.

Exercise 4.1.1 Let (X, o) denote a quasigroup.

1. A loop has a unique identity e, and evelY one-sided identity is two-sided
a.nd hence must coincide with c.

2. Il (X, o) is a finite loop with identity e and Y C X is a non-empty set
dosed undCI· o, then (Y, o) is Q. loop iff c E Y.

75
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3. Show that the finitcness hypothesis is essential above: consider the case
when X is a group.

4. Let Y be a set and suppose C : X ---> Y, A : X ---> Y and B : X ---> Y
denote bijeetions. Thcn dcfine (Y, *) by:

'dx, Y E X : (x o y)C = (xA) * (yB).

Show that (Y, *) is a loop.

5. Define the cartesian prod'"ct oj a jamily oj quasigroups and hence demon­
strate the ubiqu-ity oj quasigroups and non-associative loops. In partic­
ular resolve the jollowing questione
Is there a non-associative 1001' oj order n jor all integers n > 2?

Now if (X, o) and (Y, o) are related by a t.riple of biject.ions fJ- = (A, B, C)
t.hen t.he t.riple is callecl an isotopism from (X, o) t.o (Y, o); t.he latter is
called an isot.ope of t.he fonner: isot.opism is an eqnivalence relation. The
set of isotopisms from (X, o) t.o it.self are called it.s antotopisms. Compost.ion
of isot.opisms are defined in t.he natmal way, and nnder t.his defintion the
autot.opisms of a qllasigroup (X, o) form a grollp: its autotopism group. The
automorphism grollp of (X, o), in t.he usnal sense, are jnst. the antotopisms
satisfying A = B = C; similarly the isomorphisms from one qnasigroup 1.0

another are jU"t. t.he isot.opisms wit.h all t.hree components in agreement..

Exercise 4.1.2

1. Assume (X, o) is a quasigroup. Choose e E X and define the binary
operation * on X by:

'dx, Y E X : x o y = (x o c) * (e o V).

Show that (X, *) is a loop with identity e o c.

2. Show that ever'!J quasigrollp is isotopie to a loop.

3. Show that ever'!J loop adrnits autotopisms that are not automorphisms.

4. ShoUl that ever'!J qlIasigroup (X, o) is isotopie to a quasigroup (X, *)
sueh that the tUiO quasigroups are non-isornorphie.
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5. Every finite gro-up G is tlte automorphism group of a finite abelian
groU]J, e.g., G lies inìnfinitely many GL(n, q). The questìon arises:
1s e""erg finite group an autotopism/automorphism group of at least
one non-associative loop? (What if the non-associative requirement is
dropped?J
S1!ggestion: G can be viewed as a planar gmup of some free l'lane, and
tltis can easily be chosen so that the fixed l'lane can be coordinatized by
a ternarg ring with non-associative multiplication.

4.2 'franslation Algebras and Quasifields.

In this section, we consider certain choices for the definition of a qnasifield
- the systems coordinat.izing affine translation plancs. For example, some
t.ranslat.ion planes have simpler reprcsentat.ions when t.hcy are coordinat.ized
by cert.ain 'qnasifields' with the mnlt.iplicative ident.it.y missing - preqnasi­
fields. AIso, the simple axioms that characterise fiilite qnasifields and pTf~

qnasifields, do noI. yield translation planes in the infinite case - so the strnc­
tnres that satisfy the natural axioms for finite quasifields have sometimes
been called 'weak' qnasifields [18]. To pnt things in perspective we shall make
a brief examination of the most generai sueh systems in t.his section: these are
'weak-pre-quasifields', bnt we prefer 1.0 cali them simply t.rauslation algebras,
and we define [preJ-qnasifields as t.he translat.ion algebras t.hat coordinatize
translat.ion planes, rather than more generai combinatoria.l st.rnct.ures. The
reader is invited t.o complete the 'André theory' for translation strnctures
that. is hintcd al. here.

If (l(, +, o) i$ a skewfield then t.he associat.ed incidence strncture is an
affine Desargnesian piane II(I\), whose points are t.he members of l( e l(

and whose lines are ali sets of point.s that are of form y = x o m + c or
x = k, for m, c, k E K. 1\lore generally, one might. consider st.rnct.ures of
type (Q, +, o) snch t.hat the associat.ed incidence st.rnct.ures II(Q), obtained
as above, are non-Desargnesian ·affine planes. Affine planes coordinatized by
cartcsian groups are of thc fonn II(Q), \Vhere (Q, +) is a gronp.

Onr int.erest. in snch systems is restricted t.o t.he case when (Q, +) is an
abelian gronp: this will allow n8 1.0 deal simnlt.aneonsly with the notions
of preqnasifields, weak qnllSificlds, pre-weak qnasifielcls... , which become
nnavoiclable in t.he st.ncly of t.ranslat.ion planes: many t.ranslation planes have
their simplest forms when t.hey are expressed in terms of pre-qnasifields, and
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thc associat.ed objcct,s in t.he infinit.e case are 'weak'.
No", if (Q, +) is an abclian gl'Onp then the additive gl'Ollp Q EB Q admits

a nat.ural t.ranslation gronp T l consist.ing of aH bijections

T(u.b) : Q EB Q --> Q EB Q
(.T" V) 1-7 (3:, V) + (a, b),

for a,b E Q. Tlms T is reglllar on the points of I1(Q), when (Q,+,o) is
sllcli t.hat. t.he additive grollp (Q, +) is abeliano Onr interest in (Q, +, o) is
restrictcd t.o t.he casc when T is, additionally, a collineation grollp of the
incidence st.rnctnrc, and x ° D = D° x = O, where O is the identity of the
additivc gronl' (Q, +).

In tlie finite case, this simply tnrns ont to mean that I1(Q) is a translation
l'lane, and eventllally il. wiU be shown t.hat all finite trans!ation planes are of
t.liis t.ype. In tlie infinite case, (Q, +, o) becomes a 'weak' pre-qllasifield: the
incidence st.nwtll1'e I1(Q) may fal! short of being an affine piane, although
st.ill admit.t.ing thc transit.ive trallslation grollp T.

Definition 4.2.1 Q = (V, +, o) is called a zeTo-linked svstem if:

1. (V, +) is an abdiarr grOUJllU'itlr neutml element O;

2. V· = 11 - {D} is a quasigroup;

3. Dox=D=xoOVXElI,

Tlre set-tlreoretie incùlencc stmeturc fI(Q), eoordinatized bV Q, is defined to
Irave V (f, 11 as it8 points, and its linc", are tlre subscts of V e V tlrat mav be
e.rpresse.d in tlte j01'1n

Vm,b E J{: V = xom+b:= {(x,xom +b) I a: E 1I},

or
Vk E 1-: : x = ,,:= {(k, V) I V E 1I}.

Tlre zer'o-linked "ystcm Q = (11, +, o) is called a translat.ion algebra if addi­
tiona.lly tlre tmnslation group of tlre additive g7'OUp V EB 11, viz:

T := {Tu.b : (x, V) 1-7 (x + a, V + b) I (a, b) E Ve V}

is a collineation grolLp of rJ(Q).
A tmnslation algebra is ca.lled a. pre-qnasifield if fI(Q) is an affine l'lane

(and Irencc an affine tmnslatian l'lane).
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Exercise 4.2.2 Let (Q,+,o) be any zeTO-l-inked strueture.

1. Show that the group

e:= {(x,y) ...... (x,y+b) I bE Q}

is a translation gmup oj 11(Q).

2. Cive examples oj finite (Q, +, o) sueh that I1(Q) is not a translation
piane. COllsidcr coordillatizing a dna! translation pIane.

3. Are ali zeTo-linked svstems translation algebras?

The following proposition means that a finite t.ranslation algebra is the same
things as a finite preqnasifield.In the infinite case a translation algebra is t.he
sanle t.hing as a \veak (pre)qnasifield' in the scnse of Hllghes and Piper. Tlms,
t.rallslation algebras are int:rodnced (temporarily) to refer to the same object.s
that have been given different namcs in t.he finite ane! infinite sitnations.

Proposition 4.2.3 Let (Q, +, o) be a zem-l-inked system. Then it is a trans­
lation algebra iff the 7ight distributive l!l"lll holds:

Va,b,c E Q: (0.+ b) oe = aoe+boe.

Proof: Assnme the trans!ations T.,b : (x, y) ...... (x + n, y + b), of Q EB Q,
permnte the lilles of 11(Q). So

c'

(x + a) °m' + (-o o m' + c + b)
(x+o)om'

Y = J; o rrl + c ~ y = 1.: o m' + c'

{(x + 0, (x + a)m' + c') I x E Q}
(x+a)om'+c'

::::;. x o 1n + a o m/

=? {(x + a, x °m + c + b) I o; E Q}
=?xom+c+b ­

So by x <-- O: -!l °m' + c + b ­

So:xom+e+b -

ane! the rcsult. follo\\'s bcmnse aH translations mnst be permitted. The con­
verse, that. t.he right e!istribntive la\\' implies t.hat T is a coHineation gronp of
!I(Q), is jnst as easy. _
The foHowing proposition gives the st.ane!are! cone!ition for a translation al­
gebra, finite or infinite, to be a preqnasifiele! in the nsual senBe of the term.
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Proposition 4.2.4 Let (Q, +, o) be a translation algebm. Then IT(Q) is a
translation piane if and only iI

Va, c, d E Q, Q. f c(3!x 3 x o a - x o c = d)

Proof: We need lo check that lhe incidence stmcture IT(Q) is an affine
pIane iff the condilion holds. \Ve verify that far any translation algebra,
distinct points (Cl, b) and (c, d) of IT(Q) lie on a unique line. When a f c,
then lhe equat.ion":

a.om+b - n

co rn + d-n,

I.ogether wil·h the righI. distributive la", and lhe quasigroup property of Q',
cllablc 111, aneI n t.o be llniqlle1y dct.cnnilled since we have: (a - c) * rn =
-(b - d). And if" = c then 'x = c' is the only common line. So two points
mccI., ,md dearly parallcl lines, meaning lhose ",ith the 'same slope', do noI.
mccI.. Henee far n(Q) 1.0 be an affine plane everything clearly depends on
whet.her or not. the lines 'y = x o Cl + // awl 'y = x o c + d' rneet. far afe.
Bui: these lincs mcet. al. poinl.s whose X-coordinal.es x sat.isfy:

xoa+b=xoc+d

aucI this eqllation has a ulliqnc sol11t,ion iff:

x o a - :t o C = cl - b,

and this is t.he givcn condit.ion. 'l'he result. follows.•

Corollary 4.2.5 Finite tro.nsla.tion algebras and distributive translation 0.1­
gebms always coordina.tize transla.tion pla.lles.

Proof: UsiJlg the notation of prol'osit.ion 4.2.4 abo\'e, the mal' () : x t->

x o a - :1; ? c is an additive llmp, and it-s kernel corresponds to x satisfying
3: oa = x o C, cout.radicting thc qllasigronp hypot.hesis 011 ~iV* l o) J 11nles5 Oi5 in­
ject.ive. So in the finite case Oi8 certainly bijective. In t.he general case, when
o is dist.ribut.ive, t.he dist.ributive law yields t.he ident.ity -"ov = "O (-v) and
henee also 0(1:) = X o (a. - c). So distribntivity iml'lies that Ois bijective sinee
(W', o) is a nmltiplicat.ive lool'. 'l'hus in bot.h cases, finite or distributive, (i
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is bijcrt.ive whcnever afe. Hcncc proposit.ion 4.2.4 yields t.he desired resnlt .

•
TllllS the concept of a translation algebra coincicies wit h that of apre-
Cjnasifield (st.rnct.nres t.bat. coordinat.ize affine t.ranslat.ion pIanes) in t.be finite
case or when both the distributive law holds.

4.3 Schur's Lemma, Slope Maps and Kern.

In t.bis leet.nre we int.rodnce some t.ools and coneept.s cssent.ial for thc st.ndy
of sprearls anel t.ranslat.ion planes. \Ve begin by recalling Scllllr's lemma, a
resnlt. t.hat. plays a cent.ral l'art. in spreael t.heory. \Ve shall nse it. in a moment.
t.o show t.hat. ali translat.ion algebras are bnilt. on vcct.or spaces.

Result 4.3.1 (Sehur's Lemma.! Il V and Hl are inedlleible modules and
'P : V ---> IV is a non-trivial linear' maI' lrom V to IV then l' is a bijetlive
isomorphisrn.

Proof: Thc kernel of 1> is t.rivial becanse V is irreclncible anel 1> is smjccti"e
beeanse itB image is a snbmoelnle of IV.•
'Ve have met. t.he conccpt. of slopcset.s (or slope maps) of a spreael. \Ve now
t.nrB 1.0 slope maps of a t.ranslat.ion algebra. \Ve shall event.nally see r.hat.
sIepe lllapS a~sociatecl wit.h a. translatioll algebra alld those associateci with
a spread are essentially identical conccpts.

Definition 4.3.2 (Slope Maps) Let Q = (IV, +, o) he a tran8lation alge­
Ma. Then the endornorphisms 01 (IV, +) ollonn: TG : x ...... x o a aTe its slope
maps. T = {TG I a E IV} is tlw slope-set. 01 the tmnslation algehra Q.

\Ve can no\v apply Schllrl~ lCInnla. t.o show f.hat translation algebras, of alI
t.ypes l are bllilt 011 vcd.or spaccs and t.hat. t.1lCir non-zero siope nlaps are
non-singular rela.tive t.o t.hc vcct.or st.rnct.l1re.

Lemma 4.3.3 (Kern Endomorphisll1s.) Let Q = (V+,o) be a tmnsla­
tian algehm; so its sla}!e.>ct T consists 01 a. subset 01 H om(V, +) such that TG,

lo" alt a E V'. alc b!iective raembeTs 01 H mn(V, +). Let J( be the centmlizer
afT in Hom(\i,+). Thcn thcloltowing aI'I'ly:

1. J( is a skeuifield whose non-zero elements are alt hijeetions in H om(V, +);
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2. T consists of J( -/inear' maps of V when V is viewed as a vector space
oveT J(: thus, OE T imp/ies:

1.'1.:0 = 710k'Vk E K, OE T.

Proof: The qnasigronp condition 011 V· shows that T* generate a gl'oup
act.ing t.ransit.ively on V', anel so the group < T' > is irreducible. Now apply
Sc!mr, lemma 4.3.1. •
The skewfielel J( of t.he lemma will be calleel t.he external kem of the trans­
lat.ion algebra:

Definition 4.3.4 (External Kern.) Let T be the set of s/ope maps of a
tmns/ation a/gebm Q = (V, +, o). Then the the centm/izer of T in IIom(V, +)
is the (extema/( KERN ofQ, Ilnd a/so ofT; these aTe denoted by keTn(Q) and
kem(T) Tesp.

The following remarks follow from lemma 4.3.3 anel the elefinition of t.he kern
of a t.ranslation algebra. Il. might be helpful t.o reminel the reaeler that ali
prequasifielcls are translat.ion algebl'as anel in t.he finit.e case both concepts
coincide.

Remarks 4.3.5 Let K be the kem of a tmns/ation algebm (Q, +, o). Then
the following ho/d.

1. The additive g7'OUP Q ED Q becomes a veetor' space Telative to the oper­
ation:

k(x, y) := (T', y')'Vk E K, x, Y E Q.

This is a/ways tlll.:en aB the STANDARD kem action on Q ED Q.

2. The standaTd action of /(" on Q e Q induces faithfully a gTOUp of
collineations ofIT(Q) thatfixes (O, O) and ali the lines thTOUgh it. Con­
ver'se/y every additive bijection of Q E9 Q that fixes eVerlJ /ine thmugh
the origin (0,0) is ofform (x,y) >--> (x',Y'), k E /(".

Thus the above remark shows t.hat t.he c.oncept of kern homolgies, associat.eel
with a translation pIane, carrie::; aver to a considerable extent to TI{Q),. where
Q is a translation algebra.

Exercise 4.3.6 To what extent does ·the AndTé theoTg of spTeads and tmns­
lation p/anes carry oveT to IT(Q), the incidence structwre associated with
tmns/ntion stmduTes? FOT e:camp/e, Teso/ve the following questions:
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1. 1s the full gro-up Dj 'clilations' ojrI(Q) j-ust the gro-up r]('?

2. Does every collincation rr firing the origin an element ojrL(QeQ,IC),
the gro-up Dj non-sing-ular' semilinear' maps Dj the ]( -space Q e Q.

The obvious approach t.o t.hc above exercise is to try and imitat.e the André
theory. However, sincc we only deal with t.ranslat.ion st.ructnres that are
quasifields, and Hms by definition rI(Q) is a t.ransiation piane, we already
have available t.hc complet.e answer t.o such quest.ions by André theory.

'Ve now est.ablish a simple reslllt. of fundamcnt.al importance: t.he kern
of any quasificld (Q, +, o), as opposed t.o a pre-qllasineld, may be defined in
t.\\'o eqllivalent. ways - as t.he ccnt.ralizer .of t.he slope maps of (Q, +, o) in
I-Iom(Q, +), as done cm'lier, dcfinition 4.3.4, and as t.he sub[skew] field of
(Q, +, o) consisting of t.he clemcnts in t.he left nucleus N,(Q) t.hat distribllte
from t.he left. - t.he int.ernal kern.

Definition 4.3.7 (Internai Kern.) Let Q = (V" +,0) be a tmnslation al­
gebra with m-ultiplicative iclenf.ity c. Then the INTERNAL kern ,,(Q) oj Q
is:

{I.: E Q IVx, Y E V : (I.: o (x + y) = k o x + I.: o y) Il (k o x) o y = k( ox o V)} .

The following resuIt. cstablishes the eqllivalcncc of the ext.ernal and t.he in­
ternai kcrn, c.f., definit.ion4.3.4 and definit.ion 4.3.7.

Proposition 4.3.8 Let (Q, +, o) be a translation algebm that has a m-ulti­
plicative identity c and let ,,(Q) be its internai kern, cI, definition 4.3.7. To
each I.: E ,,(]() assign the map: I: : x I--> k o x. Then

End( Q, +) ~ ,,(Q) = I.:ern(Q),

where the RI-IS is the (extemal( I.:em, cI, definition 4.3.4.

Proof: It. is straightforward t.o verif)' t.hat. t.he elements of 1« Q) are addit.ive
maps of Q and t.hat. t.he}' centralize t.he slopemaps of the qllasifield Q and
hence, by definition, ,,(Q) is contained in ke1'n(Q). "Ve verif)' t.he converse.
Sllppose a: E ke1'n.( Q) and let eO = a. 'vVe mllst demonst.rate that. a satisfics
t.he defining identit.ies for I«Q). Since Cl centraiizes the slope maps of Q we
have:

Vx, m E Q : (x o mt = (xQ
) o m,

so
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'Ix, m E Q: (:tomt _ (xn)om,

ancl ehoosing x = e yields:
'1m E Q : mn

_ a °m

so
Vx,mEQ:ao(xom) = (aox)om,
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so a E N,(Q, °). Ivloreover, the reqllirement that. Ci E HomeQ, +), now easily
yields the reqnired dist.ributive 1m\':
a 0(1; + y) = a ° x + a ° y.•
In view of t.he above t.beorem, we shall event.ually eease to distinguish betwecn
the internai and external kern. Not.e tbat by lemma 4.3.3, and definit.ion 4.3.4,
the external kern is always a skewfield and henee by the proposition above
the same holds far t.he internai kern. Thus we have established:

Remark 4.3.9 Let (Q, +, o) be any tmnslatioTL algebra with a multiplica­
tive identity. Tltell intemal o.lld extemal kem oJ (Q, +, o), are isornorpltic
skewfields.

Appendix: Quasi-Quasifields'

\Ve panse t.o lucntion anot.hcr syst.em, dist.illct from n t.ranslat.ion algebra,
t.hat in t.he finit.e ca<;c rccll1ccs t.o n prc-qllH.sifield, as does t.ranslat.ioll algc­
hras. These st.ruC't,nres are callcd qllasi qllasifields, and in t.he infinite case,
quasifibrations are eit.her sprea(is or maximal partial spreads, see (19); t.hus
thcy arise nat,urally in iIlY(~tigat.ions involving transation nets.

The essential differenee bet.\\'een t.he t\\'o strnetnres, translation algebras
and qnasi-quasifields, lies in the f'lct. t.bat t.he one-half of qnasigroup eondi­
t.ion, 'a00 = b' nced not hold far quasi-quasifields, but holds far trallslation
algcbl'us, wltile t.hc dist.ribllt.in~-N]lIatioll

(a+b)00= a 00+ b00,

has Il nni'jllC solnt.jon for 1: in qUllsi-quRsifields b"rmay fail far infinite trans­
lat.ion algebras.

Defillitioll 4.3.10 A triple ((j, +.0) is called a quasi-quasifield il

1. (Q, +) is an abelian g1'OUP: so O denotc.> thc additive identity;

2. Vx:xoO=Oox=O;
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3. (Q, o) has a left identity c: so e o x = x far x E Q;

4. The r·ight distributive law ho/ds:

\Ix, a, b E Q : (a + &) o x = a o x + b o x;

85

5. Far CL, &, e E Q, CL I c, the equation x o a = x o b + c has a unique
so/ution for x.

The maps Tu : x >-> :ca, for a E Q. are cal/ed the slope maps of the quasi
qausifield, am/ TQ, tlte set of al/ slope maps, is eal/ed tlte slope set: it is
clearly a 8ubset of H om(Q, +). Tlte centmlizer of T in H om(Q, +) is a ring
K cill/ed lite (outer) kem of tlte quasi-quasifie/d.

Remark 4.3.11

1. Tlte s/opeset T is a sltarply one-tmnsitive sct on Q, equivalently, in
((t, o) every equation x o a = b has a unique so/utiol! far x E Q', when
a., b E Q': so the 'right-Ioop Ima' holds.

2. TI", outer kern K of a quasi-q-uasifie/d Q is a skew fie/d, am/ the
8lol'Cmaps of Q are linear maps oJ (Q, +), when this additive group
is ,·egarded as. a vecior space over· K under its standard action.

3. The differenee Tu - n is non-singular· whcn a, b E T are distinct.

4. A finite quasi-quasifield is a quasificld.

Proof: Case (1): Apply condition 4.3.10(5) with b = O. Case (2): the
prGviolls case enables a Sdmr argllment to be applied, see lemma 4.3.3. Now
applying the condit.ion 4.3.10(5) again yielcls Case (3). Case (4) foUo\Vs by
not.ing t.hat. if for a I O: a o x = a o y then for x I y we have Tx - Ty is
singll1n.r, contrary to case (3); hcnr.e x 1---+ a o x is injective and thllS in the
finite case it. is biject.ive.•
ThllS a finite translat.ion algebra aueI a finite qllasi-qllasifield are jllst pre­
quasificlds. In the infinit.e case they lead to different. st.ructures: a translation
algebra may have the conclition 4.3.10(5) missing, bllt. t.he m1l1tiplication is
reqllired 1.0 yield a qllasigrollp, so a o x = e has a solllt.ion for x ",hen a I O:
this need not holcl ill an infinite qllasi-qllasifield. Thc struct.nre associateci
',·il h qllasi-qllasifielcls are caUed qllasifi brations.



Chapter 5

Coordinatization.

The theme of this chal'ter is coordinatizat.ion of stmctures that are associ­
ated \vith translation plancs. In pnrtic111ar l wc emphasize ho\v sprcads are
coorclinatized by spreaclset.s alld (l're)qllasifielcls, and also on how sl'readset.s
may t.hemselves be coordinat.izeci by (l're)qllasifields.

5.1 Spreads and Quasifields.

Recall t.hat., by definit.ioll 1.1.17, a sl'rea<! r. = (V, S) is a collect.ion of addit.ive
sllbspaces S, of an acldit.ive grollp V, sllch that. every x E V lies in some
cO'1nponent a ES, and

a,/3 ES=> V = aS/3Va= /3.

'Ve ilO\\' assign 1.0 each l'reqllasifield Q all associat.ed sl'rcad r.(Q), sa-id t.o be
coordinatizcd by Q. 'Ve slIIllmarize some relat.ed Ilot.at.ion \\'hich wil! be very
extensivcly used: the not.at.ion is essent.ially that. of dementary coordinate
geomet.ry in the con\.ext. of qUllsifields; il. is kept. sufficiellt.ly flexible t.o cOllsider
I.he c1assificat.ioll of quasificlds arnong zero-linked st.rnctures, defintion 4.2.1;
variallt.s of t.he notat.ion are uscflll in studying l'art.ial sl'reads and net.s.

Notation 5.1.1 Let Q = (tI', +, o), where (W, +) is the additive 91VUP oj
a vector space and o is a. binary operation on H'. Then on the vector space
W e H' we defiiw the jollolUiny s"bsets.

1. The X -a.7:is and the Y -a:ùs are respective/y X - IV S O and Y .­
OSll'.

86
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2. The unit line is the set {(x, l:) I x E W}, and denoted by Z or vecI.

3. The non-vert.ical lines are the sets oj type

Vm,b E IV: 'y = xom+b':= {(x,xom+b I x E IV}.

4. The verticallines an, all sets oj type:

Vb E W: 'o.' = b':= {(b,y) I y E W}.

The quotation marks above are often dropped. Also note that, in the context
of a translation algebra (Q, +, o), thc collection of all lines whether or noI.
they are vertical, coincides with II(Q), t.he incidence structnre associated
wit.h (Q, +, o). As II(Q) is dctermined by t.he lines t.hrough zero, we shall
introduce a special notation for t.his stnlct.nre: wc write 7r(Q) for t.he lines
II(Q) through the origin:

Dcfinition 5.1.2 IfQ = (W, +, o) is any zem-linked strudu1e, see definition
4.2.1 structu1'c,then ..(Q) := (V, S), 11IhC1'e V = IV Eb W and

S = Y = {OEb IV} U{'y . xom'l m E Q};

the members oj S are the components oj ..(Q); thus thc components are the
lines oj II(Q) thr-ouyh the Q1'iyin.

A fundamental but. c1ement.ary result is that ..(Q) is a spread iff t.he given
zero-linkeel struct.nrc Q is al. least. a pre-quasifield.

Remark 5.1.3 LetQ = (IV,+,o) be a zero-linkedstl1lcture, definition4.2.1,
and thc sfield f{ ils kem: thus f{ is the centro.lizer oj the slopeset oj Q in
the 1'Ìny Ilom(H', +). Then ;r(Q), is a spread iI! Q is a pre-q-uasifield; 7r(Q)
is said to be coorelinatizeel by the p1'equasifield Q.

Proof: ~ is straightforwarel. To establish the converse we assume that Q
is a zcro-linked st.ruct.llre and t.hat 7rQ is a spreacl 011 V; \Ve must deduce that
Q is a prcquasifielel. Consieler II(Q), c.E., definit.ion4.2.1, the incidence struc­
!..lire "$sociateel wit.h Q = (IV, +, o); so the pointset. of II(Q) is V:= VV Eb W'
anel .t.hc lines of II(Q) are all thc subspaces a11(1 cosets of (V, +) that are of
fonn 'x = c'or 'y = x ° m + c', far m,c E IV. Hence, the lines of II(Q)
through the 'origin' O = O tt) O consist.s of t.he components of t.he spreael7rQ.
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So every subspace of type 'x = c'or 'y = x o m +c' is a translate of a compo­
nent of 'TrQ. Hence TI(Q) is t.he t.ranslation pIane associated with the spread
"Q, and W fil W may be identified wit.h its translation group in the obvious
way. Thus Q is a t.ranslation algebra, as defined in 4.2.1, that coordinatizes
a translat.ion pIane, and hence musI. be a pre-quasifield by proposition 4.2.3.•

5.2 Quasifields and Spreadsets.

We introdnced in an earlier chapter, see definitions 1.3.4 and 1.3.11, the
not.ion of a [part.ial] spreadset., and we described how they give rise 1.0 [par­
t.ial] spreads. In t.his Iect.nre, we similarIy expIore the connection between
spreadsets and quasifields.

Alt.hough in some t.heorct.ical sense, spreadsct.s, quasifelds and spreads ali
t.urn out. t.o be 'equivaIcnt', t.hc correspondence is not. one-one: for example,
many non-isomorphic quasifields are associateci with the same spread and
most spreadsets are associated with severalnon-isomorphic quasifieIds t.hat
they 'coordinatize'. Thus, spreadset and [pre)qnasfields provide essentially
dist.inct. approaches t.o t.he st.ndy of spreads and translat.ion planes.

To keep t.his lect.nre seIf-cont.ainecl, we review t.he definition of a par­
tial spreadset. in t.he following exercise: it. provides a charact.erization of the
concept. as given in onr em'tier definit.ion 1.3.11. For the convenience of the
reader, the l'est. of t.his Iect.nre tacit.Iy t.reat.s t.his exercise as defining a [partial]
spreadset.

Exercise 5.2.1 Let T be a set oj homomorphisms ojthe additive group (W, +)
oj a vector space. Then T is a partial spreadset on W iff

et,f3 E T => et - f3 E GL(W,+).

A partial spreadset T is a sp1'tadset iff O E T and T is a transitive set oj maps
on W, urhich means:

Vx,y E W: 3t E T" Y = x'.

Ij W is a vector space over a (skew}jield K then T is a (K -linear} spreadset
ij the members oj T are K -linea,..
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Mnch of the following remark amonnts 1.0 rest.at.ing the meaning of a spread­
set., in terms of it.s charact.erizat.ion in t.he exercise above, and also reviews fhe
connection bet.ween spreads and spreadsets as discussed in section 1.3. How­
ever, t.he main point of the rernark is t.o establish the theoretical equivalence
between spreadset.s and [pre]qnasifields.

Remarks 5.2.2 Let (W, +) be the additive group oj a vector space and sup­
pose, is a set oj additive maps Dj W such that O E , and " C GL(V, +).
Then:

1. , is a spreadset iff " is regular on W', that is:

'Ix, y E W' : 3!t E , O) Y = x'.

2. Ij IWl is finite then, is a partial spread iff " C GL(W, +) is such that
A - B is also non-singular, whenever A and Bare distinct members oj
,.

3. Ij IWl is finite then , is a spread iff O E , and, contains IWl elements
any t100 oj which differ by a non-singular map or zero.

4. Let Q = (W, +, o) be a (preJquasifield. Then the set oj its slope maps,
see definition 4.3.2, 'Q jorm a spreadset, cal/ed the spreadset associat.ed
or· coordinatized by Q.

Proof: We only eonsider case (4), as t.his is t.he least. t.rivial case. The slope
maps Tm : x ~ xorYl, m E Q*, are bijections because Q* is a quasigroup, and
t.he dist.ribnt.ive law for Q rneans that. every sneh Tm E GL(IV, +). Next we
mnst. show t.hat. t.he addit.ive map T. - Tb , for a, b E W is bijeet.ive, assnming
a f b. If x(T. - Tb ) = O t.hen x o a = x o b, eont.radicting t.he qnasigronp
propert.y for rnnltiplieat.ion. Thus T. - Tb is inject.ive. To show this map is
smjective, eonsider w E W'. Now w = x(T. - Tb ) for some x E W iff

tu = X o il - x o b3x E Vlr,

and this holds by proposit.ion 4.2.4. It. only remains t.o check that if x and
y are non-zero then y = x', for a nniqne t E ,. This eqnivalent 1.0 checking
that. y = x o t has a nniqne sollltion for t, and t.his again follows from t.he
quasigroup property. _
We now associat.e with any spreadset., in the sense of definition 5.2.1, several
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rdated algebraic syst.ems that. tllrn Ollt. 1,0 be at. least preqllasifields: this will
lead t.o t.he correspondence bet.ween spreadsets and [preJqllasifields mentioned
carlicr.

Definition 5.2.3 (Sytems Coordinatizing Spreadsets.) Let T be a sprea,
set on (Il', +), the additive g'fOUP of a vector space. To each e E W' assign
the system Qe := (W, +, o), where o is defined by:

x o y = xt(e ....... y) 1

where tre t-> y) denotes the uniq'ue element ofT that maps eta y. The system
Qe is said to coordinatize T at e.

It is immediately obvious that. e o y = y, so Qe has e as a left identity.
Moreover, when l E T t.hen e act.llally becomes a two-sided identit.y. Now
consicler whet.her Qe is a [pre]qllasificld. The non-singlliarity of the non­
zero lnenlbers in T shows t.hat x o a = c has' a llnique solution far x when
a i' O. The addit.ive propert.y of linear maps provides the righI, distribut.ive
la\\'. AIso, t.he condition

(5.1)

shows t.he LHS, as a fllllct.ion of l', is biject.ive on ~V because, by definition,
any t.wo dist.inct. Illembers of a spreadset. differ by a non-singular ~V-bijection.

Finally an eqllat.ion of t.ype a o l' = I> has a Ilnique solution for x because of
the 'reguiarit.y hypothesis'. Thus we conclude:

Remark 5.2.4 (The Quasifields Coordinatizing A Spreadset.) Let T
be a spreadset on some some (~V, +), the additive gTOUp of a vector space.
l~lCn far each e E W' the system Q, coordinatizing T, as in definition 5.2.3,
is a [preJquasifield, which we call the [pre}quasifield coorclinat.izing T at e.
The [prehuasifield has e as a left identity, and hence Qe is a quasifield (UJith
identitye) if] T indudes the identity map.

Corollary 5.2.5 (The centralizer of a spreadset is the kern.) The cen­
fralizer of T in Hom(W, +) is a [skew}field J(, and J( is the external kern of
all the [preJqua8ifields Q" e E T.v', coo1'<linatizing T. In particular, if W is
a. vector' space aver n [skew}field F nnd if T is a spread set of F -!'inear maps
then F i8 in tlte external kern of the [pre}quasifield Qe.
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We shall gradnally get less pedant.ic wit.h kern t.erminology: for inst.anee, we
shallnsnally not spedf)' whether t.he kern eonsidered is 'int.ernaI' or 'external'.

In t.he finite case, spreadsets have a pmticlllarly simple eharaeterizat.ion:

Remark 5.2.6 Let T C GL(n, q) sueh that O E T. Then T is a spread
iff ITI = qn and o.ny t"UlO members oJ T differ by an element oJ GL(n, q).
More GF(q), associated with the scalar maps, is in the kern oJ the quasifields
associated with r.T'

Proof: This is jnst a restatement of remark 5.2.2(4), bearing in mind t.hat.,
by t.he corollary above, t.he cent.ralizer of a spreadset corrcsponds t.o t.hc kcrn
of all t.he qllasificlds assodat.ed it..•
We now vcrify t.hat. cvcry spreadset. T ·det.ermines a spreae! "T anel t.his co­
incides with all spreael as r.(Qc), as Q, ranges OVer t.he qllasifielels cOOl'eli­
nat.izing T. \Ve first fix oni' not.at.ion in t.he COllt.ext of partial spreadsets
TcHom(W,+).

Definit.ion 5.2.7 Let (IV, +) be an addit'ive group oJ a vector space and T C
Hom(V, +) such that:

A,E E T=- A-E E GL(W,+).

The T is a PAIlTIAL SPREADSET and the associated partial spr-ead is the
collection oJ additi"e S'ubspaces oJ V = We w given by:

"T:= {[y=xT] ITET}U{Y},

and we define
7l'I. := ([y = xT) IT E T} .

The more elaborate notation is choscn for t.hc simpler st.rnct.ure becanse in
most. cont.exts t.hc Y-axis needs t.o be inclndee!.

Theorem 5.2.8 Let T be a spreadset on a vector space IV. Then the col/ec­
tion oJ subspaces defined an W Et> IV by:

"T = {[y = xT] I TE T}U{OE9W}

is a spread, cal/ed the spread assaciated with T. Mareover, Jor each e E IV'
lhe spread ,,(Qc) = "T< wilere Qc is tile [pre}quasifield, caordinatizing T at e.
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Proof: Consider any y = xT t.hat. lies in 1fT , Put.t.ing B = eT we have

x °B := xt(,~O) = xT,
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so y = x ° B is t.he same subspace of VV El) VV as y = xT. Conversely any
y = x °B may, by definit.ion, be expressed as y = xT where T E T maps e t.o
B. Thus 1fT is t.he same set. of subspaces of W El) W as in 1f(Q,). However, the
latter is a spread because, by remark 5.2.4, Q, is always a quasifield. Hence
1fT is also a spread and t.he desired result. follow8.•

Theorem 5.2.9 Let 1f(Q) be a spread coordinatized by a (pr'ehuasifield Q =
(W,+,o), and suppose J( is the (extemal} kem'of K. Then the standard
action of J( on 11"(Q) coincides with the action of kem of 1f(Q), that is, the
standard action of J(' on W El) Hl is the sarne the action as that of the full
group of kem homologies of 11"(Q).

Proof: The non-vcrt.ical component.s of 1f(Q) are of form y = x ° m, or
equivalent.ly, yxM, where M is in t.he spreadset. det.ermined by Q. Now t.he
kcrn of Q are t.hc members k E End(W, +) t.hat. cent.ralize ali such M, so the
st.andard action of k on Hl El) W yields:

(x, xT) H (xk, xTk) = (xk, xkT) E [y = xT],

and henee every y = xT is left. invarant. by k. Hence K may be identified
wit.h a subfield of t.he [skew]field of kern cndomorphisms of t.he spread 1f(Q).
Now consider t.he converse.
Let. T be t.he slopeset. of Q. SO t.hc non-vert.ical components of t.he spread
1f(Q) are ali of form y = xT, T E T. lvloreover, wc may regard Q as being Q,
for sorne €. Consicler any homology leaving every mernber of 1T( Q) invariant.
Since this fixes Y and X it must. be of from C>. El) {3 E GL(W, +) El) GL(W, +)
and sat.isfy the condit.ion:

\;;Ix E Hl : (x, xT) ...... (xc>', xT{3) E [y = xTJ,

'VT E T : C>.T = T{3.

Now apply Schur's lemma above. _
Wc now consider the problem of deciding when a spreadset is a quasifield
and when it. is a pre-quasifield without. an identit.y.
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Corollary 5.2.10 Let r be a spreadset. Then the following are equivalent:

1. r contains the identity map.

2. Some prequasifield Q, coordinatizing r is a quasifield.

3. Ali prequasifield Q, coordinatizing r are quasifields.

4- The spr-ead 1rT includes the unit line y = x.

Thus il. becomes desirable 1.0 'reduce' a spreadset r 1.0 an equivalent spread
containing the identit.y; we regard two spreadsets asbeing equivalent if the
corresponding spreacls are isomorphic. So, when are t.wo spreadset.s equiva­
lent? A simple sufficiency condit.ion is t.he·following:

Remark 5.2.11 If r is a spreadset on IV then so is A-1rB, whenever
A,B E GL(W,+) and the map (): (x,y) I-> (xA,yB), ofWEB W, is an

. isomorphism from the spread 1rT onta the spread 1rA-'TB. Moreover () leaves
invariant the common components X = W EB O and Y = OEB W.

Thus we may simplify a spreadset. t.o an eql1ivalent. one sl1ch t.hat the uniI. line
belongs 1.0 il., and hence the coordinatizing prequasifielcls are ali quasifielcls:

Corollary 5.2.12 Let r be a K -linear spreadset on a K -space IV, K any
field: so Ihe components 01 the spread 1rT are K -subspaces 01 the ambient
space We W, and the subspaces X = W @ O and Y = O@ Hl are among the
components of1rT. Then the spreadset r is equivalent to a K-linear spreadset
() sueh that it" associated spread 1ro has the same ambient spaee Hl ffi W as
1fT> and the component" ol1ru are K -subspaces of Hl @ IV that include not
only X and l', Imt also the unit llne I = {(w, w) I w E W}.

