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Chapter 1
André’s Theory Of Spreads.

André’s theory of spreads is arguably one of the most important events in
finite geometry: hardly any finite projective planes were known before André
seminal 1954-paper, [2]. André’s paper is ultimately responsible for the ex-
plosive growth in the discovery of finite non-Desarguesian planes during the
last thirty years. Moreover, the theory of spreads, which reduces the study of
translation planes to structures that live on vector spaces, has meant that all
the machinery of linear algebra, and hence also group repreentation theory,
can be brought to bear on the study of translation planes.

The lectures in this chapter will mainly be concerned with developing
the André theory of spreads and its computational aspect — spreadsets of
matrices. In the next chapter, the associated theory of spreads as structures
that live in projective spaces will be emphasized.

1.1 Affine Planes with a Transitive Transla-
tion Groups.

In this first lecture, we begin our study of projective and affine planes. With
the exception of three infinite families of projective planes called the planes
of Hughes, Figueroa, and Coulter-Matthews, all finite projective planes are
related to a class called ‘translation planes.’

In this lecture, we consider a fundamental representation of a translation
plane. This is the classical description of translation planes using vector
spaces due to André. In a later lecture, we shall consider the Bruck-Bose

approach using projective spaces.
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Less well known but of increasing importance are what might be called
coordinate methods. These include the study of quasifields, spread sets and
Oyama coordinates. Professor Jha will be lecturing on some of these topics
in the algebraic tract.

We begin with the definition of an affine plane, which we state in terms of
an INCIDENCE STRUCTURE (P, £,7). This means that P and L are disjoint
sets of objects called POINTS and LINES resp. and Z C P x L. To facilitate
discussion we make extensive use of geometric terminology: any set of points
incident with the same line is said to be collinear, two lines are DISJOINT
if they are not incident with any common point. Similarly we use notation
based on geometry and set theory: we write P € p, or say the point P LIES
ON the line P, if (P,p) € Z, and if P,QQ € P are distinct points that share
exactly one line we write PQ to denote the unique line that they share.

Definition 1.1.1 An affine plane # is an incidence structure (P, L,T) with
the following properties:
1. Given two distinct points P,Q € P, there exists a unique line p such

that (P,p) and (Q,p) € Z; thus PQ = p.

2. Given a point P and a line p such that P is not incident with p, there
cxists a unique line q disjoint from p such that P € q.’

3. There exists at least three noncollinear points.

Two lines of an affine plane are said to be PARALLEL, if they are disjoint,
and the notation p || ¢ means that lines p and g are parallel when p # q.
However, in order to force || to be an equivalence relation, we continue to
write p || ¢ even when p = q.

Remark 1.1.2 Let 7 = (P,L,T) be an affine plane.Then || is an equiva-
lence relation on the set of lines. The equivalence classes are called ‘parallel

classes’.

Proof: Routine exercise. m
We shall often use variations of the above terminology that often arise in the
literature. For example the parallel classes of an affine plane is often called
its SLOPESET, or its set of ‘infinte points’ or its ‘ideal points’. Similarly, the
class of any line is its SLOPE, or its ‘point at infinity’, etc.

We shall encounter many incidence structures related to affine planes:
projective planes, Desarguesian affine and projective spaces, nets, etc. We
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therefore give a general definition of an isomorphism from one incidence
structure to another.

Definition 1.1.3 Let m; = (P;, Li,Z;), i = 1,2, be incidence structures.
Then an tsomorphism from m onto my is an ordered pair of bijections

(p:P1— PoyAi: L1 — L)),

from the points and lines of m, onto the points and lines of my (respectively),
such that incidence is preserved in both directions:

(p,€) € I, <= (p(p), A(¥)) € Z>.

An isomorphism from an incidence structure 7 to itself is = an AUTOMOR-
PHISM, and the group of automorphism of w is usually denoted by Aut(w).

An automorphism of an affine plane is completely specified by its action on
the points: this is because two points determine a unique line and every line
lies on at least two points. Thus we have

Remark 1.1.4 Let 7 be an affine plane. Show that if (o,7) and (o, p) are
collineations of @ then 7 = p.

The above remark justifies the usage of only the point-bijection to refer to the
automorphism. This applies to any incidence structure where the incidence
is set-theoretic: this means that lines may be viewed as sets of points and
distinct lines are associated with distinct sets of points. All the incidence
structures we encounter may be regarded as being set-theoretic incidence
structures. This allows us to freely use set-theoretic language rather than
the more cumbersome terminology associated with incidence.

Thus, in any set-theoretic incidence structure, an automorphism (¢ :
P — Py : L — L) is full determined by the action of the associated point-
bijection ¢ : P — P; the action on the lines correspond to the usual action
induced by ¢ on the powerset 2F. We shall refer to ¢ as a collineation: thus
a collineation is the action on the points corresponding to an automorphism
of a set-theoretic incidence structure. In particular:

Definition 1.1.5 A collineation of a set-theoretic incidence structure 7 is a
bijection of its points that extends to an automorphism of . Autm will be
used to denote the collinetaion group of m and also its automorphism group:
both groups are of course isomorphic.
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Thus, the collineation group in the above sense is the faithful representation
of the automorphism group on the points. Accordingly, we shall not attempt
to seriously distinguish between the two concepts.

Exercise 1.1.6 Let ¢ be a bijection from the points of an affine plane A
onto the points of an incidence structure B such that ¢ maps collinear sets
of points onto pairwise incidence sets of points. Is it true in general that
¢ wnduces an isomorphism from A onto B? Show that ¢ does induce an
1somorphism when B is also an affine plane.

Definition 1.1.7 A TRANSLATION of an affine plane is a collineation which
leaves each parallel class invariant and fizes each line of some parallel class.

Our goal is to verify that the translations of an affine plane form a group
and this group acts semiregularly on the affine points, that is, the points
other than the parallel classes. The first step is to note that all non-trivial
translations are semiregular:

Lemma 1.1.8 A translation of an affine plane which fires a point is the
identity.

Proof: Exercise. m

The following remark may be taken as an alternative definition of a transla-
tion, equivalent to definition 1.1.7 above.

Remark 1.1.9 Let o be a non-trivtal collineation of an affine plane A.
Then o is a translation iff it fizes every parallel classes of A and does not
fix any affine point.
Proof: = follows from lemma 1.1.8 above. Conversely assume o leaves
invariant every parallel class but does not fix any affine point. So choosing
any affine point A, we have B := Ac is distinct from A, and let m be the
parallel class of AB. Let ¢ be any other affine line in the parallel class m.
It is sufficient to show that such £ are o-invariant. Choose an affine point
C € £. By hypothesis D = Co %= C. So CD is in the parallel class of m
and, like £, contains C. Hence both ¢ and C'D are lines in the class m that
contain C', so they coincide. Hence fo = C'D = ¢, since the image of any line
is completely determined by the image of any one of itss affine points and
the image of its parallel class. Thus all lines in the parallel class m are fixed
by o. m
We now consider collineations of the above type that might not fix any par-
allel class.
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Definition 1.1.10 A collineation fixing all the parallel classes of an affine
plane is called a DILATATION. Dilations that are not translations are called

kern homologies.

So by remark 1.1.9 above, dilations other than translations fix at least one
affine point point. If they fix more than one affine point then the set of fixed
points form a subaffine plane which actually coincides with the parent plane.
Thus, if 7 is any affine plane then the dilations other than translations, that
is, the kern homologics, fix exactly one affine point Z, called its center.
Moreover, remark 1.1.9 further implies that a non-trivial translation fixes all
the lines of ezxactly one parallel class. This class is called the center of the
translation. We summarize all this.

Remark 1.1.11 FEvery non-trivial dilation of an affine plane is either a
translation or a kern homology. FEvery non-trivial translation fives all the
lines of exactly one parallel class, called its CENTER, and no other affine
lines or points, while every non-trivial kern homology fizes exactly one affine
point, called its CENTER, and the other affine line that it fizes are just the
lines through its center.

Thus the set of all dilations of an affine plane form a group: the DILATION
group, and it has as subgroups: the TRANSLATION group and the KERN HO-
MOLOGY group. To discuss these further we recall some standard definitions

from permutation groups.

Definition 1.1.12 Let G denote a permutation group acting on a set 2.
Then the G-orbit of x € Q s denoted by

Orbg(z) == {27 | g € G},
and the STABILIZER of x € 2 in G s denoted by:
G, ={9€G |2’ ==z}
In particular, G is transitive on S if it has only one orbit, or equivalently:
z,yeQ=3Jge G332 =y. |

G is REGULAR 1if additionally G, is trivial for all a € Q2. More generally. a
permutation group G on ) is SEMIREGULAR if only the identity of G fizes
any element in 2.
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Using the above terminology, remark 1.1.11, yields:

Proposition 1.1.13 Let A be an affine plane and G its dilation group. Then
the translation subgroup T of G is normal in G and semiregular on all the
affine points of A. G is the union of T and all its maximal groups of kern
homologies, and any two distinct groups in the union have trivial intersection.

Proof: Exercise. m
The above result is far from optimal, particularly in the finite case, where

the finite case where theory of Frobenius may be applied. But the reader is
warned that glib generalizations to the infinite case might be dangerous.
We may now define translation planes.

Definition 1.1.14 A translation plane is an affine plane whose translation
group acts transitively on the affine points.

As an immediate consequence of remark 1.1.9 we have

Remark 1.1.15 An affine plane is a translation plane iff its translation
group is regular on the affine points.

A Frobenius group is a transitive permutation group in which the stabilser
of any two points is trivial. By proposition 1.1.13 we have:

Remark 1.1.16 The dilation group of an affine plane acts, faithfully, as a
Frobenius group on its affine points.

The point being made is that there is a deep and powerful theory for finite
Frobenius groups that has been exploited in finite translation plane theory.

We now describe a simple construction for translation planes, and even-
tually we shall demonstrate that the construction is generic. The method is
based on the notion of a spread, the most important concept in translation
planc theory. A spread is a partition of the non-zero points of a vector space
by a collection of subspaces that pairwise direct-sum to the whole space.

The lines through the origin in the real plane R? is the most familiar
example of a spread: the real translation plane consists of the cosets of the
components of the spread.

Viewing R? as a vector space over the rational field Q, we have a Q-
spread with the same components as before — the lines through the origin
— but now these components are infinite-dimensional subspaces. One can
of course generalize all this: start with a rank two vector space over a a
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skewfield F', then the one-spaces form a spread, and if F is an extension
of a subskewfield K then the ‘1-dimensional spread’ F-spread becomes a d-
dimensional K-spread, when dimy F' = d, and the additive cosets define a
translation plane.

Of course, the translation planes described above are the familiar Desar-
guesian planes, and indeed one could regard this construction as a definition
of a Desarguesian spread: thus e Desarguesian plane is the affine plane con-
sisting of the cosets of the components of a one-dimensional spread over a
skewfield F.

We suminarize our terminology for spreads and related items:

Definition 1.1.17 Let V' be a vector space, and let S be a collection of
mutually disjoint additive subgroups of (V,+) such that V = US and the
sum of cach distinct pair of additive subgoups of S is V. Then § is called o
SPREAD on V', or with AMBIENT SPACE V, and the subspaces on V are its
COMPONENTS. The associated incidence structure is defined to be

IIs := (V,C),
with pointset V', lineset
C:={z+S5|S€S,zeV},

and with set-theoretic incidence.

IfV is a vector space over a specified skewfield I\, such that all the compo-
nents of S are themselves K -subspaces of V', then S s called a K-SPREAD;
this spread is called a d-DIMENSIONAL K -spread if each component is K-
dimensional as a K-vector space.

Remarks 1.1.18

1. It will often be useful to draw attention to the ambient space V', asso-
ciated with a spread S, by referring to the pair # = (V,S) as a spread.
Thus, 7 is viewed as being synonymous with S.

2. Every spread on V" is a K-spread when K is chosen to be the prime
subfield of the skewfields over which V' is a vector space.

3. The direct-sum condition forces all components of a K-spread to have
the sarne dimension d over K ; d has sometimes been called the Ostrom
dimension of the spread, to distinguish it from the dimension of the
ambient space V' which is 2d, for finite d.
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We now note that the incidence structure of a spread is always a translation
plane, and later we shall establish that all translation planes arise in this

InanIer.

Theorem 1.1.19 Let S be a spread on an ambient vector space V.. Then
the associated set-theoretic incidence structure, II(V,S), definition 1.1.17, 1is
a translation plane. The full group of translations of I1(V, S is just the group
of translations of V regarded as a vector space:

@=T={T,:z—z+al|acV}

Moreover, if V is a vector space over a skewfield I{ such that the components
are K -subspaces, that is (V,S) is a K-spread, then the scalar action of K*
on 'V is a group of kern homologies of II(V, S); thus, the group of bijections
onV

K :={VzeV:zw (2)k| ke K"},

where (x)k denotes the image of x under k € K, is a group of kern-homologies,
c.f., definition 1.1.10 of the translation plane II(V,S).

Proof: Straightforward exercise. m

Of particular importance are the maximal skewfields K over which the com-
ponents are K-spaces. It will turn out that there is a unique maximal skew-
field with this property. This will become clear as we develop the theory
more fully.

Exercise 1.1.20 Let (V,S) be a spread and let T be the full translation
group of the associated translation plane. To each component ¢ € S assign
the subgroup T(o}, the global stabilser of o in T. Show that

UUGST{U} = T,

and that T, N T, 1is the trivial group, whenever p,v € S are distinct compo-
nents.

Thus the full translation group 7" of a translation plane admits a partition
by subgroups and thus appears to be analogous to the ambient space of a
spread on a vector space. Qur study of group partitions, in the next lecture,
will show that such group partitions may be identified with spreads, and,
in particular, that any translation group 7" may be taken to be the additive
group of a vector space.
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1.2 Group Partitions and André Theory.

In this lecture we develop André’s fundamental theory relating translation
planes to spreads. Our starting point is concerned with group partitions: a
collection of pairwise disjoint subgroups of a group G that union to G.

A partition of a vector space by its set of one-spaces is an example of a
group partition. A less trivial example arises when a field F' is r-dimensional
over a subfield K for then the additive group of F' is partitioned by its r-
dimensional K-spaces. Note, only the case r = 2 corresponds to examples of
spreads in the sense of definition 1.1.17.

Definition 1.2.1 (Group Paitition.) Let G be a group. A PARTITION of
G is a set N of nontrivial pairwise disjoint proper subgroups of G such that
G = UN; the members of N are the COMPONENTS of the partition and if all
the components in N are normal in G, then N is a NORMAL PARTITION of

G.

We have already noted that many normal partitions do not yield spreads,
in the sense of definition 1.1.17. However, if the ambient group G of a
normal partition is genecrated by any two of its elements then this is the only
possibility, by the following fundamental characterization:

Theorem 1.2.2 Let G be a group and N a normal partition of G such that
G =< N;,N; >VN;,N, € N, N, 7/—‘ No.

Then each of the following is valid:

(1) G is a direct product of any two distinct subgroups of N.

(2) each two distinct subgroups of N are isomorphic and

(3) G is Abelian.

Proof: (1) This is elementary as the elements of disjoint normal subgroups

commute.

(2) A group cannot be expressed as the disjoint union of two distinct sub-

groups. Hence N contains at least three members. So given distinct N; Ny €

N, we may choose a third Ny € N, and now N = N; & Ny and also

N = N, & Ny. Hence

]v o ir o A?'
L= 2,

as required.
(3) Since G is the direct sum of any two distinct members of N, we see that
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clements from distinct subgroups of N commute. So assume z,y € A € N
and choose a nonidentity b € B € N — { A}, and observe

zyb zby
zyb = byz since by ¢ A

zyb = yxb

R

Ty = yx, as required.

n
In view of the above it is desirable to call a normal partition N of a group

G a generating normal partition if G is generated by every pair of distinct
components Ny, Ny € N generate G as a group.

Theorem 1.2.3 Let N be the components of a spread on a group G. Then
the set-theoretic incidence structure whose pointset is G and whose lines are
the coscts of the elements of N is an affine translation plane whose translation
group consists of the bijections of G, for every a € G of type:

G—-G
g ga

Proof: A straightforward consequence of the theorem above.m

Theorem 1.2.4 Let G be a group and N a generating normal partition of G.
Let K, denote the set of group endomorphisms which leave each component
invariant.

Then K is a skewfield and G is a vector space over K.

The elements of the skewfield K are called the “kernel endomorphisms”
of the partition. The skewfield K is called the “kernel of the spread.”

Proof: Since G is abelian by the previous result, the endomorphisms in K
clearly form a ring. Hence it is clearly sufficient to show that all the non-
zero maps ¢ € K are bijective. Suppose a® = 0 for a # 0. Now we force
¢ = 0 by demonstrating that ¢ vanishes on every component B # A, where
a € A. We note that this is more than sufficient to force ¢ = 0 since any
two components of N generate G. As 0 = a? = (a+b)® + (=b)? then (a +b)
and b are on C and B respectively which are distinct components so that
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b? € BN C = 0 whenever b is in any component B # A. Thus all members
¢ € K are injective homomorphisms of G.

Next we check the elements ¢ € K are surjective.

Given nonzero v € G, we require w € G such that v = w?3¢ € K. Let V
denote the component containing v and let u € U be a nonzero element in
some other component of N, and define a third component Z that contains
u® — v. Now we claim that the required w is the unique point in the set
(Z +u) N X. Note that the intersection is unique since it is the intersection
of two lines of the affine point associated with the spread N.

It is now sufficient to show that © — w? = 0, and we demonstrate this by
showing that v —w? € VN Z. Since w € V, v — w® certainly lies in V. Thus,
it is sufficient to verify that v —w? € Z. But, by definition, u® —» € Z, so it
is sufficient to verify that(v — w?) — (u® —v) = (w —u)® € Z. This condition
holds because w € u+ Z means that (w—u) € Z and Z is ¢-invariant. Thus,
¢ is surjective. m

The following standard notation concerning linear groups will be used
thoughout owr lectures.

Definition 1.2.5 Let V' be a lcft vector space over a skewfield K. Let o be
an additive mapping on V. We shall say that o is K-semi-linear if and only
if for all @ in K and for all x in V then o(az) = afo(x) where p is an
automorphism of K. We shall say that o is K-linear if and only if p = 1.

The group TL(V, K) of all bijective K -semi-linear mappings is called the
general semi-linear group. The subgroup GL(V,K) of linear mappings is
called the general linear group.

Let F' denote the prime field of K. Then UL(V,F) = GL(V, F). Since
any additive bijection is in GL(V, F'), the notation GL(V,+) is always used.

In 1954, André provided the foundation for the theory of translation planes
by proving that any translation plane may be identified with a normal parti-
tion of a group which actually turns out to be a vector space over a skewfield:

Theorem 1.2.6 (The Fundamental Theorem Of Translation Planes.)

Let @ be a translation plane with translation group T and let P denote the
set of parallel classes of 7.
Let T, denote the subgroup of T fizing all the lines of p, for p € P. Then all
the following hold.
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1. T=U{T, | p € P} is a spread on T and hence T is a vector space over
the associated kernel K.

2. 7 is isomorphic to mp, the translation plane constructed from the spread
of T

3. The full collineation group G of nr is TGo where Go is the full sub-
group of the group GL(T,+), that permutes the members of I' among
themselves.

4. The full collineation group G of wr is TGo where Go s the full sub-
group of the group T'L(T,K) that permutes the members of I' among
themselves.

Proof: (1) 7, is the subgroup of T fixing individually all the lines through
p, hence it is trivially normalized by 7" since T fixes p. Since every translation
in 7" has a unique center, T" gets partitioned by its normal subgroups of type
1,. It remains to show that T' = T, ® T, whenever p and gq are distinct
points on the translation axis. Let ¢ € T, and suppose t : a — b, where
a is any affine point, and assume b # a, to avoid trivialities. Since T}, and
T, are normal and disjoint, it is sufficient to verify that ¢ €< T,,, T, >. Let
pa M gb = z. Since T, has as its non-trivial orbits all the affine on each line
through p, there is a g € 7, such that g : a + z and, similarly, there is an
h € T, such that h : z — b. Now clearly a?* = b. But the regularity of T
now forces ¢t = gh. Thus T' is generated by any two distinct 7T, and 7.

(2) Fix an affine point. O of «, and to each affine point a of 7 assign the
translation 7, € T that maps O onto a. Counsider the bijection © : a — 7,
from the affine points of = onto the points of the vector space T'.

Consider the affine point a € A, where A is any affine line of 7. Let A,,
be the unique line parallel to A through O with slope m. Clearly, 7, has
A,, as its O-orbit, so (A,,)© = T,,..

Next note that the points of A may be expressed as O™*™, as the group
T acts transitively on the affine points of each line through m. Now the
image (O™T)© = 1,T,,, i.e., a coset of T,,. Thus we have shown the
bijection © maps the lines of @ to cosets of the spreads associated with T,
which means © is a bijection from the affine plane 7 onto the affine plane
associated with the spread on 7' that sends lines onto lines. Hence, © is an
isomorphism between the planes.

TTH
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(3) The translation subgroup of the full collineation group G of 7 may,
of course, be identified with T itself. Let H = Gp, so G = HT, by the
transitivity of 7, and by its regularity we further have H N'T = {1} (the
identity element). We next verify that H is in GL(T, +).