Thus, ali spreads t.hnt. are coordinatized by spreadset.s, i.e. are of form 1rT

for some spreadset. r, may be [re]-coordinat.ized by a spreadset a such that
a includes t.he identit.y.

We have seen that. every prequnsifield (Q, +.0) may be 'convertecl' 1.0 a
ql1nsifield (Q, +, *) by choosing e E Q' ancl clefining *'

(xoe)*(eoy)=xoy,

and now e o e becomes t.he identity. We now clemonstrat.e t.hat. t.he nssociatecl
spreacls are isomorphic ancl hence bot.h syt.ems have the same [ol1t.erJ kern.



CHAPTER 5 COORDINATIZATION. 94

Let. Sx : x t-> X o n, a E Q, alld Ta : x t-> x *n, n E Q denot.e respect.ively
t.he slopemap of a in t.he preqnasifield (Q, +, o) and the qnasifield (Q, +, *)
respect.ively. Thns t.he ident.ity abovc yields SeT(,oy) = Sy, for all y E Q ancl
so t.he slopeset TQ of t.he qnasifield (Q, +, *) is given by TQ = Se -llTQ , where
lTQ is t.he slopeset. of t.hc preqnasifield (Q, +, o). We shall st.at.e this result. in
terms of:

Definition 5.2.13 Let (Q, +, o) be a pT·equasifield. Define Q, .- (Q, +, *)
by

'r/x,y E Q: (xoe) * (eoy) =xoy.

Then Q, is the quasifield that normalizes the l'requo.sifield (Q, +, o) at e.

Thns we have est.ablished:

Propositioll 5.2.14 Let Q be a prequasifield nOTmalized by a quo.sifield R
at e E Q'. Let TQ and Tn be respectively the slopeset 01 two systcms. Then
Tn = E-ITQ, when, E is the slopemap 01 c Tegarded as member 01 Q. In
l'articular, the sl'reads defined by a pTequasifield is isomorphic to the sl'reads
obtained by nny 01 its nOT1nalized quasifields, and the external kernel 01 the
two systems aTe the some.

Il. is \Vort.h st.ressing that. llormalising a preqllasifield t.o a qllasifield is equiv­
alent. t.o int.rodllcing a mult.iplicat.ive ident.it.y in it.s spreadset. T by replacing
T by T-1r, where T i5 any non-zero elernent. in T.

5.3 Substructures of Quasifields.

In t.his lect.nre, we introdllce celtaill addit.ive and llllllt.iplicat.ive subst.rnct.mes
associat.ed \Vit.h qllasificlds anel preqllasifielcls and consider their connection
\Vit.h tI le associat.ecl spreadsct-s.

Note t.hat. we have aIready considereel the most. important case, viz., the
kcrn: aB tlte qllasifielcls coorclinatizing Et t.ranslat.ion pIane, anel, a fortiori,
t,hase associat.eci wit.h a givell spreaclset., have iSOlllorphic kerns siuee they
may be ident.ifiecl \\·it.h thc grollp of homologies \Vit.h the idealline as axis.

The aim lwre is t.o consider several ot.her sllbst!,llct.nres of prequasifielcls
t.hat extend the not.ion of the kern in various ways, and thns have some
geometrie significancc. QHI.' main COl1cern here is the cxt.ent. to which t.hese
st.rllcture are invariant" as t.he quasifields from which t.hey arise range o\"er
al! t.he quasifielcls assoeiateel wi t.h a fixcel spreaelset.
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Thcre are basically t.wo t.ypes of snbst.rnct.mes t.hat. we consider here:
t.l", cxt.remc casc of each t.ypc being nearfields (associative qnasifielc!s) ane1
semific1ds (dist.ri bnt.ivc 'lnasifields).

In ncarly cvery case, om goal is t.o sho\\' that eaeh type of snbstruct.me is
an invariant. for ali the preqnasifie1ds coordinatizing a fixed spreadset. S. 'Ihis
reflects t.hc fad, as wc shall see in t.he next. chapt.er, t.hat. the snbstrnet.mes we
cOllsider are nearIy always a.%ociat-cd wit.h certain maximul grollps of cent.rai
collineations of t.he spread coordinatized by S.

'We deal first. wit.h t.he Innlt.iplicat.ive snbst.rnct.mes assodated wit.h a
(pre)qnasifie1d Q, ancl t.hen t.nrn t.o an addit.ive analogne. In t.he multi­
plicativc cases, t.hc strllct.l1rCS wc l'cfer t.o are jllst the semillue1ei of t.he 111111­
tiplicativc qnasigronp st.rllct.llre of Q*: alld we h~tve aIready Illct thcse in thc
cont.cxt. of 1001'S (rat:her t.han just. 'luasigroups). .

AlI:llOugh Olll" definit.ions are fOl"ltlulat.ec! t.o hold for t.he generai case, t.o
maiut·ain darit.)\ ali thc reslllt.$ in t.his scd.ioll are cstablished on1y far t:hc
finite case. We bcgin by repeatitlg the c!cfinit:ion of t.he nndei of a 1001' in
t.he cont.ext. of prequ'Lsificlcls.

Definition 5.3.1 Let Q = (Q.+,o) be a finite l'l·equasificld. l'hen the mid­
dle, lefl. and l'ight nucleu8 Me 'l'esl'cetively defined a., follaws:

1.

N", = {f E Cd I (;t o J) o y = x o (f o y)Vx, Y E Q}

2.
N,. = U E Q I (x o y) o f =:c o (!J o J)Vx, y E Q}

s.
1\'( = {f E Cd I f o (:c o y) = (J o x) o yV:L, y E Q}

Each of the "bove "l'e called semi-nuclei of af (J" o.nd t.heÌ1' intersectwn iV
i8 the nucleus ofQ,.

We consicler here t.he nuclei of the [pre]quasifields Qc associated \'.'it.h a fìxecl
spreadsct. S. Sillce tlw choice of Cl, depends Oll the choice of t.he left. ic!cntil:y
C, it is reasonable to ask to wltat. extcnt thc nuclei depend 011 the choice of c:
far a fixed spreacbct". S. OHI' aim is to show that., in thc finite case, t.he right
ami lllicldie l1ud"i are csscnt ially indcpendent. or the choice of e.

As far HS thc lcft. IlllC'1CIlS l'Ve is eonccrned 1 therc is ilO generai cohcrent.
thcorYl probably bec(:tlls(' this is thc anly type of lludens t.hat. tlll'nS out. not
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to ·haye a geometrie int.erpretation in the generaI casco However, thc kern of
a qnasifield is c:ont.ained in it,s left. lllldcns and t.his certainly has a geomet.rie
lneaning, anel is argllably full;: understoocl. Hence we 5ha11 Bot consider
fmthcr t.hc Icft. nllelcll" in t.his scction, apart. fromnot.ing t.hat. in t.he case of
finit.c qllasifelds it.s non-zero elcmcnt.s. as wcll as t.hose of t.he ot.her seminllelei.
fonn a IllUlt.iplirativc gronp.

Remark 5.3.2 Let q be a finite quasifielrl ",ith multiplicative identity e.
Then N;.,(q), N;(Q) andN;(Q) are multiplicative groups, with identity et­
cment e.

Proof: Trivial..
We now sho,," t.hc in\'ariancc of t.he llliddlc nllelclls of aH t.he qllasificlds co­
ordinatizing et givCll finit.e spread~et..

Theorem 5.3.3 Let T be a. jinite sprear/sei. Let Q C T be the lmgest non­
zero subset oj ';". satisjyillg tlw condition O:T' ç T; note that this i8 equ.ivalent
to QT' = T and Q is a granI' !under mal' composition) iff the identity isin
T. Lei Qc be. tlte (]>I"e)quasifield eooTdinatizing T relative to some chosen left
identity e E Q'. 11/Cn the (semi)grollp

where N;.(Qc) is vicwed as a mllltiplicative (semi)group.

Proof: Thc clemcnt. f Eq' !ics in N,;,(Qe) iff for x, y E Q:

(xof)oy - xo(foy)

<= (..rTf )Ty - 3:T/oy

<==} Tf7~ - Tjoy

alICI t.his is eqllivalent. t.o Tf E Q, and also shows t.hat. t.hat. f r-> Tf defines
a semigrollp isomorphism from N,;.(Qc) ont.o Q of t.hc reqllired t.ypc. The
rcslllt. follo,,"s.•
Now we consider t.hc analogllc of t.he above wit,h t.he middlc nlldells replaeed
by t.hc righI. nllelello.

Theorem 5.3.4 Let T be a finite spreadset. Let Q C T be the lmyest non­
2C1"O subset of T' satisfying tbc condilion T'Q ç T note thai this is equivalent
to T' Q = T and Q is <I. group [undcr m.al' composition} iff /.he irlcntity is in
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T. Let Qc be the (l'TC)quasifield cOO1dinatizing r relative to some ch08en left
identity e E Q'. Then thc (semi)grouI'

where N;(Qc) is vic1lled as a multiplicative (semi)group ..

Proof: The elemento f E Q' lies in N;(Qe) iff far x,y E Q:

(xoy)of ­

= (xTlI )Tf ­

= TyTf

x o (y o f)

xTyof

Tyoj

and t.his is eqllivalent. t.o Tf E n, and also shows t.hat. t.hat. f >--> Tf defìnes a
semigronp isomorphislU from N;(Qc) ont.o n of t.he n:.Cjllired t.ype. The resllit.
follo\Vs.•
We nO\\' specialize t.o nearfìelds.

Definition 5.3.5 A quasifie/d ",ith associative pmduct is called a nea7field.

A classical t.heorem of Zasscnhalls gives a complet.e classifìcat.ion of ali finit.e
nearfìelds: apart. from fields t.hcy are eit.her t.hc Dickson nearfìelds, int.rocillccd
aheaci, or t.hey are among a finit.e list. of sporadic ncarfìelds callecl irregular
ne"'fie/ds. Thc reslllt.s above illlply that.

Corollary 5.3.6 Lct S be a finitc spreadset containing thc identity. Then
the following are equivalent:

1. S" is a group Dj non-singulal' lineai rnaps.

2. Some quasifie/d Qc coordinatizing S is a nea7ficld.

3. Ali quasificlds Qc coonIinatizing S arc nearfields.

Morcovcr, if S' is a grauI' .. thm ali thc ncarfields coordinatizing S' have
isam01phic multiplicative graups.

In faet, inspcct.ing thc isomorpltism from o: to it,s nuclei, developecl abov8
sho\\'s:

Corollary 5.3.7 Ali the ncarfield8 coonlino.tbng o. given 8I'rco.dset are i80­
morphic as sprfadsct8.
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So far we have considered mnlt.iplicatively do,ec! snbsets ex of spreac!set S.
\Ye now tmn t.o the addit.i"c version of t.his thcory. To emphasize the analogy
with the mnltiplir:ativc (;;LSe wc introdncc a non-5tandard definition.

Definition 5.3.8 Lct Q be any pTequasifield. Then its distributoT is the
additive semigroup:

o(Q) = {cE Q 1"'0 (e+y) = (xoc) + (3: o y)Vx,y E Q}

So, al, least, in the finit.e case, 6(Q) i5 an additive s\lbgl'O\lp of Q.

Theorem 5.3.9 Let T be a finite spTeadset aver a finite field K, and C< C T

be the largest non-zero sub8et of T' satisfying the condition T' + ex ç T, 01'

cljaivalently, the conddion T' + n = T; thas C> is an additive grou]I of lineU7'
maps ovcr J{. Let qc be the (p1'l;)ljuasifield cooTdinatizing T Telative to some
ehosen left identity e E Q'. Then theTe is an additive gTO'ap isomorphism:

n:: U' x ...... l' o f 1 f E 6(QJ} :: 8(Qc)

Proof. Thc elemellt c E Qc li"s in 8(Q,) ifT for x, y E Qc'

xoc+J:0Y - xo(c+Y)

{::::::::} :r;1~ + T~, - J.:(Tr:+y

{:::::::} Te + ~, Tc+v

alld thi5 i5 cq\livalent to 1~ E (t, and also shows that. that C ...... T, dcfines
an additivc gl'Onp isomorphisrn from l'(QJ onto O of t.hc rcq\lired type. The
rcs\lIt. follo\\'5 .•
A dist.ribnti\·c (prc)q\la.sifield Q i5 callcd a pre(5cmifield). We state thi5
dcfinition in t.crm' of l'(Q).

Defillition 5.3.10 A (pTe)ljlttlsifield (Q,+,o) is a (prc)semifield if8(Q) =
Q. A semifield 'is saill to be prop"r if ils rmtltiplictaion is not associative.

Thcorem 5.3.9 abo\'c illllllcdiately yields thc following charactcrization of the
sprcadsets whosc a.ssociatcd (pre)qllasificlds are semifielcls.

Theorem 5.3.11 Let T be a fùlite spreadsel. Thcn the follo'll'ing are equ;v­
"lent.

1. Some Ijllasifield q coordinatizing T i8" (pTe)semifidd.

2. T is additive/y clased iff cveTl/ (]iT'e)qurJ.sifield Q coordinatizin9 T IS a
(pr·c)semifield.
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5.4 Hall Systems
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Let. l\ be any field. Choose an inclet.el'Ininat.e t and consider t.he rank t.wo
left. l\ vect.or space clcfined on q, = J{ + l\t, where x + yt E Q is iclent.ificcl
\Vit.h '(x,y) E f{2: SO adclit.ion anel scalar mnlt.iplication on Q, are clone
componentwisc:

VX,l", y, y' E J{ : (x + yt) + (l" + y't) - (l' + x') + (y + y')t

anel Vie, x, y E J{ : k(x + yt) - kx + (ley)t.

Any quasifielcl t.hat. luc, rank t\Vo over it.s kernel f{ may t.hns be regardecl as
being of form (q/, +, o), ",here aclelit.ion is st.andarcl ancl t.he mnlt.iplicahon
o is an ext.ension of Idt. mnlt.iplicat.ion by t.he scalars in f{ C Q wit.h t.he
generaI elements of Q. Moro"er, for eaeh a E Q, t.he mal'

x ~ xoa

is re'lnircd t.o be a K-linear bijcction of Q" anel the qnasifield (Q,,+,o) is
completely specifieel whm aU t.he slope-ma]!s fl,,, for a E Q are specifiecl. To
specify t.he R,,'s it. is now snflicient. 1.0 writ.e t.he 2 x 2 mat.rix over f{ for t.he
lineaI' maps R" rc!at.iw t.o t.he basis (1, I) of Q,; 50 Ro is assigneel t.he zero
matrix, and t.he 'lnasifield ident.ity is aS5ignccl t.he ielenht.y mat.rix.

\Ve now seek 1.0 dassify al! t.he Cjuasifielel (Q,,+,o) associat.eel wit.h t.he
[{-vedor space Q" snch t.hat. t.he fol!o\\'inp; conelitions holel:

Condition 5.4.1 (Hall Conditions.)

1. (Aut(Q" +, 0))A' is transitive on Q - K; (u,d

2. l\ is centrai In Q.

This c1ll5sifieat.ion here is t.he lirst st.ep towarcls c!assificat.ion of al! t.he finite
qllasifields I:hat. admit maximally t.ransit.ive ullt.omol'phisIll grollpSj i.e. act.ing
traIlsit.ivdy on t;Ile non-kcl"n cleIllcnts.

Sinoe J{ centralizcs Q it. cent.ralizcs tI", sI anelarcl basis (1, t), so t.hc mat.ri­
ccs [always relative 1.0 the st.alldanl basi~J or il".5 ell'lIlent.s are jllst thc sr-alars:

, (le O)'<Ile E 1\ : Rk := O k .



CHAPTER 5. COORDINATIZATION. 108

That. t.he above definit.ion is expressed using different. not.at.ion in definit.ion
6.3.1 ahead.

Part.ial spreads al/ whose component.s lie across some subspread are called
rat.ional part.ial spreads.

Definition 5.7.2 Let (V, r) be n partial spr'Cad and let A be a non-zero ad­
ditive subspace of V such that A is a subspread of (V, r) and additional/y:

ì E r => "( n V '" o;

thus A is a subspr'ead (or a 'subplane ') across r. The partial spread (V, r) is
cal/ed a rational partial -<pread if r has at least one subspread across it. If,
aMitional/y, (V, l>.) is a Destlryuesian spread such that l>. :> r then (V, r) is
cal/ed a mtional Desaryuesian partial spread.

Not.e I.hat. essent.ially Ihe same definit.ioll, buI. in differenl. t.erminolgy is COV7

ered by c!efinit.ioils 6.3.3 alICI 6.3.1 ahead.
If Q is a quasifield and R is a subquasifield t.hen t.he spread 1I'(Q), CODr­

dinat.ized by Q, ha, a subspread t.hat. may be ident.ified wit.h 1I'(R) and, by
definil.ion, t.he part.ial ,pread r det.ermined by 1I'(R) is ral.iona!, wit.h 1I'(R)
across it.. The converse is also t.rue: any rat.ional spreacI r C S, cont.ained in
a sprcacI (V, S), may be 'coordinat.ized' by a subquasifield R of a quasifielc! Q
coordinat.izing (V, S). \Ve now verify t.his element.ary, but. fundament.al, prop­
crt.y of rat.ional part.ial spreads; it. rellecl.s t.he faet. that. subplanes A o, of any
affine l'lane A, are coordina.tizcd in thc classical sense by some subtcmary
ring To of a temary ring coordinatizing A.

Remark 5.7.3 Let S be a sprea.d-<et defined on a vector space T. Suppose
tlwt "s := (T e T, E), the spreatl coordinatized by S, contains a mtional
partial s]J'read r ç E sIIch th.at r contains /.Iw sto.ndard components X =
TeO, Y = 061' and I = {(t,t) I t E T}. Let U:S T(f)T be any subspread
of"s th.at lies across r. Then

R := {r E T I r (f) r E I n U} ,

is a subspace of T sach tiwt U = R (f) R, antl foro each e E R', the quasifield
Q, = (T, +, o), coartlùwtiziny the spreo.dset S, contains the system G, =
(R, +, o) as o. subquasifield and the sto.ndani isomorphism from ,,(Q,) onta
7is:
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and hCIlCC, sillce Rk io the scalar map k1 2 , q, is IlOt. a qnasifielcl ullless

a. E Qt - ]( ===? Ra has no eigeu\"ailles in K.
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Ilnt. t.he eigenvalnes of R, are jnst. t.he root.s of f(x) so wc have established:

Lemma 5.4.2 (2, eannnt be a quasifield satisfY'ing the Hall eondi/ions 5.4.1
unless the eommon q'"admtic f(x) = _x2 + "X + (3 is inedueible over lC

Hellcc wc shall assnme t.ltat. f(x) is irr.edncible from here ono so (3 'I O. Ilnt.
since t.he det.enninant. of n,Hl is jnst. (3 it. follows that. every non-zero Ra +bl is
non-singnlar anel thc qnasigroup condit.ion on Innlt.iplicat.ion (x, y) o (a, b) =
(c, d) is met.. To lneet t.hc rcmailling conr1it.ion far qllasigronp IDlllt.iplicat.ioI1
(a, b) o (x, y) = (c, 11), where (:r, y) is tlte 'nnkown', wc first. note t.hat. if
(c,d) = k(o.,b) t.hen (:I:,y) = (k,O) isasolnt.ion. Thnsonr main task, toshow
t.hat. Cjllasigroup IIl1lltiplieat,ìon work~l reqllircs"lI."i to sho\V t.hat. a sollltion for
(x, y) exist,s in thc follo\\'in~ luat.rix eqlH1.tioll:

(

X y)ab = cd( ,) ~f(x) ,,- x ( , ), ad - iJc -/- 0 , (54)

and, tacit.ly assnming ad - be 'I O, the equatioll may be writ.ten

b
ax+-f(x) - c

y
ay + b(er - 1:) - d

which obviollsly has a solnt.ioll if b = O. So assnming from now on t.hat b :f:. O,
we obt.ain fl'mll tlic abovc:

axy + b({3 + nx - x 2
) - cy

axy + b(ax - x 2
) - dx

yielcling on recalling eqnat.ion (5.5):

cy-rl3:={3

ay - bl: = 11 - ba

and IlOW on1' assnmpt.ion ad - "be :f:. O 8ho\\"5 t.hat this eqnation has a llniql1e

solnt.ioll for (x, V), anel this bar:k-trnccs t.o est.ablish a lllliqlle solllt.ion for
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t.he eqnation (5.4). Tlms the Illlllt.iplication specified is a loop, anel as a
conseqnence (Q" +, o) is a qnasifield: the reader is illvit.ed to check the minor
details that have not beell explicitly discnssed.

1'0 vcrify that. t.he gronp G = (Aut(Q" +, o))" does aet. on the qnasifield
(Q" +, o) we note t.hat. G, as a lllatrix gronp relative to (l, t), is dearly the
grollp:

{ (~ ~) Iu El{, 71 EW} ,
and it. can be dircct:ly vcrifed that. t.his gl'onp preserves t.hc IIlllltiplicat.ion.
Thns we have est.ablished:

Theorem 5.4.3 Suppose l{ is a field and j(>:) = _>:2 + ,n + f3 is Iln ine­
ducible quadratie over J(. Let Q = l{ e o and rlefine Qf := (Q, +, o), where
+ is tlu:. stanciani (uldd'ion 017. !{ 8 ]-t, by

Va E J(: (a,b) o (.7:,0) = (m:,b:r),

antl

"Ix E l{,y E I,': (a,b) o (x,y) = ( ljx(. .) ~. ).x n :1.
y

Then Qf i$ a quasified ijJ j (>:) is irTeduciùle in J(, antl when this is the case
l{ = l{ (S,l{ is in t/w /,;e/71 oj Qf anrl centralizes tiw quasifield multiplicatively.

Lct G = Aul(Qf) }, ùc Ihc cle7llcnt1l'ise slablisc/' oj ti", /,;em field J( in tile
autoln01]Jhisrn group oj the qUIl.$ifieltl. Then G is rcg-utar' on Ihe set oj ali
/lOn-/,;em clcmenls l{ '3 l{ - I, e o oj Qf· Sueh Qf ili" callerl Hall syslems.

Corlt'crsclg ij IL q/lasifie/d Q is ran/,; t"UlO ouc/· it.. /,;r:m l{ sueh thn.t J(

centralize" Q antl (AutQ)}, 1108 Q - J( as on orbit Ihen Q is a Hnll sylem.

Exercise 5.4.4

1. SllOtt: thal GF(4) may ',e regarded aB a Hall 8ystCm and oll olhe/' Hall
systems are oj dim.ension el:actly two ovrr l\~.

2. Sho", thal GF(,j) is tlte only Hall sylem.1I'hich is also a fie/d.

S. Slw", Ihal no Hnll sy.,lcrn. can have al! algcbro.ic-closed fie/d as its /,;em.
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5.5 Coordinatizing Spreads by Spreadsets.
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Let. ro = (1/, r) be a spread O\'er a skewfield J(; so ali it.s component.s are
isomorphic as vect.or spaces t.o a commo" \'ect.or space IF. 'Ve seek t.o ident.ify
" wit.h 7W, the spread on vI-' Et) IV coordinat.ized by some spreadset T; we shall
regard a [{-linear isomorphism t/J from ii to TW as bcing a coordinatization
of ro by T.

Om goal here is 1.0 show t.hat. every spread is coordinatized by at. least.
Olle spreadset. T, and t.hat. T cali be chosclI so t.Itat. il. contains the identit.y. It
is also possible t.o ellsme t.hat. T anel t.he eoordinat.izing isomorphism 1f; may
bc chosen so t.hat any ordered t.riple of dist.illct. component.s (Xv, Yv , Zv)
are rnapped under 1/' t.o t.he orelereel t.riple (y = O, x = O, y = x), in IV Et) vll.
However, it is clesirable t.o eonsicler t.he more gelleral sit.uat.ion, where Xv anel
Yv me mapped respect.ivcly 1.0 IV (D O ami OEt) IV, buI. where 110 compollent.
is necessarily required 1.0 be Jnapped t.o t.he ullit. lille x = y; for example, il.
is often useflll t.o havc 1f; senel a Daer sllbplalle of (V, r) ont.o t.hc unito line of
w Et) W.

Theol'em 5.5.1 (Cool'dinatizing Spreads By Spreadsets.) Letro = (V, r)
be a spread aver a skewfield J(, s"ch that all the components in rare isomo,'­
phic as J( -vecto,' spaces to a J( vectm' space lI-'. Let a : X -+ W, {3 : Y -+ W
be a"bitm,v vector space isomorphisrns j,om two distinct X, Y E r onta VV.
Then

1. T/wrc is a ullique linear' bijection:

a e f3 : Il -+ W El H',

",hose restrietions lo X and Y are 1'espeetillely a and {3.

2. Each T E r - {X, Y} is associated with a unique pair oj linear bijections

(X1' : T -+ X, YT : T -+ Y),

sueh that:
T = {(t)XT + (I)YT : t E T} .

3. The set oj linea,' maps on IV specified by:

T = {a- 1X T - 'Yr,61 T E r} u{OH'},
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is a sl'readset on ~V, and C> @ {3 : V --> IV Efi W is a I<-lineaT isomor­
phism fram the sl'rmd (V, r) onto the sl'r'ead 7rT coordinatized by T, see
definilion 5.2.7.

4· T contains Ihe identity, or' cquivalent/y the unique line lies in IVT if and
only if a = {3.

Proof: We give a sketeh; it. is left. t.o t.he reader 1.0 make the proof more
precise. The component.s of V, regardee! as X@Y, are ofform «t)Xr , (t)Yr ,
and may be rewrit.t.ell (x, (x)Xl'- l yl'), or (x, A1]'(x)), where Ml' := Xr - 1yl'
is cssellt.ially t.he slope of T. Now T is essentially t.he set. of images of the
Ah's, t.oget.her wit.h t.he zero-map of W, illdnced on IV when V is identified
iwt.h IV G li' llsillg C> @ (3.•
Thns ali sl'reads are eoordinat.ized by some spreadset.. Hcnce wc may assllme
t.hat. any sl'read is of t.ype 1FT alld t..hrec seleet.ed compollent.s are x = O, y = O
alle! z = Orespect.ively.

5.6 Inventory of Quasifields Coordinatizing a
Fixed Spread.

f'rom now on, a l'req'Uasificld uJÌII ahuays be assumed lo have at least left
illentity. V"-e are here cOllcernee! wit.h t.hc descril't.ion of ali t.he non-isomorphic
preqnasificlds O "nch t.hat. t.he associat.ed sl'rcae! is is isomorphic t.o a givell
"pread 7r. If </J is an isomorphism from 7r t..o 7r(O) t.hen </J will be callcel a
coo'l'dinalization of 7r by Q. Thns we are collcerned wit.h thc descript.ion of
al! t.hc llon-isomorphic l'rcqnasifielcls t.hat. coordinat..ize ...

\Ve no", describe a concrct.e proeed1ll'e t.hat. yielcls a Q coordinat.izing the
given ;; nniql1ely once c.crtain gconlCt.rie dl0iccs are BIade) ancl also lcads to
a llUiqllC isornorphism \li from 'ii ont.a ii(Q), in ternlS of celtain 'geometrie'
options: t.he choice of t.he x-axis, t.he y:axis, et.c. \Ve shal! see t.hat. t.he
isolllorphism l..Yl'es of ali (pre)qnasifelds Q sneh t.hat. 7l'(Q) ~ .. may be
obt.aiIlc.~ as an image of some 'il det.enninoo by fìxing t.hc geOlnet.ric Opt.iOllS.

5.6.1 Coordinatization AIgorithm.

There are t."'o basie sit.nat.ions t.o cOllsider: det.ennine ali the isomorl'hism
t.ypcs for t.he l'reqnasifielels coordinatizing a spread, allel also al! t.he qnasi­
fielels, wit.h a t.wo-sided mlllt.iplicat.i,," iclent.it.y, coorelinat.izing t.he sl'reae!. We
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lìrst des("ribe aH t.he prequasifield coordinatizing a given spread, and then
spedalize 1.0 describe aH t.he qnasifìelds coordinat.izing it..

Let rr = (V, r) be a spread on a K-space V, K a skew-fìeld, such that t.he
component.s are aH K-subspaces of \I.

1. Choose distinct. component.s Xv, Yv E f; t.hese are caHed t.he x and
y-axis of t.he coordinatizat.ion seheme.

2. Choose a unit point u E V - (Xv U Yv ), and hence: u = U x $uy ; so U'x

and uy are t.he proje.ct.ions of u on X and y.

3. Let. IV be a 1<-space isomorphic t.o t.he members of f, and choose an
identitye E W - {O}.

4. Sele.ct linear biject.ions a : Xv -> lV, and (3 : Yv -> IV su("h that
o:(u~) = (3(uy) = e.

5. The linear biject.ion O: $,3 : V -> W El W define.s a spread on II! El IV
whose component-set is giyen by:

D. = {(l'$ (3(,) I ì E r} U {O El W}.

Thus O: $ (3 is a K -linear isomorphism from V onto IV $ IV that is
also an isomorphism from the spread (V, 1') onto t.he W-IabeHed spread
(W $ W, D.), and t.his isomorphism sends u 1.0 (e, e).

6. Let. (Je be the st,andard preqnasifìeld ("oordinat.izing (W $ W, D.), and
let. a be the assodat.ed K-linear isolllorphism from (IV e IV, L'J.) onto
rr(Q.).

The K -linear biject.ion

a(o: $ (3) : V -> weW

is a 1<-linear 'spread isomorphism from (V, f) ont.o rr((Je) such t.hat u is
mapped ont.o e. The prcquasifìeld (Je is said t.o coordinatize (V, f) relat.h·e
t.o t.he axes Xv, Yv , the 1mit. point. u ancl identificrs a and (3; t.he kern of Qe
cont.ains 1<.

Let " denot.e the component. in f t.hat passes through u. Choose any
K-linear bije.ction 3 : v -> IV sneh t.hat. 3(u) = e, and define

'1z E "a(r.x(z)) = 3(z) = (3(rr,,(z)),
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where 7rx and "y elenot.e t.hc l'roject.ion of V ont.o V,.. anel Vy resl'eet.ively.
Sllch (> and j3 are coml'let.ely dcterrnined :::: anel sat.isfy ali the reqllirements
of et and j3 as elefìned carlier. In t.his case t.he reslliting l'reqllasifield is a
qnasifield, anel we cali it. the qllasifield obtained when (V, r) is assigned a
labefling wit.h v as nnit. line relat.ive t.o t.he coordinate axes Vx and Vy .

Every coordinat.izat.ion of 7r by a qllasifield is obtainable by a labefling
relative t.o some lini t. line anel l'oint., ami a l'air of X and Y axis. (N.E. The
st.at.ement. is int.endeel t.oiml'ly t.hat. t.he isomorl'hism ont.o W is immat.erial,
once t.he linit l'oint. anel ali t.hree i\.xes are fixeel: it. is l'oint.less t.o make other
variations in t.he choice of :::: as this \\'ilI Ilot yield coordinat.izat.ions by any
ne\\' qllasifields.)

5.6.2 Properties Of Coordinatization.

Theorem 5.6.1 Let 7r = (V, r) be a spread, eoordinatized by a quasifield
Qc = (W, +, o), e E W' is the identity. Thus there is a linear' bijeetion

lJI:V--+WE!W

such that 1JI is also an isomorphism jram the spread" onto ,,(Q). Let u =
(Ul,U2) denote the unit point, so lJI(u) = (e,e). Then

1. Ij A is a subspread oj VI, that eontains the eoordinate jmme e, the
x-axis and the y-aa:is then lJI(A) is a subquasifield AQ oj Qc; thus A is
coordinatized by the A Q relative to the 'same frame', as used on rr ta
yield rr(Q); the labelling mal' jor A is the rest1'iction oj:::: : U --+ W to
AnU.
Conver'sely, ij n is a subquasifield oj Q then R = AQ , ?l'her'e A is a
subspread oj type just deSC7~bcd.

2. Suppose et E GL( IV, +). Then (> is an automorphism oj (Q, +, o) iI! the
mal' a: (x,y),...., (XO,yO) ojrr(Q) is a collineation ojthe l'lane rr(Q)
thatfixes (c,e). Noll' Fix(o:) is a subquasifield A ojQ, and Fix(a) is
the subplane ,,(A) ol,,(Q)·

3. Il a gro11p G :'O GL(IV, +) is in Aut(Q, +, o), and A denotes the sub­
quasifield Fix(G), then G is permutation isomorphic to the (clearly

l In the sense that. it is an additive subgToup and thc components meeting it non-trivialIy
define a spread on it.
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faithful) action of tlte col/ineation group G ret]~cted to any line that it
fixes. Conve]'se/y, any col/ineation group acting on r.(Q) and fi.ting the
unit point and the Q..'l:CS must be of type G, and such groups are planar,
in fact, their fixed points define the subplane r.(A), where A = Fix(G).

Thus, sllbqllasifields of a 'lllasifieid Q, ~nd snbplanes of r.(Q) containing
the nnit point, are linked by a natnral one-one conespondence. Similarly,
there is a natural correspondence bct.ween snbgronps of Aut(Q) and planar
collineation gronps of r.(Q) t.hat. fix t.he two axis and thc nnit. point, and thc
correspondcnce is sllch that. t.he act.iOlI of t.he collineat.ion on any fixed com­
ponent. is isomorphic as an addit.ive gronp t.o t.he adion of the corresponding
snbgroup of Aut(Q) on Q.

Of course, nsing t.he coordinat.iziIlg isomorphism, we can ext.end these
links in t.he obvions way 1.0 cneompass snbgronps and snbplanes of any spread
coordinat.ized Q. These conncct.ions are freely nsed in t.he lit.eratnre, with­
out. explicit reference, and wc shall normally follow t.his pract.ice. However,
even al. the cost. of being repet.it.ive, we shall consider all t.his explictly in
the following sect.ion, wit.hont. refening 1.0 t.he above analysis, for t.he very
import.ant. case associat.ed wi t.h rational part.i,ù spreads.

5.7 Coordinatizing Rational Partial Spreads.

Given a spread (V, S), we regard a snbspace A :'O Il as being a subspread of
(V, S) if t.he componcnt.s u E S t.hat. mcct. A nOIJ-t.rivially induce a spread on
A. lvlore generally:

Definition 5,7,1 Let (V, S) be a (partial( spread and s1lppose A is a non-zero
additive subspace of (V, +). Thus

S(A):= {s E S I snAiO}

denotes the set of components in S that meet A non-trivial/y. The subspace
A is cal/ed a snbspread of the (parti al} spread (V, S) if

SA={snAlsES(A)}

is the set of components of a sp,ead on A.
In generai, if A i8 a subsp,'ead, of a parlial spread (v,S), then StA) is the

pm·tial spTead det.ermined by tlte subspace A, and A is said to be a subspace
across the partial spTead S (A).
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That. t.he above defìnit.ion is expressed using different. not.at.ion in defìnit.ion
6.3.1 ahead.

Part.ia! spreads ali whose components lie across some subspread are called
rat.iona! part.ial spreads.

Definition 5.7.2 Lei (V, [) be a ]Jartial sl'rmd and let A be a non-zero ad­
ditive subsl'ace oj V such that A is a subspread oj (V, [) and additionally:

ì E r = "( n V '" o;

thus A is a subspread (or a 'subplane') across r. The partial spread (V,[) is
called a rational partial spread ij r has at least one subspread across it. If,
additionally, (V, t.) is a Desarguesian spread such that t. :J r then (V, [) is
called a mtional Desarguesian partial spread.

Not.e t.hat. essent.ially t.he same defìnit.ion, but. in different. terminolgy is cov,
ered by defìnit.ioIis 63.3 and 6.3.1 ahead.

If Q is a quasifìeld and R is a subquasifìeld t.hen t,he spread 7T(Q), <:oor­
dinat.ized by Q, has a subspread t.hat. may be identifìed with 7T( R) and, by
defìnit.ion, t.he part.ia! spread r det.ermined by 7T(R) is rat.ional, wit.h 7T(R)
across il.. The converse is also t.rue: any rat.ional spread r C S, contained in
a spread (V, S), may be 'coordinat.ized' by a sllbquasifie!d R of a qllasifield Q
coordinat.izing (V, S). \Ve 1l0W verify t.his element.ary, buI. fundament.al, prop­
cIty of rat.ional part.ial spreads; it. reflects t.be fad t.bat subplanes Ao, oj any
affine l'lane A, are coordinatizcd in the classical sense by some S'ubtemaT'/j
ring l'o oj a temary ring coordinatizing A.

Remark 5.7.3 Let S be a sl'rmdsct dcjincd on a vector space T. Suppose
that "5 := (T e T, E), tlte sl'read coor'dinatized by S, contains a mtional
l'artial spread r ç L: s'/lch that r contains I.he standard components X =
TeO, Y = o tE; T and I = {(t,t) I t E T}. Let U < l'SI' be any subspread
oj "5 that lies across r. Then

R := {r E T I r tE; T' E I n U} ,

is a subsl'ace oj 7' such that U = R S R, and JOT' each e E R', the quasifield
Qe = (T, +, o), coonlina.tizing the sl'T'eadset S, contains tlle system Ce =
(R, +, o) as a subquasifield tLlld the standaT'd isomorphism from 1T(Qe) onto

Ili : 1l'(Qe) -> 1T(I' S T, S),
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idenfijies 7f(G,) !l'ifh fhe subspread "(R e n, f) oj 7f(T e T, 5),. thus .. (G,)
represents a standa7Yl eoordinrttization oj (U, f), relative to e E R', by the
quasijield G,.

Conversely, given a sp,wd (V, E) eoordinatized by a subquasijield Q =
(T, +, o), sueh that Qo := (R, +, c) is a sublJuasijield (so they share the
multiplieative identity), then the eomponents y = x o r, r E R, along with
Y := O e T, dejines a rational p",tial subspread oj (V, L:), aeTOSS "(Qo).

Proof: The converse l'art is a mat.t.er of nnravelling t.he t.erminology, so we
only consider ',*'. Since U meets the t.hree st.andard components, it is evident
that. R is a snbspace of t.he vcet.or space T, and {r $ r I .,. E R} is a compo­
nent. of U. Thns, any line x = ", for r E R, is aline of t.he t.ranslat.ion l'lane
associat.ed wit.h U.and hence x = ,. me"t.s X in U, and t.his demly implies
t.hat. X ll := R$O is a camponent. of t.he spread U. Similarly, YR := O EfJR is
also a component. of of U and t.his means U = X n EfJ Yn = Re R, in part.icnlar
Re R is an addit.ive snbspace of T EfJ T.
\\Te now show t.hat. t.he elment.s of r, ot.her t.han Y are of form y = x o ,', for
some r E R. First observe t.hat. any member ì f Y, of t.he spread "s, has
form y = xog for some 9 E T. Now choosing x = e sho\Vs (e,g) E ì). Hence,
since r is t.he part.ial spread det.ennined by U = R $ R, il. follows t.hat ali
members of r \ {Y} are of fonn 1/ = x o r, for some r E n, and conversely
t.hat all such components y = :1' o r, " E R, he r.
But. for r, c E R, y = x o r and x = oe are t.wo non-parallel lines of t.he affine
l'lane associated wit.h U, so t.heir intersec:tion point. (e,eog) E ReR, hence R
is elosed llnder t.he binary operation o, Bllt. sincc Qe has no zero divisors, il,
follows t.hat. R' is a subloop of (T, o),bot.h wit.h t.he same identit.y e. Thus we
h""e est.ablished t.hat. (R, +, o) is snch t.hat. (R, +) is an addit.ive gronp wit.h
a zero, (R', o) is a 1001' and left. or right. mnlt.iplic:ation by zero always yields
zero, since (T, +, o) is a qnHsifield. Thns we dearly have a zero-linked system
(H, +, o), see definition 4.2.1 sat.isfying t.he right. distribut.ive law and hence,
by proposition 4.2.3, (R, +, o) is a t.ranslat.ion algebra. Bnt. t.he associat.ed
incidence st.rnct.ure ..(Il, +, o) is, by hypot.hesis, an affine t.ranslat.ion l'lane,
andnow, by proposit.ion 4.2.4, (R, +, o) is a qnHsifield.•



Chapter 6

CentraI Collineations and
Desarguesian N ets.