We define addition in = as follows: a + z = 7,(z). It follows that this
makes (7, +) isomorphic to 7.

Since T is normal in the translation plane 7, we have for every a € T a
unique @’ € T such that

ht, = 1.h

50
hto(z) = T0h(z)VZ €T

hence
h(a+ z) = a' + h(z)vVz € T.

Putting z = O, we observe that @’ = h(a) and so the above identity yields
h(a + z) = h(a) + h(z)

so h is additive and hence lies in GL(T, +), and permutes the members of I'.
Conversely, any map with these two properties also permutes the cosets of
the components of I', and is thus a collineation of 7. Thus (3) is established.

(4) By (3), H is the largest subgroup of GL(T,+) that permutes the
members of I' among themselves, and the kernel of this representation of H
on I' is thus normal in A and coincides with K£* by definition. The normality
of K * now forces H to be semilinear over K.

This completes the proof of the theorem. =

Since the translation group of any spread (V, S), associated with a trans-
lation plane 7, is additively isomorphic as an additive group to the translation
group of m, all such spreads (V,S) have isomorphic additive groups (V,+).
The non-zero kernel endomorphisms of such spreads are permutation iso-
morphic to the the kern homologies, acting on the plane. This suggests that
all such spreads, associated with a fixed translation plane, are related by a
spread isomorphism semilinear over their kern, and more generally that any
collineation the of the planes associated with the spreads that sends zero to
zero must be a semilinear map of the type indicated. This is indeed the case
as we shall now verify.
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The main problem is to verify that such collineations are additive; we
shall verify this directly rather than attempting to derive it from part (3) of
the fundamental theorem above.

Theorem 1.2.7 Let (V,S) and (W, T) be spreads defining isomorphic trans-
lation planes, and suppose that ¥ : W — V is any isomorphism from the
translation plane llyy,r) to the translation plane Ilvs) such that O — 0O; 9
exists since the planes admit point-transitive translation groups. Let K and
L be respectively the skewfields of kernel endomorphisms of the spreads (V,S)
and (W,T). Then there is bijective ring isomorphism ¢ : L — K such that
there is a K —L-semilinear bijection ¥ : V — W, satisfying ¥(aw) = a¥(w),
foradlweW,ae K.

Proof: Since the translation groups of the two planes are isomorphic, V and
W are isomorphic additive groups, so (V,+) can be made into a K-vector
space such that a K-linear bijection from V to W exists ad this bijection
identifies the spread 7 with a spread on V, such that the components of 7
are K-spaces, and that K is still the full ring of kernel endomorphisms.

Thus we consider S and 7 to be spreads on the same vector space (V, +),
over K, such that K is the largest ring leaving the components of 7 invariant.
Since ¥ is a collineation of the associated planes it must map the components
of 7 onto the components of S. Since the non-zero kernel endomorphisms of
the spreads are subgroups of GL(V, +) that leave its components invariant it
is clear that the planar isomorphism ¥ must conjugate the kernel endomor-
phisms of 7 to &, and since the planes are simorphic under ¥ we actualy
have a field isomorphism ¢ : K’ — L, K — k¥, such that ¥(av) = a¥¥(v),
for a € K, v € V, and in particular that V(—z) = —¥(z) for all z € V.

It remains to show that ¥ is bijective. It preserves, in the associated
affine plane, the parallelogram 0, a, b, a + b, whenever a and b are in different
components of 7', hence in such cases ¥(a + b) = ¥(a) + ¥(b). If they are
in same component W then we esatblish this by choosing u ¢ W and noting
that:

V(a+u+b)=Y(a+u)+ () U(a) + ¥(u) + ¥(b)
U(a+u+b)—¥Y(u)=Y(a+u)+T(0) = Y(a)+ ()
U(a+u+b)— U(+u) =TV(a+u)+ ¥(b) U(a) + ¥(b)
U(ia+b0) +P(u) — ¥(+u) =¥ (a+u)+¥(b) = ¥(a)+ ¥(b)
U(a+b)+ V(u) —¥(u) =T(a+u)+ ¥(b) U(a) + ¥(b)



CHAPTER 1. ANDRE'S THEORY OF SPREADS. 15

U(a+b) =¥(a+u)+T(b) = ¥(a)+ V()

provided u is further restricted not to lie in the component containing a + b.

"
As an immediate consequence we have:

Theorem 1.2.8 Let (V,S) and (W,T) be spreads, with associated transla-
tion planes ms and #(W,T). Let L and T denote the kernel endomorphism
rings of (V,S) and (W, T) respectively.

Let U : W — V be an additive bijection. Then the following are equivalent:

1. U is an isomorphism from the spread (W, T) onto the spread (V,T).

2. There is a bijective kern isomorphism v : K — L such that U is a K-L
semilinear isomorphism, with companion isomorphism 1, that induces
a spread isomorphism from (W, T) onto the spread (V, T).

3. W is an isomorphism from the plane (W, T) onto the plane =W, T).
In view of the importance of the above reformulate as follows:

Theorem 1.2.9 (Isomorphism Theorem For Translation Planes.) Let ® :=
H(v,sy be a translation plane defined by a spread (V,S), where the components
of § are K-subspaces of the K -vector space V, where K is any skewfield.
Suppose that there is an affine-plane isomorphism:

fid—

from the translation plane ® to a translation plane U := wr), defined by
a spread (W, R), where the components of R are L-subspaces of the L-vector

space W, where L is any skewfield.

1. Then L and K are isomorphic skewfields and ¢ may be considered a
semi-linear mapping from W onto V.

2. If ® = W then ¢ is an element of the group TL(V, K).

3. The full automorphism group G of the translation plane 7 is a semi-
direct product of the translation group T by the subgroup Gy of TL(V, K)
which permutes the components of the spread S.
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The subgroup Gy of 'L(V, K) is called the ‘translation complement’ of G or
m. GoNGL(V, K) is called the ‘linear translation complement.’

Proof: See above. m

We now make some conventions regarding the kernel of a spread, or its
kern, as we shall usually call it. These relates to the fact that the components
of a spread S may be regarded as being subspaces of the ambient vector space
V, over any subfield F' in the kern of S, in the sense of theorem 1.2.6 above:
so in general there is a multitude of dimensions associated with a spread —
depending on the field or skewfield over which we choose to represent it. If
the ‘chosen field’ is F', in the kern K of the spread S, then we shall sometimes
call F the ‘chosen kern’, the ‘component kern’ or the ‘intended kern’.

Definition 1.2.10 Let V be a vector space over a skewfield F' that contains
a spread §), consisting of F-subpaces; so F' is the component kern. The
RANK OVER F of (V,8) s the common dimension of the members of S: so
an n-dimensional F-spread S has ambient space V' with dimension 2n; now
7 := (V,8) IS REGARDED AS BEING AN F-SPREAD OF F-RANK n. The

RANK of S is its rank over K, the kern of S.”

Since any rank two vector space, over an arbitrary skewfield K, partitions into
a collection of rank one spaces, we conclude that one dimensional spreads
exist over every sfield! But, as indicated earlier, we may now regard these
spreads as being F-spreads of rank > 1 whenever F' is a subfield of K. Thus
F-spreads of F-rank n exist in abundance. This raises a problem — not too
hard but certainly non-trivial — how do we know whether any spread that
we construct is not a rank-one spread in disguise? Putting it somewhat more

provocatively:

Are ALL spreads rank ONE!? (1.1)

So we need to first of all describe all rank one spreads, that is, spreads that are
rank one over their full kern. We begin by officially adopting the definition:

Definition 1.2.11 A rank one spread is called a DESARGUESIAN SPREAD.

A rank one spread is isomorphic to a spread § on the vector space V = K?,
where

1. K is a skewfield acting wlog from the left in the standard way:

Vk, kl,kg € K : k‘(}i:]_, kg) = (kk‘l, kkz),
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2. The components of § are the subspaces of type ‘y=xm’, m € K, and
z = 0, as In coordinate geometry.

The proof follows from the fact that any rank two vector space may be re-
garded as some K2, with K acting form the left, and all the rank-one spaces
must be components. The associated affine plane consists of all cosets of the
spread components and hence the lines are of form y = zm + b and y = ¢.
Thus rank-one spreads correspond to precisely the high-school interpretation
of the term. Hence we have justified our terminology by showing that:

Remark 1.2.12 (Desarguesian Spreads.) The following are equivalent for
a spread S:

1. § is rank one over its kern;
2. The affine plane ws, associated with S, is a Desarguesian plane.

Note that we have now described all one-dimensional spreads over any skew-
field K! In the finite case all finite skewfields are Galois fields, so all rank
one spreads are REALLY! known. So the obvious next step is:

| INVESTIGATE THE RANK TWO SPREADS OVER A GALOIS FIELD!| (1.2)

Dwuring the last twenty years a great deal of attention has been given to this
project; there are also associations with other areas of finite geometries, par-
ticularly flocks and generalized quadrangles. Note that the existence of rank
two spreads obviously settles as a by-product the ‘first question’ for spreads,
see (1.1). The principal tool for such investigations involve spreadsets, the
main concern of the next lecture.

1.3 Spreadsets and Partial Spreads.

In the previous lecture, we saw that by the fundamental theorem of transla-
tion planes, theorem 1.2.6, translation planes may be identified with spreads.
Here we introduce tools and concepts that arise inevitably in the study of
spreads. The concept of a partial spread describes collections of subspaces
of a vector space that putatively extend to a spread. The other concept that
we introduce aims at ‘coordinatizing’ spreads and partial spreads by sets
of matrices (in the finite-dimensional case), exploiting the fact that spreads
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(and hence translation planes) are always associated with some vector space.
These sets of matrices, or linear maps in the general case, are called [partial]
spreadsets: they provide the most important computational tool in the study
of translation planes.

In the motivating case, a spreadset is a set of ¢* matrices M C GL(n,q)U
{O} such that any two members of M differ by a non-singular matriz and
O € M. Such a set yields a spread 7p in V = GF(q)" & GF(q)": the
components are y = M, M € M and z = 0, mimicking the the construction
of elementary coordinate geometry. The spread m 4 actually turns out to be a
generic form for any GF(g)-spread on V: so spreads may be computationally
investigated via their spreadsets of matrices.

The complete definition of a spreadset is a routine generalization of the
above, assigning to any spread a spreadset of linear maps that represents
it. As in the finite case, this association enables all the major tools of linear
algebra to be brought to bear on the study of spreads. When the underlying
field GF(q) is generalized to an arbitrary skewfield K the cardinality and
dimensionality condition implicit in |M| = |K|" needs to be reformulated.
This will be achieved by defining the familiar concepts of semiregularity and
transitivity from permutation group theory so as to apply to SETS of possibly
infinite bijections.
~ Accordingly, we begin by explaining what transitivity and regularity mean
in the context of a set of permutations on {2, where {2 may be an infinite set.
The definitions here generalize the corresponding definitions for permutation
groups listed in definition 1.3.1.

Definition 1.3.1 Let G denote a set of bijections of a set 2. Then the

G-orbit AT z € § s
Orbg(z) := {29 | g € G}.

G 1is called a TRANSITIVE set of maps on Q if Orbg(z) = Q for all z € Q.
The set G 1is called semi-regular if:

(z,y) e QA x Q= 3lge GEdzg9 =y,

and G 1s a REGULAR set of bijections of §2 if it semiregular and transitive on
Q.

For finite sets, it is straightforward to check that all of the above concepts
coincide provided G and 2 have the same size:
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Remarks 1.3.2 If G is a set of bijections on a finite set Q2 and |G| = |Q]
then the following are equivalent:

(a) G is semiregular;
(b) G is regular;
(c) G is transitive.

Note that condition (b) above implies |G| = | K|, even in the infinite case,
and hence we shall use it as the basis of our general definition of a spread.
However, we begin by introducing spreadsets, not in their most general form,
but rather in the form that they are most frequently encountered: as sets of
¢" matrices in GL(n, g) := GL(n,q)U{O} that act regularly on GF(¢)"—{0}.

Definition 1.3.3 An n X n SPREADSET OF MATRICES over GF(q) is a set
of matrices

{0} c M c GL(n,q)

such that (1) IM| = ¢*; (2) Any two distinct member of M differ by a
non-singular matriz.

It is immediate that the action of the above M* := M—{0O} on GF(q)"—{0}
is regular and that the regularity of M* is actually equivalent to the definition
of a finite spreadsets. Thus the concept of a spreadset, as indicated earlier,
can be generalized to arbitrary vector spaces over any skewfield as follows:

Definition 1.3.4 Let K be any skewfield, and V a vector space over K. A
K-SPREADSET of V is a set M of linear maps:

{0} Cc M CGL(V,K)
such that M* acts as a reqular set of maps on V™.

Thus, a finite set of matrices over K = GF(g), is a spreadset of matrices in
the sense of defintion 1.3.3 iff it is a spreadset of linear maps in the sense of
definition 1.3.4 above: just apply remark 1.3.2 above.

It is important to realise that the non-singularity-of-difference condition,
in the definition of finite matrix spreadsets, definition 1.3.3, may be used in
characterising general spreadsets:
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Remark 1.3.5 Let K be any skewfield, and V' a vector space over K. A set
M of linear maps of V' satisfying:

{O} c M C GL(V,K)

18 a spreadset iff:
1. A,B € M are distinct then A— B € GL(V, K);
2. If (z,y) € V*xV* then there is an element M € M such that zM = y.

In particular, a set M of n X n matrices over GF(q) is a spreadset iff they
form a matriz spreadset in the sense of definition 1.3.8, that is, M has q"
elements, including zero, any two of which differ by a non-singular matriz or
zero.

Proof: The second condition means that M?* is transitive on V*, and the
first condition means that M* is semiregular on V*, since otherwise z(A— B)
would be zero for some z € V*. =

With every spreadset we shall associate a collection of subspaces which
turn out to be spreads. The notation that we use here is suggested by ele-
mentary coordinate geometry, and similar notation will be used throughout
these notes, sometimes without explicit definition.

Definition 1.3.6 Let W be a vector space over a skewfield K and let M be
a K-spreadset on W. Then wa s a collection of subsets of V=W & W
defined by

m = {Y}U{y=azM| M e M},
where Y = O @ W and y = M, m € M, denotes the subset {(w,wM) |
we W} of V—soy =0, also called X, is in mp. The collection waq s
called the SPREAD ASSOCIATED WITH M.

We now justify the terminology by verifying that 7w is a genuine K-spread:

Remark 1.3.7 Let W be a vector space over a skewfield K. Let M is a
K -spreadset on W. Then its associated spread T, definition 1.5.6 above,
is a collection of K-subspaces of V' that form a K-spread, in the standard
sense, with ambient space V =W @& W.
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Proof: The linearity of M over K ensures that {(z,zM) | z € W} is a
K-subspace of V = W @ W — the linearity means that the K-action on
W commutes with the M-action. Next we note that y = zM and y = zN,
where M, N € M, are disjoint K-subspaces of V', for M # N: for otherwise
M — N would be singular, contradicting M — N € GL(n,W), c.f., remark
1.3.5. Given (a,b) € W* & W*, there is an M € M such that b = aM, by
the transitivity condition on M. Hence, it easily follows that the subspaces
in the structure mM} form a pairwise disjoint cover of V*. It remains to
check that V' is a direct sum of any two of the ‘components’ in 7yM}. (This
is obvious if W is finite dimensional over K, in particular if M is finite.)
The main case is when the components are y = M and y = zN, where
0 # M # N # O, and here we need to show that any (a,b) € V lies in the
sum of y = M and y = zN. Thus, we need to show that

(a,b) = (u,uM) + (v,vN)Ju,v € W,
or, equivalently, for some u,v € W:

= uU+r
b = uM+ovN

and this means b — aN = u(M — N), which can be solved for u by the non-
singularity condition on M — N, remark 1.3.5, and the desired result follows
easily. m

Thus to find a spread, and hence a translation plane of order g™, it is sufficient
to find a set of ¢" — 1 matrices in GL(n, ¢) such that any two of them differ by
a non-singular matrix. This follows from the above, also c.f. defintion 1.3.3.
We illustrate this with an important example, discovered first by Donald

Knuth.

Example 1.3.8 (Knuth’s y-spreads.) Let K = GF(q) be a finite field,
where ¢ = p" > p is odd. Let 7y be a fixed nonsquare in K, and ¢ € Gal(K)*

Then

Proof: Because v is non-square, the determinant u? — t{o + 1) cannot be
zero unless u = t = 0. Thus we have an additive group of matrices whose
non-zero elements are non-singular. This means that the difference between
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any two distinct members of M are non-singular, and since we have g™ = ¢?
such matrices M is a spreadset by remark 1.3.5. »
This is the first spread of rank 2 that we have displayed, although we have
not yet shown that it is not Desarguesian, i.e. a rank-one spread in disguise.
Once we have developed some more machinery this will become immediately
obvious. At this stage more compuational effort is required: as an exercise the
reader is invited to verify that the group of kern-homologies is not transitive,
as a group of homolgies: this means the spread cannot be Desarguesian and
hence must be rank two — thereby answering the ‘first question’ (1.1), and
also contributing to (1.2).

Note also that the argument used in example 1.3.8 above yields a more
general result: the proof is left as an exercise, and involves recalling the
connection between spreads and translation planes:

Proposition 1.3.9 An additive group M of n x n matrices over GF(q)
18 a spreadset iff the group has order ¢* and its non-zero elements are all
nonsingular. Moreover, the associated spread maq corresponds to a translation
plane that admits a group of kern homologies of order g — 1.

The spreadsets of the above type are called additive spreadsets, and will be
treated in detail later on. They form a major branch of translation plane
theory with their own methodology, related to non-associative divison ring
theory.

We now turn to the converse of remark 1.3.7. The eventual goal is to
show that every spread is associated with a spreadset. But we first take
the opportunity to work from more general premises, by introducing partial
spreads and the partial spreadsets that coordinatize them.

Definition 1.3.10 Let 7 be a non-empty collection of subspaces of a vector
space V' over a skewfield K.Then 7 is a PARTIAL SPREAD on V, and its
members are its COMPONENTS if V = A@ B for every pair of distinct A, B €
T, and if |T| < 2 assume explicitly that V/ A= A for A€ T.

Of course, V/A = A applies automatically if 7 has at least three components.
Note also that although subsets of spreads are always partial spreads, there
are many partial spreads that cannot be extended to spreads: thus, there are
maximal partial spreads that are not spreads.

To construct partial spreads, we generalize, in obvious ways, the notation
and concepts that relate spreadsets to spreads in definition 1.3.6. We continue
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with our convention of applying the language of coordinate geometry to any
direct sum V = W @ W, c.f. definiton 1.3.6.

Definition 1.3.11 Let W be a wvector space over a skewfield K. Then a
non-empty set T C GL(V, K) U {O} is a PARTIAL K-SPREADSET if

T,Ther=>T~Ts € GL(V,K).

The associated structure of T is the collection of subspaces of V=W @& W
given by:

7, i={y=aT|T € r}U{Y}.
In general, 1 C GL(V,K) U{O} is a SPREAD SET if 7 is a K-spread where
K s the prime field over which V' 1is a vector space.

Note that we have included {Y'}, as our earlier convention requires us to do
this if 7 is a spreadset, c.f., definition 1.3.6. Stating the obvious:

Remark 1.3.12 If 7 is a partial spreadset on a vector space W then =, is
a partial spread on V. = W @ W, and =, is a spread iff 7 is a spreadset.
Hence m, 1s called the PARTIAL SPREAD ASSOCIATED WITH THE PARTIAL

SPREADSET T.

It is worth restressing that the above remark assumes that the spread on
W @& W by a spreadset 7 of W always includes ¥ := O @& W, unless the
contrary is indicated: without this assumption 7, fails to be a spread when
7is a spread.

The following easy exercise emphasizes that in the finite case a partial
spreadset is just a set of non-singular matrices, possibly augmented by O,
such that any two differ by a non-singular matrix.

Remark 1.3.13 Let V' be a vector space over a skeuwfield K. A non-empty
set T C GL(V, K) s a partial spread iff T* is semiregular on V*.

In particular, if T C GL(n,q) is a non-empty set of matrices then 7 is a
partial spreadset iff and the difference between any two distinct matrices in
T 18 non-singular.

Proof: Exercise. m
We now introduce the notion of isomorphic partial spreads, generalising the

corresponding notion for a spread.
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Definition 1.3.14 Let m; = (V;, ), i = 1,2, be partial spreads, where V;
and V3 are the underlying vector spaces over a common skewfield K. Then a
K -linear bijection ¥ : Vi — V5 is A K-LINEAR ISOMORPHISM from 7, to s,
or 11 to 7o, iff it bijectively maps the components 7, onto those of 1.

More generally, an ISOMORPHISM from ; onto mo ts an addilive isomor-
phism from Vi onto V, that maps components onto components.

There are of course a number of equivalent ways of defining isomorphisms
among partial spreads, for example an additive isomorphism from V) onto
V5 is an isomorphism of the associated spreads iff it maps components onto
components. The usual terminology associated with isomorphism, automor-
phism etc. will be used without further comment.