Central collineat.ions have a strOl,lg bearing on the planes npon which they
nct. In t,his seetion wc stndy centraI collineations nsing two parallel bnt
distinct approaches: the qnasifield approach amI the spreadset approach,

The machinery developed providcs nsefnl characterizations of rational De­
sargncsian nel" those nets that are isomorphic 1.0 the nets defined by the par­
alleI classes of snbplanes of a Desargnesian pIane. Note that rational partial
spreads \Vere int.rodnced in defintion 5.7.2 and' the associated nets, particn- .
Iarly the associated rational Desargncsian nets \Vill be fnrther considered in
6.3.

6.1 CentraI Collineations in Standard Form.

In this section, r,(Q) is a translntion pIane coordinat.ized by a qnasifield
(Q, +, o). So the associated spread on Q@Q has as its components X = Q@O
and Y = O@Q and ali snbspaces y = x om, m E Q; thns, m = Ocorresponds
1.0 X.

'Ve shall investigate affine affine centraI collineations when their axes and
coaxes are chosen canonically. Specifically, when dealing with homologies,
we assnme t.hat the axis and coaxis have been chosen from the two standard
C'omponents, X and Y, alld when dealing with affine elations we take Y as
the axis.

Sillce ali snch collilleations 9 are among the additive bijectiolls of Q Ef) Q

HO
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t.hat. leave X ami Y illvariant., t.he action of 9 on t,he affine pointset Q e Q is
spedfied by:

g: (x,O) (A(x),B(x))
Far aH x,m E Q: g: (O,x) (C(x),D(x))

g: (m) (ms)

where A, B, C and D are ali additive maps of (Q,+).

6.1.1 When 9 is a Y-elation of 1l'(Q).

(6.1)

We consider the case when 9 is an elation with !Lxis Y. So 9 fixes Y ident.ically,
ancl since (00) is the wnter,!J [eaves the x-coordinate of aH pOilltS unchanged.
So t.he eqns (6.1) become:

g: (x,O)
Far aH x,y,m E Q: g: (O,y)

!J : (m)

...... (x, B(x))

...... (O, y)

...... (m S ),

ancl no\V the point (x, x o m), on the component. y = x o m, gets mapped onta
t.he point of (x, B(x) + x o m) and this musI. lie on y = x o m S, thllS:

VX,m E Q: B(x) +xom =xomS,

ancl plltting OS := a, yielcls B:

'Vx E Q : B(l:) = X o a.

Hence:
VX,m E Q: xoa+xom = xomS,

ancl choosing x = e, a left, iclent.ity, yielcls a + m = mS , so:

Vx,m E Q: xoa+xom=xo (a+m).

ThllS, we may sllmmarize om cOlldusions as follo\\'s.

Theorem 6.1.1 Suppose Q is a quasifield such that in the associated trans­
lation piane 11'(Q) the full shears group with axis Y is G. Then 9 E G maps
the axis X onto a component y = x o o., a E Q, iff:

VX,m E Q: xo(a+m) = xoa+xom,
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nnd when this c07ldition holds the shear 9 is the collineation:

(x,y) f-> (x,xoa+y)

(m) f-> (m + a)

In particular, 9 maps the component y = x o m, 101" m E Q, onto the compo­
nenty=xo(a+m).

6.1.2 When 9 is a Y-axis homology or 7r(Q).

We consider t.he case when .'I is a homology of 7f(Q) wit.h axis Y and cOlL'Cis X.
Sog fixes Y element.wise and, since (O) is t.he cent.er, 9 leaves t.he y-coordinat.e
of al! point.s IIl1changed. So t.he eqns (6.1) yield:

.'I: (:l',y)
For al!a:,y,m E Q: g: (m)

g: (O)

f-> (A(x), y)
f-> (1,;5)
f-> (05 ) = (O)

and now t.he point (x, x o m) on t.he component y = x o m get.s mnpped 1.0
t.he point. (A(x),xom), alld since t.his must.lie on t.he componenl. y = xoms,
we have:

"Ix,m E Q: A(x)oré = xom

alld writ.ing eS := I, ",here e is a right. identit.y for o, yields A = Tt, so t.he
above eqllation be<:omes

"Ix,m E Q: (x)T;' omS = x om

hence:

so

ancl x = e yielcls
"1m E Q : m S = 10m,

so bot.h A alld S have bcell dct.errnined in t.erm, of I, where y = x o I is t.he
g-image of t.hc unit. line y = x o f. Thus .'I is t.he map:

g: (x, y) ..... ((x)T;', y)

.'I : (m) f-> (f o m)
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and so
(x,xom) >-> (xTj-I,:L' o m),

and t.he image clIn \ies on thc camponent y = x o (f o m) only if

xTj-lo(fom) - xom,

=>xo(fom)=(xTf)om - (xoJ)om,

yielding:

Theorem 6.1.2 Let 11'(Q) be the translation piane associated with a quasi­
field (Q, +, o), with multipliclltivc idcntity e. Let G be the group of affine ho­
mologies of11'(Q) ",ith axis Y anrI colL~is X. Then the G-orbit ofthe unit line
y=xoe eonsists ofall eomponents oftypey = xof, lOhe,.ef E Nm(Q)", and
now the unique 9 E G that maps the unit line onta y = xof, far f E Nm(Q)",
is the collineation:

g: (x,y) H ((:r)T;',y)

9 : (m) >-> (f o m),

where T j : x >-> X o f is the slope of f. Moreover', lhe component 11 = x o m,
m E Q", is mapperI bg 9 onta fhe eompolwnl y = x o (f o m).

6.1.3 When 9 is an X-axis homology or 71'(Q).

\Ve consider the case whcn 9 is a homology of 71(Q) wit.h axis X and coaxis
Y. So 9 fixes X clernent.wisc limI, sillce (00) is t.he center, 9 leaves the
x-coordinate of lIlI point.s Ilnchanged. So Ule eqns (6.1) yield:

il: (1',g) >-> (x,B(y))
'Vx,1I,m E Q: g: (m) >-> (mS )

9 : (O) >-> (08
) = (O)

ancl now t.he poillt. (J:, x o m) on t.he <:amponent y = x o m get.s mapped ont.o
t.he point of (x, n(.~ o m)) lIllcl this IllIlSt \io on the component 11 = x o m S ,

t.hlls:
'Vx,m E Q: xoms = B(xorn)

and writ.ing eS := f, where e is the identity far o, yielcls B = Sand so thc
abo\'e eqllat.ion becomes:

'Vx,m E Q: xoms = (xom)s
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and m = e gives x o f = (x)S so

\;Ix,m E Q: XO (mol) = (xom)of

and f E N;, yielcling:

Theorem 6.1.3 Let 71"( Q) be the tmnslation piane associated with a quasi­
field (Q, +', o), with mllltiplicative identity e. Let G be the group of affine
homologies of 71" (Q) with axis X and coaxis Y. Then the G-orbit of the unit
liney= xoe consists ofall components oftypey =xof, wheref E N,(Qt,
and noUl thc uniquc .9 E G that maps thc unit line onto y = x o f, for
f E N,(Q)', is the coUineation:

.9: (x,V) (x,vol)

g: (m) (m o I),

where T, : x ...... X o f is the slope of f. Moreover, 9 maps the component
V = x o m, m E Q' ,onto the component y = x o (m o I).

6.2 CentraI Collineations In Matrix Form.

'vVe have jllst seen how the properties of a quasifield Q are relatecl 1.0 eer­
t.ain 'standarcl' affine cemral callineation groups of 7I"(Q). Vve now repeat
t.he analysis for spreadscts coorclinatizing a spread 71". One way t.o proceed
would be t.o express the reslllts of the last sect.ion in spread-theoretic t.erms.
Bllt. we prefer t.o cliredly ~,:;t.ablish t.hese result.s so as 1.0 int.roduce the reacler
t.o matrix'based t.echniqlles t.hat are indispensible in t.ranslat.ion piane the­
ory. For example, t.ransposing the mat.rices of a spreadset., sometimes leacls
t.o a new translat.ion pIane wit.h dist.inct geometrie properties: this met.hod
of getting new-planes-from-olcl is noI. available withollt, stepping back from
quasifields, and even translat.ion planes, to spreadsets.

However, working wit.h spreadsets of matrices becomes very messy ",hen
dealing with t.ranslat,ion planes t.hat. are infinit.e-dimensional aver their kerns.
ThIlS, we shall only eonsider spreads t.hat. are finite dimensionai over a field
K, anclleave il. t.o t.he clet.ermined reacler 1.0 eonsider more general sitllat.ions.
Hence, by the basis decomposition theorem we are ent.itled to focus on t.he con­
crete case, when t.he spreacls are const.ruct.ed on the ambient space Kn E& Kn,
ancl ali K-linear aut.omorphism and spreadset. element.s are K-mat.rices.
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Thl'Onghont. the seet.ion, T denot.es a spreadset. of n x n matrices, that.
indndes zero, over a field K, ,md 1rT = (~V e ~v, r T ) is an associat.ed spread,
where ~v = J(n, and t.he members of r T are Y = xT, T ET, along wi t.h x = O:
so t.he snbspaccs X = IV e o and Y = o e w are among the component.s.
Now any J(-linear ant.omorphism 9 of t.he spread 1rT may wili be regarded as
a 2 x 2 bloe.k mat,rix, where each block is an n x n mat.rix over J(.

Exercise 6.2.1 Any centrai coll-ineation of the J( -spread 1fT (so the origin
is fixed by convention) is a K -linear mal' and hena may be Tepresented by a
2 x 2 block matriT.

Snppose E is t.he elat.ion gronp of 1rr wit.h axis Y. We shall describe E in
t.erms of t.he mat.riccs in T.

Lemma 6.2.2 Supppose A is a matrix such that A + T ç T (or equivalently
A + T = T); so the matd.T. A ET, and the additive matrix group < A >
par·titions the set of matrices T into a union of coset" of < A >.

Now the block matrix

g4:= (~ ~)
is a an elation with axi" Y that maps y = xT, T E T, to Y = x(T + A).
Hence the orbit undel' gA, of any component y = xT, T E T, consists of the
the component" y = xC whel'e C range" aver the additive coset T+ < A >.

Proof: For T E T, we have:

(x, xT)g,l = (x, xT) (~ ~) = (x, x(A + T)).

Bnt. since by hypot.hesis A + T E T, t.he mapping 9..1 is an ant.omorphism of
t.he spread l' t.hat. leaves Y element.wise fixed, and cannot. be a homology as
it. is semiregnlar on t.he ot.her component.s. The lemma follows easily.•
We now verify t.he converse of t.he lemma: ali elat.ions wit.h a,is Y have form
9A' Assnme 9 is any elat.ion wit.h axis Y. Tlms 9 fixes Y ident.ically so it.s
matrix on t.he st.andarel ba.,;is has form

anel t.o det.ennine t.he t,wo npper blocks we not.e t.hat. 9 leaves t.he X -component.
of any xey E ~ven' nnchanged becanse t.he lines of forrn x = C pass t.hl'Ongh
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t.he cent.er of 9. Thus 9 fixe5 ident.ical!y t.he first. n c1ements of t.hc canonica!
basis of 1(11 e [(":

so 9 cnn no\\' be writ.t.CIl as

and t.his mat.rix maps t.hc component. y = xi\! ont.o y = x(A! + A), so Al + A
must. be in T, in arder that. 9 preserves t.he spread. Thus T is dosed under
addit.ion by A, and, by lemma 6.2.2 above, t.his is snfficient. far "T t.o admit. 904
a."l an elat.ioll. ThllS alI thc Y-axis cIat.ions are of fonn gAl where A nms over
the !argest. subsct. a ç T such t.hat. CI: + T ç T. No", '" is dearly an addit.ive
gl'Dnp of runt.rices alld t.hc IWl.P E E Q l----ò' 9E is an iSOlnorphi::ìlll from O' ont.a
t.he graup of al! Y-axi5 elat.ions of T. Hencc wc have obtaincd t.he fol!owing
descript.ioll o[ the grollp of Y -H.xis e1a.t.iolls in Inat.rix tenns.

Thcorem 6.2.3 Let T be a sp7wdset of matriees, that incuries zero, anri let
"T be t/w assoeiateri standard spread. Let

and define far each A E E the bloek matrix (ali blocks with same o,-der):

( lA)9,\:= O l .

Then

1. E is an additive gmup and T is the union of a set of additive E-cosets,
induding E.

2. Il eollineation 9 nf "T is an elatior, with axis Y if ami only if 9 = gA,
far some A in E; gA maps X onta the component y = xA.

3. 7'he mal' A ...... 9.4 defines an isomorphisrn fmm the additive gmup of
matri""s E onta the fall g7"OUJl ofY-elations of1rT •

4· Let S :':: E be an additive subgroup of E and 9s be Ihe C07Tesponding
elation group, defined by A ...... gA. Then Ihe component 07'bits of 9s,
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other than Y, are in natnral one-one correspondence with the additive
cosets 01 S in T, that nnion to T: thus il t E T then the coset t + S
defines the components 01 the gs-orbit 01 the component y = xt to be
the set al all components y = xu, U E t + S.

Corollary 6.2.4 A tmnslation piane admits a transitive group 01 affine ela­
tions iff it is isomorphic to the translation piane associated urith a spread roT,

where T is a matrix spreacLset closed undel' addition.

The following cxcn:ise c:ollsiders thc extcllsion of thc abovc to t.hc infinite­
diInensional case.

Exercise 6.2.5 Let V be a finite-dimensionai vector space aver any (skew]
fie/d J(. Define a. spn:adset to be a S/;aI7Jly ane-transitive set Suppose T E
GL(\!. X) be a sha/7,lv ane-tmnsitil:e set ollinea'r bijections al V: tltis means
tlwt lo" anv x, V E V" tlte"e is a unique t E T sllch that ",' = y. Determine the
elation subgroup 01 the associated 70" in terms 01 T, by venem/ising the above.
Hence provc cOTOlla"y 6.2.4101' tltis case. Are there any p1'Oblems in proving
this corollarv when the finite-dimensionai rest7'iction is removed? Hlhat hap­
pens il l( is commutative but the vector space V is infinite-dimensionai aver
l '?\ .

Now we tnrn t.o t.he fllll g,rollp of homologies of 70T wit.h axis Y alld wit.h coaxis
X. \Ve follow the procedure for t.he e1at.ion case, bllt. we shall insist. that T

contains the mlllt.iplicat.ive ident.ity (t.o sll1Jstitllt.e for the addit.ive identity in
the e1at.ion case).

Lemma 6.2.6 Asmme the sl','Cad-set T cantins the identity matrix. Supp­
pose A is a non-zero matJù such tltat Al' <;; T; thus A E T, A is non-singnlar
and hencc Al' = l'.

NOlll fhe b/ock matrix

(A-IO)
hA := O 1

is a homology wifh axis Y and coa.tis X. Hence the ol'bit unda h..I , 01 any
non-zé7'O component y = xT, T E T", consists 01 the components y = xC
tuhere C ranges over fhe mnltiplicafive coset T < A >, 01 fhe multiplicative
gl'OUi' < A >.
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Proof: The map hA sends t.he component y = xT ont.o t.he subspace y =
xAT, so AT E ,. Now continue arguing as in lemma 6.2.2, t.o get the desired
result,.•
Conversely suppose t.hat h is any homology wit.h a.xis Y and coaxis X. Thus h
has mat.rix D'iag(H, 1), for some non-singular H corresponding t.o hlX. Now
t.hc component, y = xi\! maps t.o t.he subspace y = xH-I!vI, so H = A-l !vI.
Now, if, contains the matlix 1, t.hen H E ,-I. Now repeat.ing t.he argument.
llsed in t.he elat.ion case we get. an analogue of t.he t.heorem above.

Theorem 6.2.7 Let, be a spreadset of matrices, that inclILdes zero and the
identity matrix. Let 'ffT be the associated standal'd spread; so Z = {(w, w) Iw E Kn},
fhe ILnit line is in 'ffT' Let:

AI" = {A E " I Ar' ç ,'},

and define for each A E M' the blocl.: matrix (ali blocl.:s with same order):

(A-IO)
hA := O 1 .

Then

1. kI' is a mILltiplicative groILp of matrices sILch that , is the lmion of a
set of right mILltiplica.t'ive M' -cosets, including AI'.

2. A collineation h of 'ffT is a hornology with axis Y and coaxis X if and
only if h = hA. for some A in !vI; hA maps X onta the component
y=xA.

3. The map A >-> h" defines an isomorphism from the mILltipl'icative group
of matrices l'l'I' onto the full group of homologies, of 'ffT> urith axis Y
and coo.ns ...\.

4· Let S :5 M' be a mILltiplicati'Ve sILbgroILp of M' and hs the correspond­
ing homology gr'OILp, defined by A >-> hA, Then the component orbits of
hs , other than X and Y, are in nat-uml one-one correspond.ence with
the left mILltiplicative cosets of S in " that ILnion to r: tlws if tr then
the left coset tS defines the components ofthe hs-orbit ofthe component
y = xl to be the set of ali components y = XIL, IL E tS.
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Corollary 6.2.8 A translation pIane admits a transitive group of affine ho­
mologies sharing the same axi.s and coaxis iff it is isomorphic to the trans­
lation piane associated unth a spread 7r" where T is a matm spreadset such
that T' is a multiplicative group.

Ncxt. consider the sit.uat,ion when X is the axis and Y the coaxis of t.he
homology grollp. Using a slight1y 'dllalised' vcrsion of t.he above analysis we
gel. resnlts similar 1.0 thc above. For example, t.he generai form the homologies
being con,idered are matrices of type Diag(l, A) and this maps a componenl.
y = xT ont.o y = a:TA, so T is dosed nnder 1Il1l1t.iplicat.ion by A from the
righI.. Cont.inning in this way we obtain:

Theorem 6.2.9 Let T be a spreadset of matrices, thç,t includes zero and the
identity matrix. Let 7r, be the associated standard spread; so Z = {(w, w) I w E K"},
the unit /ine is in 7r,. Let:

L' = {A E T'I T' * A ç T'},

and define for each A E L' the block matm (ali blocks unth same order):

hA:= (~ ~).

Then

1. L' is a multiplicative group of matrices such that T is the union of a
set of right multiplicative L' -cosets, including L'.

2. A collineation h of 7r, is a homology Vlith a.t1s X and coaxis Y ij and
only if h = h ..\, for some A in M; hA maps I onto the component
y=xA.

3. The map A f-> hA defines an isomorphism fmm the multiplicative group
of matrices L' onto the full group of homologies, of 7r" unth axis Y and
coaxis X.

4. Let S < L' be a multip/icative subgroup of L' and hs the corresponding
homology group, defined by A f-> hA, Then the component orbits of hs ,
other than X and Y, ar'e in natural one-one correspondence unth the
multiplicative right cosets of S in T, that union to T: thus iftT then the
right coset tS defines the components of the hs-orbit oj the component
y = xt to be the set of ali components y = xu, u E St.
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Corollary 6.2.10 A translation piane admits a transitive group oj affine
homologies sharing the samc axis and coaxis iff it is isomorphic to the trans­
lation piane associated with a sprcad 11"" wherc risa matrix spreadset such
that r' is a multiplicative group.

Corollaries 6.2.8 anel 6.2.10 arc cach eqnivalent t.o assert.ing that the non­
zero elements of a spreaclset. form a mnlt.iplicat.i\'C group. Rence t.he spread
1I"r admits a Y-axis-X-coaxis transitive homology gronp iff il. admits an X­
axis-Y-coaxis t.ransitive homology grollp. So if a t.ranslat.ion pIane of order n
admits an affine homology gronp of order n - l t.hen il. admits another with
axis and coaxis reversed! Thns we have;

Corollary 6.2.11 A translation piane admits a transitive group 111 oj affine
homologies with axis Y and coa.ris X iff it admits another transitive homology
9TOUP L with with axis X and coa21S Y.

6.3 Ratianal Desarguesian Partial Spreads.

Wc have already encollntered rat.ional pattial spreads in section 5.7. The
point being made t.here was that. rational partial snbspreads (and hence t.heir
nets) are jllSt. those arising from a snbqnasifield of a coordinatising qnasifield.
In t.his scdion we hcns on rat.ional Dc.mrguesian partial spreads. anel the
point. we lIlake is thal. part.ial spreads defined by a Desargllesian sllbplane
need not. be Desargnesian; l.hat, is, a part.ial spread wit.h a Desargllesian
pIane across il. need nol. be embedable in a Desarguesian spread.

In view DE the iIllportance DE tllis (act, we have kept this section indepen­
dcnt of onr earlier t.reat.ment in sect.ion 5.7. The not.at.ion here also differs
slighl.ly from onr earlier not.at.iOll; t.here is as yet no st..anelard nol.at.ion in this
area.

Definit.ion 6.3.1 Let 11"1:>. ;= (V,6.) be a partial spread, or a spread, on
(V, +), the additive group oj a vector space. Suppose W is any non-trivial
additive subgroup oj V, such that W # V. Then thc components oj 11"1:>.

DETERMINED BY W, or the components ACROSS lV is the subset oj the com­
ponent set 6. given by

WI:>.;= {D E 6.1 D n W # a},
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and the cOT"Tesponding INDUCED STRUCTURE on W is 7iW := (W, Wt.) where
WA consists 01 the non-tnvial intersections 01 the components 01 'Tot. with W:

Wt. := {dn W IdE Wt.}.

The subspace W is calted a SUBSPREAD 01 "t. il the str-ucture "IV indu.ced on
it, is a spread in the usual sense, that is, every pair 01 distinct members 01
Wt. direct-sum to W.

To get. used t.o t.his t.erminology wc obscrve:

Remark 6.3.2 A subspace W 01 a spread " = (V, tl) is a subspread 01 "t.

iff thc components Wt. acTOSS W induce a spread on it.

Note that t.he spread indllced on W depends only on t.he scI. of components
across il., ,·iz. Wt., aucl IlOt on any largcr [partial} spread 6 :::J tl. Such partial
spreads, dcfined by the components of a subspread of a [partial] spread are
called ratioIlal partial spreads.

Definition 6.3.3 A partial spread (V,1\) 01 a [partial} spread "e = (V,0)
is a RATIONAL partial spread il an additive subspace W, 01 (F,+), is such
that: (1) W is a slLbspread 01 "e; and (2) the components 01 "e meeting W
non-trtvialty are precisely the members 01 the partial spread i\.

A mtional partial spread (F,1\) is said to be a mtional DESARGUESIAN

partial sp-read il1\ is a subset 01 a Desarguesian spread tl on V.

Tlms a rational Desarguesian partial spread is a partial spread obtained from
a Desarguesian spread 7f by t.aking !lS it.s compoIlent.s ali t.he componcnts
of some subsplane "O of ". We shall llsually follow the COIlnnon pract.ice
of calling a Desarguesian part.ial spread a Desarguesian net; thus rational
Desarguesian nets wiU meall the partial spread determined by a rational
Desarguesian partial spread, according 1.0 Olll" convention, and wiU also mean
t.he nel., in t.he st.rict SCIlse of t.hc word, det.ermined by t,his partial spread.

If a subspace W of a partial sprcad defines a rat.ional Desargucsian net.
of a partial spread or a spread (V, tl), t.hen W is Desarguesian as it. lies in
a Desargnesian l'lane. Howevcr, t.he converse is false: this wiU emerge from
t.he following exercisc.

Exercise 6.3.4 In the loltowing exercise assume alt SlJreads etc. are finite.
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1. Let 11"" := (V, tJ.) be a finite spread, two-dimensional over a kern fie/d
K. Then a J( -subspace W, of V, is either a component tJ. or a Desar­
guesian Baer subplane of 11"".

2. Let F be a subspreadset of a spreadset T, such that O, vecI E F. Then
the paTtial spread defined by F is a rotiona/ Desarguesian spread iff F
is a field under matm operotions.

3. If Q is a right quasifield then 11"(F) is a rotional Desarguesian net iffQ
is a right vector space over F.

4. Let Q be a quasifield and J( a kern fie/d. Show that 11"( K) need not
define a rotiona/ Desarguesian net.

5. Show tllat a spread (V, f) can contain a Desarguesian subplane W such
tllat the paTtial spread defined by W, viz., Wr, need not be Desargue­
siano



Chapter 7

Simple T -extensions of
Desarguesian N ets.

The aim of t.his chapl.er is 1.0 consl.mct t.hree mct.hods for generat.ing finit.e
spreads 1r, and hence also t.ranslat.ion planes. The dist.inguishing feat.ure of
t.hese met.hods is t.hat. t.hey each involve a partial spreadset. :F associat.ecI
wit.h a rat.iona! Desarguesian pmtial spread and anot.her slope mat.rix 'T':
t.he spread 1r is t.hen 'generat.cd', in some cas~dependcnt.sense, by {T} U:F.

The exacl. condit.ions for T t.o succeed depends on t.he individuaI case,
buI. in each inst.ance a wide rangc of planes can be const.mct.ed, in t.he sense
t.hat. t.he dimensions over t.he kern can be almost. arbit.rary. Before describing
t.he met.hods 'l'e need t.o t.ake a c10ser look at. spreadset.s cont.aining fields.

7.1 Spreadsets Containing Fields.

Let. S be a finit.e spreadset., and suppose:F C S, I:FI > 1. Hence,:F is a field
of Iinear maps iff it. is addit.ively and llllllt.iplicat.ively closed. We exmnine
separat.ely t.he meaning of addit.ive and IUult.iplicat.ive closure of.:F using:

Hypothesis (*) Let S is a spreadsct associated unth the additive group 01 a
finit.e vectoT space V. Assume S is coordinatized by any one 01 the prequasi­
fields Qe = (V,+,o), lOith ° specified by choosing the lelt identity e E V·.
Let:F f {O} be any non-empty svbset 01 S, and let F C V be the set 01 all
elements in V whose slope maps lie in :F relative to the choice 01 e as the
ùlentity, thus:

F:= U E V I1= (e)</>:!</> E :F}.

123
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and
F = {Tf I j E F},

where Tx E S denotes the slope map oj x E V, relative to e as the left identity,
i.e., Tx : y>-+yox, y E V.

First. we consider t.he addit.ive closme of F.

Proposit.ion 7.1.1 Assume hypothesis r.), in .particular, F = (e)F ç V.
Then the following m'e equivalent.

1. 'VxEV,f,gEF:xo(J+g)=xoj+xog.

2. F is an additive group.

3. F is additively closed.

Proof: The condit.ion

"Ix E V, j,g E F: x o (J + g) = x o j + x o 9

= "Ix E V, j,g E F: x o Tf+g = xTf +xTg

= TJ+g=Tf+Tg,

and t.his cannot. hold l1nless t.he slopp-set. of F is addit.ively closed and, con­
versely, if t.he slopeset. of F is addit.ively closed t.hen t.he element. M =
Tf +Tg E F agrees wit.h Tf+g at. t.he non-zero elemento e. Hence TJ+g = Tf +Tg
is eql1ivalent. t.o F being addit.ively closed. Finally, t.he addit.ive closure of F
is eql1ivalent. t.o it. being an addit.ive grollp by our finit.eness hypot.hesis. _
Now we c:onsider t.he mlllt.iplicat.ive closure of F.

Proposition 7.1.2 Assume hypothesis r.), in particulm', F = (e)F ç V.
Then the jollowing are equivalent.

1. 'VXEV,j,gEF:xo(Jog)=(xoJ)og.

2. F is a mu/tipicative group.

3. F is mu/tiplicatively closed.
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Proof: The t.he condit.ion

'tX E V, f, 9 E F : x o (f o g) = (X o f) o 9

{=> 'tx E V, f,g E F: xT,og = xT,Tg

{=> T,og = T,Tg,

and t.his cannot. hold nnless t.he slopeset. of F is mnltiplicat.ively elosed and,
conversely, if t.he slopeset. c.f F is Illnlt.iplicatively elosed t.hen T,og = T,Tg
since t.hey have t.he same valne at. t.he non-zero point. e. llence T,og = T,Tg
is eqnivalent. t.o F being mnltiplicatively elosed. Finally, t.he mnltiplicative
closure of F is eqnivalent 1.0 it being a Illnltiplicat.ive gronp since this hold
for any finite mnltiplicative closed set. of linear bijections. _
Now consider any qnasifield Q = (V,'+,o) snch t.hat. a snbset F C V is a
field relat.i"e t.o t.he qnasifield operat.ions and that. for x E Q the following
ident.it.ies hold:

xo(f+g) - xof+xog

(xof)og - xo(fog)

It is elear from t.he axioms of a qnasifield t.hat. (V, +) is a "ect.or space relati"e
1.0 the field F operat.ing from t.he right. via qnasifield mnlt.iplicat.ion iff the
above pair of condit.ions hold. Thns, when t.hese conditions hold, we shall say
the quasijield Q is a righI. vector space aver F; it. will be t.acitly assumed that
t.he vector space is defined relat.i"e t.o t.he qnasifield operat.ions. On comparing
these condit.ions wit.h proposit.ions 7.1.1 lUld 7.1.2, we immediateIy deduce:

Proposition 7.1.3 Lct S be any jinitc spreadset, containing the identity
map, associated with the additive group (V, +) oJ some vector space; so Q, =
(\I, +, o) denotes the quasifield determined by Sand e E V'. Assign to any
{O} C F ç S the set of images F of e under F, thus:

F:= {f E V I f = (e)",,</> E F}

Then the following me equivalent:

1. F is a jicld oJ linear maps.

2. F is dosed under addition and composition.

3. For some non-zero e: F is a field and Q, is a right vector space over
F.
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4. For oll non-zem e: F is o field ond Q, is o right vector spoce over F.

Snppose Q, = (V, +,0) is a finite qnasifield, wit.h ident.it.y e, such that
Q, is a right. vector space over a snbfield F = (U, +, o), for some additive
gronp (U, +) ~ (V, + ). Now (V, +) may be assigned t.he structure of a field
[{ = (V, +, .), snch t.hat:

'Iv E V, f E F : v ° f = 11 • f

The proof is an exercise inlinear-algebrajfield-extensions: if V is a k-dimensiona
right veet.or space ovcr a field F = GF(q), t.hen V can be given an F-!inear
idcnt.ifieat.ion wit,h a right. vcet.or space K, whcre K is a k-dimensiona! field
ext.ension of t.he field F: for examplc, vicw F as t.he field of scalar k x k
mat.rices in Hom(k, q), and then choose as J( a field of mat.rices of order
!FI"; t.his field exist.s in Harn(k, q) by Ga!ois t.heory.

Hence y == x ° f and y = x. f define the same snbspace of V $ V, for
all f E F. Hence all t.hese snbspaces are component.s shared by the spreads
;r(Q,) and 71'(K), and t.his clcady means t.hat. the rationa! partial spread
associat.ed wit.h r.(F) is a snbpart.ial spreads of bot.h, 71'(Q,) and 1r(K), and
since the lat.ter is Desarguesian, wc conclude t.hat. 71'(F) determines a mtionol
Desarguesian part.ial spread.

\Ve now consider t.hc converse of this assert.ion. Hence, our goal is to
demonst.rat.e t,hat. if 1r(Q,), t.he spread associat.ed wit.h a finit.e quasifield Q, =
(V, +, o), cont.ains a rat.iona! Desarguesian partia! spread Dwhose components
inclnde X, Y and I, t.hen Q, cont.ains a subfield F such that (V, +) is a right
VL'Ct.or space over F and the components of Dis t.he part.ia! spread determined
by ;r(F), or equivalent.1y, t.he ;r(F) is a spread across D).

Since D is Desargnesian and rat.ional, t.here is a Desarguesian spread D. =
1r(K), where K = (V, +,.) is a field t.hat. may be chosen so that. il. cont.ains
a subfield F such t.hat. 71'(F) is across D, and cont.ains (e, e). It. is possible to
insist. fnrt.her t.hat. e, t.hc idcnt.it.y of Q, = (1/, +, o), is also the identity of K,
and hence of F: nse t.he sprcadset. associated wit.h K - it. dcady cont.ains
t.he spreadset associat.ed wit,h D- t.o define • in t.erms of e.

Since Dis t.he rat.ional partial spread det.ermined by 71'(F) , and !ics in bot.h
;r(K) and1r(Q,), wc have the subspace y = xof, for f E F, may be expressed
as y = x. l' for some l' E F, and vice versa. Choosing x = e shows that. in
every case f = l', since K and Q, bot.h have the same multiplieat.ive ident.it.y
e. Thns, wc have t.he identit.y:

'Ix E V,f E F : x ° f = x • f.
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Hence Q, is a righI. vedor space over F, because J( has t.his propert.y. So we
have est.ablishec1 t.hat. b is t.he rat.ional part.ial spread determinec1 by r,(F),
where F is a field in Q, sue:h that. the latteI' is a vector space over F.

Hence we have shown that. if a finite quasifield Q is a righI. vector space
over a field F t.hen r,(Q) t.he rat.ional spread detennined by r,(F) is arational
Desarguesian part.ial spread whose component.s include the st,andard compo­
nent.s X, Y and I of r,(Q), and, conversely, a rat.ional Desarguesian partial
spread b in r,(Q) t.hat. includes t.he st.andard components among it.s members
musI. be determinec1 by some r,(F), where F is a subfield of Q aver whicl)
t.he latteI' is a right F-vect.or space. Thus t.he above t.heorem extends 1.0 in­
dude another equivalence: r,(F) det.ermines a rat.ional D'esarguesian spread
is equivalent. t.oall the ot.her parts of the theorem.

In t.he cont.ext. of finite spreadset.s S :J l, associat.ed wit.h a vector space
on (V, +), t.hc above h"" t.he following int.erpret.at.ion:
F C S is a field of mat.rices iff the component.s associat.ec1 wit.h F inr,(Q,) de­
fines a rat.ional Desarguesian partial spread that. contains t he three st:mldard
components X, Y ane! I of r,(Q,).

Thus proposit.ion 7.1.3 may be rest.at.ed in more det.ail as follows:

Theorem 7.1.4 Assume tile ilypotilesis of proposition 7.1.3. Let S be any
finite spreadset, eontaining tile identity rnap, associated witil tile additive
group (V, +) of some veetor spaee; so Q, = (V, +, o) denotes tile quasifield
determined by Sand e E V'. Suppose F ç Sand let

F = {j E V : f = (e)</J,9 E F}.

Then tile following are equ'ivalent:

1. F is elosed unde1' addition and composition.

2. F is a field of linear' maps.

3. (F, +, o) is field Clnd V is Cl right vector space ove1' F, fo1' some ehoiee
ofe E V'.

4. (F, +, o) is field Clnd V is a right veetor spaee over F, for all ehoiee of
e E V·,

5. The partial spread r,(F) in r,(S), that is r,(Q,), determines a rational
Desarguesian pCl1'tial spread in r,(S) that ineludes its three standard
components, X, Y and I.
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Note that in attempting t.o state the infinite analoglle of the theorem above,
care mllst. be taken regarding two points: (1) mllltip!icat.ive and additive
dosme wil! no longer force F t.o be a field, and (2) the field F may noto be
embeddable in a larger field of dimension k, where k := dimFV.

7.2 T-extensions of Fields.

If S is a finite spreadset, in some GL(V, +), that contRins a field F, then the
assodated spread 7rs cont.ains t.hc rational Desarguesiall partial spread tiF'

In t.his sedion, we consider some ways of extending a field of matriees F t.o
a spread S so t.hat the latter is in some sense 'generated' by Fu {T}, where
T is a sllitably ehosen in GL(V, +) \ {F}. These procednres wil! yield classcs
of semifields, audalso spreads of order g3 admitting GL(2, g).

The first. met.llOd is based on having available a qllasifield Q = (V,+,o),
of sllqare order, that. contains a sllbfield F, slleh that q is a two-dimensional
vedor space over F. Since sllch sitllat.ions arise ifI' the spread 71'( Q) is deriv­
able l'dative t.o the slopc'S of ..(F), we shall refer t.o t.he c:orresponding spreads
as being obt.ained by T-dcrivat.ion. This method yields a range of semifields
t.hat are t,wo diIncnsional over ai least one of thcir scminuclei, and) in a
somewhat. vaccuolls sense yields t.hem 'all': every sllch semifield 'yields itself'
by the procednre 1.0 be deseribed. However, the met.hod is also effective in
genuinely const.ructing long chains of two-dimcnsional sernifields when used
sensibly.

The next. method is c:oncemed with 'cyclie T-extensions' of a field F that
also yields semificlds of non-sqllare order, buI. this time the field F !ics in
al. least two semi-nllclei: N", and N" buI. t.hese can be changed by dua!ising
aud/or t.ransposing. Thlls neit.her of t.he t.wo construct.ions indicated so far
entirely replace t.he ot.her.

The final const.rnct.ion we diswss is a modification of the above indicated
met.hod in t.he t.hree dimensionai ca~e. This yields semifields spreads (not
sc;mifield spreads) of order g3 that. admit. GL(2, g), acting as it. does on the
Desargllesian spread of order g". The dimension of the spread over its kern
can be made arbitrarily large, demonstrating that non-solvable groups can
act on spreads of arbi trarily large dimensions: so far this phenomenon is
known iu sllprisingly few ca~es.

'Ve now describe eacll of t.he above iudicat.ed constructious.
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7.2.1 T-Derivations.

We describe here a met.hod of construct.ing semifields of order q2 t.hat. have
GF(q) over t.heir middlc nlldells. By t.ransposing and/or dualising t.he re­
sllltant. semifield piane, t.he GF(q) can be Ciln be t.aken to be any of the
t.hree serninllclei. Hence, we foclls on t.he middle or right. nucleus case (as t.he
t.reat.ment. is almost ident.ical) and we shall generally ignore the right nucleus
(whieh involves dllalising the left nllcleus).

Basically, t.he met.hod begins with il quasifield Q = (V, +, o), of arbitrary
order q2, that contains a subfield (F, +, o) ~ GF(q) such t.hat. (l', +) is a
right vcct.or space aver F. Snch ql1asifielcls, as we saw earlier, are essentially
t..hase obtainable from spreadsets S on (V, +) t.hat contain a subfield F, or
equivalent.Iy: from sprcads of order q2 that contain rational Desarguesian
partial spreads of degree q + 1.

The key idea is t.hnt for any dlOice of T E S \ F, regardless of the Q
yielding S, t.he addit.ive grollp F +FT is an addit.ive spreadset. \Ve shall refer
to spreacls constructcd in t:his manner, (;15 arising by applying a T -cxtens-ions
toS:

Proposition 1.2.1 (T-Derivations.) Lei S be a sl'readset (01' even a l'ar­
tial sJi1'eadset!) on a finite additive 91'OU1' (V, +) sueh that S ::> F, where F
is a field ~ GF(q),and V has orrler q2. Then fOl' any T E S - F, the additive
set DJ matriees

e := T(T, F) = {a + Tb I a, b E F}

is a sl'rendset. and hence so is the tmnsl'ose:

eT = {a + bTT I a, b E F T
}.

In 1'artieular, eF = e ami fl'e T = eT
Proof: If xo + xTf3 = O, for f3 i' O, t.hen xo!3-1- = xT so F - T is
singulnr for SOme F E F, cont.radict..ing the hypot.hesis that {T} U F is a
sllbset of the (partial') spreadset. S. ThllS e = eT The rest follows easily.

• •
Not.e t..hat by allowing S t.o be a partia! SIJl'ead, t..he method can be extended
ewn to cart..esian grollps Q = (V, +, o) of order q2 t.hat are right vect..or spaces
m-ef a slIbfield F = GF(q), provided t.hat. some t E Q - F defines an additive
map x ...... xol on (V,+).

Recall, t.heorem5.3.3, t.hat.. for additive spreadset.s S t.he middle nudeus
corresponds t.o the largest subset.. F sudl t.hat.. FS = S, and the right nudells
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c.orresponds to the trallspose situation, viz., the largest F C F such that
S = SF, t.heorem 5.3.4. Hence, for convenience and for its futm.e role, we
shall usnally only comment on the middle nndeus situation. 'Ve note that
any semifield spreadset, of order q2 is obtained by applying a T-extension to
itself.

Remark 7.2.2 llT is a spreadset al arder q2 containing a fieid F ~ GF(q)
such that FT C T then

T = F +FT,

Ulhenever T E T \ F; in particuia'r, T coincides lIIitlt T(T,F)T, using tlte
notation al proposition 7.2.1.

Thns all semifields that. are two-dimensional over their middle (or left) nu­
dens are T-extensions - of themselves l However, the process ofT-extensions
can be effect.ively usecl 1.0 yi61d a variety of examples of semifielcls that, are
two dimensionaI over the middle nucleus, alICI indeed, by transposing aIld du­
alising, o\"er any semifield. Te generat.e sllch exarnples, l1sing T -extensions,
one ean arbitrarily repeat arbitrary long chains of steps, eaeh step involving
one of duahsing-transposing-T-deriving-recordinatising and coIlect.ing the re­
quil'ed spreadsets al. each stage, for example by adopt.ing using a 1001' such
as the foIlowing:

Generating Two Dimensionai Semifielcls.

a Choose spread with derivabie partial spread 8.

b Coordinatise by a quasifielcl q so that 8 is coordinatizec! by a fielcl F.

C No,," either form Q' containing field F' snch that Q' coordinatizes the
transpose spread ancl Q' is a righI. vector space over F' a field isomorphic
1.0 F, or simply choose q' = Q anel F' = F.

cl Obtain two-dimensional semifield assodated with an)! t E Q' - F', with
middle nucleus F'.

e Dualise and/ or transpose the semifield ami/or derive relative to F'­
slopes.

f ReturIl to step [a] or stop.
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Cert,ainly many non-isomorphic spreads arise thns, and as indicat,ed above,
'all' finite semifields that are two dimensionaI over Il seminnclens are of this
fonn, albiet in a somewhat vaccnons sense; althongh T-extensions provide
a nsefnl method for generating examples of t.wo-climensional semifields il. is
noI. meaningfnl 1.0 ask if their are 'other' semifields of order q2, with GF(q)
in semilluce111S.

7.2.2 Cyclic Semifields.

Let. ~v be a finit.e n-dimensionaI veetor space, n > l over a field F and snp­
pose T E r L(W, F) \ GL(W, F) is a st.rict.ly semi-linear biject.ion of W, re­
garded as an F-space; also leI. [{ be a snbfield of F sncb that T E GL(W, [{),
for exainple [{ might be dlOsen 1.0 be the prime snbfield of F.

\Vc are intcrested here in the case when T is F-irrcdlleiblc, that. is, when T
does noI. leave invariant any non-trivial proper F-snbspaee of Hl Exmnples
of sneh T are easily eonstl'1leted, for inst.ance on ehoosing S E GL(vV, F) 1.0

eorresponcl 1.0 a Singer cycle of PG(n - l, F), fT E Gal(F)', we might. define
T = Sa; il. is also not, hard t.o see t.hat s'o for many valnes of k, work as well
as S itself.

\Ve no", observe t.hat. the F-snbspace of Hom(W, F), generated by t.he
powers of T, form an additive spreadset and tll1ls yields a semifield; the
st.riet F-serniinearity of T ensnres that these semifields ",il! noI. be a field.
\Ve shall cali these semifields cgelic. .

Proposit.ion 7.2.3 Suppose ~V is a finite n-dimensionai vceto,' spaee, 11 > l,
ove,· a fie/d F and that T E GL(W, [{), wherc [{ is a proper subfie/d Dj F.
Ij T E r L(IV, F) \ GL(W, F) is F -irreducible, then vielUing T and j E F as
e/ements oj GL(W, K), the set:

f>(T, F) := {lao + Tal + ... +Tn-la"_1 I ao, al,' .. a,,-l E F}

is an additive spreadset over the fie/d K. Such sp"eadsets ,!'ili be called cyclic
semifield spreadsets.

Proof: If some lao + Tal + ... T;a; + ... + Tkak, for O =5 i =5 k =5 n - l,
where ak -F O, is singnlar t.hen t.here is an x E ~V' snch that:

o - (x)lao + Tal + + Tkak

so (x)Tk
_ (x) (lao + Ta, + + Tk-lak_l) 2.

ak
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and hence t.he F-sllbspace of W generat.ed by {x,xT,xT2 ... ,xTk - 1 } is T­
invariant. cont.radict.ing t.he F-irredllcibilt.y of T. ThllS ali element.s of t.ype
1ao + Tal + ... + Tn-l~l_l: other than when ao = al = ... = an_l, are
non-singlllar, and hence b.(T, F) is an addit.ive grollp of linear non-singular
K -!inear maps t.hat. has t.he correct size to be a spreadset.. The reslllt. follmvs .

•

Remark 7.2.4 The kem 01 b.(T, F) is isomoTpltic to tlte centmlizer 01 {T}U
Fin Hom(W,+).

Proof: The kern is t.he cent.ra!izer of the slope set, of b.(T, F) and t.his !ies
in t.he subalgebra, over t.he prime field, of H om(W, +) generat.ed by {T} U:F.

•
The Sandler semifields and t.he finit.e Hughes-Kleinfeld selllifields are cyclic
sClIlifields, and as point.ed aut. by Kallaher [29], almost. alI cyclic semifields
are of t.hcse t.ypcs. Thus cydic selllifields may be regarded as providing a uni­
form charact.erizat.iou of t.he finit.e Hughes-Kleinfeld and Sandler semifields,
in slight.!y genera!ized fonn.

7.2.3 T-Cyclic GL(2, q)-spreads

'Ve now define spreads t.hat. are never semifield-spreads, but. st.ilI based on
a field F of K-!inear maps of an n-dimensionaI K-vect.or space VV, K any
finit.e field.

The const.rnct.ion is best. describE'd dircct.1y, as a spread on V = ~-V E9 IV,
rat.her t.hall via a spreadset 1 so it beeOInes convenient to work with matrices,
relat.ive t.o a chosen K-basis of H', and we make t.he ident.ificat.ions ~-v = /{n,

V = Kn 0 1(". Now t.he field of linea!' lIlaps associat.ed wit.h t·he scalar action
of F on I·V, viz., j : x >-+ xl, becomes ideut.ified wit.h a field F of n x n
mat.rices over K, act.iug on K", and T E GL(n, K) is st.ill reqllired t.o be
st.rict.ly F-semilinear on 1(", or equivalent.ly:

and we shall insisto t.hat. T does not. leave invariant. auy non-t.rivial F-subspace
of rank :5 2, rat.her t.han insist.ing t.hat T act.s irreducibly, as in t.he previous
case.
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\Ve ,han demonstrate tbat tbe orbit T of the subspace y = x1' of V, nnder
the stallclard actioll of ç = GL(2,F) on V, fonns a partia! spread tbat. ex­
tends 1.0 a !arger ç-invari(Ult partial spreacl 71'(1', F) := 71'TUT, where 71'T is the
lrational Desargnesian] partia! spread associateci with:F. On spedalising 1.0

the case dimFH' = 3, the partia! spread 71'(1', F) becomes a non-Desargnesian
spread of orcler q3 admitting GL(2, q), where F ~ GF(q).

Proposition 7.2.5 Let W = K" be the standard n-dimensionai veetor spaee
over a finite fie/d K = GF(q), for n> 3. Suppose F C GL(n, K) is a field,
eontaining the scalar' field K, and

T E N(GL(".K)(F) - CcGL(".K)(F),

so there is a non-trivial fie/d automorphism (1 E Gal(F/ K)" sueh that

"IX E F: X' = 1'-1X1'.

Let 71'T be the rational Desarguesian paTtial spread determined on V := WeW
by the sprcadset F, and lct T be tlte orbit of the K -subspaee y = x1', of V,
under the group:

ç := { (~ ~) I a, b, c, dE F, ad - be iO} -:::: GL(2, F),

in its standard aetion on V.
?ut:

71'(1', F) := TU roT.

Suppose T does not leave invariant any non-zero F-subspaee of IV tltat has
rank :o; 2. Then the following hold.

1. T is a partial spread eontaining q(q2 - !) eomponents and the global
stabilizer of y = x1' in ç is the diagonal group

{DiagIA, A'J I A E P}.

2. 1'he rational Desarguesian partio.l spread 71'T is a ç-orbit, and ç aets
triply transtively on its eomponents.

3. The ç-or'bits, T and 71'T, do not share any eomponents and 71'(1', F) is
also a partial sprelld.
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4. "(T, F) is a spread iff dimFW = 3. In this case, the spread admits
Q = GL(2, F) so that this group partitions the components 01 '!r(T, F)
into two ol'bits, viz., T and"F, and Q acts triply transitively on the
orbit '!rF and transitively on the m'bit T,

The /cem 01 "(T, F) is isom01phie to the centralizer 01 {T} U F in
Horn(W,+); hence K = GF('1) is always in the kem, andF is not: so
the spread is non-Des07yuesian,

Proof: The image of (x,xT), x E K", x f 0, under an element of Q:

is (xA + 1.'TC, xB + 1.'TD), and this mect.s the component y = xT iII the
condit.ions u = xA+1.'TC anel uT = 1:B+1.'TD hold simultaneously for some
u E IV', and t.his is cq1livalent t.o

(1.'A + 1.'TC)T = 1.'B + 1:TD,

ancl sinc:e T nornlulizes F, and indllces a on it. t.hc above is eql1ivalent to:

and this means that t.he F-s1lbspace gcnerated by {x, xT} is T-invariant,
contradict.ing the hypothcsis t..hat. T cannot leave invariant non-trivial F­
s1lbpace of dimension :::; 2, unlcss B = C = O and D = A", Now t.he image
of (x, xT) is (xA,1.'AT), for ail x,
Tlms, t.he orbit. T of t..he component.. y = 1.'T uncler Q contains, in addition 1.0
y = xT, only subspaccs t.hat. are disjoint. from y = xT ami, addit.ionaily, the
globa.! stabilizer of y = ~,T is given by

Q{y=xT} = {Diag(A, A") I A E F},

so
171 = IGL(2, '1)1/('1 - l) = '1('12

- l)

Thus we haw cstablished Ulat. t.hc Q-orbit. of y = 1:T, viz" T, is a coilect.ion
of '1('12 - l) subspaces that have t.hc same size as y = xT and ail members of
T \ {y = 1.'T} are disjoint from y = xT, It. foilows that if R and 8 are any
two distinct members of T, then they are disjoint bccause if R n 8 f O then
we may choose 9 E Q such that (R)g = (y = xT) and now ìJ = xT meets the
element (8)9 E T,
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Instructive Diversion. This is a case 01 a simple but uselul principle: (a)
il a mnk r subspace A 01 a vector space V 01 rank 2r has an orbit A under
a subgroup G :'O GL(V, +) such that A - A9 is non-singular or zero lor al! 9
f).en A is a partial spread that is G -invariant; (b) il the subspace A is disjoint
/rom al! the members 01 a G-invariant partial sp,·ead B then A u B is also a
partial spread.
Next, to apply the second part of the above princip!e, consider the possibility
that y = xT meets 1fF, the rationa! Desargnesian spread coordinatized by F.
H T - A is singular for A E F', then xT = xA, for some A E F', x E W'.
Thus y = xT and y = xA are disjoint. subspaces of V, for A E F': otherwise
T leaves invariant the rank-space xF, contrary to hypothesis. Moreover,
y = xT is certainly disjoint from O $ W. Hence y = xT is disjoint from the
rational Desarguesian partial spread coordinatized by the spreadset F. But"
this partial spread, viz.,

1fF := {y = xA I A E :F} U {Y}

is also invariant under 9 because

(O,u)(~ ~)=(UC,Ud)

shows that Y is left. invariant when c = O, and otherwise, when cu f o, Y
maps to y = x(uc)-lud, which is a component of type y = xl, I E :F.
Similarly, we can determine that y = xl, I E F, maps nnder 9 into the
rational Desarguesian" partial spread 1fF:

(y = xl) (a ~)...., { (y = x(a + Ic)-l(b + Id)) if a + Ic f O;
c (x = O) otherwise.

In partictùar, Y is not 9 invariant, and the global stabilizer 9{y} of Y is
doubly transitive on ali the other componenti; of 1fF: for example, note that

"9{Y} does not leave X invariant and the globa! stabilizer of X in 9{y} is
transitive 011 the components in 1fF \ {X, Y}. Hence 9 !eaves 1fF invariant
and acts 3-transitively on its components.
Thus, recalling that the members of 1fF are disjoint from y = xT, we see that
the orbit (y = xT)9 is a partia! spread such that its members ali have trivia!
intersecholl with the members of 1fF.

Now specialize to the case F = GF(q) and dimFW = 3. Now the partial
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spreads "'E and T together contribnte q + 1+ q(q2 - 1) = q3 + 1 components
of the part.ial spread " (T, F), ami t,his is the size needed 1.0 make il. into a
spread. Since the Q-Ol'bit T now has the size of ",(T, F) \ "':F, we conclude
that Q is transitive on the components of the spread ontside "':F-
This spread is coordinatized by a spreadset S ::> Fu {T}, that incllldes the
identity and yet S is not a field becallse T does noI. centraiize F. The slope­
seI. of " (T, F) is clearly in HomO-V, +) so its kern is as claimed.•
By varying T, for a fixed choice of F, il. is possible 1.0 ensure that the dimen­
sion of the spread " (T, F), over its keru, can be made arbitrarily large; in
partcililar this means that, non-Desargllesian translation planes of order q3
that admit SL(2, q) can be chosen 1.0 have arbitrarily large dimensiono We
leave this verification as an exercise for the reader_



Chapter 8

Semifields.

Recall t.hat. a distribut.ive quasificld is called a sernifield. Equivalent.ly, a semi­
field is a 'non-associative [s~ew]field' as seen in thc following characterization.
The aim of t.his chapt.er is t.o address t.he following question: what are t.he
possible sizes of finit.e non-associative semifelds? \Ve shall see that semifields
t.hat. are of order p2 are always fielcls. Aiso ali t.ra.nslat.ion planes of order 8
are known t.o be Desarguesian. But. t.he t.wist.ecl fields of A. A. Albert. and t.he
even order comnmt,at.i\·e semifelds of D, E. Knut.h, taken together, demon­
st.rat.e that. for all other prirne-p0l/.'er·s orders n at. least. one non-associative
semifielcl pIane of order n exist.s. The main goal of t.his chapter is t.o int.ro­
duce these planes and demonst.rat.e that t.hey are non-associative. This is
preceeded by some aner some basic result.s !lave been est.ablished.

8.1 GeneraI Remarks On SemifeIds.

The following t.heorem is an analogue of t.he elementaI'Y result.: finit.e [associa­
t.ive) integrai domains are fields. Here we prove that. finite 'non-associat.ive'
int.egral clomains are semifields. Many important, const.ructions of finit.e
[pre]semifelds are based on t.his principle.

Remark 8.1.1 A system (D, +, o) is a semifield iff the following axioms
hold:

1. (D, +) is an abelian group;

2. The distributive laws are valid for x, y, z E D:

137
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(a) xo(y+z)=xoy+xoz;

(b) (y+z) ox = yox+zox.

3. (D',o) is a loop.

A semifield that is not a [skew]field is called a proper semifield. We shall be
concerned with finite semifields from now ono Thus the basic question is what
are the possible orders of proper non-associative semifields? This question
has a complete answer, but first we draw at.tention to some elementary facts.

Remark 8.1.2 Let (D, +, o) be a finite semifield. Then its three seminuclei
Ne, N m and Nr are all fie/ds, in pariicular its kem coincides with N l and
(D, +) is a vector space over each 01 these nuclei, as well as over its nucleus
and center (both 01 which an~ also fields).

Proof: Exereise._

Remark 8.1.3 A semifie/d two dimensionai over a field in its center is a
field. Rence all semifie/ds 01 order' p2 are known.

Proof: Exercise._
Thus ali semifield planes of order p2 are known. A spectacular extension of
this result follows form a theorem of Menichetti: ali semifield planes of order
p3 are known. They are forced to be coordinatized by the generalized twisted
fields of Albert, see 147.

8.2 The Knuth Commutative Semifields,

Finite commutative semifields (that are not associative) appear to be quite
hard to find. The following construction due t.o Knuth, [30], established the
existence of commut.ative semifields of even order N, where N > 8 is not a
power of 2.

Theorem 8.2.1 (The Binary Knuth Semifìelds.) Lei K = GF(2nm) ::J

GF(2m
) = Ko, wher'€ n > l is odd. Let I : l( -> Ko be any nonzero linear

lunctional 01 l( as a K o vector space. Define a new multiplication as lollows:

a °b = ab + (f(a)b + l(b)a)2.

The algebraic system (l(, +, o) is a pre-semifield.
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so

Proof: The fact that x I-> x 2 is additive in the characteristic 2 case, yields
the distributive laws. So it remains to verify a o b = Ois impossible if a and
b are non-zero. Denying this, we have non-zero a and b such that

ab + (f(a)2b2+ f(Wa2) = O,

~ + f(a)2 + f(bf (~r = O,

which may be written as a quadratic in x = alb:

f(b)2 X 2+ x + f(a)2 = O,

and this quadratic in x, with coefficient6 in J(o, is reducible in ]( because
x = alb is a solution. But since ]( is odd dimension over ](0, the quadratic
must be reducible even in ](0, so x = alb E ](0. Hence by the definition of
o:

a o b - ab + (f(a)b + f(b)a)2

- ab + (f(bx)b + f(b)a)2

- ab + (f(b)bx + f(b)bx)2, by Iinearity of f

- ab, in charactersitic 2.

so a o b = ab -# O, a contradiction.•

Exercise 8.2.2 Show how to obtain a commutative semifeld of the same
order as the above pre-semifield.

The usual procedure for converting a pre-quasifield to a quasifield '(a o b) =
(ao e) * (eob)', where e is an arbitrary nOIl-zero element, of COHrse solves exer­
cise 8.2.2 above. However, to ensnre that the resulting comutative semifield
is IlOt a field f needs to be chosen with some care. Such an f is introduced
in the following theorem.

The theorem also demonstrates that in converting a presemifield to a
semifield it is desirable to choose the identity 'e' with care, to avoid creat­
ing a semifield with a more opaque structnre than the presemifield used to
construct iL
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Theorem 8.2.3 (The Binary Knuth Semifields.) Let K = GF(2nm ) :::)

GF(2'") = 1(0, where n > 3 is odd. Fix a I(o-basis ofl( 01 type (l, "', ",2, ... ",n-J

and choose the Ko-valucd lunctional I ; l( -> Ko such that I(ci) = Olor
O< i :S n - 2, and I(a"-J) = 1. Dcfine new multiplications o and 0 on K
as lollows lor o.ll a, b E l(:

a o b - ab + (/(a)b + l(b)a)2

aob - (aol)0(lob)

The algebraic system (l(, +, o) is a commutative presemifield and (I(, +, 0)
is o. commutative scmifield (but not a field) such that they both coordinatize
the sarne semifield piane.

Proof: In view of theorem 8.2.1, il. follows easily that (I(, +, 0) is a com­
mutative semifield, wit.h iclent.it.y lo l, and t.hat. the t.wo syst.erns coordinat.ize
t.he same piane. It. remains t.o check that. 0 is not. associative. The main st.ep
is t.0 obt.ain a direct. represent.at.ion of 0, viz.:

a0b=(a o l)0(l o b) (8.1)

Since 1(0 is in the null space of I, and also it.s image, we obtain 1 o a =
a + I(a}', 1(0.)2 E K o, and hence 1(1 o a) = 1(0.). Thlls we have

lo (l o a) = a + 1(0.)2 + (/(0.) + W,
yielding t,he identit.y in a E K:

lo (l o a) = a. (8.2)

Now replacing a and b resp. by 1 o a and l o b in the defining identity for 0
we have:

(aol)o(lob) - ((a o l)ol)0(lo(l o b))

- 0.0 bby (8.2),

thlls (8.1) has been est.ablished.
We can now verify that, 0 is not associat.ive by clemonst.rating that a mllitipli­
cat.ion involving ",k, k = n - 1/2, fails to be associative; exponents here and
t.hrollghollt the proof are assllmed relative to field mlllt.plication. Not.e t.hat.
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k = Il - 1/2, and Il > 3 means that k < Il - 2, so, by definition, f(o:') = O .
Hence the formula for 0 given in (8.1) above yields

o'> 0 a' = (o:' o l) o (o:' o l) = 0:' o 0:' = o:n-I,

since z o z = z2 in characteristic 2. Similarly,

a k 0a = (a'o l) o (ao l) = a'+l,

as by definition a', a and l are ali in the kernel of f. We now show that
o is noI. associative, by deducing a cntradiction from the following power
associativity identity:

a 0 (a' 0 a') = iO' 0 a') 0 a', (8.3)

which implies that

But remembering thal. f(o:n-l = l, t.he LHS becomes

and the RHS becomes

so t.he associativity fails unless a n +.0'2 + a = a n and t.his means a = l or
o: = O, contradict.ing: o: E/(- /(0. Tll11s t.he power associativit.y c1aimed in
(8.3) fails and the desired result. follows.•

Exercise 8.2.4 Show that the theorem is valid even for Il = 3 provided K o =

GF(2m ), and m> 1.

Perhaps t.he most. important. feature of the theorem above is t.hat il. ensures
t.he existence of non-Desarguesian projective planes of order 2P, p any prime
> 3.
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8.3 Twisted Fields.
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Let. c E K = GF(qn) such that c 'I- Kq-l. Then GF(q)-linear maps of
K = GF(qn) defined by:

p-l K -+ I(

xl-tx-cxq

(8.4)

(8.5)

are biject.ive (thus justifying the inverse not.ation) because x = xcqor xq = ex
bot.h cont.radict. the assumpt.ion c 'I- Kq-l.

Since p-l and Q-l both map l 1.0 1 - c = I, we also have

PU) = QU) = 1, (8.6)

\Ve no'" define the semifield associated wit.h (P, Q); the above equation will
est.ablish t.he mult.iplicative identit.y.

Theorem 8.3.1 Define 0 by:

x 0 y = xP(yQ)q - (xP)q(yQ)c,

and let I = 1- c. Then (K, +, 0) is a division algebm with identity I = 1 - c
and center F 0 I where F = GF(q) C GF(qn).

Proof: Since P and Q are inverses of F-linear bijections they 1.00 musI. be
F-linear biject.ions. Now sinee P, Q and t.he field automorphism x t-> x q are
ali additive, t.he dist.ribut.ive laws hold. Zero divisors exist. only if for some
non-zero x and y:

xP(yQ)q = (xP)q(yQ)c~ (xP/yQ)/(xP/yQ)q = c,

contradict.ing t.he hypot.he.sis t.hat. c is noI. a q -l-t.h power. Henee t.he system
is a presemifield.
To verify t.hat. I is t.he multiplicat.ive ident.it.y, apply eq (8.6) 1.0

x 0 1= xP - (xP)qc = (xP)P- l = X

and similarly:
10 x = xQq - xQc = (XQ)Q-l = X.
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Thus I is the multiplicative identity. Now we establish that F 0 I may
be identified with F, by remembering that S, P and Q are ali members of
GL(K,+) that are linear over F, and that IP = IQ = l; for alI x E K and
et E F:

x 0 (fo:) - xP(fo:)Qq - (xP)q(fo:)Qc
- (xP(f)Qq - (xP)q(f)Qc) o:

- (xP - (xP)"c) o:
_ (xP)P-lo: = xo:

and similarly
(fo:) 0 x - (xQq - xQc)o: = (xQ)Q-lo: = xo:.

Thus we have shown:

(fo:) 0 x = xo: = x 0 (fo:)Vx E Ko: E F. (8.7)

Now il. is straightforward 1.0 check that F 0 I is in the middle and left nuclei;
for example (x 0 10:) 0 y and also x 0 (fo: 0Y) may be written, by eq 8.7, as
(w) 0 y and x 0 (o:y) respect.ively and these are equal because ali the three
maps defining 0 are linear over o: E F. The l'esulI. follows.•
]t appears 1.0 be surprisingly hard 1.0 determine whether or noI. F 0 I is the
full center of the semifield. In fact, il. appears hard 1.0 verify even that the
semifield is noI. a field. To verify this we shall determine when the semifield is
non-commutative. This reqllires an explicit form for the Vaughan polynomial
for P: our definition of P is specified indirectly, in terrns of the Vaughan
Polynomial of P-l.

As indicated by AlberI., t.he -producI. 0 camlOt be regarded as explicitly
known unti! the Vallghan polynomials for P and Q are explicitly known.
However, in view fo the close connection between the definitions of p-l and
Q-l, cf (8.4) an<;l (8.5), il. is possible 1.0 deduce the Vaughan polynomial of
Q from that of P, so we onIy compute P explicitly.

8.3.1 Polynomial for P; Non-Commutivity of Semi­
field.

In this sect.ion we adopt the following:

Notation 8.3.2 Regarding K = GF(qn) :> F = GF(q) as a mnk n vector
space over F, and define the F-linear maps 01 K:
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1. S:xt-+xq;
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2. R.: x t-+ xa, lor a E K;

We regard members of HarnF(I<, +) as acting on K from the righI.. The
associative ring L~,;d SiR." for ai E K, forms an F-algebra; F may be
identified with the centrai field {Rf I I E P}. By Vaughan polynomiais
t.he Si 's in the expression are linearly independent over P and hence the
expressions account for IKln K-linear maps in HarnF(K, +), but since this set
has size IPln', we have a fundamental fact concerning Vaughan polynomials.

Result 8.3.3 (Fundamental Theorem of Vaughan Polynomials.) The
K-algebra HarnF(K, +) is the K-algebra:

{

n-l }t; s'R., I ai E P, 'Vi E [0, n - l) .

We now compute P using eq(8.4), which may be written as p-l = X - xSR",
and the elementary ring identity

by noticing that IJ := S Re implies:

l -IJ = p-l

Thus we have:

p-l (l + SRe + (SRe)2 + ... + (SRer- l ) = 1- (SRer . (8.8)

and now (SRe)i may be expressed in the foliowing notation,

(SRe)i = s'Re;, (8.9)

where Ci E p' is \miquely defined by the above requirement. In particular,
we need to record:

Remark 8.3.4 Define Ci E P in terms 01 c by:

'Vi E [l,n]: (SRe)i = SiRe,.

Then

(8.10)
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1. p-' commutes with all terms Dj type S'Re;
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2. Cn E GF(q). C'+I = (e;)Sc.

3. Cn E GF(q)', but Cn f 1.

Proof: The first parI. holds because, by definition, p-I = l - (SRe) and
terms S'Re. are all powers of a single term SRe. In particular, eq (8.10)
means that

Si+IR . (SR )i+1 (SR )'SR Si+IR
Ci+1 .= c = c. c = (Ci)SC'

The next case follows from eq (8.10) by putting i = n and noting:

where t.he norm lI(c) relat.ive t.o S musI. lie in it.s fixed field, so c E GF(q)
Now if 1= lI(e) = cqn-I/q-I t.hen we claim c is a q-l-th power. Now writing
c = Wk(q-I)+T, w a primit.ive element of GF(qn)" and O:'S r < (q -1), implies
wT(qn-l)/q-1 = l, so r = O.•

Now t.he commnt.ivit.y condit.ion for p-I, the fact that. (SRe)" = snRe. =
Ren , and by the final case above, 1- Ren E GF(q)", means that the identity
(8.8) may be restated as follows:

(8.11)

The above identit.y is the Vaughan polynomial for P. If desired, a similar
identit.y for Q may be·obt.ained, or deduced from the expression for P.

We now \L~e t.he above Vallghan polynomial for P 1.0 determine when the
divison algebra (D, +,0) is commutative. The definition of 0 means that il.
is commnt.ative iff:

xP(yQ)q - (xP)qyQc = yP(xQ)q - (yP)q(xQ)c

so putting y ...... yQ-I shows commutivit.y is equivalent 1.0 the identit.y:

xPyq - (xP)qyc = yQ-I P(xQ)q - (yQ-l P)q(xQ)c

and viewing both sides as fllnctions of y, implies that the commutivity is
equivalent. to:



CHAPTER 8. SEMIFIELDS. 146

((S + S'R.. + S'R", + ... S'+1R,• ...)

and using the Vaughan expansion for P in eq (8.11) above, and reealling
the definition of Q-I, eq (8.5), we see that. commutivity of the semifield is
equivalent 1.0 the foHowing identit.y aft.er t.he GF(q)' element. (l - R",,)-I is
shift.ed 1.0 t.he LHS.

(SR,p - R(,p)s<)(1 - R,.J = (S - R,)(I + SR... + S'Re, + ... s'R.•...
... sn-IR,._.)(R,QS - SR(,Q),),

and on making the subst.itution xQ +- t we have:

(SR,p - R(,p)s,)(l- R,.J = (S - R..)(I + SR« +S'R", + ... s'Re; ...
. . .S"-IR,._, )(R,s - SR,,),

We now compute t.he coefficient. of t.he powers of S' > S' on the RHS when
this is expressed in standard S-polynomial form:

, .
R..(I + SR.., + S R., + ... + S'Ro< ...

1+1 _+S RO;+> .. .)) x (R,s - SR,,) -, .
(R, + SR,SR« + S RoS'", + ... + S·R,S'•.,

'+1 ()+S R,sò+'o<+•.. .)) x R,s - SR" ,

and the terms in Si above, after expansioll, have farm

_ SiRc'_ 1Rts - Si RCSic,RtS - Si-lRC,_2SRtc + S-lRc$i-lc,_l SRtc

- Si RCi_1(tS) - S RcSiCj(tS) - SiRCì_2Stc + SiRCcS')(C'_lS)(tC)

- s'[Ro<_'('S) - R,s'O;('S) - RO;_,s" + R(oS')(,,_.S)(,,)j,

and t.his coefficient for i E [2, n. - l) must vanish for aH t, which means

(Ci-I - (cS')c,)t" + (CS'C'_IS - Ci_,S)tc '" O

and this is equivalent, for i > l, to

Ci-l - (cS')e, - O

and CS'Ci_IS - e,_,S - O,

and the case i = 2, remembering Cl := C, yields: Cl = CS2
C21 but now by

c, = eSc we have C-l = cS, henee also C2 = l. Now lemma 8.3.4(2), page
144, above shows that the Ci for i ~ l alternates: .

Cl = C, C2 = 1, C3 = C, C4 = l, es = c, ... Cn = 1,



CHAPTER 8. SEMIFIELDS. 147

where Cn = l is forced because, by lemma 8.3.4 again, Co is in GF(q), unless
c itself is in GF(q). BuI. recall t.hat. l - Co =J O means that only the latter
case can OCCUL BuI. also remember that c' = C-l means that c2 = 1 as S
fixes GF(q) elementwise. So c = ±1 and c = l means il. is a q - 1-th power.
Hence c = -1 is the only possibility, and this act.ually works: now P = Q is
aut.omatic and the above constraints are alI met easily.

Thus we have established

Theorem 8.3.5 Assume n > 2. (D, +, 0) is commutative iff c = -l =J 1
and P = Q == (1 + S).

8.4 Generalised Twisted Fields.

The twist.ed fields of Albert., discussed in the previous sect.ion, are important
part.ly because they help t.o demonst.rat.e t.hat. non-associative semifields of
odd order pT exist, for p prime, ili r > 2. The generalized twisted fields,
introduced in t.his section, have proven t.o be of importance because they
arise in several rnajor c1assificat.ion theorems: Menichetti 's c1assification of
t.he sernifields of order p3 and in the Cordero-Figueroa-Liebler c1assification
of sernifield planes adrnitting large autot.opism groups of various types. In alI
these cases the associat.ed planes are shown 1.0 be among th c1ass of general­
ized twisted fields of AlberI., rather than in the c1ass of planes coordinatized
by just the ordinary twist.ed fields of the previous section.

We begin wit.h an elementary result from arithmetic that has wide appli­
cat.ions in the exploitation of finite fields.

Result 8.4.1 Let q be a prime power. Then

gcd (qa _ l, l- 1) = qg<d(a,b) - 1.

Proof: The RHS divides t.he LHS because, in generaI, qm - 1 divides qn - 1
if m divides n. LeI. u be any rnaximal prime power dividing LH,S. Then q" = l
(mod u) and qb. l (rnod u) and also q is invertible (mod u). So a and
bare divisible by the order A of q (rnod u). So A divides gcd(a, b), hence
u divides qg<d(a.b) - l, so u divides the RHS. • .
Throughout. the sect.ion we adopt t.he following hypothesis:

Notation 8.4.2 The integer q = pa > l is a power oj the prime p. K =
GF(qn) and AutK denotes the associated Galois group generated by p : x >->

x'. Assume S, T E AutK such that
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1. l i- Si- Ti-1; and

2. Fix(S, T) = GF(q).
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(8.12)

Note that any finite field with two distinct non-triviaI automorphisms, Sand
T, can be viewed as satisfying ali t.he above conditiollS if we define GF(q) t.o
be the fixed field of t.he group < S, T >.

Write N = KS- 1I<T-1, so N' is a multiplicat.ive subgroup of I<'. Fix an
element c E N-I<.

Exercise 8.4.3 Take I< = GF(qn), S: x I-> x·, and T = S-I. Show t.hat c
can be chosen provided n > 2 and q > 2. What goes wrong when n = 2?

The Alberi product on K, writt.en < x, y >, and abbreviated 1.0 xoy is defined
by:

Vx,y E K: xoy :=< x,y >,:= xy_xTySc.

Remark 8.4.4 < x,y >,= O<=> x = OVy = O.

Since S !lJ1d T are additive, (I<, +, o) musI. also satisfy both distributive
laws: so we have a finit.e 'non-associative integraI domain' and, as in the
associative case, t.his means that multiplication defines a quasigroup on the
non-zero elements. Thus we have:

Lemma 8.4.5 Suppose the triple (D,+,o) is such that (D,+) is a FINITE
abelian g1"OUP such that both the distributive laws hold. Then (D', o) is a
quasigroup, or equivalently, (D, +, o) is a presemifield ij and only if;

x °Y = O<=> x = OV Y = O.

Proof: The distribut.ive laws imply that the maps x I-> x °a and x I-> box
are additive and so the no-zero-divisor hypothesis holds iII both maps are
injective and hence bijective. The lemma follows.•
In view of eqn 8.12, lemma 8.4.5 above, applied 1.0 the AlberI. producI., im­
mediately yields:

Theorem 8.4.6 Let A, := (K, +, o), where ° =<, >, is an Alberi product
on I< = GF(qn) and (I<, +) is the additive group oj oj the field. Then A is
a pre-semifield.

The planes coordinatized by the presemifields A will be called the Alberi
planes. The presemifields A, will be called generalized twisted fields.

The following proposition yields the lisI. of orders that AlberI. piane have.
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Proposition 8.4.7 Let [( = GF(qn), Fix« S,T » = GF(q), where 8 l'
T are distinct nontrivial GF(q)-linear field automorphisms in Aut[( such
that Fix(.< 8,T » = GF(q). Let N = [(S-I[(T-I, then [( - N l' 0 iff

1. q > 2 and n > 2; now any pair of distinct non-trivial 8 and T will
yield [( - N l' 0;

2. If q = 2 and n is not a prime; now, wlog l :s a < b < n, the pair

yields [( - N l' 0 iff and gcd(a, b) > l shares a non-trivial factor with
n.

Proof: We may write 8 - l = q' - l and T - l = q' - 1. So N' only
contains powers of w.-1 where w is a primit.ive generator of GF(qn). So if
q > 2 then an Albert sytem exists so long distinct 8 and T exist such that
Fix( < 8, T» = GF(q). This can be arranged by taking 8 : x ..... x· and T
to be a power of 8 but distinct from it: unless 82 is the identity, Le., n = 2.
If n = 2 then obviously no T satisfying are requirements exist.
So it remains to consider the case when q = 2, again n > 2 is forced. Now
putting 8 : x ..... x2• and T : x ..... x2', we clearly have l < a, b < n, where

gcd(a, n) l' l l' gcd(b, n)

since far integer x > l:

N' ;;:> [('2" - l =< w2'-1 >=< w >,

holds unless l l' gcd(2n -l, 2" -l) = gcd(n, x), by result 8.4.1, 147. Thus n
cannot be prime, and fnrthermore a and b mnst share a proper prime factor
with n. Now

N* _ < w2<l-lW2b-l >

_ {w"(2.-I)+Y(2'-1) I x, y E Z}
_ < wged (2·-1,2·-I) >

(2.od(···)_I)- < w >,

and so N' < [(' iff
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and this holds iff
(2gCd(a,b) -1,2" -1) f. 1,

and this is equivalent t,o gcd(a, b) and n sharing a non-trivial factor. _

Exercise 8.4.8
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1. There are no generalized twisted fields of order < 64 and there do exist
gtt of order 64.

2. There exists generalized twisted fields of order 2", provided n is not a
prime and n > 4.

3. Using Albert's approach for twisted fields, det.ermine when generalized
t.wist.ed fields coordinat.ize non-Desarguesian translation planes.

8.5 Some Two-Dimensional Semifields.

In this sect.ion we ment.ion two c1asses of semifields whose planes admit geo­
met.rie characterizations. They are also associated with tangentially transi­
tive planes. We use t.he following not.ation.

Let. F be a finite field of odd order and a E F' a non-square in F. Let
À be an indet.erminat.e over F, and IJ a non-trivial field automorphism of F.
Let D = F EB ÀF.

Theorem 8.5.1 (Dickson's Commutative Semifields.) Suppose a E F'
is non-square, so F is odd. Then

(x + ÀY) ° (z + Àt = (xz + a(yt)8) + À(yz + xt)

is a commutative semifield such that:

1. F is the middle nucelus oJ(D,+,o);

2. K = Fix(lJ) n F is the rightnucleus, the left nucelus and hence also the
center oJ D.
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Theorem 8.5.2 (Hughes-Kleinfeld Semife1ds.) Suppose a = x ' +
O+ xb

has no solution for x in F. Then

(x + >.y) o (z + >.t = (xz + atyO) + >.(yz + (xO + yOb)t

is a semifield and F is its right and middle nucleus. ConveT'sely, if D is a
semifield that is a finite two dimensionai over a field F such that the middle
and right nucelus of D coincide then D is a Hughes-Kleinfeld semifield.
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Generalised André Systems and
Nearfields.