The following theorem implies that all spreads arise from spreadsets:
there is an isomorphism from any K-spread (or partial spread) to the spread
arising from a spreadset (or partial spreadset). This is one of the most im-
portant connections in translation plane theory.

Theorem 1.3.15 ( Equivalence Of (Partial) Spreads and Spreadsets
Let V be a vector space over a skewfield K, and let T a partial spread of sub-
spaces, with at least three components X, Y, W,.... Choose a K-linear
bijection IDENTIFYING Y with X:

v:Y — X.

Then relative to (X,Y,V):
1. For every W € T\ {Y'} the map nw : X — Y specified by:

Tj.V:X — Y
x — yszeyeW

is a linear bijection from X onto Y when W # X (7x = O) and hence
Uty : X — X, WRITTEN o, 18 an element of GL(V, K); oy is called
the SLOPE MAP, or the SLOPE ENDOMORPHISM, of W, relative to AXES
(X,Y) (via the identification ¥ : Y — X).

2. For fited X and Y and any choice of W € T\ {X,Y}, ¥ can be
chosen so that oy = 1; in fact ¥ = 7y~ 2.
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3. The set of all endomorphisms of T :
gr = {O’n/ I II" < T\ {}’}}

corresponds, ofter deleting the zero map, to a semiregqular subset of
GL(X,K) on X*.

4. The partial spread determined by or, viz. 7., c.f., definition 1.3.11
and remark 1.3.12, 1s isomorphic to the given spread 7. In fact, the
linear bijection 1x & ¥~1:

XN — XaY

a®b — a@ ()T

is ¢ linear isomorphism from the [partial] spread m,,. onto the [partial]
spread T that maps X & O and O & X onto X and Y respectively,
that is, the isomorphism can be chosen so that the X and Y ‘axes’ are
preserved.

Moreover, if the axcs-identifying’ linear bijection ¥ : X — Y is speci-
fied by W .= 7y, where 7w 1 X — Y s the linear bijection associated
with W e 7\ {X,Y}, then the ‘unit component’ Z := {(z,z) | z € X}
1s assigned, by the partial spread isomorphism 1x & W1, to the chosen
commponent W € 7.

To summarize, T may be tdentified, via a linear bijection A : V —
XX, with a partial spread 7, on X & X, corresponding to a spreadset
7 on X, such that the identification sends respectively the components
X and Y of T onto respectively the z-axis, i.e. X ® O, and the y-axis,
i.e. O& X, Morever, the map © :' Y — X that A induces naturally
from Y to X, defined by restrictiing it to Y':

=AY - 0o X "2l x

can be chosen, for appropriate A := Ag, so that & = U~ where T :
Y — X is the given identification; and if now ¥ is taken as Ty~ then
A additionally maps the component W, distinct from X, Y, onto the
unit line Z defined above.

5. If T 1is a spread then the following are equivalent:
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(a) The set of slope endomorphisms or is a spreadset on X.
(b) o% is regular on X*.

(c) o% is transitive on X*.

Proof: (1) We first show that 7y is a map. Consider 7w (z). If y; and
y2 are distinct elements of Y such that z + 1y, € W and z 4+ y» € W, then
y1 — y2 € W, and this is a contradiction because the components of a partial
spread do not overlap. Since X @Y is the whole space we certainly have
z+y € W, for some y € Y. Hence iy : X — Y is a map, and it is
equally straightforward to check that this map is linear and injective, for
Wé¢{X Y}

To verify that 7y is bijective, for W distinct from X and Y, consider
yeY. If y+# rw(u) forallu € X thenu+y ¢ W for all u € X, so
y ¢ X @ W, contradicting the fact that any two components must direct-
sum to the whole space V. Hence (1) holds, since it is trivial that 7y = O.
(2) This case is immediate.

(3) Now consider 74 and 7g, where A and B are distinct components, other
than X and Y. If 74 — 75(z) = 0, for z % 0, then z @ T4(z) € AN
B, contradicting the fact that distinct components do not over lap. Thus
Ura(z) # Y1p(z), for  # 0, which means o4(z) # op(z), and hence o7 is
a semiregular spreadset in GL(V, K).

(4) The partial spread 7., associated with o7, in the sense of remark 1.3.12,
has components {(z,zmw¥) | z € X}, for W € 7 The linear bijection 1x &
¥~1 defined by

XoX — XevY
a®b — a®(b)¥!

maps (z,zow) = (z, 27w ¥) onto the component (z,z7w) and O @ X onto
OagY.

The ‘summary’ is just a restatement of the facts established about 1x &
-1 XX — XY, in terms of its inversemap A : X @Y — X @ X.
(6) The equivalence of the conditions follows from remark 1.3.2, giving the
corresponding equivalences for arbitrary sets of permutations, together with
the fact that a partial spreadset is a spread iff it is regular on X*, c.f. defi-
nition 1.3.4. =
Thus, the fundamental identification of partial spreads with partial spread-
sets corresponds to a generalization of the situation in elementary coordinate
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geometry: sets of lines through the origin are identifed with the set of their
gradients, the subspace y=xm being identified with its slope m. Moreover, we
have shown, as in elementary geometry, that any two lines may be taken as
the z and y axis, and that by rescaling (recall the identification ® : Y — X)
on the y axis we can further force any chosen third line through the origin
to be the unit line.

Note however that in our case the ‘points’ of the z-axis are used as coordi-
nate values, whereas in elementary geometry a distinct set, viz. the reals, are
used as coordinate values. It is often convenient to mimic this setup in our
situation by allowing the chosen components, X and Y, to be coordinatized
by an arbitrary vector space R, isomorphic to the components of the given
spread. '

For example, the natural choice for R, when the components are n-
dimensional over a field K, is to take R = K", and now X and Y are
identified with W by specifying bases (ej,es,...,e, and (fi, f2,..., fa 1€
spectively; in this setup the ‘axes-identifying’ linear bijection ¥ : Y — X is
tacitly taken to be the linear map sending f; — e;, for 1 < i < n. Now the
associated [partial] spreadset becomes a set of matrices M and the ‘canon-
ical’ form of the given [partial] spread is in K™ & K", and the components
arey = zM, M € M, plus the Y-axis.

Recall that to also force a component W, of the given spread, to become
the unit line under the chosen coordinatization, it becomes necessary to fix
the axes identifier map ¥ : Y — X — ¥ = 15", in the sense of the theorem.
However, since by our convention ¥ is fized by the chosen basis of X and Y
we can specify the required ¥ by taking an appropriate basis (f1, fo,. .., fa)
of B so that the unique linear bijection specified by the basis image e; — f;,
for all 7, coincides with W.

The above, analysis can be repeated for arbitrary vector spaces over a
skewfield K. The basis for X and Y are then families (e;)icx and (fi)ica
(respectively), indexed by a possibly infinite set A. As before, a component
W can be forced to be the identity by choosing an appropriate (f;):cx. Note
that if K is a non-commutative skewfield and the chosen space R is taken to
be the space K*, the ‘A-tuples’ over KX, then it might be necessary to specify
whether K* is regarded as a left a right K-space.

We summarize our conclusions as follows:

Corollary 1.3.16 (Basis Decomposition Theorem.) Let V be a vector
space over a skewfield K, and suppose T 1is a partial spread on V with at
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least three distinct components X, Y, W .... Let Z be any vector space that is
tsomorphic to the components of T. Then

1. There is a partial spreadset T on Z that contains the identity map 1z
and o K-linear isomorphism

ANV=76Z

such that A is a K-linear partial spread isomorphism from T to =,
satisfying:

AX)=Z80, AY)=080Z adAW)={(z®z|z€Z}.

In fact, to each K-linear bijection o : X — Z there corresponds a
K -linear bijection 8 :Y — Z such that

A=a® . V=767

2. Let Bx := (ei)iex be a basis of X and for any basis By = (f;)iex; 80
the juxtapostion By := (Bx; By) ts a basis of V. Define the canonical
K -linear isomorphism Bx : X — K*, By : Y — K?, and Bx & By —
XaY —- K@ K> (N.B. If K is non-commutative, K* is made into
a left or a right vector space, depending on whichever guarantees the
required K -linear isomorphisms with X and Y'.)

Then there is a partial spreadset T on K> such that the K -linear bijec-
tion

Bx®Py: VXY > K &K
defines an isomorphism from T to w,, the partial spread on K* & K*
associated with T.
Moreover, any component W.€ T\ {X,Y} can be mapped to the unit

linex =y of K@ K*, thus ensuring 1 € T, for any choice of the basis
Bx, and for some chotice of By (depending on the Bx selected.

Proof: By the preceding remarks. =
For emphasis we restate what this means for finite-dimensional spreads.

Proposition 1.3.17 Let V be a vector space of dimension 2n, n a positive
integer, over a field K, and that 7 is a partial spread of K-subspaces of V
with at least three distinct components X,Y,Z .... Choose a K-basis By :=
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(e1,€32,...,€,) of X and K-basis By := (f1, f2,...,fa) of Y, and let By :=
[Bx, By] denote the associated K -basis of V', obtained by jurtaposition, thus:

By =< Bx, By >:=(e1,ez2,...,en, f1, f2,-. ., [n).

Then there is a basis By of Y such that relative to the basis [Bx, By] of V
the canonical linear bijection:

B:V— K" K",
maps X onto K" & O, Y onto O @& K", and Z onto the UNIT LINE
{(z,z) | z € K™}.

Proof: The proposition is a special case of the result above, corollary 1.3.16.

]
We conclude with a basic isomorphism result.

Theorem 1.3.18 Let 7 be a translation plane with spread S, of XX =V
where X is a left K-vector space and let p be a translation plane with spread
S, of Y @Y = W where Y is a left L-vector space. Assume that K and L
are the component kernels of m and p respectively.

Let p and = be isomorphic by a bijective incidence presering mapping ¢.

(1) Then L and K are isomorphic skewfields and ¢ may be considered a
semi-linear mapping from W onto K.

(2) If # = p then ¢ is an element of the group TL(V, K).

Furthermore, the full automorphism group G of the translation plane 7
is a semu-direct product of the translation group T by the subgroup Gy of
I'L(V, K) which permutes the components of the spread S.

The subgroup Gy of TL(V, K) is called the ‘translation complement’ of G
orm. GoNGL(V, K) is called the ‘linear translation complement.’

Proof: We have seen (2) previously. We note that if g is in the kernel
endomorphism skewfield KC of 7 then g7 '¢g is in the kernel endomorphism

skewfield £ of p. Hence,
K2KxesLcsLl.



CHAPTER 1. ANDRE’S THEORY OF SPREADS. 30

1.4 Tutorial On Spreadsets.

This tutorial discusses important aspects of the above theory: low rank
spreads; reguli. The latter suggests the need for introducing a projective-
space version of the theory of spreads and partial spreads. This Bruck-Bose
theory will be systemaically introduced later on. The focus in the tutorial is
on the motivating cases rather than the general case. The reader is invited
to tidy up the sketchy treatment presented and to anticipate developments.

Rank-Two Spreads.

We have mentioned on several occasions that all rank-one spreads have been
described. It is thus natural to turn to rank two spreads. The literature
concerned with this area of translation planes is enormous; part of the interest
stems form its connection with the theory of flocks, generalized quadrangles
and packing problems that are themselves associated with highly interesting
higher rank spreads.

By specialising the above we can reduce the study of rank two spreads to
spreadsets indicated in the following theorem. This theorem underpins the
enormous literature concerning two-dimensional spreads; the theorem also
provides a pathway to the theory of flocks and certain types of generalized

quadrangles.

Theorem 1.4.1 Let w:= (V,S) be a spread of rank < 2 over a skewfield K.
Then there are functions g and f from K x K to K such that

M5 [ g(tt, v) f(i;u) }Vt—,u in K
is a spreadset, and there is a K -linear spread isomorphism U from w onto the
spread ma, ,,, vewed as a K-spread such that any ordered triple (X,Y, Z),
consisting of three distinct components of w, get mapped under ¥ onto the
triple (y = 0,2 = 0,y = z): that is, the image under ¥ of X, Y and Z are
resp. the z-axis, the y-axis and the the unit line of V.

Proof: By the above we know that at1 isomorphism form 7 to w4 exists
for some two-dimensional spreadset. So the only question is whether it has
the given form. Since the difference between distinct members in M are
to be non-singular, distinct members of M have different first rows and
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also distinct second rows. (For skewfields consider the image of (1,0) under
distinct members of M to get distincet first rows, and similarly use (0, 1) for
the second row). Moreover, the regularity condition on a spreadset means
that the image of (0, 1) must range over %, so the second row ranges over all
of K*. Morcover, for any given value of the second row (u,v) € K? we must
have unique values g(u,v) and f(u,v) in positions (1,1) and (1,2) resp., for
otherwise the fact that distinct components have distinct second rows gets
violated. Hence g and f are single-valued, which is the desired result. m
The identification above may be expressed by interchanging the two rows of
M. Oune way to establish this is to appropriately modify the proof of the
above. This is left as exercise. Note that the ‘new’ spreadset is the same one
as before but expressed differently.

Remark 1.4.2 The spreadset M, for the given (X,Y,Z), can be alterna-
tively writen as M

¢ u
J\/f(g,.f) = [ y(t,u) f(?‘-,u)

We end with some simple, but important, exercises on finite rank two spreads,
or rather on spreads that have a rank two representation — so as not exclude
the Desarguesian case. The reader is encouraged to consider how far the
results generalize: (1) to finite spreads of arbitrary rank; (2) spreads of rank
two over commuative fields and skewfields, etc.

] Vi, u in K

Exercise 1.4.3 Let K = GF(q), ¢ = p". Let M be a 2 x 2 spreadset with
entries tn IC. Then:
1. Let A and B be non-singular matrices in GL(2,q). Then N := A-' MB
s a spreadset and there s a K-linear spread-isomorphism from waq to
wn. In fuct the mapping

AeB: K6 K? — Ko K?
ts the required isomorphism.

2. Suppose M and N are spreadsets such that one is obtained from the
other by a sequence of row and/or column transformations (so each
transform @ in the sequence must be applied to every member of the
spreadset being considered). Then there is a N-linear spread isomor-
phism from wa to war such that the x-axis and the y-axis are both
preserved.
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3. If M is a spreadset then so is M, obtaned by transposing every member

of M.

The Regulus

In the following exercises on partial spreads and partial spreadsets, we in-
troduce the regulus. They provide one of the most important tools for the
construction and analysis of spreads, and hence translation planes. A sys-
tematic treatment of reguli will follow later, based on the projective space
approach to [partial] spreads. The treatment provided here clearly indicates
the desirability for introducing projective language instead of always work-
ing directly with vector spaces. This approach, the Bruck-Bose version of
André’s theory, will be introduced systematically in section 2.2.

Exercise 1.4.4 Let K denote the scalar requlus in K" ® K™, K a field; thus
K has the scalar field K < GL(n, K) as its partial spreadset; K = wy. Here
K is identifed with the n X n scalar mairii field with entries in K.

1. Show that for A € GL(n, K), {kA | k € K} is the partial spreadset of a
regulus R 4 that contains y = xz A, and shares x = 0 and y = 0 with the
scalar requlus K. Conversely, every requlus in K™ & K™, that contains
the xz-axis and y-axis, is of the form R 4, for some A € GL(n, K).
(Apply the linear bijection Diag |1, A] to the scalar regulus; also re-
member that a requlus is determined by any three of its components.)

2. For A, B non-singular,

RAQRB‘;'{I:O,? =0} or RAZRB

3. In PG(2n — 1K), let Rxy be tthe set of all requli Rxy that share
two fixred components, X andY. Then Ryxy induces a partition on all
the subspaces of PG(2n — 1, K), that have projective dimension n— 1,
and are distinct from X and Y, and the subgroup G of PGL(n, K) that
fires X identically and leaves Y invariant induces a transitive group
on Rxy, and the global stabilizer in G of any R € Rxy acts sharply
transitively fi.e. regularly] on R\ {X,Y}.

(Interpret the earlier parts projectively; observe that G is sharply tran-
sitive on K\ {X,Y}.)
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We can now establish that our definition of regulus coincides with the classical
definition, used in finite geometry.

Exercise 1.4.5 A regulus in PG(2n — 1,q) is a partial spread with ¢ + 1
components such that a line meeting three of the components meets all of

them.

We note in passing that when n = 1, then the regulus coincides with a ruling
class of a hyperbolic quadric.

Exercise 1.4.6 A spread S s called regular iff R C S, whenever R is the
requlus containing three distinct components of S. In PG(2n — 1,2) every

spread s regular.

Reguli In Projective Spaces.

Any vector space V' over a skewfield KX may be viewed as projective spcae
PG(V, K) whose points are the rank one K subspaces of V' and whose lines
are the rank two subspaces; in general the projective dimension of a rank
k-subspace W of V is k — 1 by definition. Using this terminology the funda-
mental theorem of spreads and partial spreads may be expressed in terms of
projective spaces, which is the Bruck-Bose model. All this will be developed
in the next section on the basis of a systematic review of projective spaces.
The goal here is to consider certain aspects of partial spreads called reguli:
these are the most important partial spreads arising in translation plane

theory.

Exercise 1.4.7 A regulus in PG(2n—1,K), K a field, is a partial spread S,
of the associated vector space V, such the set of projective lines meeting three
distinct components of S cover the same projective points as are covered by
the members of S. Show that whenV = X & X theny = zk, k € K, together
with £ = 0, form a regulus called the scalar regulus on X & X.

What if K is a non-commutative skewfield?:

Proof: The rank two space £,, u € K, spanned by {u®0, 0®u} meets ever
component in a rank one space, and the totality of points covered are all the
projective point of type [(u,uk)], u,k € K and the points on the y-axis. If K
is not commutative then y = zk is additive but not a K-space if K operates
from the right as (za,xka) is not on y = zk if a is not centralized by K.
So, although the covering is there and the spread y = xzk are both there, the
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components of the spreads are not always K-spaces: they are spaces over
fields in the center of K. m

Thus the scalar regulus is a genuine regulus iff the scalar field K is a com-
mutative fields!

Now consider any regulus § in PG(2n—1, I), the underlying vector space
being V', I{ any field. So we have a K-linear isomorphism ¥ onto a regulus in
K™@ K™ such that a triad of distinct components (X, Y, Z) of S get mapped
onto the triad (y = 0,2 = 0,y = 2); also a line cover of & gets mapped onto
a line cover of the image ¥(S). But any line meeting all three members of
the triad (y = 0,2 = 0,y = z) must meet every set y = zk, for k € K, and
lies in the totality of such subspaces. Thus the regulus ¥(S) must concide
with the scalar regulus. Hence we have established several facts: (1) every
regulus over a field may be viewed as a scalar regulus and three components
of a partail spread over a field lie in a unique regulus (which may not be in
the partial spread).

Thus we have established

Remark 1.4.8 In PG(2n — 1,K), for K a commutative field, there is a
linear bijection from any regulus onto the scalar regulus and this bijection
can be chosen so that any three components may be mapped respectively onto
the x-axis, the y-axis, and the unit inc of the scalar requlus. Moreover, three
components of a partial spread lie in a unique requlus and hence the subgroup
of PGL(2n — 1, K) fizing a regulus is triply transitive on its components.

We shall eventually deal with the most general case associated with the above
result: K any skewfield with infinite dimensions allowed. This is essentially
a repeat of the above but with more attention to some details.



Chapter 2

The Bruck-Bose Projective
Representation Of Spreads.

In this chapter, we shall be discussing a model of translation planes, due
to Bruck and Bose, which mainly uses projective spaces, rather than vector
spaces, so we obtain what amounts to a projective version of the results
of André discussed above. However, the Bruck-Bose model and the André
model are ‘equivalent’ only in the sense that vector spaces and projective

spaces are ‘equivalent’.

2.1 Foundational Structures In Finite Geome-
tries: A Review.

In the first chapter, see page 2, we introduced the basic notion of an inci-
dence structure, although so far the only incidence structures we have con-
sidered explicitly have been affine planes. To consider projective versions of
spread theory, we shall need to consider Desarguesian spaces — affine and
projective — and also arbitrary projective planes because they correspond
to the ‘closure’ of arbitrary affine planes. In this lecture, we shall review
these concepts and introduce some notational devices useful for the study of
translation planes.

All these concepts are closely related to generalizations of affine planes
called nets: later we shall study these too.



CHAPTER 2. THE BRUCK-BOSE PROJECTIVE REPRESENTATION OF SPREA

Definition 2.1.1 Let N := (P, L,C,I) be a quadruple, where P, L, C, and
I are pairwise disjoint sets consisting of POINTS, LINES, PARALLEL CLASSES,
and INCIDENCE, respectively, and where I C P x L; so (P,L,I) is an inci-
dence structure in the usual sense. Then N is a NET if

1. C 1is a partition of the lineset L, based on an equivalence relation called
PARALLELISM, and the members of C are called PARALLEL CLASSES.

2. Each point 1s incident with exactly one line of each parallel class.

3. Given a point p and o line A such that p and A are not incident, there
is a unique line B parallel to A which is incident with p.

4. Two lines from distinct parallel classes have a unique common incident
point.

If there are n points per line and k = |C| parallel classes, the net is said to
have ORDER n and DEGREE &

It follows immediately:
Remark 2.1.2
1. Every affine plane A is a net.

2. Let D C C, where C is the set of parallel classes of any net A. Then
the points of A and the lines covered by the members of D form a net
— a subnet of A — provided D is appropriately non-degenerate, e.g.
|D| > 3. |

3. An affine plane of order n is a net of order n with degree n + 1, and
every net with these parameters s an affne plane of order n.

4. Let M be a partial spread on a vector space V. Then the net with
pointset V whose lines are additive cosets of the members of M form
a net; this net is called the net of the partial spread M, and which we
denote by I oq: the parallel classes may be identified with the members of
M: so if M is a spread then the net Il coincides with the translation
plane Ilp . (See exercise 2.1.5 for details).
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The PROJECTIVE CLOSURE N of a net N' = (P,L,C, I) is the incidence
structure obtained by adjoining to its pointset the set of its parallel classes
C and lineset L U {£,} as its lineset and with natural incidence, i.e., the
new line /., is adjacent to all the parallel classes only and every line in L is
incident with its parallel class. When A is an affine plane then its projective
closure is defined to be a projective plane. We adopt a more explicit and
homogenious version of this defintion.

Definition 2.1.3 A projective plane m is an incidence sructure (P,L,Z)
with the following properties:

1. Given two distinct points P, (Q of P , ‘there exists a unique line p such
that (P,p) and (Q,p) € I;

2. Given two distinct lines p, ¢ of L , there exists a unique point P such
that (P,p) and (P,q) € I;

3. There exist four points no three of which are incident with the same
line.

Incidence is clearly set-theoretic, so we continue with the notational devices
for projective planes that were introduced earlier for set-theoretic incidence
structure, see page 2. The notion of a central collineation differs slightly for
projective planes from the corresponding definition for an affine plane.

Definition 2.1.4 Let g be a collineation of a projective plane w that fires
all the points of a line £ and all the lines through a point P. Then g is a
CENTRAL COLLINEATION with AXIS £ and CENTER P; g is a TRANSLATION
(resp. HOMOLOGY ) if P € £ (resp. P ¢ £).

Exploiting the point-line duality for projective planes it is clear that a central
collineation may be equivalently be defined to be one that fixes all the points
(lines) on a line (point). Note also that only the trivial collineation is a both
an elation and a homology. '

We have already indicated, remark 2.1.2, how the ‘closure’ of a net when
applied to an affine plane yields a projective plane. For a projective plane the
reverse also holds. The details of all this discussed in the following exercise.

Exercise 2.1.5 Let 7 be a projective plane. Choose any line £ and form
the incidence structure w*> of ‘points’ those points of ™ which are not on £
and lines of m not equal to £,. Incidence is defined as inherited from the
incidence of ©. wt= is called the affine restriction of ® with respect to Lo .
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1. Show that w*~ is an affine plane.

2. Conversely, if o 1~ an affine plane we may define a projective plane o
as follows: The points of at are the points of a and the parallel classes
of o and the lines of a™ are the lines of « and the set of parallel classes
of . The ‘points’ of o™ which are parallel classes of o are called the set
of ‘infinite points’ and the line of a™ which is the set of parallel classes
of a is called the line at infinity . of a*. (We shall also refer to o,
as the ‘line at infinity’ of the affine plane o).

Show that ot is a projective plane. o is called the projective closure
of a.

3. Let a be an affine plane and m and p two projective planes extending c
with respect to the adjoinment of lines p and q of @ and p respectively.

(a) Show that there is an isomorphism from p to ™ which carries q to
p.
(b) Show that 7P = p7 = @,

Let o be an affine plane with collineation group G. Let at denote the
projective closure of o, and let £ be the line ot infinity. Let Gt denote
the collineation group of a™. Show that G is isomorphic to the subgroup
Gy, the global stabilizer of (o

s

We shall normally consider translation planes 7 as affine planes although,
occasionally , we shall refer to the line at infinity of # to mean the line
adjoined to 7 to produce the projective closuwre #*. Similarly, we will use
interchangeably the terms ‘infinite point’ and parallel class.

In the remainder of our review of foundational matters, we consider some
of the fundamental concepts related to affine and projective spaces.

Definition 2.1.6 Let V' be a vector space over a skewfield K. The corre-
sponding AFFINE SPACE AG(V, K) s the collection of all the K-subspaces
W <V together with their translates:

AG(V,K) ={c+W |ceV,W<V}.

The members of AG(V, K) are called the affine subspaces of V, and an affine
subspace c+ W 1is regarded as having same dimenston as W, when viewed as
a vector subspace of V. The zero-dimensional subspaces are called points, so



CHAPTER 2. THE BRUCK-BOSE PRO.JECTIVE REPRESENTATION OF SPREADS.34

V itself is the set of all affine points, the one-dimensional subspaces are the
affine lines and the two dimensional subspaces are the affine planes, etc.

The translation group of AG(V, K) consists of all the bijections of V that
hae the form 7, : x — x + v, forv € V, and two subspaces are called parallel
if they lie in the same orbit of the translation group.

An incidence structure is CONSIDERED an affine space if it is isomor-
phic to the subincidence structure corresponding to the points and lines of
AG(V, K), for some vector space V over a skewfield K.

It is not hard to characterise the subspaces of an affine space AG(V, K) in
terms of its point-line incidence structure (and its collineation group), and
also to determine completely the A vector space V. Thus an incidence struc-
ture cannot be isomorphic to the incidence structure of more than one affine
space. Hence we shall let the context determine whether we are considering
a ‘standard’ affine plane AG(V, K), or an incidence structure isomorphic to
that of an affine space.

The fundamental connections between affine and projective planes, devel-
oped in exercise 2.1.5, have straightforward analogues relating affine and pro-
jective spaces. For example, projective spaces could be introduced by adding
on the equivalence classes of affine spaces as ‘infinite’ subspaces. However,
as in the planar case, we choose to introduce this ‘closure’ of an affine space
by giving a more homogeneous version of the definition.

Definition 2.1.7 Let W be any K-vector space where K is a skewfield. The
PROJECTIVE SPACE PG(W, K) 1s the lattice of vector spaces where incidence
is tnherited from that of V.

Let A be any K -vector subspace of W. Then A and PG(A, K) are both
regarded as being the ‘same’ projective subspaces of PG(W, K), and the [pro-
jective] dimension of A is a — 1 where a is the rank of A as a K -vector space;
so PG(W, K') has dimension dimg 1 — 1.

The [projective] POINTS of PG(W, K) are the subspaces with projective
dimension zero, the LINES are the subspaces that have projective dimension
one, the PLANES have projective dimension two and the HYPERPLANES H
are the subspaces of PG(W, K) that are maximal in W: so hyperplanes H
are vector subspaces of W that have codimension one in V.

An incidence structure is CONSIDERED a projective space if it 1s isomor-
phic to the subincidence structure corresponding to the points and lines of
PG(W, K), for some vector space V' over a skewfield IS.
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Remarks 2.1.8 A projective space PG(W, K) has all it subspaces deter-
intned by the incidence structure of its points and lines: a set S of projective
pownts is a subspace iff S contains the points of cvery lines that mcets it in
at least two points.

However, it still remains to exclude the possibility that projective spaces
that arc isomorphic as incidence structures arise from non-isomorphic vee-
tor spaces, possibly even defined over different fields. We do this by first
constructing the associated affine planes.

Definition 2.1.9 Let PG(W, K) be a projective space associated with a vec-
tor spuce W defined over a skewfield K. Let 'V be any hyperplane of W.
Then PG(W, K)Y is the incidence structure whosc points are the projective
points i PG(W, K') — PG(V, K) and whose lines are all the sets of points of
type € =\ {L}, where £ 4s any line not in' V' that meets V' in the projective
point L.

We now cstablish the equivalence between afline and projective spaces, gen-
cralising the corresponding result for plancs.

One approach to this would be to follow the procedure of exercise 2.1.5:
define parallel classes for the lines of AG(V, I), and show that the associated
projective closure is the incidence structure of a projective space. But the
latter incidence structure needs to be axiomatically recognisable, as in the
planar case. Sinece at this stage these axioms are not available (for dimen-
sion > 2), we shall follow an alternative approach based on the method of
homogencous coordinates, but adapted for the infinite-dimensional case.

This method has the advantage of providing a concrete link A : AG(V, )t —
PG(V*,K) between the projective closure (which we shall define) of the
affine space AG(V, K) and the projective space defined over Vv =V x K a
rank one extension of V. Basically A is the unique extension of the affine-
space isomorphism v — (v,1), from AG(V,K) to PG(V*, K)"= where
Ho =V x 0, such that the ‘slope’ (W) of a coset ¢ + W maps under A
to W x 0, in the hyperplane Hy,. We now summarize all this and a few
related properties:

Theorem 2.1.10 (Homogeneous Coordinates.) Let V' be a vector space
over a shewfield IC; so the direct product V'V =V x K, viewed as a IS -space,
contains hypcrplane

Ho = (V)= {(¢,0) | v € V} = PG(V, K).
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Define the copics (V) = {(v) | v € V} and Vi := {(v,0) | v € V} (= Hy,) of
V, and let (W) and Wy be the natural image of any subspace W <V in (V)
and Vy respectively.

Let AG(V,K)° .= AG(V, K)\ V denote sct the set of all the affine sub-
spaces of AG(V, K) with the atline points excluded. Dcfine the GRADIENT
or SLOPE MAP:

V:AG(V,K)Y — PG((V),K)
cHW - (W).

Then the following hold.

1. V(AG(V,K)°) = PG((V), K); the image V(e + W) = (W) is called
the SLOPE of the affine subspace ¢ + W, forc € V, 0 # W < V.
The projective space PG((V), ) is the HYPERPLANE AT INFINITY for
AG(V, I\).

2. Define the structure AG(V, )t consisting of POINTS and SUBSPACES
where, the point sct is defined by

P = [AG(V, K)]U [V(AG(V, K)°)],

and the subspaces of AG(V,K)Y are (1) the members of P; (2) the
subspaces of the projective space PG((V), KX); and (3) subsets of P
that may be cxpressed in the form:

(c+ W)* = (c+W)u {(W)},

where W is any non-trwvial vector subspace of Vo and ¢ € V. The
subspace (¢ + W)™ s called the (projective) CLOSURE of ¢ + W (and
does not depend on the choice of the coset representitive c); (W) is the
SLOPE o1 GRADIENT of ¢ + V.

Then AG(V, Kt s a lattice, relative to containment, end the closure
of any affine subspace ¢ + W is the smallest lattice element containing
all the points wn it.

J. There s a unique lattice tsomorphism

A: AG(V, )Y — PGV*, K),
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such that its restriction to the points of AG(V, K) defines the following
womorphism A of afline spaces:

N AG(V,K) — PGV*, )l
v — (v,1).

A maps the closure of every affine subspace c+W of AG(V, K), W # 0,
into the subspace of PG(V™, K) that meets Hy, in Wy: that s, A maps
the slope (W) of any affine subspace of AG(V, ) into its ‘copy’ W x 0
in the hyperplane Ho, < PG(V™*, K).

4. Eaplicitly, A is an isomorphism from the projective space AG(V, K)*
onto the projective space PG(V*, K) given by:

AG(V,K)Y* =  PGV*K)
(W +ce)*t = (W,0) @ (¢, 1)
(W) W x 0.

Proof: For convenience assume all vector spaces are taken as right K
spaces. (1) is trivial, it is rcally only concerned with introducing defini-
tions. (2) is a straightforward verification. (3) is essentially part of the next
casc: (4). Here the main point is to realise that if W + ¢ is a cosct of a
subspace of W of V' then in the lattice PG(V™*, K):

(W, 0) ® (¢, 1) K] = (¢ + W, 1) U (W x 0),

where [X] denotes the set of projective points in X € PG(V™, ), and that
A maps the the afline subspace ¢ + W of AG(V, K) outo (¢ + W, 1), and its
closure (W) onto W x 0 < Hy,. The proof follows casily. m

The above theorem contains within it the cquivalence between projective
and affine spaces, specifically, that PG(V+ K)Y & AG(V, K) whenever V
has codimension one in V:

Corollary 2.1.11 (The Theorem of Veblen, [39].) Suppose V' is a vee-
tor space over a skewfield IC of rank > 1; thus VY = V& < ¢ >, for subspaces
V and < ¢ > that have resp. codimension and dimension one in V.

Form the projective space AG(V, K)*, the closure of AG(V, K), obtained
by defining points at infinity to be the parallel classes of the lines and wilh
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cach line assigned an extra point, viz., its parallel class. Let PG(V*, K)
be the incidence structure associated with the lattice of K -subspaces of V1.
Then we have the following tncidence structure isomorphisms:

1. AG\V,K)* =2 PGVt K);
2. AG(V,K) =2 PG(V*, K)*>.
It is worth stressing:

Remark 2.1.12 The affine space AG(V, K) has the same dimension as 'V
whereas PG(W, K) has dimension the dimension of a hyperplane H(W) of
W; there is an affine space isomorphism:

PG(W, )™ & AG(H(W), K).

2.2 Projective Space Representations: Bruck-
Bose Theory.

In this lecture, we shall be discussing a model of translation plancs, due to
Bruck and Bose, which mainly uses projective spaces, rather than vector
spaces, s0 we obtain what amounts to a projective version of the results
of André discussed above. However, the Bruck-Bose model and the André
model are ‘equivalent’ only in the sense that vector spaces and projective
spaces are ‘cquivalent’.

We first introduce the projective space version of an André-type spread;
this is essentially a restatement of the usual definition of a spread in projective
space terminology.

Definition 2.2.1 Let £ = PG(V, K) be an arbitrary projective space, asso-
ciated a vector space Voover a shewfield I, and let P denote o collection of
[at least two] mutually skew subspaces of S, Then P is called a PROJECTIVE
PARTIAL SPRIEAD such that given any two distinct subspaces L, M € P and
any point p € ¥ not on L or M, there 1s a unique line £ which contains p
and wntersects both L and M.

If furthermore the points of P form « cover of the points of X then P is
called « PROJECTIVE SPREAD.
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It is immediate that a projective [partial] spread in PG(V, I{) is just a vector
space [partial] spread of K -subspaces of the K'-vector space V', and conversely
that every space [partial] spread consisting of K -subspaces of V' is a [partial]
[projective] spread in PG(V, K): the existence of ‘€” ensures that two distinet
subspaces always direct-sum to the whole space, and hence when at least
three components are present, all the compounents have ‘half” the dimension
of the associated vector space.

Thus ‘ordinary’ and ‘projective’ [partial] spreads are essentially the same
objects but viewed from different perspectives; we normally do not distin-
guish between them. Hence, a spread is defined by its context cithier vecto-
rially or projectively. Accordingly, we shall not repeat for projective spaces
all the terminology that we introduced for ordinary spreads; when interpret-
ing spreads in projective spaces, we shall sometimes usc the term ‘projective
spread’.

Before moving on, we consider as an excrcise a more general, but pu-
tatively equivalent form, for the definition of a [partial] spread: instead of
requiring the direct sum condition could we replace it by the weaker-to-state
condition that if V= X ¢ X then a collection of pairwise skew subspaces
isomorphic to X, as projective K -space, form a partial spread?

The following example shows that the indicated generalization does not,
characterise partial spreads, satisfying the standard definition.

Example 2.2.2 Let W obe a vector spuce over any skewfield IC, with an
infinite X -basis (e, ea,...). Now on'V = W & W take any spread S that
includes X =W @0,Y :=0pW and Z :={wbhw|weW}. Nowlet H,,
Hy and Hy be hyperplanes of the three components X, Y and Z, respectively,
obtained when (0,¢1), (¢1,0) and e; arc deleted. Then

H:=(S\{X,Y,Z}) U{H, I, 113}

is a collection of pairwisce disjoint K-subspaces of V' cach of which are iso-
morphic o W, and V =W @ W. However, V- CANNOT always be erpressed
as the direct sumn of uny two members of H.

The example shows that H is a partial spread on V =W @ W, i the sense
that all its members are pairwise disjoint and ‘half-dimensional’; however H
is not’ a partial spread, according to the standard mecaning, since the direct
sum condition is required to hold.
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However, the example does not settle the question when H is a ‘spread’
in the sense that all its components form a coveing of PG(V, K). We leave
this matter for the reader to resolve:

Exercise 2.2.3 Let be V = W @ W a vector space, over a skewfield, such
that every point is covered by ezactly one K -subspace from a famaly of such
subspaces H, such thal cvery H € H is = W as a K-space. Is it the case
that H s a spread, t.ce., 18 V' the direct sum of cvery pair of distinct members

of S.¢!

Note that the answer is clearly in the aflirmative if the projective space being
considered is finite-dimensional.

We now turn to the Bruck-Bose model of a spread: it is closely related
to the projective version of André’s defintion 12.4.12 above, but it cnables
the projective plane associated with o translation plane to be viewed as an
icidence substructure of a projective space.

If S is a spread of I{-subspaces, of & vector space V' over a skewtield I\,
then the affine translation plane Ils has V' as its points and the lines of I1s are
the additive cosets of thie components of S. Thus the lines of the translation
planes are the set of all the afline subspaces of AG(V, K) that are parallel to
the members of §. Thus in AG(V, K)* the subspaces of AG(V, K) that are
the lines of the translation plane Il have as their closure the set of subspaces

(5):={(5) |5 €S}

on the hyperplane at infinity (V).

But, cach (5) € (S) mmay also be regarded as the point at infinity of the
lines of I1s that are parallel to (S), and (S) as the line at infinity, c.f., exercise
2.1.9. Thus we have established:

Theorem 2.2.4 (Embedding Translation Planes in Projective Spaces.)
Let V' be a vector space over a skewfield K and S a spread of I -subspace
of V. Then the projeclive closure of the translation plance 1lg, with poinisct
V oand lines the coscts of S € S, is just the projective closure 11T of [1s in
AG(V, K)™, when the points and lines of [ls are regarded as affine subspaces
of AG(V, ).

More caplictly, the hyperplanc at infinity of s in IIT is the subspace (V),
a ‘copy’ of V', associated with the projective space PG((V), K) = PG(V, K);
the afinite points are the members (S) € (S), the finite points are memnbers
of V- and the closure of the linc e+ S is (c+ S)US.
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Since AG(V, K)* is isomorphic to a projective space PG(V™*, (), where V'
as a hyperplane, the theorem implies that any translation plane associated
with a spread is a subincidence structure of a projective space; here a SUBIN-
CIDENCE STRUCTURE J of a projective space P means that points and lines
of J are sclected from P, viewed as a lattice, and incidence is containment
(treated symmetrically). More explicitly

Corollary 2.2.5 Every projective transletion plane s s isomorphic lo an
incidence substructure of PG(V>K),such that the affine points of lls are the
points of the affine space PG(V™, K", H a hyperplane is the line at infinity,
the pownts at infinily are the components of a projective spread Sop = S in H,
and all the other lines ave the subspaces meeting H in a member of S.

We summarize what we have done. Any spread (V,S) defines a translation
plane IT in AG(V, K) whose lines are the cosets of the members of S. The
projective closure 11t of II lies in the projective closure space AG(V, K)*,
the closure of AG(V, K), and the line at infinity Ho, of IT* is the hyperplane
at infinity of AG(V, K); Hu, has a copy Sp of S such that all the lines parallel
to S € § have as there slope the corresponding Sy € §p. Hence, since every
translation planc arises from a spread we conclude that cvery translation
planc s a subincidence structure of a projective space.

We have scen that there is a natural isomorphism between the closure of
afline spaces AG(V, )1 and the associated projective space lattice PG(V', K),
V*T/V 2 K, based on homogeneous coordinates. Thus theorem 2.2.4 above,
that embeds an affine plane # into its projective closure AG(V, K)*, may
be used to define a generic embedding of a projective translation plane in
PGV K) in terms of a projective spread S in PG(V, ) that defines the
planc 7. This is the Bruck-Bose model, and it follows immediately from
theorem 2.2.4.

Theorem 2.2.6 (The Bruck-Bose Construction.) Let S be a projective
spread in ¥ = PG(W, K) where W is a K -vector space. Embed PG(W, K)
in a projective space L1 so that PG(W, K) is a hyperplane of 7.

Define the wncidence structure, defined by inclusion, whose point-set P is
the sct of projective points P = Xt \ ¥ and whose line-set L includes the
Lhyperplane X, the ‘“nfinite line’, and the other members of £, the ‘funte
lines’, arc the projective subspaces of L that contain some component of S
as a hyperplane.
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Then the incidence structure with points (P), and lines (L) and with wnci-
dence defined by inclusion is a projective translation plane w. The translation
axis 18 £ and m 1s wsomorphic to the affine translation plane on the ambicnt
vector space V' of S, whose lincs are the cosets of the members of S.

The isomorphism may be chosen so that the lines parallel to S'€ S maps
to the point S € S, t.e. itsclf when regarded as a point on the ‘line’ ¥ € L.
T

The above theorem, due to Bruck and Bose, may be regarded as the projec-
tive version of André’s fundamental theorem of translation plane. Although,
the original Bruck-Bose version considered ouly finite dimensional projective
spaces, 1t was their intent to represent a translation plane projectively and
within a projective space. It will become apparent that this viewpoint is
extremely useful when cousidering construction processes within projective
plancs. Morcover, objects which might be considered “geometric” in some
sense might be more conveniently visualized within a projective space as op-
posed to within a vector space where the projective line is essentially missing.
For example, the notion of duality cannot casily be expressed using vector
space spreads whercas a dual translation plane has an clegant representation
using the projective space projective spreads.