In this section we introduce important classes of quasifields that do noI. co­
ordinatize semifeld planes.

9.1 Construction or ·Generalised André Sys­
terns.

Let, F be an extension field of a field K, A = Gal(F/K), and leI. À: F" -+ A
be any map such that t.he À(I) = 1. Then Q, = (F, +, o) is defined by taking
(F, +) as t.he addit.ive group of t.he field F and o is defined, in t.errns of field
multiplicat.ion, so that for x, I E F:

x o I - X'f I I # O

xoO - O.

SO Q, obeys t.he righI. distribut.ive law, has a mult.iplicative ident.it.y, has a
unique solution for D o I = g, whenever I # O, and mtùtiplying by zero
yields zero. Hence, in the finit.e case, Q, is a quasifield iff the equation
100 = g has a unique solution for D when I, g E F'. For a treatment.
of the generai case, including when K is a skewfield, see Liineburg [31}. The
system Q, is called a À-system, or a generalized André syst,em, il turns out
to be a quasifield; t.he corresponding t.ranslat.ion piane is called a generalized
André piane.
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We shall only consider finit.e generalized André planes here. An effect.ive
way t.o st.udy t.hem is t.o describe t.hem in number-t.heoret.ic t.erms. We denot.e
t.he set. of t.he first. k nat.ura! numbers O, l, ... , k ~ l by h.

Defin!t.ion 9.1.1 Let F = GF(qd) :J K = GF(q), n = qd > q, and let
p: x ...... x. be the generator ofGal(F/K). Choose a primitive generatorw
of the multiplicative group F'. Let.x : i ...... .xi be any map from In_1 into Id
such that.xo = O. Define QÀ:= (F,+,o), 1lIhere + isfield addition, ando is
given by:

and x ° O = O = O° X for all x E F. We 1"€gard QÀ as the .x-st.ruct.ure
associated 1lIith (.x,q,qd). .

We now consider which choices of .x make QÀ a qnasifie!d. As indicat.ed
above, QÀ will be a qnasifie!d provided t.he eqnat.ion f °D = 9 has, for
J, 9 E F', a unique solnt.ion for D, and by onr finit.eness hypot.hesis, t.his
is eqniva!ent. t.o t.he t.he inject.ivit.y of ali t.he maps z ...... </J ° z, for </J E F'.
However, t.his condit.ion fails iff t.here exist.s x, y E In, X ;t Y (mod n), so
wlog .xx > .xy , such t.hat.

3f E In : wl °W
X = wl °wY

3f E In: fqÀ' +x =fqÀ, +y

3f E In : X - Y =f (qÀ. - q"')
so QÀ fails t.o be a quasifie!d is equiva!ent., for .xx 2': .xy , t.o t.he following

{=} 3f E In: x - y =fqÀ, (q"'-À' -l) (mod n -l). (9.1)

But. dlOosing t = t(x,y) = gcd(.xx - .xy , d-l) in t.he above condit.ion (9.1)
above means that.

x - Y qÀ'-À, - l
-,----':- = f qÀ, -'---:--:--
q'-l- q'-l

qd _ l
(mod , ),

q - l

and now, since by an element.ary resu!t8.4.l, page 147, we have

(
qÀ.-À, -l qd_ l )

gcd q>"y t l t = 1,
q-l q-l
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a solution for j in eqllation (9.1) exists iff ;.~~ is an integer, that. is x _ y
(mod q' - l). Thus, the condition that z >--> <P o z is injective for for ali
non-zero j, is equivalent to ensuring that x _ y (mod q' - l) cannot hold,
unless x =y (mod n). Thus we have

Theorem 9.1.2 (Fundamental À-Law.) /12, Lemma 2.1} Let Q~ be a À­
structure on GF(qd), defined in term.s oj the field automorphi.sm p: x >--> x'
oj GF(qd), and the primitive element w oj order n - l, n := qd. A.s.sign to
every two distinct integer.s x, y E I,,:

Then Q~ i.s a quasifield iff:

x =y (mod q"" - l) = x =y (mod n - l).

In part.icular, if À yields a quasifield for some choice of the primitive w then
it works for ali choices of w. However, changing w, while holding Àfixed, will
in general yield non-isomorphic quasifields.

The following exercise will be used in norma!ising À-systems.

Exercise 9.1.3 Suppose

GF(qd) :> GF(q') :> GF(q)

and let p: x >--> x' denote the primitive automorphism in Gal(qd/q). Then:

(1) s divides d;

(2) Ij pk E Gal(qd/q') then s divides k.

Proof: Part (l): t.he larger field is a vect.or space over the smaller field.
Part (2): By Euclid algorit.m k = sx + y, O < y < .s, so pk E Gal(qd/q')
imp!ies that. p" also !ies in the same field, so y is a m,ùt.iple of s, since t.he
Frobenius aut.omorphism for t.he field is p". Hence y = O.•

Proposition 9.1.4 Let À : 1"_1 -> Id, q a prime-power, define the gener­
al.sied André .sy.stem Q~ = (F, +, o) Ort F = GF(qd), ba.sed on the Frobenius
automorphi.sm p : x >--> x" and the primitive element < w >. Then:
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(1) <Il" := Fix{p'" I i E Iq'_d, is a subfield GF(q') of F such that s divides
d and also divides Ài , for ali i E Iq'-l; and

(2) The function jJ. : 19"-1 -> I. defined by jJ. : i ..... ~ yields a À-system
•

Qp=(F,+,*) by:
wi * wi = (wi)Rjwl I

relative to w and R = pS, the Frobenius automorphism ofGal(t'/qS).
Moreover, <Ilp := Fix{PP' I i E Iq,_d, is the fixed field of the Frobenius

autornorphism R: x ..... x qS defining Qp and (F,+,*) = (F,+,o).

Proof: In view of the previous exercise, it essential1y remains to verify that
the t,wo product.s coincide:

wi *wi _ (wi)Rjwi

_ (wi)(pS)("j(SJwi

_ (wi)(p)("j)wi

_ wi o wl ,

as required.•
Rence, ,any finite generalized André system may be expressed in the form
Q" = (F, +, o) where ° is determined by a À-flillction À : Iq'_1 -> Id, associ­
ated with GF(qd), such that

<Il" := Fix{p'" I i E Iq'_I} = GF(q),

t.he fixed field of the Frobenills automorphism p : x ..... xq lISed in defining °
from À.

Thlls wit.hout 1055 of generalit,y we assume that if À : Iq'_1 -> Id defines
a generalized Adré sysyt.em then the À is cbosen so that the fixed field of
the group genert.ed by {p'" I: i E Iq'_I} is just GF(q), the fixed field of the
Frobenius automorphism x ..... x d

9.2 No Shears In À-Systems.

Proposition 9.2.1 In the À-system Q" suppose a, b, a + b E Q;. and that for
allcEQ,,:

co(a+b) =coa+cob.
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Proof: Solving for À(aH):

and writing c = xy we get:

( )
À _ (xY)À.a + (xY)>'bb

xy (.H) - (a + b) ,

and noting that aH À's are multiplicat.ive bijections:

( l >. ()>' _ (x)>..(y)>'.a + (X)>'b(y)>'bb
x (.H) y (.H) - (a + b) ,

and by thc formula for c>.(a + b):

(x)>..a + (x)>'bb (Y)À.a + (y)Àbb (x)À.(y)>'.a + (X)>'b(y)Àbb
-(a+0 (a+0 ~+0

( )
\ ()À (x)À.(y)>..a + (x)Àb(y)Àbb

x "(.H) y (.H) = (a + b) ,

and by t,he formula for C>'(aH):

((x)>..a + (x)>'bb) ((y)>..a + (y)Àbb) ­
(x)À.(y)>'.a + (X)>'b(y)>'bb(a + b),

and expanding yields:

(x)>'.(Y)À.a2+ (X)>'b(y)Àbb2+ (x)Àa(y)Àhab + (x)>'b(y)>..ab -
(x)>..(y)>'.a(a + b) + (X)>'b(y)Àbb(a +1

yielding the field automorphism ident,ity in x and y (zero values permitted):

and by Vaughan polynomials in two variables these additive identities cannot
be equal Imless À. = >'b' •

Corollary 9,2.2 A finite genera/ized André system cannot be a semifie/d
un/ess >. is identical/y zero, in which case it is just a fie/d.
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Exercise 9.2.3 Let n = qd, q a prime power, and suppose À : In- 1 -> Id be
a map such that Ào = O. Put tx , = gcd(Àx - Ày, d), jor x, y E In. Assume À
is a À-system in the sense that:

x =y (mod q"y - 1) ==> x =y (mod qd - 1).

1. The zero map is a À-junction, and the corresponding quasifield QA is a
fie/d.

2. Find 011 the À-systems when d = 2.

3. txy = 1 jor ali distinct x, y E In iff d is prime.

4· Ij d is prime then À is constant 01\ the additive cosets oj the ideaI oj In
generated by q-l. Conversely, any function constant on the additive
cosets oj the principal ideaI In_I (q - 1) is a À function.

5. Show that, apa,.t jrom jields, no quasifields QA oj order n = 2P can exist
ij p is prime.

6. Iji _ j (mod q/'i - 1) jor distinct i,j E l n- 1 then Ài = Àj .

9.3 Cyclic Groups In .\-Sytems.

Proposition 9.3.1 (Period VA of a À-system.) Cali the integer k E I n- l
a scale jor a À function iff:

x = y (mod k) ==> Àx = À y.

Then the set oj scales may be expressed as an ideaI vAln_1 oj In-l, where the
integer vAln - 1. The intege,. V := VA is called the period oj À.

Proof: If k is a scale then ka is a scale because x _ y (mod ka) implies
x =y (mod k). If m and k are scales we must show m - k, where m ~ k
wlog, is also a scale. Suppose Ix - yl = 171 - k, and wlog x = y + m - k.
Now Ày = Ày+m because 171 is a scale, and Ày+m = Àx because k is a scale.
So À x = À y . Thlls the scales form an additive subgroup of I n - 1 and the rest
follows because the integers fonn a principal ideai domain with In-I as an
image. _

The VA := V shows t.hat QA has a cyclic subgroup.
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CorolIary·9.3.2 < w·, > is a eyclie subgroup of Q, with the same multi­
plieation when the field multiplieation on < w > is restrieted to < W V

, >.

Proof: By sealing law:

Àv• = Àv = Ào = O.

•
The following implies a lower bound far the eyc!ie group associated with v,
as defined above.

Proposition 9.3.3 Let u = lcm{qm -11 mld,O < m < d}. Then v, divides
u.

Proof: \Ve must show u is a scale: x _ y (mod u) implies Àx = Ày. So
,t,SUIne Àx - Ày f O, thus txy = gcd(Àx - Ày , d) is a non-zero divisor of d.
If x =y (mod u), then every non·zero q'.' - l, for distinct a, b E ln-!>
divides u and hence also x - y. But for a = x, b = y we now have x == y
(mod q'" - l). Now by the definition of a À-system, we have, see theorem
9.1.2, À x = À y . The contradiction yields the result.•

9.4 André Systems.

The following proposition introduces the originai André systems in terms of
generalized André systems.

Theorem 9.4.1 Define the map

v : I n - 1 -+ I q_ 1

v(i) =i (mod (q - l))

and let I" : Iq-1 --> Id be an arbitrary map sueh that 1"(0) = O. Then

1. À = I"vO is a À-funetion defining a quasifield Q, ealled an André sys­
temo The v for an AndTé system divides q - l

2. Converse/v, if a À-system has v dividing q - l then it must be a gener­
alized André system.
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3. In any André system À(x o y) = À(xy). Hence the system is nearfield
iff À is a homomorphism from In- l to Id'

Proof: If i _ j (mod q"i - 1) then certainly i = j (mod q-I) and
this implies Ài = À;, by the definit.ion of 1/ and Jl, and now ti; = d so i =j
(mod qd - 1), and hence i = j. Tlms an André system is a quasifield. Also
if i = j (mod q-I) then the defintion of ali Andr'e system implies that
Ài = À;; bnt v is the least int.eger for which t.his holds. Thns v divides q-L
The converse follows becanse Il dividing q-I means that À is const.ant on
points differing by mnltiples of q - 1: so choose Jl 1.0 be the common value
of snch additive cosets of < q-I >.
To check À(x o y) = À(xy) in additive form we write x = wX , Y = wY and
now we need t.o show

À(Xq>'Y + y) - À(X + Y).

BuI. Xq>',· + Y _ X + Y (mod q-I) certainly holds, because q =1
(mod q-I), so t.he identity holds because t.he 'scale' Il for >. divides q-L •

9.5 Highest Prime-Power Divisors of a-l Di­
viding ad - 1.

LeI. u be a prime dividing a-L The aim of this section is to consider t.he
highest. power of u t.hat. divides an - l, where 11 > 1 is an integer. A lower
bonnd follows by a simple induction:

Lemma 9.5.1 IfuA dividesa-l anduB divides11 thenuA+B dividesan -1.

Proof: Write n = uBo, where gcd(u, o) = 1. Apply induction on B. Since
(a - 1) is a fact.or of an - 1 the desired result holds for B = O. Assume
uA+B~an - l, when B = b. Then consider t,he next case B = b + 1 using:

n-l
u

b+1
6 1 _ (n'o 1) '"" u

b
6ia - - a - L.." a ,

i=O

and now by the indnctive hypothesis t.he term (anbo - 1) is divisible by uA+B

and the snmmat.ion is = u (mod u) since each of the u terms involved in it.
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are = l (mod u). Thus t.he lhs is divisible by UMB , when B = b + 1. The
desired conclnsion follows.•
In the somewhat. vacuons case, when gcd(n, u) = l, the lower bonnd above
implies an exact. value for t.he highest. power of u dividing an

- 1:

Corollary 9.5.2 Suppose u is a prime divisor of a - l such that uO!a - l
and u13lln. Then: uo +13 lan

- l, and if (3 = O then uo +13 lan
- 1.

\Ve adopt. t.he hypothesis of the corollary for the resI. of the section; u r IR
means u r is t.he highesl. power of the prime u dividing the integer R.

OnI principal aim is t.o show thanhe corollary 9.5.2 holds in the generai
case when U

O > 2 and (3 is arbitrary: thus t.he exaet valne of the highest
power of u dividing an

- l is the lower bound given in the eorollary, unless
211a -l, in which case t.he lower bonnd uo +13 is not sharp for (3 > O. We verify
this first..

Rernark 9.5.3 Suppose 211a - l, and write n = 2130, so O is odd. Then, for

(3~1:

an
- l =O (mod 213+2

).

Proof: If (3 = l then

an
- l = (ad

/
2

- 1)(an
/

2 + l) =O (mod 8),

as required. The generai case follo\Vs by induction on (3: assume the result
holds when 2f3 lln, and consider t.he next. case where n = 22'+1 6, Oodd.

n2
8+

1
6 _ l = (a2PO _ l) (a2"0 + l) =O(mod 2f3+22) ,

by t.he indll{:tive hypothesis, so t.he desired result follows.•
Thus, t.he remark assert.s that. if u = 2 and a = l t.hen uo +f3+1 divides an

- l,
where u·81In. The rest. of the seet.ion is concerned with showing that this does
not. happen in any ol.her case, t.hat. is, we shall establish t.hat.:

uo+l3llan - l => U
O = 2,

and t.his situat.ion has been considered in remark 9.5.3 above.
We begin by noting t.hat. in ali cases il. is just.ifiable 1.0 assume n = u13

\vhenever convenient.:
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Proof: Defining m so that n = uf3m, we have gcd(u, m) = l, and hence
also

m-l. .'an - l = (a" - l) L:: a" t,
;=0

and since a =l (mod u) we now have

•an
- l = (a" - l)m,

yielding the desired result, since gcd(u, m) = 1. •
So t.o determine when un +f3 llan - l, we need to consider its negation, the
following condition;

As mentioned earlier, the condition cannot hold when /3 = O. Thus if the
condition (9.2) ever holds, for some un, then there is a maximum integer
b 2: l such that condition (9.2) fails far /3 ;= b but holds for /3 = b + 1. We
have seen already, in remark 9.5.3, that if un = 2 then b = l can be chosen,
and condition (9.2) holds far /3 2: 1. In arder to show that condition (9.2)
does not hold in any ot.her circumstance we essentially need to establish if it
fails for a given /3 (which it always does when /3 = O) then it cannot hold for
the next /3, unless, as we have seen, un = 2.

Lemma 9.5.5 Suppose that there is an integer /3 2: O slLch that:

a'" - l ~ O
uP+ 1 l OlL -

Then /3 = O and u" = 2.

Proof: Writing

(mod U o+f3+1 ).

(mod uo+f3+2 )

(9.3)

(9.4)

we have by condition (9.4):



CHAPTER 9. GENERALISED ANDRÉ SYSTEMS AND NEARFIELDS.162

and since by lemma 9.5.1 and condition (9.3)

we now have
"-l p'
La" '= O (mod u2

)
1=0

and we also have from lemma 9.5.1 that for each i:

p'
aU

, =1 (mod u"+P) ,

and in part.icl1lar:

p'
If Q + (3 > 2 t.hen: a" , =1 (mod u 2 )

which combines with (9.5) t.o yicld:

lE Q + (3 > 2 t.hen: u =O (mod u2
),

(9.5)

(9.6)

(9.7)

(9.8)

which is a cont.radiction, l1nless Q + (3 :$ 1.
But. sincc hypothesis ula - 1, we musI. now have Q = 1 and (3 = O, and
condition (9.3) holcis, as remarked earlier. In view of our hypothesis that
u" > 2 we now also have:

u" = u is an odd prime divisor DE a-l

Moreover, the condit.ion (9.4) redl1ces 1.0

a" - 1 _ O (mod u3 ).

and on applying (9.9) this yields

"-lL ai _ O (mod u2).

i=O

IVIoreover,

u-l u-l

Lai
- u+ L(ai -1)

1=0 1=1 .

u-li-l

- u+(a-l)LLaj
,

i=1 j=1

(9.9)

(9.10)

(9.11)
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and sinee a-l _ O (mod u) and ai _ l (mod u) we also have (a - l)ai =
(a - 1)1 (mod u2). Thus

(mod u2
)

u-l

La'
i=O

u-l

_ U + L i (mod u2
),

i=l

( l )
u(u - l)

- u+ a- 2

and sinee the LHS =O (mod u2
), by eqn (9.11), we now have:

1+ (a - l~U - l) (mod u),

but. sinee the prime u is ali odd divisor a - l we have a eont.radietion. _
Combining lemma 9.5.5 wit.h remark 9.5.3 y~elds, for U

O > 2, uo +tl is the
highest. power of u dividing an - l

Theorem 9.5.6 Suppose a > l and n ;::: l are integers and u is a prime
d'ivisor 01 a - l such that uO~a - l and utlin.

1. lluo > 2 or' j3 = O then

2. II U
O = 2 and j3 ;::: l then

Our next. object.ive is t.o apply t.he theorem above t.o show t.hat. nnder it.s
hypot.hesis ak - l/a - l ranges over ali residues modN, as k varies. This is
crueial in defining t.he Diekson nearfields.

Lemma 9.5.7 Let a > l and N > l be integers such that:

1. every prime divisor 01 N divides a - l; and

2. il a = 3 (mod 4) then N ;ft O (mod 4).

Then aN
- l ;ft O (mod N(a - l)) lor l :5 n < N.
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Proof: To obtain a contradict.ion assume that for some n E [l, N-l]:

an -l =O (mod N(a-l)). (9.1)

Since n. < N, t.here is at. least one prime clivisor u of N such that for some
int.eger b :2: O, ublln and ub+1IN. By t.heorem 9.5.6, an

- 1 is divisible by
u Q +IJ , and this is the highest power of u dividing an - 1, unless uQ = 2. So
for uQ> 2, uQ+Ollan

- 1, contrary to eqn (9.1). Thus we may further assume
t.hat. u Q = 2, So 2b+l divides N, and t.his contradicts our hypothesis t,hat
N t O (mod 4), when 211a - 1, unless b = O. But in this case theorem 9.5.6
still implies uQ+Oian

- 1, again contradicting eqn (9.1), •
\!ve now obt.ain the desired result., that ak

- l/a -1 ranges over t.he residues
modn. as k ranges over 1 ... n.

Proposition 9.5.8 Let a > 1 and n > 1 be integers such that:

l. eve1"Y prime divisor oln divides a - l; and

2. il a =3 (mod 4) then n t O (mod 4).

Then the n distinct integers:

a2 - l a3 - l an - l
1, l' l"'" l'a- a- a-

constitute a complete set 01 n. residues modn.. In pariicular, an
- l/a - 1 =O

(mod n).

Proof: The difference of t.wo dist.inct terms of t.he above list, associated
with i > j, yields:

ai -1 ai - l
(mod n)

a-l - a-l
.ai - j - l

(mod n)=} a' O
a-l

-

a.i - j - 1
O (mod n),=} -a-l

cont.radict.ing lemma 9.5.7. Thus each of t.he n list.ed t.errns is a distinct
residue modn. Moreover, an

- l/a - 1 =O (mod n) follows direct.ly from
t.heorem 9.5.6.•
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9.6 Dickson Nearfields.

Let F = GP(qn), and assume (q, n) is a Dickson pair: so t.he prime divisors
of n divide q - l, and if q = 3 (mod 4) then n t O (mod 4).

Hence (qn_l)/n is an integer because the maximum prime-power divisors
of n divide qn - 1. So the cyclic group P' has a unique subgroup N of order
qO ....: l/n, and on applying propositioll 9.5.8, 1.0 the cyclic group P' / N' of
order n, we may write P' as a union of cosets of N in the forro:

i...=...! <.è...=..! i'=l
F' = {lNU{lq~TNUOq~INU ...U{lFN,

whete {I E P' - N is such that {IN general.es the cyclic group P'/N.

Lemma 9.6.1 Suppose b,c E P' are given by:

~.

b - 0iJ=1 y ,3YEN;

~
c - {lq=T z,3z E N.

Then

>.(m): x ..... x·', i E {1,2 ... ,n},

Proof:
lJ- 1 ,. ,'1'_1

- ({l,-o y)q {I ,-. Z

,tl+"Y_{, ., ,"'-I
_ {I " y. {I ,-l Z

.,0+.,. ,'+</'-1 ..,
- f} "l yq z,

,11+"" l

E (I , , N, by invariallce of N under group homomorphisms,
,U'+'l) n,ud n_l

_{l,o N ,

the desired result. _

Definition 9.6.2 (Dickson Nearfields.) Let (q, n) be a Dickson pair. Then
i _ l

form E (IFfN, define the field automorphism >'(x) E Gal(GP(qn)/GP(q)
by:
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and the product (F,o), f = GF(qn), byxoO = O, forx E F and:

_ {x,(m)m ifm E F'
xom- O ifm=O

!Ve cali all any such (F, +, o) a Dickson nearfield, associated with .li and 9.

It is a t.autology 1.0 claim t.hat any Dickson nearfield is a generalized André
piane. However, we have yet t,o establish t.hat (F, +, o) is always a nearfield.
This is om goal for t.he resI. of t.he section, so we assume t.he notat.ion of'
definit.ion 9.6.2. To est.ablish t.hat. t.he producI. o yields a quasifield essent.ially
involves showing t.hat, 'slopemaps' of t.he non-identity elements of F', relative
t.o o, are semiregular on F'.

Lemma 9.6.3 Suppose: x o m = x for some x, m E F'. Then m'= 1.
9;_1 9'_1

Proof: Suppose x o m = x. \Vrit.ing x = 9 ,-o and y = 9,-' , where
i,j E [l,n], we have

( 6)"' i=!
9i -1

(mod N),Bq-l () q-l - Bq-l

9;+i_ 1 9; -I

(mod N),so B q-l - eq-l

9;+i_,,;
so e q 1 E N,

(i=!t N,so Bq-l E

9;-1
so () ,-I E N,

yielding i = n. So l = x o m = xm, and we have m = l as required. _
1b show that. (F', o) is a group we first. not.e t.hat. it is an associat.ive bi­
nary system wit,h identit,y. The proof depends on ext.ensive tacit. use of the
'product' comput,ed in lemma 9.6.1.

Lemma 9.6.4 (F', o) is an associative bina"..,) system with identity l E F.

Proof: Since a o b E F' whimever a, b E F' we have a binary system, and
the mult.iplicative ident.ity of F" is t.he ident.ity for (F', o) by the definition
of o. To show o is associat.ive, we represent x, y, z E F' in the form:

9"-1
x - () q-l nY1 3nz E N;

. 9"-1

Y - () ,-I ny, 3ny E N;
90:_1

Z - () 'l-l nz ,3nz E N,
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where a,b,c E {l ... ,11.}. Applying lemma 9.6.1 repeatedly 1.0 t.he definition
of o, we have

(~ )x o (y o z) - () ,-, 11., o (y o z)

and similarly:

(xoy)oz -

and t.he associativity of o follows on comparing the valnes of (x o y) o z anel
x o (y o z) obtained above. _
The maps Tm : x ...... x om, for m E P', are obvionsly in GL(P, +) and lemma
9.6.4 above implies that. sneh maps are closed nncler composition, thns:

7={Tm :x ...... x o mEGL(P,+)lmEF"}

i5 a snbgronp of GL(P,+), and by lemma 9.6.3 every Tm , m E P' - {l},
is serniregnlar on P'. This forces t.he difference bet.ween any two distinct.
members of 7 1.0 be a non-singnlar map of (P, +), since otherwise a non­
iclent.it.y element. of 7 would fix some element. of P'. Thns 7 together wit.h
the zeromap forms a spreaclset. that. is mnlt.iplicatively closed. Now by this
alone (or alt.ernat.ively by lemma 9.6.4 above) (P, +, o) is a nearfield. Thns
we have est.ablished:
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Theorem 9.6.5 Given a Dickson pair (q, n) and (F, +, o) be as in definition
9.6.2. Then (F, +, o) is a genemlized André system relative to the given >. that
is associative. Such genemlized André systems are cal/ed Dickson nearfields.
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Large Planar Groups.

The aim of this chapter is to consider large planar groups aeting on trans­
lation planes, or what amounts to the same t.hing, to consider quasifields
that. admit large automorphism groups, in one sense or another. The em­
phasis here is strongly on the finit.e case. We shall describe ali the finite
quasifields amitting maximal aut.ornorphism groups: t..hose admitting auto­
morphism groups that act transitively on their non-fixed points. We also
treat cornprehensively t.he structure of a Baer group and obtain a sharp up­
per bound for the size of a planar p-group of a finite translation pIane of
characteristic p.

10.1 Planar and Automorphism Groups.

In this sedion we make some general remarks concerning planar collineation
groups of arbitrary [affine or projective] pIaues, and t.heir identification with
t.he automorphism groups of planar ternary rings coordinatizing the planes.
Our interest is in the case where the planes are translation planes, but the
arguments in the generaI case is exactly the same. The material covered here
wil! be taken for granted in the seque!.

Let G be a planar group acting on a pIane 1r, and let "G be the fixed
pIane of G. Now G may be identified with an automorphism group Pof any
planar ternary ring Q obtained when 1r is coordinatized with the axis chosen
in1rG' Thus 1rG is coordinatized by a subplanar ternary ring R of Q, and the
elements 9 E G are of form

g: (x,y) >-+ (X9,X9),

169
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for some!J E (AutQ)R' So t.he map 9 ,...., !J is a fait.hful permut.at.ion represen­
tat.ion of G int.o (AutQ)R, anel t.his represent.at.ion is permntation-isomorphic
t.o t.he G-representation G --> Gt obtaineel by rest.rict.ing G t.o it.s action on
any line et.hat. il, Icaves invariant.. Conversely any snbgronp J < (AutQ)R is
of form J = (; for some snbgroup G :5 Aut71", obvionsly

G = {g: (x,y),...., (x",x") I!J El},

and t.he fixed pIane of G is jnst 71"( J).
Hencc any planar grollp G of a pIane 71", wit.h fixed pIane 71"G, has afaithful

represent.at.ion p in (AutQ)R, where Q is a planar ternary ring obtained when
71" is coordinat.ized by choosing axes in 71"0, and R is the snbt.ernary ring
coordinat.izing 71"G' The represent.ation p may be ehosen so that. if H is a
snbgronp of G t.hcn Fix(p(H)) = QH is the snbternary of Q sneh that 71"H is
coordinat.izcel by Qli and p(H) = (AutQ)QH'

Ol1l' int.erest. is t.he case when 71" is an affine translation piane and G is
a planai' grvup, fixing t.he line al. infinity. SO 71"G is a snbaffine t.ranslation
pIane of 71", and 71" may be coordinatized by a qllasifield Q snch t.hat '71"G is
coorelinatized by a snbqnasifield R, and t.he restriction representation of G
on any component that it. fixes is permnt.at,ion isomorphic 1.0 the st.andard
represent.at.ion of Gin (AutQ)R, inelicated above.

However, an addil.ional 1.001 is availablè in the case of t.ranslation planes:
Gand alI it.s snbgronps are linear over t.he kern field F = R n K, where
K = kern(Q). For example F may always be chosen 1.0 be the prime suh­
fielel in Q. Not.e that. t.he choice of F may sometimes be more generaI than
any type of kern fielel. Thc main examples arise when Q is a left or righI.
vector space over a snbfielel F, relat.ive 1.0 t.he qnasifield operations. Snch F
can occnr, for cxanlple, when Q is a semifield anel F is some snbfield noI. con­
t.ained in t.he kern, or whenever 71"(F) defines a rat.ional Desargnesian partial
spread of a translation piane 71"(Q). In all these cases, noI. only G is F-linear,
bnt. t.he Baer condition provieles a nsefnl const.raint:
If (Q ~ A > B fonn a chain of quasifields that are also F-spaces t.hen 2a < b,
where a and bare t.he dimensions of A anel B treat.ed as F -spaces.
However, all t.his easily generalizes 1.0 arbit.rary finite planar ternary rings
anel finite planes. But. t.ranslat.ion planes admit. fnrt.her constraint.s when G
is a Baer group and 71"c is any Baer snbplane. Roughly, we shall show in t.he
next. sect.ion t.hat this means that when G get.s 'large' 71"c is forced t.o be De­
sarguesian. This leads t.o a sharp upper bOllnd for arbit.rary planar p-groups
acting on arbitrary finit.e translation planes with the same characterist.ic.
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10.2 Baer Collineation Theory.

LeI. G < (AutQ)p be an automorphism group of a finite quasifield Q of
order q2 ancl characterist.ic p that. fixes t.he Baer subquasifield F elementwise.
We consider the st.ructure of G, and its influence on the structure of F.
Throughout. the sect,ion, B = (Bo, BI) is any basis of Q relat.ive 1.0 any kem
field J( C F such that Bo is a basis of F; so K can always be t.aken 1.0 be the
prime subfield of Q. Now for each f E F its slope map T, leaves F invariant
and in fact, Tf represents the slope map of f E F, regarded as a member of
the subquasifield F. Thus on any basis of type B, T, has mat.rix form given
by: _(M, O)T, - A, B, ,J E F,

where iiI, is the matrix of the slopemap Tf. Now, on the same basis, 9 E G
has matrix fonn

9 = (~g v~.),g E G

BuI. since for gE Gand f E F we have

(x o J)g = (x)g o (J)g = (x)g o f => T,g = gT"

which in mat.rix form may be written:

Vf E F,g E G : T, = (~: ~) (~g v~g) - (~g v~g) (~: ~),
yielding

Vf F G.(M, O) = ( M, O)
E ,g E . A, + B,UgB,W

9
UgM, + WgA, WgB, .

(10.1)
Moreover, since {T, I f E F} is a seI. of mat.rices any two distinct members
of which elitrer by a non-singular matrix, the same applies 1.0 the Bt's anel
the number of thesepresent. is sufficient 1.0 form a spreaelset (which clearly
inclueles the ielent.ity), anel so posit.ion (2,2) in the above matrix equation
shows that Wg is in the kern of a spreaclset B, with ielentity, In particular:

Remark 10,2.1 {Wg I 9 E G} f07m a multiplicative group in a field of
matrices. Moreover, if I{Wg I 9 E G}I > vlFI, then

{B, I f E F}
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(10.2)

is a field.

Next. consider t.he possibilit.y of a p-element p E G, p being the charact.eristic
of t.he quasifield. So p has only one eigenvalue in t.he algebraic closure of the
prime field, viz. l, since ).p' = l '* ). = l, so p must ad. trivially on t.he
factor space Q/F, regarding Q and F as additive groups. Thus its matrix is
of formo

P=(~g ~)
and by the eqn (10.1) we furt.her have:

and since Ug intert.wines two set.s of irreducible mat.rices it must be in a field
and hence non-singular. Thus we have shown:

Proposition 10.2.2 (AutQ)r has a unique p-Sylow subgroup P, and this is
elementary abelian oj jorm:

{(t ~)ljEJIUEJ}
where J is an additive group oj matrices that is a subgroup oj a field oj
matrices.

Moreover any p i l, in t.he p-Sylow subgroup, can be expressed in the
form where U = 1, provided t.he basis B = (Bo, Bd is modified to another
basis B' = (Bh, BI)' wit.hout. altering BI t.he basis of the complement F, but
replacing the basis Bo of F by a possibly different basis Bh of F. To see this,
note t.hat t.he matrix for p on the new basis is obtained by conjugating it.s
given mat.rix by a matrix of t.ype Diag(C, 1): thus we require non-singular
C SUcll that

Diag(C, 1) (t ~) Diag(C-
I

, 1) = U~)

and this works using C = U- l •

Now retum to the fundamental equat.ion when B2 is modified 1.0 ensure
that the p-element.s include the mat.rix
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Feeding this int,o the fundamental equation shows that BI = MI for ali
f E F. Thus we have shown:

Proposition 10.2.3 Suppose (AutQ)F includes a non-trivial p-element p.
Then relative to a basis B = (Bo, BI)' with Bo chosen to be an arbitrary
basis of F, and appropriate BI, the following holds:

1. p has the form

(1O).
l l '

2. BI = MI for all f E F;

3. The {Ug l'9 E G} forms an additive subgroup in the matm field asso­
ciated with the outer kern of {MI I f E F}.
In particular, if the p-Sylow subgrov.p in (AutQ)F has order > ';IFI
then F is a fie/d.

Now consider the group homomorphism 11 : 9 .-. Wg ; the kernel H of 11

consists of ali members in G that has Wg = l, and this we have seen is simply
the unique Sylow p-subgroup of Gand so t.he image is a p-complement.8o by
Maschke's theorem a p-complement of F relative to H may be chosen and
DII that basis H has the form Diag(MI , BI)' with ali the W!'s in the kern of
t.he spreadset {BI I f E F}. In particular W!'s form a cyclic group so G is
solvable and contains a Hall p' subgroup which is cyclic, and when this group
has order > ';IFI then {BI I f E F} is a field, and as we've seen above, this
means that {MI I f E F}, and hence Falso is a field provided a non-trivial
p-element exists iII G. We may summarize this as follows, in terms of the
related translation piane.

Theorem 10.2.4 Let 11' be a translation piane of order q2, q a power of the
prime p. Let G be a Baer group, so its fixed piane 11'G has order q. Then G
divides q(q - 1) and satisfies the following conditions:

1. G is solvable with a unique elementary abelian Sylow p-subgroup P,
consisting of all the p-elements in G.

2. The kern of 11'G has an additive subgmup. isomorphic to P; so 11'G is
Desarguesian if P> ';q.

3. The Hall p' -subgroups of Gare cyclic and isomorphic to the multiplica­
tive subgroups of the kern of 11'G'
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F\irther properties are developed in the exerci"ses below, based mainly on the
discnssion preceeding the t.heorem above. These exercises are of paramount
importance in the stndy of t.ranslation planes!

Exercise 10.2.5 Suppose G contains non-trivial p-elements and also a non­
trivial p' -gmup of orde,' > JWI·

1. Relative to some basis the matrices TI are of form:

{Diag(k, k") I wherek E J(},

where J( is a field of matrices and CI is a field automorphism of J(.

2. Q is a vector space ove" F under quasifield automorphisms, F acting
from the right.

3. The slopes of1r(F) in 1r(Q) defines a derivable net.

4. If a Desarguesian Baer subplane 1/J of a translation piane 1r of order q2
is fi:.ced elementwise by an element u such that gcd(u,p) = 1, P is the
characteristic, then the slopes of 1/J define a derivable net in 1r.

In t,he next lectnre we shall obtain an npper bound for planar p-groups acting
on translation planes. Onr argnments crncially depend on a resnlt that we
establsihed in the present !ecture: large Baer groups G have Desarguesian
fixed pIane 1rG' Since no version of this resnlt is known that applies 1.0 planes
that are noI. translation planes (lIp 1.0 dnality), the results of the following
sect.ion are only known 1.0 hold for translation planes.

10.3 Planar p-Groups.

In this section Q is a finite qnasifield with characteristic p, admitting an
antomorphism grollp p, LeI. Fix(P) := F; so F is a subq1rasifield of P, and
IQI 2': Wl" or P is trivia1. Assnme P is linear map of Q when this is viewed
as a vedor space over some field J(, over which Q is known 1.0 be a vector
space. So we may choose J( = GF(p), or, more generally, J( mlo/ be taken
1.0 be any field contained in F n J(ern(Q), bnt il. will prove useful 1.0 permit
yet fnrther possibilities for F: the most important case occurs when 1r(F)
contains a snbplane that defines a rational Desargnesian partiaJ spread in
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the spread associated with Q. We shall write I 1.0 denote the dimension of
F over K: thus Wl = q/.

In al! cases, P leaves invariant a GF(p)-space A ::> P such that IAI = pWI:
regard Q as a GF(p) vector space and note that t.he number of rank-one
extensions of a sllbspace of any subspace of a finite characteristic p vector
space is =l (mod p). Now the rest.riction representation p : P -> p A acts
semiregularly on the lA - PI = plFI - Wl points of A - F, and let. OAP
denote the kernel of p. Thus 10APli > q/. For the fixed-quasifield of OAP,
we use he notation:

oAF := Fix(OAP),

and observe that t.he Baer condition for subplanes, when applied t.o non­
trivial P, implies that.

Thus we have established:

Remark 10.3.1 For' all rank-one GF(p)-extensions A 01 F in Q:

1. laAP11 2: q/;

2. laAFI 2: q2/ > IFI 2

Note t.hat DAP and oAF might vary with t.he choice of A, we shall only require
the inequalities 1.0 hold; accordingly we simplify onr notation by writing:

Notation 10.3.2 IfP is a non-trima/ p-group in AutQ with fìxed subquasi­
field F then choose some P-invariant GF(p)-space A::> F, ",here IAI/WI = p
and define:

1. ap:= DAP.

2. oP:= OAP,

3. ak+1 p = oakp and Ok+1 F = OOkF ",henever akp is non-trima/.