Chapter 3

Combinatorics Of Spreads:
Nets and Packings.

In this chapter, we introduce some packing problems related to translation
planes, via their spreads, so what we are concerned with might be called
the combinatorics of spreads. The process of derivation, a powerful tool for
constructing new affine and projective planes, is essentially a packing prob-
lem: points covered by certain scts of lines are replaced by sets of subplanes
covering the same points, to yield a new plane. In the context of spreads in
projective spaces, derivations are closely associated with reguli, and Desar-
guesian spreads may be combinatorially characterised in terms of the reguli
they contain. Reguli and other partial spreads are also closely related to
nets and combinatorial structures called packings that are associated with
the construction of exceptionally interesting translation planes. The aim
of this chapter is to explore these combinatorial tools, particularly in the
context of translation planes.

3.1 Reguli and Regular Spreads.

We begin this lecture with a brief review of the classical concept of a regulus
in PG(3, K); these reguli provide the most important tool for constructing
linespreads and hence two-dimensional translation planes. The overall aim of
the lecture is to extend the theory of reguli in PG(3, q) to reguli in arbitrary
projective spaces £ = PG(V, ). The section ends with the Bruck-Bose
characterization of Desarguesian spreads in terms of reguli.

48
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A line t is called a transversal to a set of pairwise skew lines A, in any
projective space, if ¢t meets every line of A. In PG(3, K), K a field, the points
of a hyperbolic quadric can be written as a union of a set of mutually skew
lines A and also as the union of all the lines in A’, the set of transversals to
the lineset A. In fact, it turns out that A and A’ are linesets such that each
is precisely the the set of transversals of the other; moreover every line of
each set is covered by every line of the other. The line complexes A and A’
are said to be mutually opposite reguli.

Notice that if ¥ is a linespread in PG(3, ¢) that contains a regulus A then
replacing A in ¥ by its opposite regulus

¥ =(S\A)UA,

yields a new spread, said to be derwed from A. One can go further: look
for a set of A pairwise disjoint reguli in a spread and replace some or all
of them yiclding in all 2% distinct spreads, although some of them may be
isomorphic. All of this reflects the fact that reguli play an indispensible role
in the construction and analysis of translation planes. For the rest of the
lecture our discussion of reguli includes not just arbitrary odd-dimensional
projective spaces PG(2n — 1, K), but also the infinite-dimensional case —-
arguably, these are always odd (and even!) dimensional.

We begin by defining a transveral to a collection of subspaces © to be any
line that meets all the lines of ©, but we shall also insist that any transversal
is covered by @, modifving our earlier usage of the term:

Definition 3.1.1 Let © be o collection of pairwise skew subspaces of any
projective space X. A line £ of ¥ 1s called a TRANSVERSAL to © if £ meets
every subspace in the collection © and every point of € lies in some member

of ©.

Note that this is still not the most general useful form of a transversal. We
could have introduced the notion of a psendo-transversal to take care of the
case when 2 consists of additive subspaces of ¥ = PG(V, K), rather than
K -subspaces. However, to focus on the essentials, we shall stick with the
above definition.

We now turn to the general definition of a regulus. The motivating ex-
ample, as indicated above, is a collection R of pairwise skew lines, in some
PG(3, i), that are covered by the set of all lines that are transversals to
R. In the general case R is still required to be a partial spread of the given
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projective space & = PG(V, K). So we need to reslove what a partial spread
is to mean in the context of infinite-dimensional spaces.

There are two reasonable ways of defining R, a pairwise skew collection
of subspaces of ¥, to be a partial spread: both are motivated by the need
to make the components have ‘half’ the dimension of V, in the infinite-
dimensional case. The more general method is to assume that all the mem-
bers are isomorphic to some X, where V = X & X; the alternative is to
regard IR as a partial spread if ¥ is a direct sum of any two distinct members
of R, for |R| > 2. We shall follow the latter path since it leads to tidier and
less technical-sounding results; we shall leave it to the interested reader to
develop more general results that apply to ‘X-partial spreads’.

Definition 3.1.2 Let X be a projective space and I' any collection of at least
three pairwise-skew subspaces. Then T is a called a partial spread if to each
triple (z,U, V"), where U,V € I' are distinct and do not contain z, there
corresponds a unique line ell of ¥ such that 2 € £ and £ meets X andY

We can define a regulus in the general case.

Definition 3.1.3 Let ¥ be any projective space and suppose R is a partial
spread in ¥ that has at least three components. Then R is a REGULUS of ¥
iof the following hold:

1. If a line t of ¥ meets three members of R then t is a transversal of R,
see definition 8.1.1 above;
2. the points covered by R coincide with the points covered by the transver-

sals to 1.

We now provide the alternative definition of a regulus, indicated above, based
on the possibility of the alternative definition of a partial spread.

Definition 3.1.4 Let ¥ be a projective space associated with a direct sum
vector space W = X & X, where X is any vector space over a skewfield K.
Suppose R is a collection of pairwise skew subspaces of ¥ each of which is
K-isomorphic to X. Then R is an X-REGULUS of X 1f the following hold:

1. If a line t of ¥ meets thrce members of R then t is a transversal to R,
see definition 3.1.1 above;

2. the points of R are covered by the transversals to R.
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Exercise 3.1.5 If R is an X -regulus in 3, in the notation of definition 8.1./,
is W always the direct sum of every pair of distinct members of R, that is,
s every X -requlus a requlus in the ‘standard’ sense of dcfinition 8.1.82

As already mentioned, we shall work with reguli, in the sense of definition
3.1.3, rather than wih X-reguli; extending results concerning reguli to X-
reguli is left to the interested reader.

Exercise 3.1.6 Suppose R is a collection of q+1 distinct subspaces PG(2n—
1,q) such that every member of R has projective dimension n — 1 and that
R is covered by all transversal across it. (1) Are the members of R pairwise
skew? (2) Is R a regulus?

We now proceed to a complete description of all reguli in an arbitrary pro-
jective space PG(V, K), K a ficld. The prototype for all such reguli is the
scalar regulus, and V = W & W, W any K-space; the components of the
scalar regulus are y = ok, k € I{', together with ¥ = O & W. If will turn
out that all reguli are essentially of this type. If A above is permitted to be
non-commutative skewfield then, as we shall see, a regulus cannot cxist in
PGV, K).

However, the absence of reguli, when K is a non-commmutative skew field,
is true only in a technical sense: in this case all the 'y = zk’ still turn
out to be additive subgroups of V = W & W', and although they are not
always K{-spaces they still define a partial spread (when V is veiwed as a
vector space over the prime field) that are covered by pairwise skew lines of
PG(V, K') that one might call transversals. We shall refer to such structures
as (scalar) pseudo-reguli and incorporate them in our analysis; they arise in
the classification of subplane covered nets, a fundamental result in the theory
of nets and derivation.

To provide a uniform treatment of left and right vector spaces, and also
to take into account that skewficlds become unavoidable in our analysis, we
express ‘y = zk’ as y = (z)k, (v)k indicating the action induced by & € K

onzx el

Definition 3.1.7 Let ¥ := PG(V,K) be a projective space over a skewfield
K such that V =W & W, where W is a K-space.

Then for any w € W, (w)k denotes wk (resp kw) depending on whether W
is taken to be a right (resp. left) K-space and y = (x)k, for k € K denotes
the additive subygroup {(w,(w)x |xn € K} of V=W &IV
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The collection S of subspaces of the K -space V' given by:
S={Y}U{y=(2)t' | ke K},

where Y = O 9 W, is called the W -coordinatized SCALAR PSEUDO-REGULUS
in PG(V,K'). The members of S are called its COMPONENTS. S is called a
SCALAR regulus if it turns out to be regulus in 3.

For oll w € W=, the lines of ¥ of form let

Tw = {(wky,wks) | ky, ko € K},
and define the STANDARD COVER of the scalar pseudo-requlus S, by
T = {7_‘(.9 [ w 6 I{_‘i’}'}'

Note that from our point of view it turns out to be quite harmless to ignore
the dependence of some of the above notation on 1; we assume a fixed W
as our starting point: we avoid references to ‘W -defined’ objects.

We now show that in projective spaces over a skewfield K, the scalar
pseudo-regulus is a regulus iff K is a field, and when this is case, the standard
cover, definition 3.1.7, turns out to be the set of ite transversals. In the more
general situation, when A is non-commutative, virtually the same conclusions
would apply if the definition of a transversal were to be appropriately relaxed.

Theorem 3.1.8 (Scalar Pseudo-Reguli.) Let S be the scalar pseudo-regulus
assoctated with V = W o W, where W 1s a vector space over a skewfield K.

Then
1. S is an additive partial spread, with ambient space (V,+).
2. The components of S are K-subspaces iff K is field.

3. The standard cover T is a collection of pairwise-skew lines of PG(V, K)
such that Ur = US, with both sides viewed as subspaces of V.

4. K is a field iff the pseudo-requlus S is a requlus and the standard cover,
definition 3.1.7, is its set of transversals.

Proof: (1) Let A and B denote any two distinct components of S; the
main case is when they are, respectively, y = (z)a and y = (z)b, for distinct
a,b € K*. Now these two spaces have frivial intersection, so we have a
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partial spread provided A + B = V. For convenience, write (z,y), ,y € W
to denote z @ y. Now (z,y) € A® B holds iff

Ju,v € W 3: (2,y) = (u, (wa) + (v, (v)b),

and this can easily be solved for v and v. Thus S is an additive spreadset.
(2) Consider a non-zero w & (w)k € y = (z)k. Now for l € K,

(w @ (W)k)! = ()l © (W) = (w)l & ((w)))I "k,

thus y = (z)k is left invariant under K iff & is centralized by K.
(3) Since Ty, = Ty holds iff w and w’ generate the same rank-one K-space
it follows that 7 is a collection of pairwise-skew lines of X.

The subspace

Tw = {(W)ky, (w)k2) | k1, ks € K}

meets Y when ky = 0, and meets X := W & vecO when k; = 0. It meets
every other component y = (z)k of S at (w, (w)k). Moreover T, is covered
by the components of S because ((w)ky, (w)ks), for k; # 0, may be expressed
as (wkl,wklﬁ), for k; # 0, meets the component y = (z)k, k := %, and it
of course meets Y as well. If s € V* is in some y = (2)k then s = w @ (w)k,
w € W*, and this lies in T,,. So Ur and US coincide as subsets of V.

(4) This follows from the above cases. m

We now proceed towards showing that all reguli may be identified with the
scalar reguli, that is, scalar pseudo-reguli over a commutative field. We
shall not consider here the more general problem of providing a geometric

characterization of all pseudoreguli.

Lemma 3.1.9 Let S be the scalar regulus in PG(V = W @ W,K), K a
field. Suppose R is any requlus that shares the components ¥ = O ¢ W,
X =0& W and at least one other component. Then R= 5.

Proof: Let p € R~ {X,Y}. So V is a direct sum of any two distinct
members of the triad {X Y, p}, hence, by linear algebra, there is a unique
linear bijection M, : W — W such that

p = {{w,wM,) | we W}.
Since every transversal ¢ of S meets at least three components of R, ¢ must

also be a transversal of R, by definition 3.1.3(defiregl). But, by theorem
3.1.8, the transversals of S are of form

Ty = {(’LL'AII,U.’L?Q) | kl: ko € I{},
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and this meets p non-trivially iff for some &y € K* there corresponds a k» € K
such that wk; M = wk,, and this implies that M leaves invariant the rank-
one space wl{, and this to holds for all w € W iff M is projectively trivial
and hence of form y = (z)m, for some m € K*. Thus R includes all the com-
ponents of S and hence must coincide with S: if R had more components
then the transversals of S would fail to be transversals of R. =

The following theorem asserts that any regulus R over a field may be iden-
tified with the scalar regulus S; in fact R may be coordinatized by S so
that any three components of R may be identifed with the three standard
components of S, viz., X, Y and the unit line.

Theorem 3.1.10 (Standard Coordinates For Reguli.) Let V = W @ W,
where VW is a vector space over a field ', and let ¥ be the associated projective
space PG(V,K). Let S denote the scalar requlus in X, relative to W. Then
given any requlus R of 2, and an ordered triple of three distinct components
(A, B,C) of R, therc is a nonsingular bijection g € GL(V, K') that maps the
triple (A, B,C) onto (X,Y, Z), and the requlus R onto the scalar requlus S;
here X, Y and Z are the ‘standard components’ of S in the usual sense:

X=Wa&0, Y=08W, ad Z={(ww)|weW}

Proof: It is asimple exercise in linear algebra to see that the group GL(V, K)
is transitive on the set of all ordered triples (A, B, C) such that V is a direct

sum of any two members of the triple. Thus choosing (A, B, C) to be three

distinet components of I? there is a linear bijection g of V' such that g maps

(A,B,C) onto (X,Y,Z), and now the regulus g{R) satisfies the conditions

of lemma 3.1.9 above, hence g(R) is the scalar regulus. m

The following corollary is immediate:

Corollary 3.1.11 If a projective space X, over a field K, contains three
mutually skew R -subspaces A, B and C' such that any two sum to X, then
the three subpaces are components of a unique requlus in X.

In the context of a projective space ¥ = PG(V, K), the concept of a spread
and partial spreads only make sense if V' = 1V & 1 for some K-space 1.
Hence we shall tacitly assume that ¥ has this form, when we refer to its
partial spreads.

Definition 3.1.12 Let £ be a projective space over a field. A spread of ¥ is
called REGULAR tf the unique regulus containing any three mutually distinct
spread components is contained within the spread.
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Every spread over GF(2) is regular:

Remark 3.1.13 Let K = GF(2) and suppose V is any vector space over K.
Then every spread S in PG(V, K) is regular.

Proof: Since, c.f. corollary 3.1.11, the regulus R determined by any three
distinet components a, b, ¢ € S coincides with R C S. =

It will become evident that there are many non-isomorphic translation planes
of even order 2" > 8, and these may be identified with mutually non-
isomorphic spreads in PG(2n — 1,2).

The following theorem, due to Bruck and Bose [5], implies that in ev-
ery other case all finite regular spreads of the same order are isomorphic.
The proof introduces powerful computational techniques that will be sys-
tematically conisdered in later chapters. The theorem may be stated more
generally, with appropriate modifications, so as to include the infinite case.

Theorem 3.1.14 A finite spread in PG(2k — 1,q) and q # 2 is reqular if
and only if the associated translation plane is Desarguesian.

Proof: e will prove this only in the case P’G(3, K), K = GF(q), but the
proof remains valid in general.

Let S be a spread in PG(3, q). Choose any three lines of S and write the
plane vectorially with points (z,y) where z and y are 2-vectors over K and
z =0,y =0,y = z are components. Then the regulus defined by the three
components has as its components z = 0 and y = 2u for all v in K. Let

y=x [ g(tf, v) f(i;u) } = My, =M

be any component of the spread with the choice of three components as
z =0,y =0,y = z. Change bases by

I, 0
0 A1

and note that the unique regulus containing z = 0,y = 0 and y = zM
after the basis change also contains ¥y = 2 and hence must have the form
r =0,y =0,y = zk for all £ in K. Hence, we have that y = Mk must
be in the spread, whenever y == zAM is in the spread. This implies that
g(tw,vw) = g(t,u)w and f(tw,uw) = f(t,v)w for all u,t,w € K.
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Now choose z = 0, y = 21/, , and y = 27, , and determine the regulus

- , Iy —M,,
containing these three components. Change bases by 02 I > 1 to re-
2
write the spread in the form @ = 0,y = (M}, — M;,.) = N. Use the previous
: : I, 0 .
basis change with 0‘2 N-1 to realize the standard form of the regulus

containing the three indicated components. Now reverse the basis changes
to obtain that z = 0 and y = o ((M,, — M. )w + M, ) are components for
all t,u, s,v,w € K, provided (¢,u) # (s,%). In particular, if t = s but v # v
then this implics that thie matrix

1 0 uw 0O
01 0 wu
00 1 0
0 0 0 1

defines a collineation for all » in KA. Similarly, the previous argument shows
that

1 0 0 0
01 0 0
00 w 0O
0 0 0 w

defines a collineation for all w % 0 of K. Hence, we obtain g(t,u) + w =
g(t,u-+w) for all u,t,w in K so that if follows that g(¢,u) = tg(1,0) + v and
similarly f(t,u) = f(t,u+w) so that f(t,u) = f(¢t,0) =tf(1,0). Hence, the
spread has the following form, for some constants f and g in KA

tg+u uf

r=0y==x [ p "

J Vt,u € K.

Exercise 3.1.15 Show that the matrices in the spread define a field isomor-
phic to GF(q?).

Hence, the spread consists of all 1-dimensional GF(q?)-spaces within a 2-
dimensional GF(g?)-vector space. That is, the spread is Desarguesian. m
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3.2 Derivation.

We have seen that a regulus R in PG(3,K), K a field, is covered by its
opposite regulus R'. If S is a spread of PG(3, K) that contains R then
(S\ R)UR = 5"is also a spread called the spread ‘derived’ from S.

We consider this more generally, but only for finite spreads.

Definition 3.2.1 If S is a spread in a projective space & ~ PG(2k — 1,q)
and R is a partial spread of S such that R is a regulus in some PG(3,h)
where h* = ¢* then we shall say that R is a ‘derivable portial spread’ of
S. The corresponding affine structure in the associated translation plane is
called a ‘derivable net’.

Exercise 3.2.2 Let 7 be a translation plane with an assoctated spread in
PG(3,K), K = GF(q). Show that a basis for the vector space can be chosen
so that any derivable net D has the spread sct

ut}

2 } forallu in K and o in Gal(K).

"o A
Exercise 3.2.3 Consider the spread x = 0,y =z z; ip } for all u,t in
K ~ GF(q) , q odd and o,p in Gal(K) and v 1s a nonsquare in K — {0}.
Find at least 2q derivable nets in the associated translation plane. Show
that if neither o nor p is 1 that none of the derivable nets is a regulus in
PG(3,K). For each derwable net D, find a field Kp isomorphic to K such
that D defines a regulus in PG(3, Kp).

Theorem 3.2.4 The number of reqular spreads in PG(3,q) is
¢'(¢" = 1)(g - 1)/2.

Proof: Each regular spread defines a field extension of K, K[t] & GF(q?).
By the theorem of André, each two Desarguesian affine planes are isomorphic
by an element of I'L(4, K). The full collineation group which fixes the zero
vector of a given Desarguesian affine plane is clearly I'L(2, K[t]), K[t] =
GF(¢?)). Hence, the number of regular spreads is
P4, 9| _ 4 4
N = TLzq)] ¢ (" - 1)(g-1)/2,

and now it is a simple exercise to verify that N = ¢*(¢* — 1)(¢—1)/2. =
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Remark 3.2.5 The number of requli in any reqular spread, contained PG(3, q),
18 given by
("5")
3

(%3")

=q(g* +1).

Proof: Exercisem

Theorem 3.2.6 Let R be any regulus in PG(3,q) and let Ni denote the
corresponding net of order ¢* and degree g+ 1. Let £ be any line of PG(3,q)
so that RU{£} is a partial spread. Then there exists a unigque regular spread
containing R U {¢}.

Proof: Let K = GF(q) Represent R is standard form:

u 0

z =0, y:.’f[o U}Vueh.

Let. £ be represented in the form

_mab
y= c d |’

It is immediate that bc # 0. Furthermore, the difference of these matrices
must be non-singular so that

det[a;u dfu}:(a—u)(d—u)—bc:uQ—(a-{—d)u——bc#@‘v’ueK.

Hence, the polynomial 22 — (a+d)z — be is irreducible over K. Write d —u =
v,b = gty and then e = a — d = fty . Now consider the set of matrices

{[ ft;H" T} l-z:,tEK}.

We have noted previously that this set forms a field isomorphic to GF(g?)
so that there is a unique Desarguesian (regular) spread defined by this field
of matrices. Hence, there is a unique regular spread containing RU {{}. =
In the next theorem, we shall need to appeal to the following elementary
fact:
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Remark 3.2.7 The number of polynomials 2>+ fz+g for g and f in GF(q)
which are GF(q)-irreducible is q(q — 1)/2.

Proof: Exercise. m

Theorem 3.2.8 Any regquius R in PG(3,q) can be embedded in exactly q(q—
1)/2 regular spreads.

Proof: Represent R in the standard form z = 0,y = z g 3 for all u

in GF(q). Any regular spread containing'R corresponds to a Desarguesian
affine plane and hence a corresponding quadratic field extension of GF(q).
The theorem follows by remark 3.2.7.m '

| |

Corollary 3.2.9 There are ezactly ¢*(q* — 1)(q® + 1) reguli in PG(3,q).

Proof: Consider the incidence structure of reguli and regular spreads and
count the incidence pairs (flags). Let & denote the number of reguli in
PG(3,q). Then the number of Desarguesian spreads times the number of
reguli in each Desarguesian spread is equal to the munber of reguli times the
number of Desarguesian spreads containing a given regulus.

‘Hence,

@M =D -1)/2)9@*+ 1) 4 s o
k= (a1 =¢' (¢ (g +1).

Corollary 3.2.10 Let R be a requlus in PG(3,q). Then, the order of the
collineation group of the corresponding regulus net Ny which fizes an affine
point is (q(q® — 1))%(g — 1)r where ¢ = p" and p is a prime.

Proof: Since any two Desarguesian spreads are isomorphic and since any
Desarguesian affine plane admits a collineation group which fixes the zero
vector and acts triply transitive on the line at infinity, it follows that

°(¢" = 1)(¢* = 1)(¢* - 1)(¢ — D)r
(@* = 1)(? + 1)) = (q(¢> = 1))*(g — 1)r’

ITL(4, @)ne| = 7
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|

We shall see shortly that the collineation group of a regulus net which fixes an
affine point is isomorphic to GL(2, ¢)I'L(2, ¢) where the product is a central
product of intersection the subgroup of order ¢ — 1 of scalar matrices.

3.3 Direct Products of Affine Planes and Pack-
ings.

In PG(3,q) linespreads have size (¢*> + 1), and the total number of lines
is exactly (¢° + 1)(¢° + ¢ + 1). Thus one might ask for a collection C of
(¢> + g + 1) spreads such that every line belongs to (exactly) one spread in
the collection C; one might even ask that all the members in C be regular.
Such packings will be used in this section to construct perhaps the two most
intriguing translation planes: the Lorimer-Rahilly plane of order 16 and its
transpose the Johnson-Walker plane: these are the only known translation
planes admitting GL(3,2). The concept of a net product will be introduced
partly as an aid to the above, and also because of potential aplications in
wider contexts; net products are helpful in constructing nets with interesting
properties.

Definition 3.3.1 Let ¥ be a projective space relative to a left K-vector space
X@eX.

A PACKING (PARALLELISM) of ¥ is a set of spreads which are disjoint
with respect to subspaces K -tsomorphic to X and such that the union of
subspaces isomorphic to X of the set of spreads is the set of all K -subspaces
wsomorphic to X. The packing ¥ is REGULAR 1if the psreads in it are all
reqular spreads.

For example, a packing of PG(3,q) is a set of 1 + ¢ + ¢ spreads of ¢* + 1
lines each. In particular, a regular packing in PG(3, q) gives rise to a set of
1+ g + ¢* Desarguesian spreads of order ¢>.

In the following, we shall require the concept of the direct product of nets
and affine planes. The notion of net was introduced in definition 2.1.1.

Definition 3.3.2 Let w1y = (P.L,,Cy, 1)) and 7 = (I%», L., C, 1) be two
translation planes. Let o be a 1 —1 correspondence from the set C'y of parallel
clusses of w1 and the set C, of parallel classes of w;. We form the direct
product my X, 7o as follows:
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The ‘points’ are the elements of the cross product Py x P, .

Let £, be a line of Ly so that £y0 s a bine of La. If £, is any line parallel
to £10, then the set of points of Py X P incident with £1 X €y 1s a ‘line’ of the
direct product incidence structure.

Note that the construction does not use finiteness. If o is an isomorphism,
we use the term ‘reqular direct product’.

Exercise 3.3.3 Show that if the planes are of order n then = X, m is a net
of order n® and degree n.+ 1.

Theorem 3.3.4 Let T1 and Ty denote the translation groups of m; and my
respectively. Then Ty X T3 s a translation group of w1 X, 7.

Proof: Define the action of (g1, ¢92) on (ay,a») for a, in P, for i = 1,2 by
(a3, a2)(g1,92) = (a1g1,a292). Let £, be a line of L; and (, a line parallel to
£10. Then £,g, is parallel to £, and £5¢- is parallel to £, and to £;0. Then
£1g1 X €5 go is a line of ) X, 9. To show that (g;, ¢») is a translation, simply
note that (g1, g2) fixes each parallel class but fixes no affine point.

Definition 3.3.5 Let £ = PG(2k —1,q). A (k — 1)-regulus Ry._y1) s a set
of ¢ + 1 (k — 1)-dimensional projective subspaces which are mutually skew
such that any line of ¥ which intersects any three necessarily intersects all
elements of R.—)).

Note that a regulus in PG(3,q) is a 1-requlus.

Theorem 3.3.6 If 7| and 7y are Desarguesian offine planes of order q and
a is an isomorphisim of 7w onto @y then

(1) there is a collineation group isomorphic to GL(2,q)I'L(2, q) acting on
] X To and

(2) 71 X, 7y 18 a derivable net.

(3) If w1 is a Desarguesian affine plane whose spread S, is in PG(3,q)
then my x w1 is a derivable net with partial spread in PG(7,q) which contains
a 2-requlus.

Proof: We identify 7, and 7, and without. loss of generality, we let o = 1.
We note that I'L(2, ¢) is a collineation group of ;.

Exercise 3.3.7 For h in T'L(2, q) show that (h,h) is a collineation group of

Ty X 7).



CHAPTER 3. COMBINATORICS OF SPREADS: NETS AND PACKINGS. 62

Now for a, 3,7,6 € GF(q) such that ad — By # 0, we define [ f; '? “ acting
on (a;,az) to be (aya + a7y, a1f + az) where the indicated multiplication is
scalar multiplication. Let L, is a line represented in the form y, = z,0 + p,
it is easy to verify that Ly« is y) = 0+ ap. It follows that L; x L, maps to
(Lrae+ Loy) x (LB + Loé6) and (Lya + Lyvy) is parallel to (L8 + Ly8). Note
that it follows that there is a group isomorphic to GL(2,q) which fixes each
line of the net incident with (0,0). Hence, GL(2,q)'L(2,q) is a collineation
group of the net. This proves (1).

Now (p,0) for all points p of m; is a subplane isomorphic to m;. Fur-
thermore, GL(2,q) acts transitively on the points of each line thru (0,0).
Hence, the net is covered by subplanes isomorphic to 7;. This is enough to
ensure that the net is a derivable net. However, if we represent m; by the
components ¢, = zya and z; = 0 and 75 as y; = zoa and x4 = 0 then the
points of the direct product have the form ((zy, 1), (z2,92)). Rerepresenting
the points in the form (zy, 29, v, y2) takes the lines (y; = z1a) x (y2 = 220)
to the form y = za where (21, z2) and y = (y;, 12)-

Thus, the direct product net may be coordinatized by a net defined by
y = xa, € = 0 which is clearly a regulus in PG(3,¢). This proves (1).

Now assume that m; is defined by a regular spread in PG(3,q) so that
the order of m is ¢*. Then if the associated field if GF(q)[t] & GF(¢?), the
previous argument shows that there is a net of the form y = 2a, £ = 0 for
all o in GF(q). Hence, this defines a 2-regulus in PG(7,¢). This proves (2)
and (3).

We now consider the direct product of two Desarguesian affine planes
whose corresponding regular spreads are in the same PG(3,q).

Proposition 3.3.8 Let S; and Sy be distinct regular spreads in PG(3,q),
let 71 and 7o denote the Desarguesian affine planes corresponding to S; and
S, respectively.

Form m; x m = Dy and my X o = Ds.

Then Dy N Dy (the intersection of components) is a 2-regulus Ry and
D, U D, 1s a partial spread in PG(7,¢) of 2(¢*> — q) + 1 + g components.
Hence, N(p,up,) 15 a translation net (admits a translation group transitive
on its points) of order ¢* and degree 2(¢*> — q) + 1 + q.

Proof: We note that D; may be coordinatized by a quadratic field exten-
sion of A = GF(q) say K[t;]. Similarly, D, may be coordinatized by a
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quadratic field extension I{[to] of K. If S} and S, are distinct, it follows that
K[t;]) N K|ts] = K. Each derivable net has exactly 1 + ¢°> components as 7;
is a Desarguesian affine plane of order ¢ for i = 1,2.

Theorem 3.3.9 Let P be a regular packing of 1+q+q* spreads in PG(3,q).
Let the corresponding Desarguesian translation planes be denoted by =; for
i=1,2,..,14+¢+¢

(1) Then U(I+Q+q V7 x m; is a translation plane of order ¢* whose spread
is in PG(7,q).

(2) The spread consists of 1 + q + q° derivable nets each containing a
2-requlus K.

(8) The collineation group of the translation plane contains GL(2,q) in
its translation complement . Furthermore, GL(2,q) is generated by central
collineations and leaves cach derivable net invariant.

Proof: From the preceding, it remains to show that GL(2, ¢) is a collineation
group of the translation plane.

We note that the full group of each derivable net that stabilizes the zero
vector is GL(2, K[t;])'L(2, K[t;]) where K[t;] is the quadratic field extension
of K = GF(q) which (oouhnafv(’s m; and 7 X 7.

Clearly, NIt GL(2, K[t)TL(2, K[t]) & GL(2,q)TL(2,q). However,
only the group isomorphic to GIL(2,q) generated by the scalar mappings
as noted above are collineations of the translation plane (with the possible
exception of the collineations induced by field automorphisms).

3.3.1 A regular parallelism in PG(3,2).

Let S; be any regular spread in PG(3,2) we shall construct a parallelism as
follows: let C' be a cyclic group of order 2° — 1 =1+42+2% =7 in PG(4,2)
which fixes three components of S) then UsS;io is a regular parallelism.

Choose any point X of I’G(3,2). There are exactly seven lines containing
X and the seven involutions fixing the lines pointwise respectively generate an
elementary Abelian group of order 3 (a 3-dimensional GF(2)-vector space)
A which is a normal subgroup of PGL(3,2)x. The group induced on A
turns out to be isomorphic to SL(3,2) (see e.g. Walker [40]) which is also
isomorphic to PSL(2,7).

The stabilizer of each line L; containing X is isomorphic to Sy; and the
alternating group Ay; fixing L; fixes it pointwise. For each each element o of
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order three in Ay;, there is a unique line M; skew to L; which is ¢ invariant.
It turns out that

(LinM:Sy |i=1,2,..,7}

is a spread and
U;{Li n .AJ,;SLH I Z = 1,2, aany 7}

is a regular parallelism of PG(3,2).
Corollary 3.3.10 Corresponding to the regular parallelism of PG(3,2) is
a translation plane of order 16 with kernel GF(2). The plane admits a

collineation group isomorphic to SL(2,2) x Z;. The full collineation group
is PSL(2,7) % S3.

Now essentially the same construction on the dual space of V; produces
another translation plane of order 16 from a corresponding regular paral-
lelisi. Actually, this may be given a more general construction.

3.3.2 Transpose.

Let Vo = V be a 2k-dimensional left vector space over a skew field K and
let V* denote the dual space of linear functionals. Choose a basis {e;|i =
1,2,...,2k} of V and let {f;|i = 1,2,...2k} denote the dual basis of V*, so

fj(ei) = 6z'j for all ‘Z,j = 1,2, ...,Qk.

Define
fa(z) = f(z)aVf e Vi a € K,

so now V™ becomes a 2k-dimensional right vector space over K.
Represent. vectors of V' by

k 2k
{z,y) = (z1, 22, T, Y1, Y2, - Yi) = zxiei + Zyie-i
1 k+1

and represent vectors of V* by

k 2k
(Z,UJ) = (21: 29y ey Zf,y Wy, Wo, ...,wk) = Zfizi + Z fiwi.
1 k+1
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Define the annihilator mapping L as follows:
Wt ={feV*| fw) =0w e W},

where W is a subspace of V. In terms of the basis then (z1, 22, ..., 2, w1, wa, ..., Wi)
annihilates (z1,Zs, ..., Zk, Y1, Y2, ....yx) if and only if

o _ . t__
(X1, 29y ooy Thy YL, Y24 - Uk) = (21, 22, ovy Zhy W1, Wa,y ooy wi)© = 0,

where ¢ denotes the transpose matrix.

Now let S be aspread in PG(V, K) then {T+;T € S} = S* isaset of k—1-
dimensional projective subspaces of PG(V*, K) such that each hyperplane
of the projective space contains exactly one element of S*.

Definition 3.3.11 Let W = Z&Z be a L-vector space where L is a skewfield.
A dual spread of PG(W, L) is a set S of mutually skew subspaces each L-
isomorphic to Z such that every hyperplane contains exactly one subspace of

S.

Hence, S* is a dual spread of PG(V*,K) if and only if S is a spread in
PG(V,K).

Exercise 3.3.12 Show that if {(z,2A)} is a spread component of S then
{(z,2A)*} = {(z,—2zA7Y).

Exercise 3.3.13 Show that interchanging x = 0 and y = 0 by a basis change
(z,y) = (—y,x) maps a partial spread set {A | A € M} onto the partial
spread set {—A"' | A € M},

Hence, we obtain:

Theorem 3.3.14 Let S be a spread in PG(V, K) for'V a2k-dimensional left
vector space over a skewfield K. Then there is a dual spread S* in PG(V*, K)
where V* denotes the dual space of V' such that if {(z,2A) for A€ M} isa
spread set for S then {(x,zA") for A € M} is a dual spread set for S*.

Exercise 3.3.15 Show that any spread in PG(2k—1, q) is also a dual spread
and conversely any dual spread is a spread.

Given any infinite skewfield K, there is a spread which is not a dual spread
due to the work of Bruen and Fisher [6] and Bernardi [4].
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Corollary 3.3.16 Let S be a spread in PG(2k — 1, K) for K a field which
s a dual spread.

If{x =0,y = zA for A € M} is a spread representation in the associated
vector space then { x = 0,y = 2 A" for A € M} is also a spread called the
transposed spread S*.

Exercise 3.3.17 Show that the full collineation group of a transposed spread
is isomorphic to the group of the transposed spread.

Exercise 3.3.18 Show that the transposed partial spread of a derivable net
ts a derivable net.

Previously, p 63, we have given an example of a regular parallelism in
PG(3,2) and hence an associated translation plane w. There is a corre-
sponding transposed plane #' with the property that the spread for =«* still
consists of seven derivable nets sharing a 2- regulus in PG(7,2). It follows
that there is a corresponding regular parallelism which we might called the
transposed parallelism.

The plane corresponding to the original parallelism is called the Lorimer-
Rahilly plane of order 16 as it was initially found independently by Lorimer
and Rahilly. Similarly, the transposed plane is called the Johnson-Walker
plane of order 16 as it was determined by Walker using group theory and by
Johnson using derivation of the semifield planes of order 16.

Remark 3.3.19 There are exactly three reqular parallelisms of even order;
two in PG(3,2) and one in PG(3,8). The corresponding trenslation planes of
order g* with spreads in PG(7,q) all admit the collineation group SL(2, q) x
Zysyrqz. Jha and Johnson [20] have shown that translation planes with such
collineation groups must correspond to regular packings in PG(3,q).

There is exactly one knoun regular parellelism of odd order which is in
PG(3,5) and is due to A. Prince ([36]). The collineation group has not yet
been fully determined.

3.4 Introduction to Quadrics and Unitals.

In this section we introduce some standard concepts and tools from linear al-
gebra and projective spaces that have proven to be useful in translation plane
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theory. As an application, a theorem of Buekenhout, establishing the exis-
tence of unitals in translation planes associated with linespreads, is proved
using the Bruck-Bose representation of translation planes. The reader might
consider skipping this section as nothing in the sequel depends upon it.

Definition 3.4.1 A correlation of any vector space is an incidence reversing
biyection. Let Vi, denote a correlation of a n-dimensional K-vector space
where K 1s a field. So, a correlation will map a vector to a hyperplane.

We represent a vector as an-tuple (xy, s, ..., z,,) and since a hyperplane is
gwen tn terms of a linear equation, a;x,+aszs+...+a,x, = 0, we represent a
hyperplane by (ay, @, ..., ax)* where t denotes the transpose matriz operation.
Hence, a vector X is incident with a hyperplane Y* if and only if XY* = 0.

We define the following mapping: Let A be any nonsingular k X k matriz
over K and o any automorphism of K. If X = (21,29, ...,2,) define X° =
(29,29, ...,2%).

Define 64, as follows: 64(X) = AX'Y. Furthermore, the induced map-
pingon Yt is 64, (Y') =YA™ L.

We shall be interested in ‘polarities’ which are defined as correlations of
order 2 acting on the corresponding projective space.

Exercise 3.4.2 Show that §,4 s a correlation.

Remark 3.4.3 It can be shown that all correlations on a finite dimensional
vector space over a field KN can be represented in the form b4, for some
matriz A and automorphism o .

Proposition 3.4.4 A correlation 6,4, is a polarity if and only if 0 = 1 and
A%t = kA for some k in K such that k! = 1.

Proof: &4 ,(X) = §(AX7") = (AX7")"? A~1. In order to induce the identity
mapping on the projective space, if follows that this latter equation is AX for
somie nonzero k of F'. Hence, a polarity is obtained if and only if X=X

for all X and A°* = kA=

Exercise 3.4.5 Show that k°*! = 1.

Definition 3.4.6 A polarity 6 is said to be ‘orthogonal’, ‘symplectic’, or
‘unitary’ accordingly as (o, k) = (1,1),(1,—=1) and (# 1,k).
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A subspace W of V,, is said to ‘totally isotropic’, ‘isotropic’, or ‘non-
isotropic’ if and only if W NW® = W, # 0, or 0 respectively. If W is a
1-dimensional subspace (point in the projective space) then a totally isotropic
1-space is said to be ‘absolute’.

Correlations are related to sesquilinear forms:

Definition 3.4.7 Let V be a vector space over a skewfield K. A mapping s
from V x V into K is called a sesquilinear form if and only if

s(z+ 2,y +vy) = s(z,y) +s(2',y) + s(z,y) + s(2', ¥)

and
s(az, By) = as(z,y)5°
where o 15 an automorphism of K. A sesquilinear form is said to be non-
degenerate if and only if s(z,y) = 0 for all y in V implies that z = 0 and
s(z,y) =0 for all x in V dimplies that y = 0.
It turns out that correlations may always be defined from nondegenerate
sesquilinear forms as follows:

W= {zeV|s(z,w)=0Vw e W}.

Conversely, given any correlation, there is an associaled non-degenerate sesquilin-
ear form which gives rise to it as above.

An orthogonal polarity corresponds to a symmetric, bilinear form (o = 1)
and s(z,y) = s(y,z). A symplectic polarity corresponds to a skew-symmetric
bilinear form where s(z,y) = —s(x,y) (for characteristic two, s(z,x) # 0 for
some x ts required), and a unitary polarity corresponds to a Hermitian form
where s(z,y) = s(y,z)? for some autornorhism a of order two.

Definition 3.4.8 A quadratic form @) is a mapping of V into K such that
Qaz) = a*Q(z) and Q(z+y) = Q(z)+Q(y)+s(z,y) where s is a symmetric
bilinear form. A quadric is the set of points x in the associated projective
space such that Q(z) = 0. If the characteristic is not two then the form is
nondegenerate if and only if s(x,y) = 0 for all y in V if and only if x = 0.
If the characteristic is two then Q is nondegenerate if and only if Q(w) # 0
when s(w,z) =0 for all z.

The set {v; Q(v) =0 and s(v,y) = 0 for ally in V'} is the set of singular
POoINts.
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It turns out that when I ts not of characteristic two then the set of
absolute points of the associated symmetric bilinear form is the set of points
of the quadric.

Moreover, in any case, all mazimal subspaces contained in a nondegener-
ate quadric have the same rank (as do all mazximal totally isotropic subspaces
of a polarity) which is called the index.

Definition 3.4.9 An ovoid in PG(3,q) is a set of g> + 1 points such that no
three are collinear and for any point P the set of tangent lines forms a plane
(hyperplane).

If Q is a nondegenerate quadric in PG(3,q) of rank 1 then the quadric is
an ovoid.

Now let 7 be a Desarguesian projective plane of order ¢ considered as
PG(2,q%). Let o denote the involutory automorphism of the associated field
F = GF(q?) coordinatizing 7 and defined by z° = 27 for all z in F.

Let V3 denote the associated 3-dimensional vector space whose lattice of
subspaces define PG(2,¢%). Let A = I3 and consider the unitary polarity
010

The major facts about unitary polarities in V3 are as follows: Let ¥ =

PG(2,q%).

Theorem 3.4.10 A unitary polarity of Vi over GF(q®) has q® + 1 absolute
points and ¢* — ¢* + q* non-isotropic lines in .

Assuming that the polarity is 6; ., a point represented by (z,vy, z) is abso-
lute if and only if z°F! 4 ¢! 4 27+ = (.

Exercise 3.4.11 Prove part (1) assuming 6y, represents the polarity.

Theorem 3.4.12 (1) Each non-isotropic line contains ¢+ 1 absolute points
and every two absolute points are incident with a unique non-isotropic line.

(2) There are exactly q* non-absolute lines on any absolute point. Hence,
there is a unique absolute line incident with any point.

Definition 3.4.13 A t— (v, k, A)-design is an incidence structure of ‘points’,
‘blocks’, and ‘incidence’ where there are v points, k points per block and any
set of t distinct points us incident with exactly A blocks.

A ‘unital’ is defined to be a 2 — (¢* + 1,q + 1,1)-design.
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Hence, we sce that the cbsolute points and non-absolute lines in ¥ =
PG(2,q%) form a unital called the classical unital. However, there are uni-
tals which are not classical some of which cannot be embedded into projective
planes. But, if unitals are embedded into projective planes where the blocks
are lines, they share the regularity conditions exhibited in the previous theo-
TEM.