By repeatedly applying remark 10.3.1:

10PI > IPI/q/
and 10FI - q2f+d13dl 2: O

so
102PI > Wl/q/l/+d,
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and la'FI _ l'f+'d. +d, 3d, ~ o
so

liflPI > IPllq'q'f+d' q"f+2d1 +d,
and la3FI _ q2"IH'dl +2d,+d'3d3 ~ o

so
la-'PI > IPIIqllf+d,q" f+2d,+d'q" I+"d, +2d,+d3

alld la4FI _ l'f+'3dl +"d'+2d,+d'3d4 > O,

and in generai:

18"+1PI > IPI/qlq'f+d'q"f+'d.+d'q2'/H'd,+'d,+d3... q'·/H·-' d.H'-'d,+..,

and lak+1FI _ q2·HIJ+2kdl+2.1<-ld2+ ...+d.lr+l3dk+l > O,

provided ak p is Ilon-trivial. We rewrite these as:

W+1PI > IPI
qf+(2f+dl)+(22f+2dl +d2)+(23J+22dl +2d2+d3)...+(2k f+2{1r-l)dl +2(1r-2)d2+..

alld laHIFI _ l'+' IH'd,H'-'d,+...+d'+13dk+1 > O,

and so

111'+1 PI > /Pllq/(''+'-I)+d l (2'-I)+d,('·-'-I)+d3(''-3-1)...d.

alld lak+1FI _ q"+JIH'dIH'-'d,+...+d'+13dk+1 ~ O.

Now choose k so that aHI is the trivial (after which a is no longer defined.
Then we have

and

So
IPJql+dl+d2+d3 ...+dk+l = q2A:+l/+2.l<dl+2k-ld2+...+d.Hl = IQ/,

so we get our main result:

Proposition 10.3.3
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CoroIlary 10.3.4 Let quasifield Q with Kern(Q) ::> K :::: GF(q), so IQI =
qn lor some positive integer n. Then the Sylow p-subgroups in (AutQ)K have
order $ q"-l.

Consider the extremal case Wl = q"-l: so I = l and ali the dis vanish. This
means we have a strict Baer chain of qnasifields

GF(q) = F = Qo C Ql C Q2 ... C Q

such that (AutQ'+l)Q, is divisible by IQ,I, and so ali the Qis with the possible
except.ion of the last one, viz. Q, are .fields. BuI. fields Q'+l cannot admit
IQ,I automorphisms fixing the Baer subfield IQil unless IQ,I = 2. Thus
either IQd = q, as happens in, say, the Hall planes, or Q ::> Ql ::> F where
F = GF(2), Ql = GF(4), and Q has order 42

. Thus we have shown

CoroIlary 10.3.5 Il a quasifield 01 order q" admits an automorphism p­
group P 01 07'der q"-l that fl:Les a kem piane 01 order q elementwise then
either Q is two-dimensional over its kem or IQI = 16.

Specialising t.o q = p we obtain an absolnt.e bonnd for the Sylow p-subgronp
or the automorphism group of a quasifield:

CoroIlary 10.3.6 A quasifield 01 order n cannot admit an automorphism
group 01 order n.

Thus a translat.ion pIane of order n does not. admit. planar groups of order n.
Act.ually the above corollary may be refined t.o the following:

Corollary 10.3.7 A quasifield 01 order p" cannot admit an automorphism
p-group 01 order 2: p"-l, unless n = 2 or p" = 16.

As already indicated both cases do occnl".

10.4 Klein Groups On Odd-Order Spreads.

Every finite p-group S, p a prime, contains maximum order elementary
abelian p-subgronp A, and t.he rank of S is defined to be r if IAI = pr;
thus t.he rank of S is t.he rank of the ma.ximum GF(p)-subspaces that il. con­
tains. For an arbit.rary finite gronp G, its p-rank is defined 1.0 be the rank of
its Sylow p-subgroups.
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In the context of translation planes the importance of p-rank stems from
the fact that in certain CflSes there is a tendency for the p-rank of a group
G act.ing on a spread " of order un 1,0 force n 1,0 be very large, provided
gcd(u,p) = l. For Chevalley-type groups, representation theory leads 1,0

such resnlts buI, are too advanced 1,0 introduce al, this stage.
However, for p = 2, Ostrom has proved a remarkable theorem, using only

very elementary ideas, that lead 1,0 similar conc1nsions: and these conc1usions
apply 1,0 alt gronps with large 2-ranks - noI, jnst 1,0 the Lie-Chevalley type
of gronps. Here we prove Ostrom's theorem.

'Ve are concerned with the action of elemelltary abelian 2-groups A on
spreads " = (V, r) of odd order pr, p > 2 an odd prime. Ostrom's theorem.
implies that IAI divides r, thns generalising the standard result on Baer
involutions. Hence the two rank of any finite group G implies information
concerning the lower bonne! for the size of thc odd order' sprcads " on which
il, may act.

Theorem 10.4.1 (Ostrom's Baer Trick.) Let A be an elementary abelian
2-group in Aut(V, f), wher"e" = (V, r) is a spread oJ odd order qn, whose
kem contains thefield F = GF(q). Suppose alt the involutions in A are Baer
coltineations, linear over the kem fieid F. Then IAI divides n.

Proof: We may write IAI = 2R • For R = l the resnlt holds because n is
even if" admits a Baer involntion. 'Ve n5C indnction on the exponent R 1,0

complete t.hc proof.
LeI, o: and (3 be any t.wo dist.inct involutions in A, and consider the Klein
gronp

J( = {o:,(3,a(3, l}.

Since A is abelian1ro is J(-invariant. No,," (3 cannot act trivially on1ra becanse
this would force "a 1,0 be e1ement.wise fixed by a Klein group, and this cannot
occnr in spreads of odd order.
To establish (,hat (3 indnces a Baer' invo!ntion on "a, we nced 1,0 mIe out the
possibilit.y that (311ro is an imrolutory centraI collineation.
First consider the case the possibilit,y that (3 indnces on 7ra a kem involution
iJ = (31"0; now c1early & = al"p is al50 a kern involution. Thus iJ and 6<
are both -l, on the spaces 71'(3 ane! "a respectively. BuI, since V = "a Ell "p,
becanse the two snbspaces are disjoint and of rallk n/2, we c1early have

Q(3 = &ebeta= -l Ell-l = ~l.
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Now the group K contains a kem invo!ution of tr, contrary 1.0 om hypothesis
that. the non-trivial elements in A are alI Baer collineat;olls.
It. remains 1.0 mie out the case when p induces an affine homology on tra,

with axis, say, C E r. Now Co = C n tra is the fixeel subspace on C common
1.0 tra alld tr/3. As a allei p are both F-linear involutions of the vector space
C with the same fixed space Co (neither fixeel space can be larger because
we are dealing with Baer illvolutions) they musI. coillcide on C,that is,

alC = 1co 6l -ID =PIC,

where D is any complement of Co in C. BuI. now ap is a homology with axis
C, contradicting again om hypothesis that A cOlltains only Baer involutions.
Thus we see that, A ineluces Oll tra a group of Baer involutions A, of oreler
2R- 1 Now by om ineluctive hypothesis 2R- 1 elivides the elimellsion R/2 of.
tra, and the desired result follows by induction.•

Corollary 10.4.2 Let r. be a spread of odd order q" containing GF(q) in
its kem. If r. admits an automorphisrn group G with two-rank ,. then 2T

-
1

divides n.

Proof, LeI. A be all elementary abeliall group of G of rank n. So A is
semilinear on V, the vector space associated with r., over the kern fielel
K = GF(q). Now the K-linear parI. of A has oreler ~ IAI/2, allei Ostrom's
Baer trick can be applieel 1.0 il..•

Corollary 10.4.3 Let r. be a spread of odd order q" containing GF(q) in
its kem. If r. admits an elementm,!! abelian 2-grollp of order 2' and the
invollltions in A fom, a single conj-ugacy class in Autr. then 2' divides n,
provided IAI > 2.

Proof: If A contains even Olle Baer illvolution then the conjugacy hypoth­
esis allows us 1.0 apply the' Ostrom Baer trick. So assume all the involutions
in A are homologies, and consicler a Klein SUbgrollp H $ K. Now Ostrom
has observed that there are (in any projec!.ive pIane) ollly two possibilities
for such H: (1) all its elements share the same axis anel center; or (2) each
of t.he three nOll-trivial elements of H have as center allei axis t,he opposite
sieles of a triangle: each of the three allti-flags of the triangle correspollelillg
1.0 one of the three nOll-trivial elements of H.
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Possibility (1) cannot occnr since then on the common coaxis W we the Klein
group H acting semirgularly and faithfully: this is easily seen to be impossi­
ble: e.g. H becomes an elementary abelian non-cyclic Frobenius complement
on W (in a Frobenius graup whose kernel consists of ali the maps x ...... x + w,
w E W, of W).
Possibilty (2) cannot occnr, in the context of onr conjugacy hypothesis, far
then the homology whose axis is the ideai line, would be conjugate to a ho­
mology with an affine line as axis.•

10.5 Tangentially Transitive Planes.

Let 'Tr be any project.ive [resI'. affine) l'lane, and 'Tro be a proper subprojective
[resI'. subaffine] l'lane. Then aline is a tangent [line) to 'Tro if it meets it at
exactly one point. Similarly, a point is a tangent [point] if it meets exactly
one line of 'Tro •

. Now suppose G is a planar group with fixed l'lane 'Tra. Then it is clear
that G permutes the tangents to 'Tra through any element of 'Tra, that is, G
leaves invariant the set of non-fixed elements e«) though eaeh of its fixed
elements < E 'Tra. It is eilBY to see that ali the restriction maps p, : G -> Ge(,) ,
far < E 'Tra, are faithful representations of G that are permutation isomorphic,
and hence G is transitive (m ali the tmlgents through some fixed element of
'Tra iff it is transitive on the tangents through each element of 'Tra. When this
happens we say G is tangentially transitive.

Definition 10.5.1 Let G be a planar col/ineation group of a piane rr with
{u:ed piane 'Tra. Then G is said to be tangent.ially transitive relative to 'Tr, and
'Tra is cal/ed a tangentially transitive subplane iff G acts transitively on the
tangents through some (and hence each element of 'Tra). 'Tr is cal/ed tangen­
tial/y transitive (tt) iff it is tt ,dative to some proper subplane.

The definition may easily be characterised in algebraic terms, by nciting
the equivalence between planar graups mld automorphisms of coordinatiz­
ing temary rings, e.L seetion 10.1.

Remark 10.5.2 Let T be a temary ring and suppose G < AutT is transitive
on T - Fix(G); so S = F(G) is the subtemary ring ofT consisting of the
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fixed elements oj G. Then 7r(T) , the piane coordinatized by T, is tangentially
transitive relative to 7r(S), with respect to the group:

G:= {(x,y) I-> (X9,y9) I9 E G}.

Converse/v, suppose 7r is a piane admitting a tangentially transitive group G
coordinatized by a ternary ring T when the axes are chosen in the fixed piane
7rG' Then 7rG is ciJordinatized by a subternary ring Sand (AutT)s contains
a subgroup G such that G is transitive on T - S, with Fix(G) = s.

We saw in an earlier lectnre t.hat. the Hall quasifields Q are t.wo dimensional
over their kern. K, by parI. of their definit.ion, and that (AutQ)/( is transitive
on Q - K, theorem 5.4.3. Hence the algebraic characterization of tI. above
yields

Remark 10.5.3 A Hall piane 7r is tangentially transitive relative to some
. Bae,' subplanes 7ro coordinatized by the kern.

A direct explanation of why Hall planes are t.angentially transitive may be
given in terms of derivat.ion. A Hall pIane H is derived from a Desarguesian
piane il = 7r(F), the field F being a Baer extension of a fielcl K, and il is
derived relative t.o the slopes of 7r(K). ParI. of the inherited group inclucles
a group of cent.raI collineations with Y-axis leaving 7r(K) invariant, viz:

G: {(x,y) I-> (xa+b,y) I a E K',bE K}.

Notice G is transit.ive on {>-a + b I a E f{', b E K}, the seI. of slopes shared
by t.he Desarguesi~ll piane and t.he clerived Hall pIane. Thns on t.he clerived
sicle Y becomes a Baer snbplune and G acts tangentially transit.i\'ely relative
1.0 Y.

TQ.is can be generalized, by using a semifield D, t.wo dimensionaI over it.s
midclle nuclells Nm , inst.ead of a field. Now, by repeating t.he above argument.,
7r(D) when derived yields a t.ranslation pIane tI. relative 1.0 the Biler subplane,
corresponding t.o t.he Y-axis of 7r(D). ThllS we have est.ablished:

Remark 10.5.4 Let D be a semifield piane with middle nucelus M, which
we assume to be a commutative field. Then 7r' the piane obtained by deriving
relative to the slopeset oj 7r(M) is tangentially transitive relative to a Baer
subplane. The piane 7r' is called a GENERALISED HALL PLANE.
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The procednre above can be repeated in more generaI contexts. Take any
affine l'lane 1r of order n 2 admit.ting a group of cent.ral collineations G of order
n2 - n that. fixes an affine line Y element.wise and leaves invariant a derivable
nel. /:;. that ineludes Y and is left invariant by G. Then on the derived side
G becomes a Baer group of order n2 - n and hence musI. act transitively on
all t.he tangent points on any fixed line of 1rc, its fixed Baer subplane.

This procedure permits t.he constrnction of tangentially transitive planes
in several Lenz-Barlot.t.i elasses, apart from t.ranslation planes. The fact. t.hat.
duals of t.wo dimensional t.ranslation planes are derivable and admit large
groups of cent.ral collineat.ions makes them promising candidates from.this
procedure. It. is an exercise 1.0 vcrify that. this procedure actually does work.
Similarly verify that. the derived Ostrom-Rosatt.i planes are t.angent.ially t.ran­
sit.ive relat.ive t.o some Desarg11esian planes.

Notice, however, t.hat. in t.he const.ruct.ions we have sket.ched so far, be­
cause they are based on derivat.ion, t.he planes 1r are t.angent.ially transit.ive
relat.ive t.o subphUles t.hat. arc bot.h Desarguesian and BaeI'. This invit.es t.he
obvious quest.ions:
If 1r is t.t. relat.ive t.o 1ro t.hen does "o have t.o be (1) Desargnesian (2) BaeI'.
In the finit.e case t.here is only one known case where 1ro can be chosen 1.0
be non-Baer - alt.hough a Baer choice is also possible in this case - in t.he
remarkable Lorimer-Rahilly t.ranslat.ion pIane of order 16, see p 66. In all
knowll cases, finite or infinite, iTo i8 Desargllesian.

In t.his sect.ion we consider tangent.ially t.ransit.ive finite tmnslation planes.
\Ve show that. in t.his case all tt. planes are generalized Hall planes (ineluding
the Lorimer-Rahilly l'lane), and t.his essentially answers the t.wo quest.ions
l'alse<! above in t.he affirrnative. This lcaves OpCll the ql1estion of describing
explicit.ly the generalized Hall planes, or rat.her, t.he finit.e semifield planes
t.hat. are t.,vo-dimensional over their middle nueleus. \Ve hope t.o provide a
sat.isfactory answer t.o t.his qllest.ion t.oo. Not.e t.hat. t.he Hughes-Kleinfeld
planes are coordinat.ized by scmifields that. are two-dimensional over their
middle nuelens.

The rest. of t.he section is devot.ed t.o showing t.hat. if a fini t,e t.ranslat.ion
l'lane 1r is t.angent.ially transit.ive relat.ive t.o a subplane 1ro t.hen il. is a gener­
alized Hall l'lane.

We begin by st,at.ing a spedal case of remark 10.5.2, relevant. t.o t.he t.rans­
lat.ion l'lane case.

Remark 10,5,5 Let 1r be an affine tmnslation piane and 1ro an affine sub-
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piane. Then 10 is tangentially tmnsitive relative to 1ro iff it can be coordina­
tized by a quasifield Q such that 1ro is coordinatized by a subquasifield F such
that (AutQ)p is transitive on Q-F.

We note that the case IQI = IF/ 2 has already been covered.

Lemma 10.5.6 II/QI = IFI2 and (AutQ)p is transitive on Q - F then F
is a field and Q is a a vector space over F in the sense that lor all I, 9 E F
andx,YEQ:

1. (x+y)ol=xol+yol;

2. xo(f+g)=xol+xog;

3. (x o f) o 9 = x o (f o g).

Proof: Recall exercise 2.(2).•
Now t.he condition t.hat Q is a rank-two righI. vector space over F means
that. t.he slopes of 1r(F) in 1r(Q) define a rat.ional (Baer) Desargnesian par­
t.ial spread in 1r(Q), and snch partial spreads are [generic] derivable partial
spreads. The derived spread adrnits a grol1p of centra! collineat.ions of order
n 2 - n where /QI = n 2 : t.he grOl1p is just. t.he inherit.ed group corresponding
t.o the Baer gronp act.ing on r.(Q):

{§: (x,y) t-> (X9,y9) I9 E G}.

Now il. is an exercise t.o dleck that. a spread of order n2 admitting a Baer
gronp of order n(n - 1) is a semifield spread with GF(n) in N m .

Thns we have shown:

Corollary 10.5.7 Il IQI = WI 2 then the piane 1r(Q) is obtained by dehving
a a piane coordinatized by a semifield relative to the slopeset 01 its middle
nucleus. This by definition means that 1r(Q) is a generalized Hall piane.

Thus from n9w on we may assume that /QI > W1 2 . Choose any À E Q-F.
Then since G is transitive on Q - F we see t.hat Na(G>.) indl1ces a reg111ar
grol1p on Fix(G>.) n Q - F. However, Fix(G>.) is a ql1asifield Q>. containing
F, so we now have a ql1asifield Q>. ::J F sl1m that (AutQ>.)p ::J N>. sl1ch that
N>. is regular on (Q.>.) p. However N>. ml1st contain a Baer involntion so the
regularity is contradicted l1nless Q>. is a Baer extension of F, in which case
lemma 10.5.6 so F is a field and additionally the following identities apply,
for I.g E F:
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1. J.. o (f + g) = J.. o I + J.. o g;

2. (J..of)og=J..(olog).

184

However, since J.. was chosen arbitrariJy, and the above ident.ities obviously
npply even when J.. is replaced by members of F, Wl' conclude from the above
(plus t.he qnasifield distributive law):

Lemma 10.5.8 F is a field and Q is a vector space over F facting lrom the
left! 01 dimension N > 2. lvIoreover G is a linear group 01 this vector space.

Now view Q as t.he project.ive space PG(N - l, q) ane! observe t.hat. the
praject.ive granI' G has t.wo point orbit.s. Hence by an important resnlt, G
also has t.wo hyperplane orbit.s, one of which must. be ali t.he hyperplnnes
t.hrongh t.he 'point.' F. The ot.her hyperplnne orbit mnst therefore inclnde
ali thc hyperplanes 'olf' a point.: t.his is the snme number as t.he number of
points off a hyperplane, viz., qN-l. TllIls Wl' have shown

Lemma 10.5.9 Il N > 2 then G contains a p-group 01 order qN-l, P being
thc characteristic 01 F.

Bnt. no\\' Wl' have seen t.hat. t.his is impossible, unless q = 2 and N = 4,
corresponding 1.0 t.he case when F = GF(2). It can be shown however, t.hat.
even in t.his case AutQ contains another snbgraup H t.hat. H fixes a Bacr
snbfiele! f{ element.wise and acts t.ransit.ively on Q- f{, so in a t.echnical
sense Wl' st.ilI have a generalized Hall l'lane. However, t.he first choice of F
is also possible: corresponding 1.0 t.he Lorimer-Rahilly l'lane of arder 16, ane!
t.his is t.he only known finil.e l'lane which is t.angentially t.ransit.ive relative to
a non-Baer sl1bplane. Let. ns s1l1nmarize onr conclusions:

Theorem 10.5.10 A finite translation piane 7r is tangentially transitive rel­
ative to a subplane 7ro iff 7r is a generalized Hall piane and 7ro is a Desargue­
sian Baer subplane (defining a derivable net) unless the order 01 the piane is
16 in which case "o may taken as a piane olorder to when 7r is the Lorimer­
Rahilly piane olorder 16: and this is the only case where the non-Baer
possibility can occur.

Note t.hat. Wl' have not. verifiee! here t.he claimed uniqueness of the Lorimer­
Rahilly l'lane, alt.hol1gh t.his has been established in the literatnre, see Waiker
[40)
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Infinite Baer N ets.

In t,his chapter, we anaIyze the st.rnct.nre of a net. embedded in a t.ranslation
piane whieh cont.ains at least. one Baer sllbpIane. Act.ually, it. is not. necessary
t.hat. the t.ranslat.ion pIane be finite. In fact., wc may analyze any vector space
net, cont.aining a weaker version of sllbplane than Baer.

If a net. cont.ains a Baer sllbplane, it may contain exactly one. Or t.here
may be exact.ly t.wo Baer subplanes in t.he given net. sllch t.hat the subplanes
share ali of t.heir parallel dasses. In t.hese lectures, we concent.rat.e mainly
on the case where t.here are at. least three Baer subplanes sharing an affine
point. (t.he zero vect.or) and alI of their infinite points (parallcl classes).

11.1 Point-Baer And Line Baer Subplanes.

In any finit.e projeet.ive pIane 1l' of order n, a Baer subplane 1l'0 is just a sub­
pIane of orde~ ,jn. Bence, to ext.end t.he not.ion of a Baer subplane usefully
to t.he infinite case, it beeomes necessary to replace t.he order-propert.y of a
Baer subplane by a dml'acterizat.ion t.hat. can be used to define this concept
in t.he infinite case. This lecture re\'iews some of the possible ways in wh.ich
t.his has been att.empt.ed and also introdllces a shuctnre t.heorem of net.s con­
t.aining at. least. t.hree Baer subplanes dlle t.o Johnson and Ostrom. This wil!
be used in the next t.wo lect.ures to extend the comprhensive characterization
of such nets in the finit.e case, due to Foulser, t.o t.he infinite case.

A point-Baer subpIane of a projective l'lane is a subplane such t.hat every
point of the pIane is incident wit.h aline of t.he sllbpIane. SimilarIy, aline­
Baer subplane is a sllbplane Slleh that every line is incident with a point of

185
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Baer subplane is a sllbplane Slleh that every line is incident with a point of

185
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t.he sllbplane. Every finit.e point.-Baer subplane is line-Baer and conversely.
However, in t.he infinit.e case, t.he concepts of point.-Baer and line-Baer are
independent. (Barlot.t.i [3]). So, a subplane is Baer if and only if it. is bot.h
point.-Baer and line-Baer. An affine point-Baer subplane is an affine piane
which is point.-Baer when t.he piane is considered projectively. A collineat.ion
a of an affine pIane whir.h fixes a point.-Baer subplane pointwise is said 1.0 be
a point.-Baer pcrspedivit.y if and only if the collineat.ion fixes each subplane
of a set. C of point.-Baer subplanes which form a cover of the points of the
affine pIane. The r.ollineat.ion a is a point-Baer elat.ion if and only if Fixa is
in C. Or.herwise, u is a point-Baer homology. C is called t.he center of the
collineation, the elements of C are called the centrai planes and Fixa is the
axis.

If a collineat.ion fixes a point.-Baer subplane point.wise t.hen, conceivably,
it is noI. a point-Baer persper.t.ivity. However, t.he struct.nre of point.-Baer
collineations is essent.ially complet.ely det.ermined for t.ranslation planes. An
axial-Baer perspectivit.y a is a point.-Baer perspect.ivity such that Fixa pro­
ject.ively nontrivially intersect.s each point.-Baer subplane of the center.

The ant.hors have rer.ently provided a generaI structure theory for point­
Baer and line-Baer perspect.ivities. In particular, t.he following result is fun­
damental.

Theorem 11.1.1 (Jha, Johnson [22].) Let 1f be a translation piane and
let a be a collineation which fixes a point-Baer subplane pointwise.

Then a is either a point-Baer homology (and hence an axial-Baer homol­
ogy) or a is an a.ùal-Baer elation and in this case all the planes oj the center
are proper Baer subplanes. In particular, in all cases, the a.ùs Fixa is a
proper Baer subplane oj 1f and a has a unique center.

LeI. N be a vedor spar.e net. ",hich admits at. least. three dist.inct point-Baer
snbplanes t.hat. share t.he same infinite point.s and mutually share an affine
point. Assume t.hat N has exact.ly t.hese same infinite point.s.

In [10], Foulser complet.ely determined the st.ruct.ure of N, when t.he planes
are finite. In t.he sect.ion following this preliminary parI., we show that this
t.heory r.an also be det.ermined in t.he more generai situation when N is pos­
sibly infinite. When we can, we follow the general ontlines of Foulser's argu­
menI.. However, there are some sitnations which require different approaches
so we wil! reqnire a slightly different method paying particular attention 1.0
commut.at.ivity propert.ies.
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We have mentioned the notation of a direct product of affine planes. We
shall require the following results of Johnson and Ostrom [28].

Theorem 11.1.2 (Johnson-Ostrom {28, (4.20) and (5.1)J.) Let M be an
Abelian translation net. If M contains three distinct point-Baer subplanes
incident with a point whose infinite points are the infinite points of M then
M is a regular direct product net and each pai, of the planes are isomorphic.

Furthermore, M is then a vector space net over a field L and the point­
Baer subplanes may be considered L-subspaces.

If one of the subplanes 'Tro has kernel Ko and M is isomorphic to 'Tro X 'Tro

then M is a Ko-vector space net.
At least three of the point-Baer subplanes of the nei which share an affine

point and ali 01 their paraliel classes are Ko-subspaces but not ali point-Baer
subplanes are necessarily /(- subspaces.

We point. out that in (4.20) of [28), it is proved that L may be taken as the
prime field of any of the affine planes.

In the following result, we specialize to the situation we are discussing.

Theorem 11.1.3 (Johnson-Ostrom (5.2) [28].) Let M be a vector space
net over a skewfield /( where M is a regular direct product net of two iso­
morphic point-Baer subplanes with kernel /(0'

Then AI admits r :::: GL(2, /(0) as a coliineation group that fixes an affine
point and fixes each paraliel class.

FU1ihermore, r is generated by the groups which fix point-Baer subplanes
pointwise.

If 1\1 = 'Tro x 'Tro and Ko is the kernel of 'Tro as a left /(o-subspace then the
action of an invertible element

on M is (Po,PI) --; (apo + CPI, bpo + dp) for a, b, c, d in /(0 and Po, Pl points
of 'Tro '

Exercise 11.1.4 Suppose M is a 1-egular direct p1'Oduct net of two Desar­
guesian affine planes of order q = p". Using the above theorem, show there
is a g1'OUP isomorphic to GL(2, q) ading on the net M.
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11.2 Regular Direct Products.

In this lecture, we consider a coordinate seI. foro a regular direct producI..
Bowever, before doing this we need 1.0 consider in some detail the meaning
of the linear grollp GL(2, K) when K is a non-commutative skewfield.

\Vhen l{o is a skewfielel which is noI. a field, there are some important
elifferences between the commul.ative anelnoncommutative case with the con­
sielerat.ion of l.he grollp GL(2, l{o)' Actually, the use of the notation is a bit'
problemal.ic as the elements are noI. necessarily K-linear mappings in the
tradil..ional sense.

Consider a Desargllesian affine piane (x, y) considered as a 2-dimensional
left.. vector space over a skewfield (l{, +, .). Since we may also consider the
affine pIane as a 2-dimensional righI. space over J(, we take components 1.0

have thc form y = XCt for Ct in l{ anel x = Oand note that y = XCt anel x = O
are l-dimensionai left l{-subspaces. We may consider the mappings called
the kernel mappings

Tp : (x, y) -+ (f3x, (3y).

It.. follows easily thal. {Tp I {3 E [(l, forms a field isomorphic 1.0 l{ - (l{, +,.)
and fixes each component of the Desargllesian pIane.

Now consider the mappings (':, y) -+ (xa + vb, xc + yd) such that the

corresponding determinant. del. [~ ~] defined as ac1d - bI'O if c # Oand

ad # O ol.herwise. Then il. follows easily that each mapping is a {Tp}-linear
mapping. Bence, we may jllst.ify the designat.ion GL(2, K).

Traelit.ionally, t.he kernel of a l..ranslation pIane is the seI. of enelomor­
phisms which leave each component of the piane invariant. Bence, {Tp I {3 E
l{} = [(0 is the kernel of the Desargll~.sian pIane 1L Furthermore, the full
collineation group of " which fixes the zero veetor (the translation compie­
ment) is r L(2, K) or is r L(2, l(0). Since thé Ilse of K or [(0 ~ l{ is mereJy in
the distinction between J( anel t.he associat.eel kernel mappings, we also refer
1.0 J( as the kernel of l.,he pIane. So, considering the translation complement
of 1r as r L(2, [() then l{0· = [(0 - {To} is a group of semilinear mappings
and as a col1ineation Tp is in r L(2, [() bilI. is in GL(2, l{) if and only if (3 is
in Z(l{o). That is 1.0 say that. t.he element.s of GL(2, [() are l.,he elements of
r L(2, 1() which commllt.e wit.h 1(0 and Tp commut.es wit.h 1(0 if anel only if
(3 is in Z(I(). The not.ation can be particlllarly tricky if one considers {3x as
a linear mapping over the prime fielel P of 1(. For example, {3x is llormally
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written x(3, when considering (3 as a P-linear endomOl'phism. Then consid­
ering an element u in K as a P-linear endomorphism, it follows then that
(3u = u(3 when considering the elements as linear endomorphisms whereas it
is not necessarily the case t.hat (3u = u(3 when the operation juxtaposition is
considered as skewfield mult.iplicat.ion.

Note that elements of GL(2, K) act on the elements (x, y) on the right
whereas T[3 acts on the e1ements (x, y) on the left.

In the staternent of the above theorem, and we have 11'0 with kernel K o , we
have GL(2, K o ) acting on the Ieft side on a subnet. instead of the right. If it
OCClll'S that a subgroup R of this group act.s as a co\lineation of a translat.ion
piane I: wit.h kernel K containing 11'0 , t.hen R is a subgroup of r L(I:, K).
,Ve now consider t.his situation.

Wc shall consider an affine t.ranslat.ion pIane wit.h kernel K as follows:
Let. X be a left K-subspace and fonn V = X E9 X. We denote points by
(x, y) for x, y in X.

,Vhen we have an affine t.ranslat.ion piane I: wit.h kernel K, we similarly
consider the lines thl'ough (O, O) (components) in the form x = O, y = xM
where M is a K-linear transformation. The kernel K then gives rise t.o a set
of kernel mappings

{T[3 : (x, y) -> ((3x, (3y) I (3 E K} = W.

In t.he finite dimensionai case, we may take !vI as a matrix with entries in K o

say as.[a;j] and define xM = (Xl, x2, ...x,,)AJ as (I:x;a;j, ... , I:x;a;,,). It follows
that M becomes a left. K -linear mapping wit.h scalar multiplicat.ion defined
by (3x = ((3Xj, (3X2, .""' (3x,,) and fnrt.hennore, {(x, xM)} is a left. K-linear
subspace. In t.his case KO is a skewfield isomorphic to K and as a co\lineatioll
group of I:, KO. is a semilillear K -group. Similar to t.he Desarguesian case,
one may consider the left. scalar mult.iplication as a linear endomorphism
over the prime field P of K. When we do t.his, we shall use the notat.ion Ko .

Hence, t.he AI's now cornmut.e wit.h the elements of K o .

To be elear, we now have t.hree different. uses of t.he term kernel of a trans­
lat.ion pIane. ,Ve always consider t.he translat.ion piane as X E9X where X is a
left vedor space over a skewfield K, the kernel mappings are denoted by ](0

and t.he component kernel mappings t.hought. of as prime field endomorphism
are denot.ed by K o . Ali t.hree skewfields are isomorphic and each is called
the kernel of t.he t.ranslation piane where context usually determines which
skewfield we are act.ually employing.
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\Ve now consider a coordinate set for a regular direct product net.
We point out that in t.he proof of (4.20) of [28], it is noted that two

point-Baer sllbplanes t,hat share the same infinite points and an affine point
sum to the entire vedor space and furthermore their intersections on any
line concurrent with the common affine sum to the line.

We may identify any point-Baer subplane as 'lro within the direct product
so that the point-s of the net, have the generaI form (Pl, P2) for Pl and P2 in
'Iro and the lines have the form L] x L 2 for L] and L 2 parallel lines of 'Iro. It
follows t.hat the net M is "'0 X "o wit,h the identity mapping defined on the
set of parallel c1asses.

Considering the translation pIane 'lro with kernel K o , we specify two lines
incident with the zero vector as Xo = O and Yo = O, We further decompose
'lro in terms of these two subspaces and write the elements of "o as (xo,Yo)
where XO , Yo are in a common Ko-subspace Wo . We may take Yo = Xo as the
equation of aline of 'lro incident with the zero vector so that the remaining
lines are of the generaI forlll Yo = xoM where M is a Ko-linear transformation
of Wo for M in a set IIo.

The points of the net now have the generaI form (xo,Yo, Xl, yd where
XO , Yo, Xl, YI are in IVo' The lines of the net are as follows: (Yo = xoM + co) x
(Yo = XoM)+Cl) for alI M in IIocontaining I and O and (xo = co) x (xo = cd.

Note dlange bases by t.he mapping X: (xo,yo,xl,yd 1--+ (xo,X],Yo>Ylj
Finally, we writ,e (Xo,XI) = X and (Yo,yd = y when (xo,yo,X]'Yl) is a

originaI point of the net or (xo, X], Yo, yd is a point after the bMis change.
Note that, before the basis change X, the lines of the net are sets of points

and

Hence, after the basis ehange, the lines of the net have the basic form

Before the basis change X, the point-Baer sllbplanes incident with the
zero vector wmeh are in a GL(2, Ko ) orbit of 'lro have the following form:
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Poo = {(O,O,x"vd for all x',V' in Wc} and Po = {(xo,X"Cl<xo,axd for
all xc, x, in Wo} for each Cl< in Ko' We shall cali these subplanes Poo, or
Po the base subplanes.

We now observe that. the grollp GL(2, K o ) act.ing on the right is repre­
sent.ed by mappings of the form (xo , XI, v" V2) .......... (axi +bx2, CXI +dx2, aVI +
bY2, cy, + dY2)'

11.3 Baer Nets: Structure Theory.

As we indicat.ed eadier, FOllIser has complet.ely determined in the finite case
the strnctnre of vect.or space net.s t.hat. ac1mi t. at. least. three Baer subplanes
that share t.he same slopeset. In t.his lect.nre, we ext.enc1 FOlllser's analysis t.o
the infinit.e case.

We assllme that we have a translat.ion pIane E wit.h kernel K and there are
at least three point-Baer sllbplanes as above wit.h kernel K o whic.h are left
invariant. llnder the mappings KO> or eqllivalently are K-sllbspaces. Then
there is a reglllar direct. prodllcl: net. N isomorphic t.o 11"0 x 11"0 embec1ded
in E. The translat.ion complement. of E is a sllbgrollp of r L(E, K) wit.h
the elements act.ing on the left.. F\,rthermore, there is group of the direct
prodllct net N which is isomorphic to GL(2, K o ) anc1 nat.mally embedded in
GL(4, Ko ) with the elements aet.ing on the right. It is easy to see that if a
collineation 9 of E fixes a K-sllbspace "o pointwise then 9 is in GL(E, K)
and hence commlltes with the mappings Tf3. Now any kernel homology grollp
KO> indllces a fait.hflll kernel grollp on any invariant point-Baer sllbplane so
K may be consic1ered a sllbskewfield of K o .

We shall llse t.he not.ation (00) to c1enote the parallel class conti\i1Ìing
the line X = O and (O) t.o c1enot.e t.he parallel class containing t.he line y =
O. We shall llse both the originaI c1irect. proc1llct. point not.at.ion and the
notat.ion aft.er the basis change X more-or-Iess simllltaneollsly. After Olll
main st.rnct.nre t.heorem, we shallllse the represent.ation aft.er t.he basis change
exclllsively.

be denoted by

Lemma 11.3.1 Let E be any point-BaeT. subplane incident with the zeTo
vector and sharing alt pamllel classes with the net. Then (O, x O , O, XI) IS in
E n (x = O) il and only il (xo,O,x" O) is in E n (y = O).

L h 'fi' . f O [MO]·et t. e m Illlt.e pOlllt,s o X = ,y = X O MProof:
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(00) and (M) respect.ively.
LeI. (xo , O, X" O) be a point. of ~ n (y = O). Form t.he line (00 )(xo , O, X" O)

= (x = (xo,xJl) and int.ersect. t.he line y = X 1.0 obt.ain (xo, Xo,XI,XJl. Since
aH such lines are lines of ~ , the intersect.ion is a point of~. Now form t.he
line of ~ , (O)(xo,Xo,XI,XJl and intersect X = O 1.0 obtain (O,xo,O,xJl in
~ n (x = O).

Exercise 11.3.2 Is there any difference between the proof of the above lemma
in the infinite case and in the finite case?

Lemma 11.3.3 Now assume the subplane ~ is not a base subplane.
For (O, XO , O, Xl) in ~ n (x= O) define a mapping À on Wo which maps Xo

to Xl'
Then À is a l - l and onto additive transformation of Wo'
Furthermore, ~ = {(xo, yo, Àxo, Àyo) for al! xo, Yo in Wo}.

Proof: It is easy 1.0 check that. no two distinct point.-Baer sllbplanes inci­
denl. wit.h a common affine point and sharing aH of their parallel classes can
share t.wo distinct. affine point.s. Hence, Xo = O if and only if Xl = Owhen
(O, xo, O, Xl) is a point. of ~ and ~ is noI. t.he base sllbplane Poo or PO'

Il. foHows t.hat t.he subplane ~ is a traÌlslation affine subplane and hence
a subspace of the underlying vector space taken over al. least over the prime
field.

Hence, il. foHows that À is l - l since the intersections with any of the
base subplanes contain exactly t.he zero vector and il. is also now clear that
À is additive. It remains only 1.0 show that. À is an onto mapping.

From the above remarks, any two distinct. point-Baer subplanes sharing
a common affine point and their infinit.e points sum 1.0 t.he vector space and
their intersect.ions wit.h aline incident with the common point sum 1.0 the
line. Hence, given any element xi of Wo consider the vector (O, O, O, xJl there
exists vectors (O,x~,O,O) in pon(x = O) and (O,Xo,O,XI) in ~n(x = O) such
t.hat

(O, O, O, xi) = (O, x~, O, O) + (O, xo, O, xJl.

It foHows that Xl = X; so there exist.s a vect.or (O, xo,O, X; in ~. Hence, the
mapping À : X o -? Xl is onta.

If (O, xo,O, Àxo, O) is in ~ n (x = O) t.hen (xo,O, Àxo,O) is in ~ n (y = O) so
t.hat (xo,Yo, Àxo,Àyo) is in ~ for aH xo, Yo in Wo as ~ is the direct. S\un of any
t.wo componenl-s. LeI. (x~,y~,x;,y;) be any point of ~ t.hen il. foHows that
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E also contains (O, O, >.x; - xi, >.y; - yi) and since E n Pro = (O, O, O, O) this
forms xi = >.x; and Yi = >.y;. This completes the proof of the lemma.•

Exercise 11.3.4 lf the piane is finite, how would the above proof be able to
bc simplified?

To see that it is not possible that E is noI. a base subplane, we show that,
in fact, >. is in [(o'

. [M O]. Lemma 11.3.5 FOT' y = X O M aline of the net and (Xo,O,XI,O) in

E thcn (xo,xoM,x"x,lvI) is also in E.