Theorem 3.4.14 Let n* denote a projective plane of order q. Assume that
7+ contains a unital U as a2 — (¢* + 1,9 + 1,1)-design.

Then

(1) each point P of U lies on exactly q° lines of U which we call ‘secant
lines’. The remaining line incident with PP intersects U in exactly P and is
called a ‘tangent line’.

(2) Each line of w* is either a secant line of a tangent line. That is, each
line of the plane either intersects U wn one of ¢+ 1 points and ,in the latter
case, 18 a line of the design.

(8) Each point Q of w7 — U 1is incident with exactly ¢ + 1 tangent lines
and ¢®> — q secant lines. The ¢ + 1 intersections of the tangents of Q with U
are called the feet of . When the unital is classical, the line (hyperplane)
81.5(Q) is non-isotropic so intersects U in exactly q + 1 points which implies
that the feet of () are collinear in the classical situation.

Proof: We count the flags (point of ¢/, line (block) of ¢f) and note that the
number of points of I times the number B of blocks per point = (¢ +1)B =
the number U of lines of I/ times the number of points of I/ per line = U(g+1).
Given any point P and any of the ¢* remaining points Q of I, there is a unique
line of the unital containing P and (). Hence, there are exactly ¢*/q lines
incident with P which are lines of the unital. Hence, it follows that B = ¢*
so that U = ¢* — ¢ + ¢°. Since there are exactly ¢* + ¢ +1 lines of the
projective plane and there are ¢° + 1 tangent lines by the above argument,
this accounts for all of the lines of the plane and proves (1) and (2).

Exercise 3.4.15 Prove part (3).

The motivation for inducing unitals at this time is to employ the. Bruck-
Bose representation to show there exist unitals in any translation plane of
order ¢% with spread in PG(3, q).

The reader is referred to Buekenhout [7] for further and more complete

details.
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Proposition 3.4.16 Let m be an affine Desarguesian translation plane of
order ¢ with spread S in PG(3,q). and let U be a classical unital embedded
in the projective plane w™.

Realize m and ©™ in PG(4,q) using the Bruck-Bose representation.

We note that the points on f., are represented as the lines of S in the
hyperplane PG(3,q).

Let A({U) = UNx. Futhermore, let

A(U) := A(U) U {points on lines of S corresponding to infinite points of w}.

1. If €y 1s a tangent line to the unital then,in PG(4,q), | A(U4) |= ¢*+q+1
and

2. if £ 15 a secant line to the unital then, in PG(3,q), |AU)| = ¢* —q+

(g+1)%
Exercise 3.4.17 Prove the above proposition.

Definition 3.4.18 In situation (1), the unital is said to be ‘parabolic’ and
in situation (2), ‘hyperbolic’.

The main theorem of Buekenhout is

Theorem 3.4.19 A(U) ts a quadric in PG(4,q).

(1) If U is parabolic then A(U) has one singular point p and is the union
of all lines joining p to the points of some 3-dimensional ovoid of AG(4,q)
with one point at infinity.

(2) If U is hyperbolic then A(U) is non-singular.

Proof: We shall sketch the proof of (1). The proof of (2) is similar. Con-
sider the regular spread

:L—O,y—-.'r[utt‘g t{{}Vu,thf’:"GF(q),

in PG(3,q). Note that > —xg + f is a K-irreducible polynomial. By results
from the algebraic tract, we extend K to a field K[e] such that €? = eg — f
and multiplication in Kle] & GF(¢?) is given as follows:

u+tg tf}

(t"e +u”)(te + u) = (t*,u") { t u
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written over {e, 1} for all t*,u*,¢,u of K.

Let o denote the automorphism of Ke] given by z = z9.

We consider the classical unital I/ in the associated Desarguesian projec-
tive plane PG(2, K[e] = F = GF(q?)) whose points are given homogeneously
by (z,y, 2) for z,y,2 in F and (z,y, z) # (0,0,0).

We choose z = 0 to be the line at infinity ¢, and z = 1 to denote the
affine point of 7. Furthermore, we identify (z,y,1) and (z,y). We choose
(z,1,0) = (z) and (0,1,0) = (o) on the line at infinity. We choose the
unique point on £, of U as (c0) = (0,1,0). We choose a matrix for the
unitary polarity so that (0,1,0) is an absolute point. In particular, the

1 0

matrix provides the form as {(z,y, z); z°+! + zy” + y2° = 0}.

0 0
0 0
01
10

o oo
o O

Hence, with our notation, we have {(z,y); 2% + 9" +y =0} U {{c0)} = U.

Now to form A(lf). We note that using the Bruck-Bose model, z = 0
= (21, 7) is a set of ¢ + 1 points of A(U). Since 2% — zg + f is irreducible,
it. follows that z?f — 21%29 + x5 = 0 is equivalent to (zy,22) = 0.

Exercise 3.4.20 Show that ¢® = —ec+g and et = —f. Letting x = z1e+x3
and y = y,e + ys show that

7 4y y=0=—(z}f — 21200 + T3 + Y19 + 2¥2).
Exercise 3.4.21 Embed the affine space AG(4, q) into PG(4,q) as follows:
(71, 22,91, %2) — (T1, T2, Y1, Y2, 2)

and consider the points of PG(4,¢) as the 1-dimensional subspaces of a 5-
dimensional K-vector space. Show that

23 f — 1299 + 75 + 119 + 2y2 = 0

if and only if
:z;ff — T120g + 75 + 2919 + 22y, = 0.

Note that the intersection with the infinite points when z = 0is (z,,z2) =
0 which is {(0,0,1,«),(0,0,0,1,0); € GF(q)}.
Hence, the above equation defines a quadric defining A ().
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Exercise 3.4.22 Show the quadric above is degenerate. Show the unique
singular point 1s (0,0,—2,¢9,0) = p.

Now choose the hyperplane defined by y> = 0 and note that intersection
with A(U) is given by

{(531,332,91;2);33‘” — 21229 + 5’3% + 2119 = 0.

Exercise 3.4.23 The above quadric in the hyperplane isomorphic to PG(3, q)
is nondegenerate and of index 1. Show this when q is odd.

Hence, all points of A(Z) lie on lines of p, there are exactly g%+ 1 points
of an ovoid of H in AG(4,q) and exactly one infinite point (0,0,1,0,0) of
H. Since each line is a 2-dimensional K-vector space and A(Yf) is a quadric,
it follows that there are exactly ¢ + 1 points of A(Uf) on each line thru p.
Hence, this accounts for the ¢* 4+ ¢ + 1 points as (¢ + 1)¢ + 1 points on lines
thru p. Hence, there is an ovoid O in PG(3, K) such that A(U) lies on pO.

Now, it turns out that A(Y) induces a unital in any translation plane

with spread in PG(3, K).

Theorem 3.4.24 Let p be any translation plane of order q° with spread in
PG(3,q) then p contains a parabolic unital.

Proof: The idea of the proof is to show that A(l{) remains a unital in p.

If (c0) is the tangency point, we may assume that z = 0 (L) is a line
common to p and the Desarguesian affine plane 7. We identify the points of
7 and p so that we may consider A(U) as a set. of points in p* (the projective
extension of p). We assert that the lines of p* which join pairs of points of
AU)isa2—(¢*+ 1,9+ 1,1)-design ; a unital. It remains only to show that
the lines of p™* joining pairs of such points intersect A(Uf) in exactly g + 1
points.

First consider a line of p incident with (c0). Any such line becomes a 2-
dimensional projective subspace which intersects the hyperplane at infinity
in z = 0 which consists of ¢ + 1 points of A(Uf).

Suppose a,b are points of A(U) which are in 7« so in p. The line ab
is a plane of AG(4,K) and A(U) is a quadric. Assume that ab is not on
(00). Hence, the projective extension ab™N A(U) = C is a quadric possibily
degenerate. In the former case, a nondegenerate quadric in a projective plane
PG(2,q) is a conic of ¢ + 1 points. In the latter case, it is possible that C is
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the union of two lines of PG(4, K). If C contains a line of PG(4, K) then it
contains a line £ of AG(4, i) which is contained in a line p; of the translation
plane p. But, the projective extension of £ contains a point of A(Yf) so that
pe must be incident with (oc). This completes the proof. -

We have noted that any regulus in PG(3, K) can be embedded in a regular
spread. The same idea as above shows that any translation plane with spread
S in PG(3, K) such that S contains a regulus in PG(3, K) forces the existence
of a hyperbolic unital in such translation planes.

Theorem 3.4.25 Let p be a translation plane with spread S in PG(3, K).
If S contains a requlus then p* contains a hyperbolic unital (¢, is a secant
line to the unital).

There are many questions and problems that might be mentioned with
regard to translation planes admifting unitals. However, here is a general
problem.

Let = denote a translation plane with spread in PG(3, ¢) that admits
a unital. When is the unital a Buekenhout unital?

Finally, we point out that the construction given can be generalized and

need not depend upon a classical unital.



Chapter 4
Quasifields And Their Variants.

Quasifields coordinatize translation planes. In the finite case, these are ba-
sically non-associative division rings but possibly missing a distributive law
and a multiplicative identity. Here we consider, alternative approaches to
the definition, and the problems that arise in the infinite case.

4.1 Quasigroups and Loops.
A binary system (X, o) is a quasigroup if:
abce X =3z y€e X Saocxz=cAyob=c,

or
“Two in z o y = z fixes Third.”

If a two-sided multiplicative identity exists in a quasigroup then it is a loop,
thus, loops additionally satisfy:

Jee X3Vre X :zoe=e=couz.
Exercise 4.1.1 Let (X,0) denote a quasigroup.

1. A loop has a unique identity e, and every one-sided identity is two-sided
and hence must coincide with e.

2. If (X,0) is a finite loop with identity e andY C X is a non-empty set
closed under o, then (Y,0) is a loop iffe €Y.

75
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3. Show that the finiteness hypothesis is essential above: consider the case
when X is a group.

4. LetY be a set and suppose C: X - Y, A: X ->Y and B: X - Y
denote bijections. Then define (Y, *) by:

Ve, y e X : (xoy)C = (zA) x (yB).

Show that (Y, ) is a loop.

Define the cartesian product of a family of quasigroups and hence demon-
strate the ubiquity of quasigroups and non-associative loops. In partic-
ular resolve the following question:

Is there a non-associative loop of order n for all integers n > 29

&

Now if (X,0) and (Y, 0) are related by a triple of bijections p = (A, B,C)
then the triple is called an isotopism from (X, o) to (Y,o); the latter is
called an isotope of the former: isotopism is an equivalence relation. The
set of isotopisms from (X, o) to itself are called its autotopisms. Compostion
of isotopisms are defined in the natural way, and under this defintion the
autotopisms of a quasigroup (X, o) form a group: its autotopism group. The
automorphism group of (X, 0), in the usual sense, are just the autotopisms
satisfying A = B = (), similarly the isomorphisms from one quasigroup to
another are just the isotopisms with all three components in agreement.

Exercise 4.1.2

1. Assume (X,0) ts a quasigroup. Choose e € X and define the binary
operation x on X by:

Vz,ye X :zoy=(zoe)*(eoy).
Show that (X, =) is a loop with identity e o e.
2. Show that every quasigroup ts isotopic to a loop.
8. Show that every loop admits autotopisms that are not automorphisms.

4. Show that every quasigroup (X,o) is isotopic to a quasigroup (X, *)
such that the two quasigroups are non-isomorphic.
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5. Buvery finite group G s the automorphism group of a finite abelian
group, e.g., G lies in infinitely many GL(n,q). The question arises:
Is every finite group an autotopism/automorphism group of at least
one non-associative loop? [What if the non-associative requirement is
dropped?]

Suggestion: G can be viewed as a planar group of some free plane, and
this can easily be chosen so that the fized plane can be coordinatized by
a ternary ring with non-associative multiplication.

4.2 Translation Algebras and Quasifields.

In this section, we consider certain choices for the definition of a quasifield
— the systems coordinatizing affine translation planes. For example, some
translation planes have simpler representations when they are coordinatized
by certain ‘quasifields’ with the multiplicative identity missing — prequasi-
fields. Also, the simple axioms that characterise finite quasifields and pre-
quasifields, do not yield translation planes in the infinite case — so the struc-
tures that satisfy the natural axioms for finite quasifields have sometimes
been called ‘weak’ quasifields [18]. To put things in perspective we shall make
a brief examination of the most general such systems in this section: these are
‘weak-pre-quasifields’, but we prefer to call them simply translation algebras,
and we define [preJ-quasifields as the translation algebras that coordinatize
translation planes, rather than more general combinatorial structures. The
reader is invited to complete the ‘André theory’ for translation structures
that is hinted at here.

If (K,+,0) is a skewfield then the associated incidence structure is an
affine Desarguesian plane II(K’), whose points are the members of K & K
and whose lines are all sets of points that are of form ¥y = zom + ¢ or
z = k, for m,c,k € K. More generally, one might consider structures of
type (@, +,0) such that the associated incidence structures II(@), obtained
as above, are non-Desarguesian affine planes. Affine planes coordinatized by
cartesian groups are of the form II(Q), where (@, +) is a group.

Our interest in such systems is restricted to the case when (@, +) is an
abelian group: this will allow us to deal simultaneously with the notions
of prequasifields, weak quasificlds, pre-weak quasifields..., which become
unavoidable in the study of translation planes: many translation planes have
their simplest forms when they are expressed in terms of pre-quasifields, and
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the associated objects in the infinite case are ‘weak’.
Now if (2, +) is an abelian group then the additive group Q & @ admits
a natural translation group 7, consisting of all bijections

T(u..b] : (2 & (L) —? ('2 @ Q
(z,y) — (z,y)+ (a,b),

for a,b € Q. Thus 7 is regular on the points of II(Q), when (Q,+,0) is
such that the additive group (Q,+) is abelian. Our interest in (Q, 4+, 0) is
restricted to the case when 7 1s, additionally, a collineation group of the
incidence structure, and £ o 0 = 0 o x = 0, where 0 is the identity of the
additive group (@, +)-

In the finite case, this simply turns out to mean that I1(Q) is a translation
plane, and eventually it will be shown that all finite translation planes are of
this type. In the infinite case, (Q, +, ¢) becomes a ‘weak’ pre-quasifield: the
incidence structure 1I((2) may fall short of being an affine plane, although
still admitting the transitive translation group 7.

Definition 4.2.1 Q = (V,+,0) is called a zero-linked system if:

1. (V,+) is an abelian group with neutral element O;

I\

. V=V — {0} is a quasigroup,
3. Qox=0=zo00Vz eV,

The set-theoretic incidence structure II{(Q)), coordinatized by @, is defined to
have V &'V as its points, and its lines are the subscts of V@V that may be
expressed in the form
Vmbe KN :y=zom+b:={(z,zom+b)|zeV},
or |
VeeKN:ax=k:={(ky)|yeV}.

The zero-linked system Q = (V,+,0) is called a translation algebra if addi-
tionally the translation group of the additive group V &V, viz:

7= {Tep (2,y) — (2 +a,y+b) | (a,b) e V& V}
is a collineation group of I1(Q).

A translation algebra is called o pre-quasifield of I1(Q) is an affine plane
(and hence an affine translation plane).
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Exercise 4.2.2 Let (Q,+,0) be any zero-linked structure.

1. Show that the group
0 :={(z,y) = (z,y+0) | b Q}
is a translation group of II(Q).

2. Give exzamples of finite (Q,+,0) such that II(Q) is not a translation
plane. Consider coordinatizing a dual translation plane.

3. Are all zero-linked systems translation algebras?

The following proposition means that a finite translation algebra is the same
things as a finite prequasifield.In the infinite case a translation algebra is the
same thing as a ‘weak (pre)quasifield’ in the sense of Hughes and Piper. Thus,
translation algebras are introduced (temporarily) to refer to the same objects
that have been given different names in the finite and infinite situations.

Proposition 4.2.3 Let (Q, +,¢) be a zero-linked system. Then it is a trans-
lation algebra iff the right distributive law holds:

Va,b,c€e Q:(a+bloc=aoc+boc.

Proof: Assume the translations 7, : (z,y) — (z + e,y + 1), of Q & Q,

permute the lines of I1(Q)). So

Y=TOoMm-+cC
=>{(z+a,zom+c+b) |z €@}

=xzom-+c+b

— y=zom +¢
= {{(z+a,(z+a)m'+)|2eQ}
z+a)om' +¢

Sobyz«0:~aom'+c+b = ¢
So:zom+c+b = (z+a)om' +(—aom' +c+b)
= zom+aom’ = (r+a)om

and the result follows because all translations must be permitted. The con-
verse, that the right distributive law implies that 7 is a collineation group of
I1(@), is just as easy. m

The following proposition gives the standard condition for a translation al-
gebra, finite or infinite, to be a prequasifield in the usual sense of the term.
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Proposition 4.2.4 Let (Q,+,0) be a translation algebra. Then TI(Q) is a
translation plane if and only if:

Va,c,d € Q,a#c(3x>3x0a—z0c=d)

Proof: We need to check that the incidence structure II{(Q) is an affine
plane iff the condition holds. We verify that for any translation algebra,
distinct points (a,b) and (c,d) of II(Q) lie on a unique line. When a # c,
then the equations:

aom+b = n

com+d = n,

together with the right distributive law and the quasigroup property of Q*,
cnable m and n to be uniquely determined since we have: (¢ — ¢) * m =
—(b—d). And if a = ¢ then ‘z = ¢’ is the only common line. So two points
meet, and clearly parallel lines, meaning those with the ‘same slope’, do not
meet. Hence for II(Q) to be an affine plane everything clearly depends on
whether or not the lines ‘y = zo0a+ b and ‘y = 2 o ¢+ d’ meet for a # c.
But these lines meet at points whose X-coordinates z satisfy:

zoa+b=z2z0c+d
and this equation has a unigue solution iff:
zoa—xoc=d-—0D,

and this is the given condition. The result follows. =

Corollary 4.2.5 Finite translation algebras and distributive translation al-
gebras always coordinatize translation planes.

Proof: Using the notation of proposition 4.2.4 above, the map 6 : z +—
xoa—xocis an additive map, and its kernel corresponds to z satisfying
xroa = roc, contradicting the quasigroup hypothesis on W*, o), unless 6 is in-
jective. So in the finite case 6 is certainly bijective. In the general case, when
o is distributive, the distributive law yields the identity —uov = uo(—wv) and
hence also 8(z) = zo(a—c). So distributivity implies that € is bijective since
(WW*,0) is a multiplicative loop. Thus in both cases, finite or distributive,
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is bijective whenever a # c. Hence proposition 4.2.4 yields the desired result.
]

Thus the concept of a translation algebra coincides with that of a pre-
quasifield (structures that coordinatize affine translation planes) in the finite
case or when both the distributive law holds.

4.3 Schur’s Lemma, Slope Maps and Kern.

In this lecture we introduce some tools and concepts essential for the study
of spreads and translation planes. We begin by recalling Schur’s lemma, a
result that plays a central part in spread theory. We shall use it in a moment
to show that all translation algebras are built on vector spaces.

Result 4.3.1 [Schur’s Lemma.] If V and W are irreducible modules and
OV — W s a non-trivial linear map from V' to W then ¢ is a biyjective

1somorphism.

Proof: The kernel of @ is trivial because V is irreducible and @ is surjective
because its image is a submodule of 1. =
We have met the concept of slopesets (or slope maps) of a spread. We now
turn to slope maps of a translation algebra. We shall eventually see that
slope maps associated with a translation algebra and those associated with
a spread are essentially identical concepts.

Definition 4.3.2 (Slope Maps) Let Q = (W, +,0) be a translation alge-
bra. Then the endomorphisms of (W, +) of form: 7, :  — x o« are its slope
maps. 7 = {7, | « € W} s the slope-set of the translation algebra Q.

We can now apply Schur’s lemma to show that translation algebras, of all
types, are built on vector spaces and that their non-zero slope maps are
non-singular relative to the vector structure.

Lemma 4.3.3 (Kern Endomorphisms.) Let @ = (V,+,0) be o transla-
tion algebra; so its slopeset T consists of a subset of Hom(V,+) such that 7,
for alla € V*, are bijective members of Hom(V,+). Let K be the centralizer
of T in Hom(V,+). Then the following apply:

1. K is a skewfield whose non-zero elements are all bijections in Hom(V, +);
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2. 7 consists of K-linear maps of V when V is viewed as a vector space
over K: thus, 0 € T implhes:

vhd = v0kVk € K,0 € 7.

Proof: The quasigroup condition on V* shows that 7* generate a group
acting transitively on V*| and so the group < 7* > is irreducible. Now apply
Schur, lemma 4.3.1. »

The skewfield K of the lemma will be called the external kern of the trans-
lation algebra:

Definition 4.3.4 (External Kern.) Let 7 be the set of slope maps of a
translation algebra Q = (V,+,0). Then the the centralizer of 7 in Hom(V,+)
is the [external] KERN of (), and also of 7; these are denoted by kern(Q) and
kern(r) resp.

The following remarks follow from lemma 4.3.3 and the definition of the kern
of a translation algebra. It might be helpful to remind the reader that all
prequasifields are translation algebras and in the finite case both concepts
coincide.