Proof: We have seen this previously in the preliminary section. We form

(Xo,O,XI,O)(OO) - (x = (xo,x,)) and intersect y = x [
lIt t] toobtain

t.he point (xo, xoM, x" x,M). Since all of the points and lines are points and
lines of E, it follows t,hat, the intersection point is also in E.•
The previous lemma shows that if (xo, O, x" O) is in E then so is (xo, xoM, x" x,M)
which, in turn, implies t.hat (O, xoM, O, xliv!) is in E. However, also we have
that X, = >'xo and we know that. (O,xoM,O,>.(xoM)) is in E. Subtract.ing,
since E is addit.ive, we have that (O, O, O, (>.xo)M - >.(xoM)) is in E for all
XO ' Since E n Pro = (O, o, o, O), it. follows that. (>.xo)M) = >.(xoM).

Let. Lo be any skewfield such that. {J'vl for M in Ilo} is a seI. of Lo-linear
transformations. Then il. follows t.hat Lo musI. be contained in the kernel K o
of 11'0 = Pro. Hence, >. is in Lo ç [(o'

Hence, we have proved the following result.:

Theorem 11.3.6 Let M be any Abelian net which contains three point-BaeT
subplanes that share the same affine point and share ali of theiT paralle!
c/asses.

Then there is a skewfield [(o such that !vI is a K o- vectoT space net and
there is a [(o-space W o such that the points, of M may be identified with
Wo EB Wo EB Wo EB Wo' The set of ali point-BaeT subplanes of M that share
the zero vectoT is isomorphic to the set {{(O, O, Yo, y,) fOT ali (Yo, Yl) in Wo EB
W o} U"'K. {(xo, Yo, c>xo, C>Yo ) fOT ali (xo,Yo) in W o EB Wo n·
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Furthelmore, there is a collineation gTOUp r oj the net isomorphic to
GL(2, [(o) which fixes (0,0,0, O) and ali paralle/ classes and acls triply tmn­
sitive/y on the set oj ali point-Baer subplanes incident with (0,0,0, O). More­
over, ij B denotes the set oj 011 point-Baer subplanes oj M and rl~ol is the
pointwise stabilizer oj a subplane tro oj B then

Exercise 11.3.7 Restate this theorem in the finite case assuming that M is
a net oj degree q' and degree q + l that contains three Baer subplanes. Let
the kerncl oj any one oj the subplanes be GF(h). Row many Baer subplanes
are in the net?

Corollary 11.3.8 Let M be Abelian net whieh contains three point-Baer
subpla.nes that share the same affine point A and ali oj their pamlle/ classes.

lj one oj the point-Baer subplanes has kernel /(othen the set oj ali point­
Baer subplanes oj M incident with A is isomorphic to PGL(l, /(0).

Proof: \Ve consider the above representat.ion aft.er t.he basis change X. The
gronp

( Diag [~ ;] snch that )..f!(o) . ( Ding [~ ~] sllch that f3f!(0 - {O} )

fixes tro = pocpointwise and acts dOllbly transitively on the point-Baer sub­

planes. Note t.hat. DiagA = [~ ~].

Exercise 11.3.9 Restate the cOTOllary in the finite case assuming that one
oj the subp/anes has kerne/ GF(h).

Below, we complet.ely determine the collineation group of a net. of t.ype in
t.he st.atement of the above theorem. \\'e first verify the following reslÙt.

Theorem 11.3.10 Let R be any Abelian net which contains three point-Baer
subplanes that share the same affine point A and ali oj their paral/ei c/asses.
Let tro be any point-Baer subplane incident with A. Then tro is an affine
tmnslation piane with kemel /(0. Let G~. denote the full /inear tmns/ation
comp/ement oj tro .

Then there is a collineation group oj R isomorphic to G~. which /eaves
;re> invariant.
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Proof: \\'e have noted that R is a regnlar direet-produet nel.. The l'esulI.
then follows from a previous exereise.•

Theorern 11.3.11 Let R be any Abelian net which contains three point-Bae,'
subplanes that share the same affine point A and ali oj their parallel classes.
Let 71'0 be any point-Bae,- subplane incident with A.

Then 71'0 is an affine translation piane with kernel K o . Let G~· denote the
jull /inear translation complement oj "o obtained as a collineation group oj
R which leaves "o invariant.

Then the full collineation group oj R which jì:J;es 'lCo is isomorphic to the
product oj G~· by GL(2, K o ). The two groups intersectin the group kernel
oj 'lCo naturally extended to a collineation group oj R.

Exercise 11.3.12 Assume that R is a finite net oj orde,' g2 and degree g+ l
and that the kernel oj a Bae,' "ubplane is GF(g). Show the net defines a
regulus in PG(3, q). Considerthe group oj the regulusnet acting in PG(3, g).
Show there is a subgroup isomorphic to PGL(2, q) x PGL(2, q).

Proof of the theorern: The group GL(2,1(0) aets 3-transitively on the
point-Baer subplanes of the nel. R and fixes R componentwise. Hence, we
may assume that a collineation fìxes the zero veetor and permutes the point­
Baer subplanes "00 = {(O,p) such that p E "o}, "> = {(p, >'p) sueh that
p E 71'0 and >. in the kernel of 'lCo } (whcn >. = O the subplane 'lCo is identified
with 'lCo x O.

So, if a collineat.ion 9 of R which fixcs the zero vect.or t.hen we may assume
that 9 leaves Tic,,>! 7r01 and 'Til invariant. Hence1 9 is in G rro as il, acts faithfully
on 1io .

Since GL(2, K o ) fixes R componentwise, assnme 9 fixes R componentwise.
Then 9 ineluces the kernel mappings on 'lCo anel on ") and is fixed-point-free
as il. also leaves 'lCoc invariant. Thus, the faithfnl stabilizer of 'lCo in GL(2, 1(0)

which fixes 'lC00 , "o, and ") is ([ g ~] snch that {3cKo) in this represen­

tation. It then follows that. the collineation group of R is the producI. as
maintained.•
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Hering-Ostrom Theory:
Elation-Generated Groups.

The celebrated Lenz-Barlotti theory describes maximal groups of centraI
col1ineations of arbitrary project.ive and affine planes. Similarly, one might
ask for a cIescription of groups that are generatecl by groups of centraI
collineations of a piane that share neither an axis nor a center. Far ex­
ampIe, in affine Desargucsian plancs of orcIer pr, if El and E2 are groups
of elations with distinct affine a,es they generate the group G ~ SL(2, p')
whenever s divides T.

A fundamental theorem of Ostrom asserts that the same conclusion holds
for arbitrary finite t.ranslation planes with charact.eristic p > 3. The case
p < 3 has been completely resolvecl by Hering, where the conclusions are
slightly more complicatecI: for example, in the spreacIs associatecI with the
even order Liinebnrg planes, elation groups might generate Suzuki groups.
Taken together, t.he Hering-Ostrom theorem provides a complete description
of groups G generatecl by affine elations of [partial) spreacIs and has proven
be a powerful tool for the investigation of finite translation planes.

It is thus natural to seek to generalise this theorem. Major results on
finite translat.ion plancs have been obtainecI by Foulser basecl on extending
the Hering-Ostrom theorem to generalised elations. It tums out that a gen­
eralisecl elation, in the context. of a spread, is either an affine elation or a Baer
p-element, and this leads to a Baer analogue of the Ostrom's theorem. In
the next chapter, we use t.his 1.0 est.ablish striking incompatibilty results con­
ceming Baer p-element.s and affine elations, and also incompatibility among
Baer p-elements that have different slopesets in ocId characteristic. These

196
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res1llts are d1le to F01llser in the odd characterist.ic case. In characteristic
2, F01llser's res1llt-s do not apply as there are connterexamples. However, as
demonstrat.ed by t.he ant.hors via group-t.heoret.ic resnlt.s of Dempwolff, t.here
is st.ilI st.ilI a high degree incompat.ibilit.y bet.ween Baers and elat.ions, even
in spreads of even order. In ali cases, t.he incompatibilit.ies indicat.ed have
a profonnd inflnence on t.he collineation gronp of a t.ranslat.ion l'lane. For
example, it. implies that. semifield planes of odd order cannot admit Baer
p-element.s.

One of t.he main goals of t.he present chapter is t.o prove Ostrom's re­
snlt, describing t.he gronps C generat.ed by elations act.ing on finite part.ial
spreads of charact.erist.ic p > 3; \Ve refer t.he reader t.o Liineburg's immacnlat.e
t.reat.ment [31] foro t.he full Hering-Ost.rom t.heorem. In additiOll to Ost.rom's
theorem, and its generalization t.o finit.e-dimensional spreads, \Ve shall est.ab­
lish F01l1ser's analogne of Ost.rom's resnlt. t.ha,t. applies to generalised e!at.ions:
t.his \Vili be applied in t.he next. chapt.er t.o establish the incòmpatibility t.he­
orems indicat.ed above.

12.1' Field Extensions and Spreads.

Let V = Fn EB Fn, and let ]( ::J F be an extension field of the finite field F.
Rather than 1lsing t.ensor prodnc!. not.ation, we shall \Vrite: VK = ](n EB ](n,

X K = ](n EB O, YK = O EB ](n; in generai if W is an F-subspace of V then
WK denot.es t.he ](-snbspace of VK generat.ed by W; so WK consists of ali
the ](-linear combinat.ion of any F-basis of W. This follows by not.ing t.hat.
F-independent. snbset.s in V are also ](-independent.: look at t.he rank of t.he
matrix lvJw of any F-linear basis of IV: t.he rank of Mw , whet.her viewed as
an F-Inatrix or as a l<-mat.rix is always the same.

Next consider 9 E Hom(V, F); 9l( is t.he nniqne extension 9l( of 9 t.o
H om(V,]() and t.he t.wo maps have t.he same matrix relative t.o any F-basis
of V, in part.icnlar relative t.o the canonical basis. So 9 E CL(V, F) if and
only if 9l( E CL(VK,]()'

We shall be part.icnlarly concerned \Vit.h t.he act.ion t.hat a group G :'O:
CL(V, F) indnces on a ](-snbspace U :'O: VJ( that is CK-invariant., sometimes
when V n U = O. In ali cases, t.he act.ion of C l( on U is jnst the act.ion
associat.ed with t.he mat.rix gronp repre~ent.ing C, and we writ.e CU to mean
C'I<, t.he action of Cl( on U.

A spread r on V corresponds in t.he obvions way to a partial spread r l(
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of vi-:, and f includes the st.andard components X and Y of F" E9 F" iff f K

does: that is XI< and YI< lie in fI<, and a similar comment applies to the
unit line I. vVe always assume that we are dealing with spreads and partial
spreads cont.aining the st.andard components Xand Y, as wel! as the unit
line I. Let M be the spreadset. of matrices defining f; so M, viewed as a set
of K-Illatrices is a partial spreadset defining the partial spread fl(.

Ncxt. focus on a'rank two K-subspace U < VI< that meet.s non-trivially
the subsaces X and Y of V, anel let fu be the set of ali components ìI< E f K

t.hat. meet. U Ilon-trivial!y. Since U has rank 2 over K, fu is a Desarguesian
J(-spread on U, and il. meet.s Ilon-trivial!y each of X, Y and I, in three
clistinct compollents.

Next. suppose G :5 GL(V, F) preserves f and snch that GI< leaves U­
invariallt. So GI< is a K-linear aut.omorphism group of the partial spread
fI< anel also leaves U invariant.. Thus Gf< < GL(2, J(). Morcover, the given
clntion gro\lps continue t.o ad as elation elation gronps 011 the Desarguesian
spreacl fu, so G'k :: SL(2, J(') for some K' ç K. The close connection
between G'k and G leads t.o a similar conclusion for G, as required.

1'his suggest.s a strategy: take any F-spread admit.t.ing C, then seek an ex­
t.ension field K over which G fixes a 2-space made up of distinct eigenvectors
of some nonnal subgraup of G and then apply the above argument..

Rct.lll:ning to t.he main t.heme, assume G acts t.ransitivcly on the non-zero
point.s of U. ì\ow the cornponent.s of f that mccts U non-trivially do so
in at. least. one non-zero point. of V, so the components of fI< induce the
st.andard Desarguesian spread on U. Note t.hat the point of this claim is that
the components of t.he st.andard Desarguesian spread that, U carries, simply
beeause it. is a 2-dimensional space, must. extend to components of f I<.

Suppose now t.hat. the p-Sylow subgroups of Gare non-trivial but nol.
planar. So if P is such a graup then Vp is a component. of f. By the
conjugacy of Sylow subgroups it. follows t.hat the associated components,
which we cali p-axes [of Gl form a C-orbit Now P cert.ainly fixes a component
of t.he Desarguesian spread l::.u. Also wlog X is the a.xis of P. So if more
t.han one axis is involved then t.he transit.ivity of P on the axes implies that
the axes ali meet, U non-t.rivially anel each corresponds to t.he axis of a shears
group of l::.u. The non-planarity hypothesis means that P act.s faithfully on
l::.u and hence is element.ary abelian, Ali t.hese groups generate SL(2, L) on
l::.u, where F :5 L :5 K.
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12.2 Algebra Generated By Matrix A.

Let A be an 11. x 11. matrix over a field F, and define the F-algebra generated
by A to be the smallest ring < A > of matrices containing A and Fl. Since
we have fini te dimension, A satisfies a uniquc monic minimum polynomial
I(x) = L:~;J l,x' ovcr F; thus

k-l

A k = L f;A' = o,
i=O

and we have an algebra isomorphism:

< A >~ F[x]/(f(x».

Thus wc have:

Remark 12.2.1 < A > i8 a fie/d iff its minimum polynomial I(x) is irre­
ducible anli now < A > is isomorphic to an extension fielli 01 F by any 01
tile mols oll(x) = o.
Now, even in the generai case, if .\ is an eigenvaluc of A then 1(.\) = O, so
if I(x) is irnd'llcible then thc algebra F(.\) ~ F[x]/(f(x» is the extension
field of F by.\. But the cigenvalllcs of A are just the roots of I(x) = O,
since thc minimum and the charactcristic polynomials have the same roots.
In particular, the cigenvalues of A are ali congugate in the algebraic closnre
of F. Hcnce the previous remark may be restated as:

Remark 12.2.2 The F ·algebra < A > is a fielli iff its minimum polynomial
I(x) is irrcducible anli now < A > is an extension fie/Ii 01 F such that
< A >~ F(.\), where.\ is any eigenvalue 01 A; thefie/ds F(.\) m'e isomorphic
as .\ ranges over the cigenvalues 01 A.

We can now consider thc the case of interest: when the F-algebra < A > .
does not cont.ain any non-zero siugnlar nlatrices. In this case, if for some
non-zero T E< A > the minimum polynomial fr(x) = gT(x)hT(x), where
min[og, ah] :2: l, and T E< A > then g1'(T) and hT(T) are both non-zero
and singular matrices since ther product h(T) is zero. This contradicts OllT

assumption that the non-zero elements in < A > are non,singular, so we
have:

Proposition 12.2.3 Il the F ·algebm < A >, i. e. the polynomial ring F[A),
is a panial spreadset 01 matrices then it is a fielli 01 matrices isomorphic to
the field F(.\), where .\ may be chosen to be any eigenvalue 01 A: these are
ali conjugate over F.
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12.3 Properties of SL(n, K).

In tbis sect.ion, we mention a conple of properties of tbe nnimodnlar group
SL(2, q). Tbe first. property is will be tacit.ly assnmed in several places.

Theorem 12.3.1 Let GL(n, I<) be the group 01 non-singular maps 01 an n­
dim-ensional vector space over a finite field K and let SL(n, I<) be its lull
unimodular subgroup.

Il H is a subgroup 01 GL(n, K) such that H ~ SL(n, K) then H =
SL(n,K).

Proof: LeI. p denote tbe cbaracteristic of K. Tben every SL(n, K) in
GL(n, K) is generated by the seI. of all Sylow p-sllbgronps of GL(n, K), and
these are all in the 'standard' nnimodnlar gronp SL(n, K) since this gronp
is normal in GL(n, K) and cont.ains al. least one of the 'Sylow p-gronps of
GL(n, K) .•
In the infinite case the Sylow 'p-snbgronps' may be identified with the ma.x­
imal groups tbat bave cbaracterist.ic polynomial (x - 1)", and these groups
are generated by ali tbe transvections, and ali transvections are conjugate by
a basis-c1lange argument. Sucb considerations permit tbe extension of tbe
above theorem 1.0 tbe case where K is any infinite field.

'Ve record for convenience: .

p:= un; a = (~ -~). ~ T:= a-1p-1a-
1 = (_~ ~).

(12.1)

12.4 Ostrom's Theorem.

,Ve adopt t.he notation:

p=u O) :
1 '

From now on nnti! Ostrom's tbeorem bas been established we shall assnme:

Hypothesis 12.4.1 N ::J {X, Y, I} is a parlial spread on V = r $ r
admitting an automorphism group G =< P,PA >, lor some A # O.

Tbe following elementary observations associated witb tbe above hypotbesis
will be freqnently used:



CHAPTER 12. HERlNG-OSTROM THEORY: ELATION-GENERATED GROUPS.201

Remark 12.4.2 The maps p and PA are non-trivial elations ojN with axis
X and Y respectively. MO"eove,':

1. The map PA E AutN mops X to y = xA; more genemlly an elation oj
N with axis Y mapping X onto a component y = xM must be the map
PM, and conve"sely ij PM E AutN then it is an elation oj the type just
mentioned.

2. Ij PM E AutN then M is non-singular; so A 1S non-smgutar.

3. The group Gy oj all Y -axes elations in G is isomorphic to an additive
group oj matrices E contained in the full set oj slopes ojN. In jact

E = {E E Fn IPE E G},

or equivalently

E = {E I y = xE E Orbcy(X)} ~ Gy .

4. The elation p maps Y onto the unit /ine: y = x := 1.

5. The Y -orbit under G includcs the unit line l among its components.

Proof: The maps p and PA are both elations of N since their fixed spaces
are precisely components, viz., X and Y respectively. Ali the listed iterns
are equally trivial to verify.•
Now suppose U is any G-invariant rank 2 K-sllbspace of VK , llsing OUl' stan­
dard notation, see page 197. So U cannot be part of a component since G
contains non-trivial elat.ion grollps with dist.inct o..xes. Moreover, both p and
PA are elations of U, viewed as a K-spread, and this spread is Desargllesian
bccallse il. has order IKI and K is in the kern. So GK induces a llnimodular
grOllp (; of U. F\lrt.hermore, distinct elation axes associated with non-trivial
elations in G must meet U in distinct components:

Lemma 12.4.3 Suppose", and {3 are components ojN such that each is the
axes oj a non-trivial elation in G. Then "'K n U and {3K n U are distinct
components oj U.

Proof: Let A and B be the grollps of elations of N whose axes are respec­
tively the components Ci,{3 E N. Since A and Bare both non-trivial p-grollps
and are K-linear eaeh fixes a l-dimensionaI K-sllbspace of U elementwise.
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These spaccs are disjoint. since C<K and {3K are dist.incl. components of N K .•

The following proposition sho\Vs that t.he grollp G =< p, PA > leaves in­
variant a rank 2 J(-sllbspace U of VK and indllces on U the grollp SL(2, J(),
ulten J( is taken to be F(À), ",here À is an eigenvaille of A. Tlms establishing
Ost.rom's theorem \Vill mainly involve showing that the G indllces SL(2, I<)
Jaitltfully on U.

Proposition 1204.4 Assume F = GF(p) is a prime field, p > 3, and fix the
extension field J( = F(À), U/here À is any eigenvalue oJ an F-matrix A, in
tlte algebraie closure oJ F. Then the group G =< p, PA > leaves invariant a
rank tU/o J(-spaee U sueh that GU = SL(2, J().

Proof: There is a I<-matrix B sllch that

now by a direct complltat.ion

{3p(3-1 = p,

",here {3 = Diag(B, B).
Similarly the {3-conjllgate of PA is given by:

(12.2)

(12.3)

(BO) (l A) (B-1 O) = ( lOB Ol O B-1 OBAB-l)
l '

(12.4)

alld by eqn 12.2 the R.HS abovc IlllS top ro\V of form:

(1,0,0, ... ,0, À, 0, O, ... ,O),
.. ' .. .

" "
so the {3-conjllgat.e of PA leavcs invariant the rank 2 J(-space

U = {ex, 0, 0: ... , ~')J' O, 0: ... , ~) I x, Y E K} ,
n "

ancl similarly p, whieh is it.s own {3-conjllgat.e, by eqn (12.3), also leavcs U
invariant. ThllS the {3-conjllgat.c grollp {3G(3-1 of G leaves invariant the 2­
space H' and dearly indllces on il. t.he grollp

- (10)(lÀ)G =< l l ' O l >
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and now by Dickson's analysis, for p > 31
, t.he subgroup of H = 8L(2, I<)

generat.ed by G is 8L(2, L), where L = Z(À), Z t.he prime field of F. BuI.
as onr hypot.hesis spèdes t.hat. Z = F and I< = F(À), we conclude t.hat.
G = 8L(2, I<).
Thus we have shown a l1-conjugat.e of G induces 8L(2, I<) on a rank 2 sub­
space of VK . Hence t.he same musI. hold for G.•
From now we adopt. t.he hypot.hesis and not.at.ion of t.he proposit.ion above:
I< = F(À), where F = GF(p) and À is any eigenvalue· of A; U is a G­
invariant t.wo-dimensional I<-subspace of VK , and as remarked earlier U is a
rank-t.wo I<-space t.hat. is also a Desarguesian spread; so we have seen t.hat
(; = GV = SL(2, I<). It follows t.hat. (; is t.ransit.ive on the non-zero point.s
ofU.

Lemma 12.4.5 The set 01 axes & 01 non-trivial elations in G are in natural
1-1 correspondence Ulith the components 01 U, i.e., tlte map,

'I E & ...... 'IK n U,

is a bijection lrom & onto the one-spaees 01 U.
Proof: Sinee by remark 12.4.2X is in &, the transt.ivit.y of (; on U· implies
t.hat every one-space of U is ofform 'IK nU, for some component 'I E &. The
converse t.hat. every member & mect.s U in a component., has been mentioned
in lemma 12.4.•
In order 1.0 count. t.he conjugacy classes of p-element.s in 8L(2, q) consider:

(
X O) (I a) (X-IO) = (I ax2

)
O X-I O 1 O x O 1 '

and so we have:

Remark 12.4.6 Let P be a p-SyloUl subgroup 01 8L(2, q), q a power 01 the
prime p. Then N(P) has at most tUlO non-triuial conjugacy classes in P and
distinct classes have the same cardinality.

Lemma 12.4.7 There is an additiue group 01 mat1ices A ~ (I<, +) sueh
that the identity I E A and the subgroup 01 Y -shears in G is:

{(~ An IMEA}

lThis explains OstrolU's constraint p > 3.
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Proof: LeI. E be t.he elation subgroup of C associated with the Y-axis.
This induces faithfully an elation group on U with axis Y, faithful, because
elations of C extend 1.0 elations of GJ( and hence cannot fix any point.s outside
a component. So E may be identified wit.h a subgroup of 1] the full elation
group in GU with axis Y: il. is conceivable that G{y} contains a p-group
P > E such t.hat P, although noI. it.self an elation group, induces on U the
full elation group 1], of size Wl·
Consider the G{y}-conjugacy dass of any nOll-t-rivial a E E. We show that
E :::: (K, +) by showing that this dass has > IKI/2 element.s, and noting
that any elation gronp in G has order :o; IKI, since il. musI. faithfully induce
an elation grollp of U.
Consider any non-trivial elation a E E. Hence for any t E C{y}, tiit:' agrees
on U with the elat.ion taC' E E and distinct. tiit:' are 'induced' by distinct .
tat- l , since they have distinct act.ions on U. So the nmnber of elations li E E
musI. exceed the nllmber of elat.ions of U fixing Y that lie in a conjugacy dass
of the stabilizer Y in è. So by remark 12.4.6, and t.he fact that E contains
the identity, shows that lEI> (q - 1)/2, so Wl > lEI > q + 1/2 > q/2 and
this forces E = K, by Lagrange's theorem, and the fact that EU may be
identified with a subgroup of (K, +). Since E consists of matrices of type
PAI, where y = xkI is a component of N meeting U non-trivially, the desired
result. follows once we have noted l E A. This holds because by remark
12.4.2.5 the uniI. line y = x of N is in t.he C-orbit of Y and hence meets U
non-trivially: so p, E G means t.hat. 1 E A. •

Lemma 12.4.8 The a.dditive group A :::: (K, +) is a.lsa. cla.sed under inver­
sion 0/ its non-zero e/emenls.

Proof: Since l E A, we have -1 E A, and the corresponding automor­
phism a E G. Hence by eqn 12.1 C contains:

and now any component y = xkI of /v moves under r 1.0 the component
y = x( - M-l) E N. So for, AI E A, we musI. have - M-' E A since C, and
hence r, maps component.s meeting U into other components of the same
type. BuI. since r is an additive group M-l E A. •
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Lemma 12.4.9 G contains thc map:

Proof: Since A is closeci nnder inversion we have PA-l E G, since A E A.
Hence G contains the map

which by a direct calcnlat.ions is t.he mat.rix Diag[A, A-I] defining o.•
The following resnlt is essent.ially the theorem of Ostrom. lt implies that. if
two elat.ions wit.h dist.inct. axes fix a eharact.eristic p partiaI spread N, with
p> 3 and INI > 2, t.hen t.he gronp t.hey generat.e a gronp G ~ 5L(2, q) and
G leaves invariant. a rat.ional Desargllesian nel. containeci in N .

•
Theorem 12.4.10 (Ostrom's Elation Theorem.) The spreadset A is a
field ~ K, and G = 5L(2,A :: 5L(2, K). Morover, the partial spread ~A
associated with A is a mtional Desarguesian partial spread and G has the
standard aetion on this partial spread, indueed by its standard action on ~:F,

a Desarguesian spreacl associated with a field extension :F oj the fielcl A.

Proof: We first. est.ablish that. t.he polynomial ring F[A] is a field :: IC
Since OA maps t.he component y = xlvI ont.o y = xA-IMA-', we have
A-'MA-1 E A, whenever M E A. Choosing M from A,I E A, we see that
all odd and even powers of A-', and hence all powers of A lie in A. But
sinee A is an addit.ive gronp il. is also an F-modllle, over t.he prime field F.
Thns t.he polynomial ring F[A] is a subset of A. Bnt. the non-zero elements
of lhe algebra < A > are invert.ible and, of conrse, closed nnder differences.
Thns the algebra < A > is also a part.iaI spreadset of matrices, and hence,
by proposit.ion 12.2.3, t.he algebra is isomorphic to t.he field F(À) = K.
Bnt. since, by lemma 12.4.8 A :: (K, +), we now have A =< A > is a field of
matrices:: K. So, by lemma 12.4.7 we clearly obtain < p, PA >= 5L(2, A) ::
5L(2, K). Moreover, by lemma 12.4.7, the component.s of N - {Y}, meeting
U non-t.rivially are jnst. t.hose of form y = xk, k E A :: K.
Next. choose a mal.rix field :F ::l A sneh t.hat /:FI = [FIn, so t.he associateci
Desargnesian spread ~:F cont.ains the part.ial spread associat.eci wit.h A, that.
is t.he component.s of N t.hat. meet. U n'On-t.rivially, or eqnivalent.ly, the com­
ponent.s of .l'I t.hat. are t.he axis of non-t.rivial elat.ions in t.he gronp G.
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Thlls G :::: SL(2, K) leaves invariant. a Desargllesian spread 1::>.1' such t.hat
t.be component.s of N t.bat. are t.he non-t.rivial elat.ion axes of element.s in G,
when G is regarded as act.ing on N, form t.he slopeset. of a subplane of 1::>.1"
[Tbis may be esablished even wit.hollt. reference to 'U', since the only way
t.hat. SL(2, K) aet.s on a Desargllesian spread over a larger finite field. F ~ K
is to leave invariant. the sllbplane K E& K.] •
Ostrom's theorem needs to be slight.ly modified if we pennit. characteristic
]l = 3. \Ve smnmarize wit.hollt proof the sitllat.ion when p = 3 is permit.ted
in Ostrom's theorem.

Theorem 12.4.11 Let 7r be a finite translation piane of odd order pT. Let O'
and T denote two elations in the translation complement with distincl axes.
Then one of the t",o following sit'uations occur:

1. (O',T) ~ SL(2,p') for some positive integer z and the elation net is a
Desarguesian net which may be eoordinatized by GF(pzj.

2. (u, T) ~ SL(2, 5) and p = 3 and the elation net is a Desarguesian net
which may be coordinatized by GF(9).

Finally, it is noted that. Ost.rorn's theorem is aetnally more generai than eon­
sidered above anel can be more generally applied 1.0 collineat.ion gronps gen­
erat.ed by Baer p-gronps. Not.e that. what. needs t.o be eonsidered is whet.her
t.he gronp generat.ed by t.he set. of ali elat.ions is also isomorphic to SL(2, p"')
for some posit.ive integer IV and what ocelll'S when p = 2 or 3.

\Ve also may observe t.hat. t.bis resnlt. is generally valid over finit.e dimen­
sionaI vedor spaces of charact.erist.ic p. Thc proof given nses the above resnlt
to deal wit.h t.be exeeptional case when p = 3, bnt. is ot.herwise self-eont.ained
althongh il. largely follows t.hc Ost.rom argnment. deseribed above.

Theorem 12.4.12 Let" be a translation piane whieh is finite dimensionai
over its kemel and let K be IL subfield of the kemel of eharaeteristie not 2.

Let u (md T be affine elo.tions with distinet axes in the translation com­
plement and let G = (o', T). Let N denote the net each of whose components
are axes of elations in G.

If G is finite then the characteristic of" is p < 00 and one of the two
following situations occu,.:

1. G~ SL(2,p') for some positive integer s. Furtherrnore, N is a Pap­
pian net which may be coordinatized by GF(p').
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2. G ~ 8L(2, 5). In thiscase, N is a Pappian net which may be coordi-'
natized by GF(9).

Proof: Assume the dimension·of 7r over K is 2k. Represent u by (x, y) t----->

(x, Ax + y) and r by (x, y) t-----> (x + y, y) where A is a k x k matrix with
elements in K.

Note that the order of u is finite if and only if the characteristic is finite
p.

The proof of the theorem now follows from the following sequence of
lemmas.

Le.mma 12.4.13 Let À be an eigenvalue oJ A in some extension field K(À).
Then A and hence À has finite order and

F = GF(p)(À) ~ GF(p'),

for some positive integer s.

Proof: Consider ur = [~ 1] [~ ~] = [ I ~ A 1]. Now square ur

b . [(I + A)2 + A (I + A)A + A] S . l' Ito o tam 21 + A I + A . . quarmg t l1S e ement, we note

that the entries in the (1,1) -position are always nontrivial polynomial in A
over GF(p).If this element has finite order, it follows that eventura!ly the
element in the (1, l)-entry is a polynomia! in A over GF(p) which is equa! to
(1, 1) -entry of a previous element in (ur). Hence, A satisfies a polynomial
over GF(p). Thus, the minimal polynomial for A has coefficients in GF(p)
so that every eigenvalue in an extension field does as well.

Consider t.he field GF(p)(À) within [((À). Let the minimal polynornial
for A have degree n so that every element in GF(p)(À) may be written in
the form L:~o ÀiQ; for Qi E GF(p). Hence, GF(p)(À) = F is a finite field
isomorphic to GF(p') for some positive intel(er s .•

Lemma 12.4.14 Let V denote the underlying vector space over [( and let
U be a l-dimensionai À-eigenvector in V 0K K(À) = V". Then U Ef) U is
G-invariant.

Proof: Realize u and r as linear transformations over V" and apply the
form to conclude that U e U is G-invariant.•
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Lemma 12.4.15 U(f!U defines a Pappian piane which contains a C-invariant
Pappian subplane 7ro coordinatized by F.

Proof: Since F = CF(p)(>.) is a subfield of K(>'), there is a Pappian
subplane 7ro of U (f! U.

Since the elements in C restricted 1.0 U (f! U are aU in EndoF(p)7ro , il. fol·
lows that C leaves 7ro invariant. _

Lemma 12.4.16 If C I ""0 is G'o then either G'o '" SL(2, p') or p = 3 and
C'o", SL(2,5).

Proof: Since.".o is a finite translation piane of odd order, the result foUows
from Ostrom's theorem ([34J and [35]). _

Lemma 12.4.17 There are exact/y 1 + p' eiation axes in N when C'o is
SL(2,p') and lO elation axes in N when G'o is SL(2, 5).

Proof: Il. follows exactly as in the previous section that every elation axis
of N is also an axis of ""0 . Since the group generated by the elations is tran­
sitive on the components of 7ro(even in the case that the group is SL(2,5)
where F '" CF(9) and there are lO elatioIlS in SL(2, 5)), we have that every
component of 7ro is an elation axis of N. _ .

Lemma 12.4.18 IVhen the group crro
'" SL(2,p') then (I A Lp) = 1 and

x = 0, y = x!'vI for ali !'vI in CF(P)[A] is a partial spread. Hence, CF(p)[A]
is a field.

Proof: The argllments of the previous section can be utilized in this case 1.0

conclude that ([ A~I ~] ) is a collineation group of the translation piane.

Hence, y = x maps 1.0 y = xA2. llnder the group and y = xA maps 1.0
y = XA2i+1 It. follo\Vs that, Ai - I is nonsingular or zero for each integer j. _

Lemma 12.4.19 When the group C'o", SL(2,5) then (I A l,p = 3) = 1 and
x = O, y = x!'vI for ali !vI in CF(3)[AJ is a partial spread so that CF(3)[A]
is a field.
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Proof: Hence, we may conclude that the net N is {x = O, Y = x(xAa+,6I)
for alI a,,6 in GF(3)} assuming that the Ostrom theorem is proved for fi­
nite planes in this case. Moreover, alt.hough not a collineation necessarily of

. . ([I AO+ì1] )the piane, the net admlts the group O I ;O,ì E GF(p) . Now

again apply the arguments of the previous section again, we may conclude

again that the group ([ A~ l ~]) acts on the elation net N so that by the

above argument, (I A Lp = 3) = 1. •

Lemma 12.4.20 The elation net is a Pappian net and the group induced on
U El) U is faithful.

Proof: Let V = X El)X. Thcn X is a semi-simple J( (A}-module = L:~1 N,.
Let F, denote the restriction of J( (A) to N,. Then N, is a l-dimensionai F;
-algebra. Moreover, GF(p)[A] is a field which forms a partial spread set so
that GF(p)[A] acts faithfully on each N i . Since one of these Nis may be
taken as U, it folIows that GF(p)[A] is isomorphic to GF(p') or GF(9) ex­
actly when the induced group on U El) U is SL(2,p') or GF(9).•
The main result. theorem 12.4.12 has now been established.•

12.5 Generalized Elations.

In t.his section, WP. presento the preliminaries for t.he theorem of Fonlser on
l3aer p-groups act.ing on translation planes of order p'. When p f 2, Foulser
showed that the Baer axes of two distinct Baer p-collineations in the trans­
lation complement, are identica! or share exact.ly t.he zero vector. In t,he
previous sect.ion, Ostrom's thcorem was prescnted. This theorem can be
viewed as a theorcm on partial spreads generated by certain automorphism
groups called gcneralized elnt,ions, Once this is achieved, it is possible to
show that Ostrom's Theorem mny be applied to conclude that the groups
generated by Baer p-elements are exacUy those in the elation case. Using
the extension of Ostrom's theorem, it is possib!e to extend Foulser's work to
the finite dimensionaI case as welI,

In this section, we folIow Foulser's work in [11].
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Definition 12.5.1 Let V be a vector space 01 dimension n over K '" Gp(pr).
Let o be a lineartmnslormation 01 V . Let Fixo denote the set 01 vectors
fixed by o. Then o is said to be a genemlized elation 01 V 01 type t il and
only ilo fixes' V/ Fixo pointwise and the dimension 01 Fixo = t ..

The subspace Fixois cal/ed the 'axis'olo and C(o) = (o - 1)V is cal/ed
the 'center'olo.

Remark 12.5.2 We have seen that elations are genemlized elations 01 type
n/2. Consider a Baer col/inecition o 01 order p. We shal/ show that o a
genemlized elation' also 01 type'n/2.

Note that o is a genemlized elation il and only il (o - 1)2 = O .

Proposition 12.5.3 Let o be a genemlized elation 01 V 01 type t. Then

(1) The order 010 is p;

(2) dim C(o) + dim Fixo = n;

(3) t > n/2 and

(4) Il W is a complement 01 Fixo then, with respect to Fixo E!l W, o has
the lol/owing matm representation

where A is a t ,x (n - t) matrix.

Exercise 12.5.4 Prove (1).

Exercise 12.5.5 Prove (2) noting that V/Fixo ~ (o -1)V.

Exercise 12.5.6 Use (2) to prove (3) noting thatC(o) C Fixo.

Exercise 12.5.7 Prove (4).

Corollary 12.5.8 The group genemted by a set oj genemlized elations with.
the same axis is elementary Abelian 01 order p. for some positive integer a.
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'vVe now specialize 1.0 the case when CT is a generalized elation which is
a collineation of a translation piane 7f of order qn/' with associated vector
space of dimension n over a field K"" GF(q = pr).

\Ve recall t.hat if 7f;; is a project.ive subplane of order m of a project.ive
piane 7f+ of order w t.hen m < yIW. Hence, if T is a planar collineat.ion of
a t.ranslation pIane t.hen FixT has dimension less t.han or equal t.o half t.he
dimension of t.he underlying vector space.

Theorem 12.5.9 A generalized elation acting as a collineation 01 a finite
translation piane 01 order p' is either an elation or a Baer p-elemento

Proof. Not.e t.hat. we must. have t.hat a generalized elation CT is of type s if
t.he order of t.he piane is p' since the dimension of t.he vect.or space is 2s over
GF(p). Hence, t.he cardinalit.y of FixCT is also p'.

Exercise 12.5.10 Show that il a coliineation CT 01 an affine piane olorder
k fixes exactly k points then FixCT is either a lin'e or a Baer subplane.

It. remains t.o show t.hat. a Baer p-element is a generalized elat.ion.
Choose any complement. W of FixCT so t.hat. with respect. t.o t.he decom­

position FixCT Ef) W, we have t.he following representat.ion for CT

It. remains t.o show that. B = I. Not.e t.hat t.he order of CT is p so we must.
have HP = I.

Suppose L and M are component.s int.ersecting FixCT in a s/2 -dimensionai
subspace. Choose a basis for t.he int.ersect.ions wit.h FixCT and ext.end t.o a ba­
sis for L and M and hence for t.he l.ranslat.ion piane. Wit.h t.he decomposit.ion
L Ef) 111, we have a basis of 4(s/2)-vect.ors and let.t.ing Xi, Yi be (s/2)-vect.ors,
t.he representat.ion is (XI, x., YI, y,) where IvI is x, = x. = O, L is YI = Y' =°
and FixCT is given by t.he equation x. = °= Y•. \Vithout. loss of generalil.y,
we assume t.hat. Y = X is a component. of FixCT.

Now consider t.he p'l' + l-component.s of the trans!at.ion piane t.hat lie
on FixCT. These have matrix equat.ions as follows X = O,Y = O,Y = X,Y =

X [~li ~~:] where it. may be nol.ed t.hat the components of FixCT are x. =

O, Y. = O, Y. = x. and generally Y. = x.B.i fòr i = 1,2, ... ,p'l' - 1.
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Since t.he collineat.ion fixes x = O, y = O, y = x it. follows t.hat the form
for rr is now

[

IEOO]
O D O O
O O I E
O O O D

Note t.hat. comparing the previollS decomposition, we have [~ ~] = A

and [~ ~] = B.

S· fi h l' fF' l [I _ED-l] [BI, B,,] [I E]mce rr lxes eac me o ,xrr so t. lat O D-l O B;, O D

= [Bd' ~::] which implies in part.iclllar t.hat. D- l B4,D = B4,. Since {B'i

i = 1, 2, ... , p'/2 - l} defines a spread set., and a spread set acts transitively
on t.he non-zero vect.ors of t.he associated vect.or space 11,/2, il. follows t.hat
D centralizes an irredllcible set of linear transformat.ions of V,/z. By Scbur's
lemma, il. follows t.hat D belongs to a field (finite division ring) isomorphic
to GF(pe). In any case, since BP = 1 also DP = 1 and hence D = 1 so t.hat
also B = 1.

\"Ie now may rest.at.e Ost.rom's t.heorem for generalized elat.ions of vector
spaces provided the set. of images of t.he fixed poil1t sllbspaces is a part.ial
spread. The previolls proof may be reread t.o prove t.he following theorem.

Theorem 12.5.11 Let V be a finite veetor spaee oJ dimension 2k over GF(p).
Let rr and T be generalized elations oj V with distinct axes.

Let 5 = {Fixrr (a, p) ,FixT (rr, p)}.
Then the jollowing are equivalente
(1) (rr, p) "" 5L(2, p') jor some positive integer z.
(2) 5 is a partial spread oj V.

(3) Representing (a, p) = ([ ~ ~], [~ ~]) then GF(p)[A] is afield

isomorphie to GF(p').
Furthermore, when the above eonditions are satisfied then 5 is a De­

sarguesian partial spread coordinatizable by GF(p') within the Desarguesian
piane eoordinatized by GF(pk) and the unique involution in SL(2,p') is the
kemel homology -1.



CBAPTER 12. HERING-OSTRO!Vf THEORY: ELll.TION-GENERATED GROUPS.213

The qllestions now are whether it can be gnaranteed that two Boor p
-collineat.ions always or ever have disjoint axes and if it is possible that, in
the above theorem a cOIùd be an elation while p is a Baer p-collineation.
Both of these qnestions have been resolved by Foulser when p > 3. Recall
that a Boor sllbplane of a finite projective piane of order n is a sllbplane of
order .;n.



Chapter 13

Foulser's Theorem:
Baer~ElationIncompatibility.

In this chapter, we demonstrate the high degree of incompatibilit.y between
Baer p-element.s and affine elations, acting on a translation pIane 1r of order
p2r. Among the most st.artling of such result.s is Foulser's theorem, asserting
that non-trivial Baer p-elements and nOIl-t.riviai affine elations cannot simul­
taneously ad on 1r if p is odd. The first section of this chapter establishes
st.riking constraint.s of this type, alt due 1,0 Foulser, that apply 1,0 translation
planes of odd arder. The secoIld sect.ion is concerned wit.h the even order
versions of Foulser's t.heory: here affine elations and Baer 2-elements are
compatible, buI, they constrain each otehr quite severely.

13.1 Baer-Elation Theory: Odd Order Case.

Vie begin with a theorem that. altows us t.o use Ost.rom's theorem for gener­
alsied elations due 1,0 Foulser.

Theorem 13.1.1 Let 1r be a translation piane 01 order p2k lor p> 3.
Il a and T are Baer p-colhneations in the translation complement whose

axes are distinct then Fixa n FixT = O.

Proof: Sketch. Suppose IlOt! Then there exist. a and T as Baer p-collineations
such t.hat. FixanFixT = X has maximum dimension r over GF(p). We note
that. if X is a proper subplane of Fixa then r < k/2 and if X is a parI, of a
line of Fixa t.his rest.riction is st.ill valido

214
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Note that any generalized elation leaves invariant any subspace containing
t.he axis. Hence, both a and T leave FixfT + FixT invariant and act fait.hfully
asgeneralizedelationsof(FixfT+FixT)/X = VI' Letal = a IVi,TI = T IVI'

We consider the following three possible cases:
(1) Fixal n FixTI = oon VI,
(2) both al and TI are non-trivial on VI and Fixal n FixTI i oand
(3) either fTl or TI = 1.
'Ve consider case (3) first and assume al = 1.

Exercise 13.1.2 Show that al = l if and only if a fixes FixT.

Since a fL"es FixT, a is a gcncralized elation on FixT so induces either
an elation or a Baer p-element. on FixT. In either case, we may choose a
decomposition for V as follows: LeI. FixT n Fixa = X O, Fixa = X o El) XI,
Fin = X o El) X 2 and V = X o El) XI El) X 2 El) X 3·

The group E generateci by the Baer p-collineations with axis FixT is an
elementary Abelian group p-group and ali nonidentity elements of this group
have the same axis. II. follows that O' normalizes E and since t.he order of a
is p, O' commutes wit.h some clement of E and we may assume that O' and T

commute (here we don't. insist on the maximality condition on intersection
dimension).

Exercise 13.1.3 Under the ass'Umptions that fT and T are Baer collineations
(generalized elations), and assuming the matrix acts on the right, show that

[l O
O

j]O l O
a-

I~ AI A 3

A 2 A, O

and that

[l O
O

j]_ BI I B 2
T - O O I

B 3 O B,

Exercise 13.1.4 Using the above exercise and the fact that u and T commute
show that A 3 = B2 = O and
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[

AI O O O]
Exercise 13.1.5 Change basis by ~2~' ~ ~ and realize that the

O O O I
generai form of T does not change to obtain that, without loss of general­
ity, AI = A. = I and A 2 = O. Then ,again using the fact that <7 and T
commute, show that that BI = B•.

Exercise 13.1.6 Show that <7T is a generalized elation by computing <7T and
its fi.'ted point space.

Exercise 13.1.7 Compute (<7T - 1)2 and show that the following matrix is
obtained:

[

O O O O]O O O O
O O O O .

2BI O O O

Now since (<7T - 1)2 = O, il. follows t.hal. BI = O. From the above exercise,
il. t.urns 0111. t.hat. t.he fJxed point. space of <7T is 1.00 large to be either aline
or a Baer sllbplane.

This proves case (3). Act.llally, t.his same proof can be adapted to show
haI. Baer p-element.s and elat.ions cannot coexist. when p > 2. We shall come

back to this in a later section.
Case (2) bot.h 0"1 and TI are non-trivial on Vi and FixO"I n FixTI f O.
SlIppose that. Fimi = FixO"/ X and FixTI = Fin/ X. Then FixO"/ X n

FixT / X = X or rather FixO"I n FixTI = O.
Hence, assume wit.hout. loss of generalit.y, t.hat y +X is in FixO"I - FixO"/ X

and writ.e y = II+U where Il is in FixO" and u is in FixT. Since 0"1 fJxes y+X,
il. follows that. O" also fJxes u + X. Since T fJxes X = FixO" n FixT pointwise,
it follows that (u, X) ç FixT. Note that u is nonzero by assllmption. But,
(u, X) ç o"(FixT) = FixTu -

1
• BuI., FixTu -

1 f FixT since if il. were this
wOllld imply that. 0"1 = 1 by an exercise above. Hence, T and T U

-' are
generalized elations of V both of whose fJxed point space properly contain X
which is contrary 1.0 the maximality condition.

Hence, it remains 1.0 consider
Case (1) FixO"I n FixTI = Oon Vi.
We give the proof in a series of lemmas.
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Lemma 13.1.8 (a - l)FixT $ X = Fixa and (T - l)Fixa €:l X = FixT

Proof: Consider (a - l)v for v in FixT. If (a -l)v # Othen v is noI. in X. If
(a - l)v is in Fixa n FixT t.hen a fixes v +X and clearly T fixes v +X so that.
al and TI fix a common nonident.ity element. and hence Fixal n FixTl # O.

Notice that. the kernel of a - l in FixT is FixT n Fixa and FiXTIX ""
(a - l)FixT. By the rank-nullit.y theorem, the resllit now follows.

Lemma 13.1.9 (a, T) = G leaves (a-l)FixT$(T-l)Fixa = V2 invariant.

Proof: Not.e that. (a - 1)2 = (T - 1)2 = Oand apply (a - l) 1.0 (a - l)v +
(T - l)u for v in FixT and u in Fixa realizing that (T - l)w is in FixT for
any tu in V. Hence, a-l and T-l and thlls a and T leave the given slIbspace
invariant.

Exercise 13.1.10 Check that the sum is a diTect sum.

Lemma 13.1.11 Let P2 = P I \'S. Let G2 = (a2,T2)' Then G2 "" SL(2,pZ) ,
for some positive integeT z.

Proof: The idea of the proof is 1.0 show that t.he seI. {Fixag , FixTf for
g,h in Gd is a partial spread and t.hen apply Ostrom's t.heorem. Not.e that.
172 and T2 are generalized elations of 11.,.

Not.e t.hat. Fixa2 = Fixa n V, = (a - l)FixT and FixT2 = FixT n V, =
(T-l)Fixa. These subspaces are bot.h of dimension k-1' and since we have
a direct sllm above, t.hese part.iclliar fixed point. spaces are disjoint. so that.
V, has dimension 2(k - T) and t.he generalized elations are of t.ype k - T.

Now assllme thel'e exist. p and 'Y in G which are conjugate 1.0 a and/or
T slIcb t.hat FixP2 # Fix'Y2 bilI. FixP2 n Fix'Y2 # O. Then, il. follows t.hat
Fixp n Fix'Y ç X $ Fixa2 n FixP2 contrary 1.0 the maximality condition.
Hence, G2 "" SL(2,p'). In part.iclllar, -l is in G2 acting on V2. This proves
the lemma.

Lemma 13.1.12 Let O be in G such that O2 = -1. Then 02 = 1.

Exercise 13.1.13 Note that any nonidentity collineation can pointwise fix a
subspace of dimension < k (one half the dimension of the translation piane).
Prove the above lemma by considering X $ V2 and realizing that G fixes X
pointwise and show that the dimension of X e V2 is 2k - r > k.
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Lemma 13.1.14 G"" G2 .

Proof: Since G fixes V2, t.he gronp indnced on V2 is isomorphic t.o G/ G[V2]
where G[V2] is t.he snbgronp whidl fixes V2 point.wise. The above exercise
shows t.hat. G[V2] = (1) .•

Remark 13.1.15 A result 01 Baer's states that in any finite affine piane,
an involution either fixes pointwise a line or a Baer subplane. Thus, the
dimension 01 a pointwise fixed subspace by an involution 01 a translation
piane is hall the dimension 01 the translation piane

Not.e t.hat. (_0)2 = 1 so t.hat. -O is an involnt.ion.

Lemma 13.1.16 The subspace fixed pointwise by -O contains V2 . Then
r = k/2.
Furthermore, O is in Z (G).

Proof: From t.he preceding, wc have 2(k - ,.) $ k so t.hat. k/2 < r bnt.
r < k/2 since X is eit.her contained wit.h aline of Fixa or is a subplane
of it. (not.e t.hat the int.ersections of subplanes is either contained within a
line or is a snbplane of each containing snbplaRe). So, r = k/2. Not.e t.hat
(wOw-1), = 82 = O2 = -1. It. fol1ows that. FixO-1wOW- 1 contains X (B V2

since G fixes X pointwise. Hence, 0-lWOW-1 = 1 which proves t.he lemma.
Thus, il. fol1ows t.hat. FixO is left invariant by G. Represent FixO = X(BW

where both X and W are k/2-dimensional subspaces.

Lemma 13.1.17 W (B (FixfT + Fixr) = V.

Proof: By t.he previons not.es on dimension, il. suffices t.o show t.hat. the
indicat.ed direct snm is, in fact., direct.

If O(v + u) = 11 + u for 11 in Fixa and u in Fixr t.hen recal1ing t.hat. O is
in Z(G), we have aO(lI + u) = O(v + a(u)) = v + a(u). Il. t.hen fol1ows t.hat.
a(u) - u = (a - l)u is fixed by O. BuI., O act.s as -1 on V2 so t.hat u = O.
Similarly, 11 = O.

Now leI. </>3 = </> I FixO. Then a3 and 1"3 are genera!ized elat.ionS of FixO
wit.h identica! fixed point spaces X since a does not. fix a nonident.it.y element.
ofW.

Hence, we obtain
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Lemma 13.1.18 (0"3,1'3) is an elementary Abelian p -group (of order p2).

Exercise 13.1.19 Show that the commutator subgroup C' of C fixes FixB
pointwise.

However, C' = C as C"" SL(2,p'). On the other hand, C leaves invariant
112 and B act,s on 112 as -l, 112 n FixB = O. Hence, there exist.s an element
9 of order p which fixes a nonzero point. of V2 which implies that. Fixg has
dimension strict.ly larger t.han k -a contradict.ion. Hence, this completes the
proof of case (3) and consequent.Iy t,he proof of the thearem.

It. might be point.ed out. t.hat. bot.h Ost.rom's and Foulser's thearems can be
stat.ed for p = 3 also alld in this case, it is possible t.hat, SL(2, 5) is generat.ed.
F\lrt.hermore, t.he full group generat.ed by elat.ions or Baer p -collineat.ions is
complet.ely det.ermined by t.he work of Ost,rom, Hering and Foulser.

\Ve ment.ioned above that. an adapt.ion of the.proof of case (3) will show
t.hat. it is not possible t.o have both Baer p-collineations and elat.ions acting
on a t.ranslat.ion pIane of odd order. \Ve stat,e t.his formally. We not.e that
t.his .case only requires t.hat p is odd.

Theorem 13.1.20 Let7l' be a finite translation piane of odd order pro
Then the collineation group of7l' does not contain both Baer p -collineations

and elations.

F\lrt.hermore, Foulser shows t.hat. ali Baer axes of p-collineations share
t.heir parallel classes.

Theorem 13.1.21 Let 'II' be a finite translation piane of odd order p2' for
p> 3.

IJ B denotes the set oJ axes oJ Baer p-collineations in the translation
complement then each subplane oJ B lies in the same net oJ degree p' + l.

Proof: In this case, the group generat.ed by any pair of Baer p -collineations
is SL(2,P') for some posit.ive int.eger z. Since any two distinct axes "-0 and
'11'1 share exactly t.he zero vect.or, we may decompose the space as '11'0 (!J '11'1 so
t.hat t.he collineat.ion group has the form

([ ~ ~]; ad - bc = l for ali a, b, c, d in K "" SL(2, p') ) .
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In part.iclllar, we have t.he snbgrollp ([ ~ a~' ] ;a in I< - {D}). Choose a

in t.he prime snbfielcl F '" GF(p) of I< ancl since p > 3, we may assnme
t.hat. a # a-l. We not.e t.hat a fielcl of 2k x 2k mat.rices over a fielcl GF(p)
cont.ains t.he scalars aln' Rence, a = >.f2k for À in GF(p) çt.he kernel of t.he
t.ranslat.ion l'lane.

In ot.her worcls, [~ ~] is a kernel homology if a is in t.he prime sllbfielcl

of I<. Rence, it. follows t.hat. [~ a~' ] = ga act.s as a scalar grollp on each

snbplane 71"0 and 71", so fixes each line of 71"a and each line of 71"0 incident. wit.h

the zero vector. Bill., [~ a~' ] [~ ~] _ [~2 ~] = h # I fixes each

line of 71"0 and fixes 71"[ point.wise. Since t.he fixecl lines of h are exact.ly t.he
lines of 71"1, it. follows t.hat. each line of "'0 ext.ending t.o aline of 71" is aline of
71"" Rence, each line of "'0 inciclent. wit.h t.he zero vect.or is aline of 71"1 ancl
conversely. Rence, t.he lines of 71"0 incident. with t.he zero vect.or are exact.ly
t.he lines of 71", which are incident. wit.h t.he zero vect.or.

F\lrt.hermore, more can be saicl abont. the st.ructure of the net. containing
the Baer axes ancl we shall come back t.o t.his in t.he next. sect.ion in more
generality bot.h for even orcler and for infinit.e order.

13.2 Incompatibility Theory: Even Order Trans­
lation Planes.

\\'e have seen in t.he previons sect.ion t.hat., when p is odcl, it. is not. possi­
ble t.hat. elat.ions ancl Baer p-collineat.ions can coexist. in t.ranslat.ion planes
of orcler pr. This is definit.ely not. t.he case in planes which are noI. t.rans­
lat.ion planes. For example, t.here exist. semi-t.ranslat.ion planes of orcler q2
clerivecl from cllla! t.ranslat.ion planes for which t.here is a Baer grollp of order
q and an elation grollp of orcler q as well. Furthermore, it. is possible t.hat.
Baer involnt.ions and elat.ions exist. even in DesargnesilUl affine planes of even
order. If 71" is Desargnesian of order q2 coorclinat.izecl by GF(q2) t.hen t.he
field ant.omorphism of orcler 2 which fixes GF(q) point.wise induces a Baer
involnt.ion.

When 71" is a semifielcl l'lane of even order, Ganley [14] has shown t.Iiat.
if t.here is a Baer involnt.ion t.hen t.he fnll group which fixes t.he Baer axis
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pointwise has order 2.

Exercise 13.2.1 Let 7f+ be any projective piane and 7f;; a projective sub­
piane. Let Cf be a centrai collineation. Then show that Cf leaves 7f;; invariant
ij and only ij the center and axis oj Cf are in 7f;; and jor some point P oj 7f;;

then Cf P is also a point oj 7f;;.

Exercise 13.2.2 Let 7f be a semifield piane with special point (00) on the
line at infinity. Let 7fo be an affine subplane oj order h oj 7f one oj whose
parallel classes is (00). Show there exists an elation group oj order h which
leaves 7fo invariant.

Note that., in a semifield pIane of even order q2, if there exists a Baer
sllbplane sharing the special point on the line at infinity then there exists an
elation grollp of order q which leaves the sllbplane invariant..

13.2.1 Maximal Elation Groups and Baer involutions.

Here we consider this more generally. The reader is referred to Jha and
Johnson [21] for more det.ails.

TheoI'em 13.2.3 Let 7f be a translation piane oj even order q2 jor q = 2'
Let 7fo be a Baer subplane oj 7f which is fixed pointwise by a Bae,' 2 -group B.
Ij 7f admits an elation group t: oj order q which normalizes 8 then 181:5 2.
Ij 181= 2 then the full collineation group which fixes 7fo pointwise has order
2.

Proof: The proof will be given as a series of lemmas. In particlllar, we
shall reqllire a more-or-Iess st.andard l'epresentation of the t.ranslation pIane
and Baer sllbplane.

Represent 7f is t.he foI'm {(XI,X2,YI,Y2); x;,y; are r -vect.ors over GF(2)
for i = 1,2}. Represent. with equation XI = YI = O and consider a spread
for 7f is t.he form Ix = O, y = O, y = xM where x is a 2r -vector and M is
a nonsinglllar 2r x 2,· matl'ix. We also assume, wit.h loss of generality, that
x = O, y = O, y = x are componellts of 7fo also and that the axis of t: is x = O.

This first. lemma depellds on the preVi01.1S represelltat.ions and should be
clear by now.
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Lemma 13.2.4 Let the kernel of."o be denoted by 1(0 where 1(0 is consider
as the set of r x r matrices centmlizing the slopes of "'0'

(i) B may be represented in the following form:

[

IBOO]
( ~ ~ ~ ~ ; B EÀ and 0,1 E>)

O O O I

(ii) The components of."o may be represented in the form

x = O, y = x [~ f~)]

for C in a set !1 of matrices where f : !1 >--> HomGF(2) (Vz" V2r ) where Vzr

is a 2r-dimensional vector space over GF(2) such that f(1) = f(O) = O.

Exercise 13.2.5 Prove that À is contained in the kernel 1(0 of "'0'

Note that since we are assllming that t: normalizes B, it follows that E
acts transitiveJy on the non-axis components of 'lro • Hence, we have

Lemma 13.2.6 t: may be represented in the form

[

IO C f(C)]

( ~ ~ ~ ~ ;CE!1).
O O O I

Exercise 13.2.7 Prove that if B has order> 2 then we may take À to include
{O, I, B, B + I} for some fixed B i' O or I.

[l
D O

f] , hd l" ,,~ [! O E
f~) ]

Now Jet aD =
I O I O
O I O I O E

O O O O I
t:.
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Exercise 13.2.8 Show that (JDTE is a Baer involution and a component y =

x [mi m,] is fixed by (JDTE if and only ifm3 = D-IE and Dm, = f(E)+
m3 m4

ED + miD. (Hint: Write out what the conditions are for a component to
be fixed by (JDTE recalling that D is in the kernel of K o and hence commutes
with E).

Lemma 13.2.9 Let SD = {(JDTC; C E lì}. The components by elements of
SD cover 11'. Hence, this implies that, for each C E lì , B-IC is also in lì
and furthermore, Bi and BiC is in lì for ali integers i, j.

Exercise 13.2.10 Prove the previous lemma.

Thus, we have:

Lemma 13.2.11 (J[TB-'C, (JBTC) fixes the same Baer subplane pointwise
(namely, {(O, y,B-IC, YI, y,)}).

Bence, Dm, = f(E) + ED +mlD for (D, E) E {(B, C), (I, B-IC), (B +
l, (B- 1 + l)C}.

Choose (D, E) = (I, B-IC), we obtain m, = f(B-IC) + B-IC + mi'
Now reapplying (B, C), we obtain

which implies that

Bf(B-IC) + (B + I)C + f(C) = Bml + miB.

Let go(C) = Bf(B-lC) + f(C).

Exercise 13.2.12 Fo,. k > l if

then
gk(C) = B"ml +mIB".

(Hint: Recall that BC = CB.)
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Since B is in the kernel of the subplane of order q , il. follows that Bq = B.
Hence, when q = 2', il. follows that g,(C) = Bml + mlB = go(C) + (B +

1)C.

Lemma 13.2.13 Let J(C) = L:Y::; Bif(C)B-i.
Then
(i) J(C) + BJ(B-1C) = (I + B)C and
(ii) J(B2C) = B 2J(C).

Proof:

Exercise 13.2.14 Showthatgk(C) = L:;~;;' Bif(C)B(2'-I)-i+L:;~, Bi f(B-1C)B2'-i.
Then let k = r and using the fact that g,(C) +gore) = (I + B)C conclude

that (i) is valido

Exercise 13.2.15 Since BC is in n, replace C by BC in (i) to conclude
(ii).

Since the above lemma is valid for ali elements C of n, letting C = I, we
obtain by induction that

J(B2
') = B 2

' J(1) = O.

Letting r = k, we have that J(B) = O. In (i) above, let C = B to obtain
(I + B)B = O. Hence, B = O or I contrary to our assumptions. Hence, the
Baer 2-group has order 2 or 1. If the order is 2 then since the group fixing
the Baer axis normalizes the 2-group fixing il. pointwise, il. follows that any
Baer group must commute with a given Baer involution which call1lot occur
unless the group has order 2 it,self. This completes the proof of the theorem.

13.2.2 Large Baer groups and Elations.

Considering possible incompatibility re!ations, we consider the co-existence of
a 'Iarge' Baer group and an elation group of order > 2. Recall that il. follows
from the previous subsection that. the existence of a Baer group of order > Vii
shows that the Bacr axis is a Desarguesian sllbplane. In this subsection, we
consider the possible incompatibility with Baer groups of order > Vii and
e!ation groups of order > 4.

Previously, we required that a given elation group normalizes a Baer group
and hence centralizes il.. A result of Dempwolff [9J shows that if a Baer group
of order > Vii normalizes an elation group E then il. must centralize il..



CHAPTER 13. FOUL5ER'5 THEOREM: BAER-ELATION INCOMPATIBILITY.225

Exercise 13.2.16 Let 'To be a translation piane 01 order 2r that admits a
Baer group S 01 order > ,jQ. Let E be any affine elation group. Let 52 be
a 8ylow 2-subgroup containing the lull elation group E' with axis E. 8how
that there exists a Baer group S' 01 order I S I contained in 82 , 8how that
S' normalizes the lull group E'.

Hence, if we lise t.he reslllt. of Dempwolff, we may assume t.he exist.ence
of an elat.ion grollp E and a Baer group S of order > ,jQ which cent.raiizes
each ot.her.

Theorem 13.2.17 Let'To be a translation piane 01 order q2 = 22r that admits
a Baer group 01 order' ~ 2,jQ. Il E is any elation group 017r then I E I::; 2.

Proof: \Ve formlliate t.he proof in a manner similar t.o t.he above. In par­
t.ieular, we t.ake t.he represent.at.ion exact.ly as in t.he previous subsection.
However, now we know that the elements of'x belollg 1.0 a field K '" GF(q)
that coordinatizes the Baer sllbplane so t.hat we may assume that the ele­
mellts of n belong t.o the field K .•

Lemma 13.2.18 For each C 01 n, then I C,X n,X I> 4.

Proof: Not.e that. ,X is a veetor space over GF(2) as il. is additive. Similarly,
C,X is a vector space over GF(2). Fìlrthermore, dim'x > r/2 so ~ r/2 + 1.
Hellce, C,X + ,X is a sllbspace of K so that the dimensioll of t.he intersection
C,X n,X is al.. least 2. Hence, the order is al. least 22 .

The impact of the previolls lemma is that there are at. least two Baer
grollps of order 4 which come from t.he same element Te·

Lemma 13.2.19 For each C in n, there exist distinct nonzero elements E
and F such that

(<TBTI, aBeTe) fixes a Baer subplane {(0,Y2B,YI,Y2)} pointwise lor BE
{E,F}.

Proof: LeI. CE and CD bein C,Xn,X. Recallt.hataDTEfixesy=x [mi m 2 ]
m3 m4

if and only ifm3 = D-I E and Dm, = I(E)+ED+mID. Thus,theindicated
grollp mllst. fix the same Baer subplane pointwise.

Noting that I(I) = O, leI. D = Band E = Il.o obtain Bm, = B + miB.
BuI., also we may let. D = BC and E = C 1.0 obtain BCm, = I(C) +BC2+
mIBC.

Thus, C(B + m,B) = I(C) + BC2 + mIBC.



2k-1 2k - 1
h(C) = C fk-l(C) + h_,(C)C .

Show that f.(C) = C2'm,B + m,BC2'.
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Exercise 13.2.20 Show that C2m,B + m,BC2 = f(C)C + Cf(C).

Exercise 13.2.21 Let f(C) = fo(C),h(C)= f(C)C+Cf(C) and, in gen­
erai, let

Nowlet k = rwhereq = 2r. Then, fr(C) = C 2r-'fr_' (C)+fr-' (C)C2r-' =
Cm,B + m,BC. From C(B + m,B) = f(C) + BC2 + m,BC, we obtain
em,B + m,BC = CB + CB2+ f(C).

Hence, (C + C2)B = C2r-. fr-'(C) + fr_,(C)C 2r-' + f(C). Since B can
t.ake on eit.her of t.he nonzero element.s E or F, t.his can only occnr when
C + C2 = Oand hence that. C = Oor I. Hence, we have shown t.hat the only
possible elations re are ro and 7'/. That is, t.he elation group has order at
most 2.



Chapter 14

The Translation Planes of order
q2 that admit SL(2, q).

In this final chapter, we consider the set of translation planes of order q2 that
admit SL(2, q) in the translation complement and mention a classification.
The theory developed from Walker's thesis whl:> cla.5Sified alI sllch translation
planes of odd order that have GF(q) in their kern, and 5ch-aefer dealt with
the even order case. FOIlIser and .Johnson showed that no further cases occur
when the kern hypothesis is dropped.

The reslllting classificatiOlI, of translation planes of order q2 admitting
SL(2, q), constitlltes one of the most powerflll tools in finite translation pIane
theory. As a demonstration, we show how the classification allows IlS to
completely determine t.he translation planes that admit large Baer grollps
that generate a nonsoIvabIe grollp.

We first consider the examples that arise in the classification.

14.0.3 Desarguesian Planes.

A Desargllesian pIane of order q2 may be coordinated by a field F ~ GF(q2)
and admits r L(2, q2) in the translation complement where the p-elements are
elations ",here pr = q. In particlllar, there is a regllIlls net R which is left
invariant by a sllbgrollp isomorphic to GL(2, q) .

227
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14.0.4 Hall Planes.

If the net R is derived, t,he grO\lp GL(2, q) is inherited as a collineation
group of the derived pIane. Hence, the Hall planes adm.it GL(2, q) where the
p-elements are Baer p-collineations.

14.0.5 Hering and Ott-Schaeffer Planes.

The reader is referred to Liinebnrg [31J for details.

Definition 14.0.22 Le{ Q be any set of q + 1 points in PG(3, q) sueh that
no four of the points are eoplanar. Then Q is ealled a (q + 1) -are.

The (q + 1)-ares are ali determined as follows:

Theorem 14.0.23 Let Q be a (q + I)-are then Q may be represented as
follows:

(1) (Segre [38J) lfq is odd then the representation is {(s3, s2t,st2,t3);s,t
inGF(q), (s,t) f (O, O)}. Even ifq is even, ifan arehas thisrepresentation,
we cali this a 'twisted cubic 'Q3 .

(2) (Casse and Glynn [8J) If q is even then the representation is Qa =
{sa+l,sat,sta,ta+l);s,t in GF(q),(s,t) f (O,O)} where Cl: is an automor­
phism ofGF(q) which is a generator.

Theorem 14.0.24 Let V4 denote a 4-dimensional vector space over K ~

GF(q). Consider the following matrix group:

(1) If q is not 3r or 2 and fJ = 2 then Sf3=2 is isomorphic to GL(2, q) and
acts triply transitive on the points of the twisted cubie Q3. Furlhermore, S2
aets irredueibly on V4.

(2) If q = 2r and fJ is an automorphism Cl: of J{ then sf3=a is isomorphie
to GF(2, q) and aets triply transitive on the points of the (q + 1) - are, Qa.
Furlhermore, sa aets irredueibly on V•.
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Theorem 14.0.25 Let E be PG(3, q) and consider the piane X4 = °where
the points are given homogeneously by (Xl,X2,X3,X4) far Xi in GF(q), i =
1,2,3,4.

(1) Then XlX3 = xg far (3 E {2,a} defines an ovai cane C~ with vertex
(0,0,0, l) and ovai O~ = {(l, t, t~, O), (0,0, l, O); t E GF(q)} in x. = O.

(2) The (q+ 1)-are Q~ = {(l,t,t~,t~+1),(O,O,O,l);t E GF(q)} is con­
tained in C~ and the q iines L, = ((0,0,0, l), (l,t,t~,t~+l)) intersect O~ in

(l,t,t~,O). Henee, there is a unique iine Loo = ((0,0,0,1),(0,0,1,0)) ofthe
ovai eone which does not contain a point of Q~.

We shali cali Loo the 'tangent' iine to (0,0,0, l). More generaliy, any
image of Loo under an eiement of the gTOUp 5~ is ealied the tangent iine at
the eorresponding image point.

(3) Consider the piane Xl = °whieh interseets QiJ in exaetly the point
(0,0,0, l). We shali cali Xl = °tlte 'oseuiating' piane at (0,0,0, l). Eaeh
image of Xl = °under an eiement of 5 iJ is also calied an oseulating piane
and the cOTresponding image point.

Theorem 14.0.26 If QiJ is a twisted cubic then /he set of q + 1-tangents
form a partiai spread T.

Theorem 14.0.27 Assume q is even and (3 = a for some automorphism of
GF(q). Let 52 denote a 5ylow 2-subgTOup of S".

(1) Then 52 fixes' a unique point P of Q" a.nd fixes the tangent piane
T(P).

(2) Choose any point Q of Q" - {P} and form the lines XQ and then the
intersection points I = T(P) n XQ and then the lines P I of T(P) ineident
with P. Let Ni(P) denote the two remaining iines ofT(P) incident with P
fori = 1,2.

Then R; = Ni(P)5" is a reguius and R j is the apposite regulus to R i for
i#).

To construct the Hering and Ott-Schaeffer planes we require t.hat q _ -l
(mod 3).

Theorem 14.0.28 When q = -l (mod 3) any eiement p of order 3 in S~

fixes a 2-dimensionai subspaee JI.[ pointwise.
(1) There is a unique Maschke compiement L for p sueh that V4 = LffiM.
(2) If (3 = 2 and q is odd then Tu LS2U MS2 is the unique S-invariant

spread of v,..
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The corresponding translation piane is called the 'Hering piane 'of order
q2

(3) If {3 = a and q is even then R.i U LSa U Msa is a S-invariant spread
of v., for i = 1 or 2 and for any automorphism a of GF(q).

The corresponding translation pianes are called the 'Ott-Schaeffer planes'.

Rernark 14.0.29 (1) The Hering and Ott-Schaeffer planes admit affine ho­
mologies of or·der 3 with q(q - 1) distinct axes.

(2) Schaeffer determine the planes when a is the Frobenius automorphism
and Ott generalized this to arbitmry automorphisms. (See Hering (17/, Scha­
effer (37/ and Ott (33}.)

(3) Each Ott-Schaeffer piane is derivable. If a is an automorphism for a
given Ott-Schaeffer piane then a-l is the automorhpism for its corresponding
derived piane. (See e.g. Johnson (27}. If q = 2r it turns out that the number
of mutually non-isomorphic planes is <p(r·) as the automophisms used in the
construction are genemtors of the cyclic group of order r·.

14.0.6 The Three Walker Planes of order 25.

Let

['" O !J;H CF('}
s O O

T s =
3s2 S 1
s3 3s2 s

and

[~, 1 O

l]O O
p=

O OO
O O -1

Then (T" p) = S "" SL(2, 5).
Furthermore, iet

[

t O O
= / O Cl O

H \ O O t
O O O

J];<é CF('} - {O})

Then, there are exact.ly three mutllally nonisomorphic spreads "2,"4, "6
of order 25 that admit S sllch that H fixes exactly 6 components of each
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piane and p fixes eit.her 2, 4, or 6 of t.hese components respectively. These
planes are det.ermined by Walker in [41).

14.0.7 The Ttanslation Planes with Spreads in PG(3, q)
admitting SL(2, q).

The trans!ation planes or order q2 with kernels cont.aining GF(q) and admit­
t.ing SL(2, q) as a col1ineat.ion gronp are completely determined by Walker
and Schaeffer.

Theorem 14.0.30 Let 7r be a tmnslation piane oj arder q' with spread in
PG(3, q) that adrnits SL(2, q) as a collineation gmup.

Then 7r is one oj the jollowing types oj planes:
(1) Desarguesion,
(2) Hall,
(3) Hering and q is odd
(4) Ott-Schaeffer and q is even
(5) one oj three pianes Dj arder 25 oj Walker.

14.0.8 Arbitrary Dimension.

There are exacUy three semifields planes of order 16 one each wit.h kernel
GF(2), GF(4) ancl GF(16) each of which i8 derivable. \Ve have considerecl
the planes derived from the semifields planes wit.h kernel GF(4) that admit.
PSL(2, 7) as a collineat.ion gronp. The semifield pIane with kernel GF(2) de­
rives t.he Dempwolff pIane of arder 16 which admit.s SL(2, 4) as a collineat.ion
gronp. Furt.hermore, t.he kernel of the Demp\Volff pIane is GF(2) (see e.g.
Johnson [26]).

Using methods of combinatorial grollp theory and linear algebra, FOIlIser
and I \Vere able to prove t.hat t.he only t.ranslation piane of order q' that.
admit.s SL(2, q) as a col1ineation grollp and whose spread is not in PG(2, q)
is, in fact., the Dempwolff planes.

Theorem 14.0.31 (Foulser-Johnson (13}). Let 7r be a tmnslation piane oj
order q' that admits a colhneation group isomorphic to SL(2, q) in its trans­
lation complement.

Then either the piane has its spread in PG(3, q) or is the Dempwolff piane
oj arder 16.
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Act.nally, t.he way t.hat. t.he proof was given, it. wa.~ not. neeessarily t.o
a.ssnme t.hat. 5L(2, q) aet.s faithfnlly on t.he t.ranslat.ion pIane. That. is, it.
is possible t.hat. P5L(2, q) act.s on t.he piane. In faet., t.his essentially never
OCCllfS.

CorolIary 14.0.32 Let 7f be a translation piane oj order q' that admits a
eollineation group isomorphie to P5L(2, q) then 7f is Desarguesian.

14.0.9 Applications.

Let. 7f be a t.ranslat.ion pIane of odd order p' t.hat. admit.s at least. two Baer
p-groups BI and B2 in t.he t.ranslation complement. with dist.inct. Baer axes.
Assume that. I Bi I> /il' 2: 3. Then, by Fonlser's work (whieh works in t.he
eharaet.erist.ic 3 case in t.his sit.nation), it. follows t.hat. t.he Baer axes lie in t.he
same net. of degree pr + l. The Baer groups generat.e a group G isomorphic
t.o 5L(2,p') for p' > pr/2 From here, it. follows t.hat t.he group G must be
5 L(2, q). Applying t.he previons t.heorem, we have:

Theorem 14.0.33 (Jha and Johnson (23j) Let 7f be a translation piane oj
odd order pr that admits at least tlOO Baer p-groups oj order ;, /il' 2: 3.
Then 7f is the Hall piane oj order p'.

R.eeall, t.hat. Fonlser's resnlt. is not neeessarily valid in t.ranslat.ion planes
of even order bnt t.here is considerable incompatibilit.y bet.ween elation and
Baer 2-groups.

Dempwolff analyzed t.he groups generat.ed by t.wo Baer 2-groups wit.h
distinct axes alid orders V'F if t.he translation pIane is of order 22r .

Theorem 14.0.34 (DemplOoljJ (gj) Let 7f be a translation piane oj even or­
der q2 and let G be a eollineation group in the translation eomplement lOhieh
eontains at least tlOO Baer 2-groups oj orders > Vii with distinct axes. Let
N denote the subgroup oj G generated by affine elations.

Then one oj the jollowing situa.tians aeeur:
(1) q2 = 16, G "" 5L(3, 2) and 7f is either the Lorimer-Rahilly or Johnson­

Walker piane, or
(2) G/N "" 5L(2, 2') lOhere 2' > Vii and N ç Z(G).

Using t.he incompatibilit.y resnlt.s previons ment.ioned, we know t.hat any
elation group eent.ralizing a Baer 2-group ean have order ::; 2. If, in faet., t.he
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order is l then we argne that, in fact., we obt.ain SL(2, q) so t.hat. t.he resnIt.s of
FonIser and myself appIy. lf t.he order of is 2 t.hen some gronp represent.at.ion
t.heory shows t.hat. G "" SL(2, 2') El N and we argne that SL(2, 2') contains a
Baer gronp of order > Vii which again shows t.hat SL(2, q) is a col1ineation
gronp. 'Ve not.e t.hat. the DempwoIff l'lane of order 16 does not occnr here
since t.here are no large Baer 2-gronps in this l'lane.

Hence, we lnay show:

Theorem 14.0.35 (Jha and Johnson (24)) Let 7T be a translation piane oJ
even order q' that admits at ieast two Baer groups with distinct axes and
orders > Vii in the transiation compiement.

Then, either 7T is Lorimer-Rahilly or Johnson- Walker oJ order 16 or
7T is a Hall piane.
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