Remarks 4.3.5 Let K be the kern of a translation algebra (Q,+,0). Then
the following hold.

1. The additive group (@ & () becomes a vector space relative to the oper-
ation:
E(z,y) := (2%, y*)Vk € K,z,y € Q.

This 1s always taken as the STANDARD kern action on Q & Q.

2. The standard action of K* on (Q & Q) induces faithfully a group of
collineations of II(Q) that fizes (0,0) and all the lines through it. Con-
versely every additive bijection of Q & Q that fizes every line through
the origin (0,0) is of form (z,y) — (z*,4%), k € K*.

Thus the above remark shows that the concept of kern homolgies, associated
with a translation plane, carries over to a considerable extent to I1(Q), where
() is a translation algebra.

Exercise 4.3.6 To what extent does the André theory of spreads and trans-
lation planes carry over to II(Q), the incidence structure associated with
translation structures? For example, resolve the following questions:
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1. Is the full group of ‘dilations’ of II(Q) just the group 7K*?

2. Does every collineation o fixing the origin an element of TL(Q&Q, K*),
the group of non-singular semilinear maps of the K-space Q & Q.

The obvious approach to the above exercise is to try and imitate the André
theory. However, since we only deal with translation structures that are
quasifields, and thus by definition I1(Q) is a translation plane, we already
have available the complete answer to siich questions by André theory.

We now establish a simple result of fundamental importance: the kern
of any quasifield (@, +, o), as opposed to a pre-quasifield, may be defined in
two equivalent ways — as the centralizer of the slope maps of (Q, +,0) in
Hom(Q,+), as done earlier, definition 4.3.4, and as the sub[skew] field of
(@, +, o) consisting of the elements in the left nucleus Ne(Q) that distribute
from the left — the internal kern.

Definition 4.3.7 (Internal Kern.) Let Q = (V,,+,0) be a translation al-
gebra with multiplicative identity e. Then the INTERNAL kern x(Q) of Q
(th

(k€ Q|VryeV:(ko(a+y) =koz+koy) A(koz)oy=k(ozoy)}.

The following result cstablishes the equivalence of the external and the in-
ternal kern, c.f., definition4.3.4 and definition 4.3.7.

Proposition 4.3.8 Let (Q,+,0) be a translation algebra that has a multi-
plicative identity e and let k(Q) be its internal kern, c.f., definition 4.3.7. To
each k € x(K) assign the map: k: x> kox. Then

End(Q,+) > w(Q) = kern(Q),
where the RHS is the [external] kern, c.f., definition 4.8.4.

Proof: It is straightforward to verify that the elements of (@) are additive
maps of Q and that they centralize the slopemaps of the quasifield ) and
hence, by definition, x(Q) is contained in kern(Q). We verify the converse.
Suppose a € kern(Q)) and let e® = a. We must demonstrate that a satisfies
the defining identities for x(Q). Since « centralizes the slope maps of Q) we
have:

Ver,meQ:(zom)* = (2% om,

50
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Vz,m € Q:(xom)* = (2% om,
and choosing z = ¢ yields:
Yime@:m® = aom
SO
Vz,meQ:ao(zom) = (aoz)om,

so a € Ng(Q, o). Moreover, the requirement that o« € Hom(Q, +), now easily
yields the required distributive law:

ao(z+y)=aozx+aoy. m

In view of the above theorem, we shall eventually cease to distingnish between
the internal and external kern. Note that by lemma 4.3.3, and definition 4.3.4,
the external kern is always a skewfield and hence by the proposition above
the same holds for the internal kern. Thus we have established:

Remark 4.3.9 Let (Q,+,0) be any translation algebra with o multiplica-
tive identity. Then internal and cxternal kern of (Q,+, ), are isotmmorphic
skewfields.

Appendix: Quasi-Quasifields’

We pause to mention another system, distinct from a translation algebra,
that in the finite case reduces to a pre-quasifield, as does translation alge-
bras. These structures are called quasi quasifields, and in the infinite case,
quasifibrations are either spreads or maximal partial spreads, see [19]; thus
they arise naturally in investigations involving transation nets.

The essential difference between the two structures, translation algebras
and quasi-quasifields, lies in the fact that the one-half of guasigroup condi-
tion, ‘ao[X] = b’ need not hold for quasi-quasifields, but holds for translation
algebras, while the distributive-equation

(a+b)o[xX]=ao[x]+bo[x]

has a unique solution for z in quasi-quasifields bt may fail for infinite trans-
lation algebras.

Definition 4.3.10 A triple (Q, +.0) s called a quasi-quasifield if:
1. (Q,+) is an abelian group: so O denotes the additive identity;

2. Vz:zxzo00=00x =0;
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3. (Q,0) has a left identity e: soecx =z forz € Q;
4. The right distributive low holds:

Ve,a,beQ:(a+lb)or=aoxz+bouz;

5. For a,b,c € @, a # ¢, the equation x o a = z o b+ ¢ has a unique
solution for x.

The maps T, : z — za, for a € Q. are called the slope maps of the quasi
qausifield, and 7o, the set of all slope maps, is called the slope set: it is
clearly a subset of Hom(Q,+). The centralizer of v in Hom(Q,+) is a ring
K called the [outer] kern of the quasi-quasifield.

Remark 4.3.11

1. The slopeset T 1s a sharply one-transitive set on @, cquivalently, in
(Q*,0) every equation zoa = b has a unique solution for z € Q*, when
a,b e Q*: so the ‘right-loop law’ holds.

2. The outer kern K of a quasi-quasifield Q) is a skew field, and the
slopemaps of Q@ are linear maps of (Q,+), when this additive group
s regarded as a vector space over K under its standard action.

3. The difference T, — T, s non-singular when a,b € 7 are distinct.
4. A finite quasi-quasifield is a quasifield.

Proof: Case (1): Apply condition 4.3.10(5) with & = 0. Case (2): the
previous case enables a Schur argument to be applied, see lemma 4.3.3. Now
applying the condition 4.3.10(5) again yields Case (3). Case (4) follows by
noting that if for a # 0: a oz = aoy then for z # y we have T, — T, is
singular, contrary to case (3); hence z — a o z is injective and thus in the
finite case it is bijective. m

Thus a finite translation algebra and a finite quasi-quasifield are just pre-
quasifields. In the infinite case they lead to different structures: a translation
algebra may have the condition 4.3.10(5) missing, but the multiplication is
required to yield a quasigroup, so a o x = ¢ has a solution for £ when a # 0:
this need not hold in an infinite quasi-quasifield. The structure associated
vith quasi-quasifields are called quasifibrations.



Chapter 5

Coordinatization.

The theme of this chapter is coordinatization of structures that are associ-
ated with translation planes. In particular, we emphasize how spreads are
coordinatized by spreadsets and (pre)quasifields, and also on how spreadsets
may themselves be coordinatized by (pre)quasifields.

5.1 Spreads and Quasifields.

Recall that, by definition 1.1.17, a spread @ = (V, S) is a collection of additive
subspaces S, of an additive group V, such that every 2 € V lies in some

component o € §, and
a,BeES=—V=a@efVa=7.

We now assign to each prequasifield (Q an associated spread «(Q), said to be
coordinatized by (). We summarize some related notation which will be very
extensively used: the notation is essentially that of elementary coordinate
geometry in the context of quasifields; it is kept sufficiently flexible to consider
the classification of quasifields among zero-linked structures, defintion 4.2.1;
variants of the notation are useful in studying partial spreads and nets.

Notation 5.1.1 Let Q = (W, +,0), where (W, +) is the additive group of
a vector space and o is a binary operation on W. Then on the vector space
W @ W we define the following subsets.

1. The X-axis and the Y-axis are respectively X = W & O and YV =
O .

86
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2. The unit line is the set {(z,2) | x € W}, and denoted by Z or vecl.
3. The non-vertical lines are the sets of type

VmbeW: y=zom+b":={(z,zom+b|z e W}

4. The vertical lines are all sets of type:

Voe W: a2=b"={(by)|ye W}

The quotation marks above are often dropped. Also note that, in the context
of a translation algebra (Q,+, o), the collection of all lines whether or not
they are vertical, coincides with II{Q), the incidence structure associated
with (@, +,0). As II{Q) is determined by the lines through zero, we shall
introduce a special notation for this structure: we write 7(Q) for the lines
I1(Q) through the origin:

Definition 5.1.2 [fQ = (W, 4+, o) is any zero-linked structure, see definition
4.2.1 structure,then w(Q) := (V,8), where V=W oW and

S=Y={0aWlu{y=zom’|meQ};

the members of S are the components of w(Q); thus the components are the
lines of I1(Q) through the origin.

A fundamental but elementary result is that 7(Q) is a spread iff the given
zero-linked structure @ is at least a pre-quasifield.

Remark 5.1.3 Let Q = (W, +, 0) be a zero-linked structure, definition 4.2.1,
and the sfield K its kern: thus K is the centralizer of the slopeset of Q) in
the ring Hom(W,+). Then 7(Q), is a spread iff Q is a pre-quasifield; 7(Q)
s said to be coordinatized by the prequasifield Q).

Proof: < is straightforward. To establish the converse we assume that @
is a zero-linked structure and that @ is a spread on V; we must deduce that
@ is a prequasifield. Consider IT1(Q), c.f., definition 4.2.1, the incidence struc-
ture associated with Q = (W, +, 0); so the pointset of II(Q) is V.= W & W
and the lines of I1((Q) are all the subspaces and cosets of (V,+) that are of
form ‘c = ¢ or ‘y = rom + ¢, for m,c € 1W. Hence, the lines of I1(Q)
through the ‘origin’ O = 02 0 consists of the components of the spread mg.
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So every subspace of type ‘x = ¢’ or ‘y = zom+ ¢’ is a translate of a compo-
nent of 7g. Hence I1(Q) is the translation plane associated with the spread
7o, and W & W may be identified with its translation group in the obvious
way. Thus ) is a translation algebra, as defined in 4.2.1, that coordinatizes
a translation plane, and hence must be a pre-quasifield by proposition 4.2.3.

5.2 Quasifields and Spreadsets.

We introduced in an earlier chapter, see definitions 1.3.4 and 1.3.11, the
notion of a [partial] spreadset, and we described how they give rise to [par-
tial] spreads. In this lecture, we similarly explore the connection between
spreadsets and quasifields.

Although in some theoretical sense, spreadsets, quasifelds and spreads all
turn out to be ‘equivalent’, the correspondence is not one-one: for example,
many non-isomorphic quasifields are associated with the same spread and
most spreadsets are associated with several non-isomorphic quasifields that
they ‘coordinatize’. Thus, spreadset and [pre]quasfields provide essentially
distinct approaches to the study of spreads and translation planes.

To keep this lecture self-contained, we review the definition of a par-
tial spreadset in the following exercise: it provides a characterization of the
concept as given in our earlier definition 1.3.11. For the convenience of the
reader, the rest of this lecture tacitly treats this exercise as defining a [partial]
spreadset.

Exercise 5.2.1 LetT be a set of homomorphisms of the additive group (W, +)
of a vector space. Then T is a partial spreadset on W iff

o,feT=a—-FeGLW +).

A partial spreadset T is a spreadset iff O € 7 and 7 is a transitive set of maps
on W, which means:

Ve,ye W:3ters3y=2z"

If W 1is a vector space over a [skew/field K then T is a [K-linear] spreadset
iof the members of T are K-linear.
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Much of the following remark amounts to restating the meaning of a spread-
set, in terms of its characterization in the exercise above, and also reviews the
connection between spreads and spreadsets as discussed in section 1.3. How-
ever, the main point of the remark is to establish the theoretical equivalence

between spreadsets and [pre]quasifields.

Remarks 5.2.2 Let (W,+) be the additive group of a vector space and sup-
pose T is a set of additive maps of W such that O € 7 and 7* C GL(V, +).

Then:

1. 7 is a spreadset iff T* is reqular on W*, that is:

Vz,ye W*:3t €735y =2a".

2. If |W| is finite then T is a partial spread iff ™ C GL(W, +) is such that
A — B is also non-singular, whenever A and B are distinct members of

T.

3. If|W| is finite then T is a spread iff O € 7 and 7 contains |W| elements
any two of which differ by a non-singular map or zero.

4. Let Q = (W,+,0) be a [pre/quasifield. Then the set of its slope maps,
see definition 4.8.2, g form a spreadset, called the spreadset associated
or coordinatized by Q.

Proof: We only consider case (4), as this is the least trivial case. The slope
maps Ty, : z — zom, m € (%, are bijections because Q* is a quasigroup, and
the distributive law for ) means that every such 7, € GL(W, +). Next we
must show that the additive map T, — T}, for a,b € W is bijective, assuming
a #b Uaz(T, —Tp) = 0 then z o a = x o b, contradicting the quasigroup
property for multiplication. Thus 7, — 7} is injective. To show this map is
surjective, consider w € W*. Now w = z(T, — T,) for some z € W iff

w=zxoa—~zobdz e W,

and this holds by proposition 4.2.4. It only remains to check that if z and
y are non-zero then y = z*, for a unique t € 7. This equivalent to checking
that y = z o ¢t has a unique solution for ¢, and this again follows from the
quasigroup property. =

We now associate with any spreadset, in the sense of definition 5.2.1, several



CHAPTER 5. COORDINATIZATION. 90

related algebraic systems that turn out to be at least prequasifields: this will
lead to the correspondence between spreadsets and [pre]quasifields mentioned
ecarlier.

Definition 5.2.3 (Sytems Coordinatizing Spreadsets.) Let T be a spreac
set on (W, +), the additive group of a vector space. To each e € W* assign
the system Q. := (W, +,0), where o is defined by:

where t(e — y) denotes the unique element of T that maps e toy. The system
(). is said to coordinatize T at e.

It is immediately obvious that eoy = y, so Q. has e as a left identity.
Moreover, when 1 € 7 then e actually becomes a two-sided identity. Now
consider whether Q. is a [pre]quasifield. The non-singularity of the non-
zero members in 7 shows that a o a = ¢ has a unique solution for z when
a # 0. The additive property of linear maps provides the right distributive
law. Also, the condition

zoa—zob=ux(r, — 1), (5.1)

shows the LHS, as a function of z, is bijective on W because, by definition,
any two distinct members of a spreadset, differ by a non-singular W-bijection.
Finally an equation of type a o z = b has a unique solution for  because of
the ‘regularity hypothesis’. Thus we conclude:

Remark 5.2.4 (The Quasifields Coordinatizing A Spreadset.) Let 7
be a spreadset on some some (W, +), the additive group of a vector space.
Then for each e € W™ the system Q. coordinatizing 7, as in definition 5.2.3,
is a [prefquasifield, which we call the [pre/quasifield coordinatizing 7 at e.
The [pre/quasifield has e as a left identity, and hence Q. is a quasifield (with
identity ¢) iff T includes the identity map.

Corollary 5.2.5 (The centralizer of a spreadset is the kern.) The cen-
tralizer of T in Hom (W, +) 1s a [skew/field K, and K 1is the external kern of
all the [pre/quasifields Q., e € W*, coordinatizing . In particular, if W is
a vector space over a [skew/field F' and if 7 is a spread set of F-linear maps
then F 1is in the external kern of the [pre/quasifield Q..
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We shall gradually get less pedantic with kern terminology: for instance, we
shall usually not specify whether the kern considered is ‘internal’ or ‘external’.
In the finite case, spreadsets have a particularly simple characterization:

Remark 5.2.6 Let 7 C GL(n,q) such that O € 7. Then T is a spread
iff |r| = ¢ end any two members of T differ by an element of GL(n,q).
More GF(q), assoctated with the scalar maps, is in the kern of the quasifields
assoctated with 7.

Proof: This is just a restatement of remark 5.2.2(4), bearing in mind that,
by the corollary above, the centralizer of a spreadset corresponds to the kern
of all the quasifields associated it. m

We now verify that every spreadset 7.determines a spread . and this co-
incides with all spread as #(Q.), as Q. ranges over the guasifields coordi-
natizing 7. We first fix our notation in the context of partial spreadsets

7 C Hom(W,+).

Definition 5.2.7 Let (W, 4) be an additive group of a vector space and 7 C
Hom(V,+) such that:

ABerT= A— B e GL(W,+).

The T is a PARTIAL SPREADSET and the associated partial spread is the
collection of additive subspaces of V =W & W given by:

w = {ly =<T) | T € 7} U{Y},

and we define
7= {ly=aT) | T er}.

The more elaborate notation is chosen for the simpler structure because in
most contexts the Y -axis needs to be included.

Theorem 5.2.8 Let 7 be a spreadset on a vector space W. Then the collec-
tion of subspaces defined on W @ W by:

m={ly=2T] | Tertu{0s W}

is a spread, called the spread associated with 7. Moreover, for each e € W~
the spread w(Q.) = 7r, where Q. is the [pre/quasifield, coordinatizing T at e.
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Proof: Consider any y = zT that lies in 7,. Putting 8 = eT" we have
z06 =150 = 2T

so y = z o # is the same subspace of W @& W as y = z7. Conversely any
y = z o § may, by definition, be expressed as y = 1" where 7' € 7 maps e to
8. Thus =, is the same set of subspaces of W & W as in w(Q.). However, the
latter is a spread because, by remark 5.2.4, ). is always a quasifield. Hence
7, is also a spread and the desired result follows. m

Theorem 5.2.9 Let 7w(Q) be a spread coordinatized by a [prefquasifield Q) =
(W, +,0), and suppose K is the [external] kern of K. Then the standard
action of K on 7(Q) coincides with the action of kern of ©(Q), that is, the
standard action of K* on W & W s the same the action as that of the full

group of kern homologies of w(Q).

Proof: The non-vertical components of 7w(Q) are of form y = z om, or
equivalently, yz M, where M is in the spreadset determined by . Now the
kern of Q are the members k € End(W, +) that centralize all such M, so the
standard action of £ on W & W yields:

(z,2T) — (zk,2Tk) = (zk, zkT) € [y = 2T},

and hence every y = T is left invarant by k. Hence K may be identified
with a subfield of the [skew]field of kern endomorphisms of the spread w(Q).
Now consider the converse.

Let 7 be the slopeset of . So the non-vertical components of the spread
7w(Q) are all of form y = 2T, T € 7. Moreover, we may regard () as being .
for some e. Consider any homaology leaving every member of 7(() invariant.
Since this fixes Y and X it must be of from a ® 8 € GL(W,+) & GL(W, +)
and satisfy the condition:

Ve e W: (z,2T) — (2a,2Tf) € [y = 2T],
so a T3 =T so:
VT €7:aT = TB.

Now apply Schur’s lemma above. m
We now consider the problem of deciding when a spreadset is a quasifield

and when it is a pre-quasifield without an identity.



CHAPTER 5. COORDINATIZATION. 93

Corollary 5.2.10 Let 7 be a spreadset. Then the following are equivalent:
1. 7 contains the identity map.
2. Some prequasifield (), coordinalizing T is a quasifield.
3. All prequasifield (). coordinatizing T are quasifields.
4. The spread 7, includes the unit line y = .

Thus it becomes desirable to ‘reduce’ a spreadset 7 to an equivalent spread
containing the identity; we regard two spreadsets as being equivalent if the
corresponding spreads are isomorphic. So, when are two spreadsets equiva-
lent? A simple sufficiency condition is the*following:

Remark 5.2.11 If 7 is a spreadset on W then so is A™'tB, whenever
A, B € GL(W,+) and the map 0 : (z,y) — (zA,yB), of W& W, is an
isomorphism from the spread m, onto the spread ma-1.5. Moreover 6 leaves
invariant the common components X =W &0 andY =0 W.

Thus we may simplify a spreadset to an equivalent one such that the unit line
belongs to it, and hence the coordinatizing prequasifields are all quasifields:

Corollary 5.2.12 Let 7 be a K-linear spreadset on a K-space W, K any
field: so the components of the spread w,. are K-subspaces of the ambient
space W @ W, and the subspaces X =W &S0 andY = 00 W are among the
components of .. Then the spreadset 7 is equivalent to a K-linear spreadset
8 such that its associated spread my has the same ambient space W & W as
w,, and the components of mp are K -subspaces of W & W that include not
only X and Y, but also the unit line I = {(w,w) | w € W}.

Thus, all spreads that are coordinatized by spreadsets, i.e. are of form =,
for some spreadset 7, may be [re]-coordinatized by a spreadset o such that
o includes the identity.

We have seen that every prequasifield (@, +.0) may be ‘converted’ to a
quasifield (@, +, *) by choosing e € @* and defining *:

(zoe)x(eoy) =20y,

and now eo e becomes the identity. We now demonstrate that the associated
spreads are isomorphic and hence both sytems have the same [outer| kern.
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Let S; 2z zoa,a €@, and T, : z +— z xa, a € Q denote respectively
the slopemap of a in the prequasifield (Q, +.0) and the quasifield (Q, +, *)
respectively. Thus the identity above yields S.T(e0y) = Sy, for all y € @ and
so the slopeset 7o of the quasifield (Q,+, *) is given by ¢ = S, 'og, where
og is the slopeset of the prequasifield (Q, +,0). We shall state this result in
terms of:

Definition 5.2.13 Let (Q),+,0) be a prequasifield. Define Q. := (Q,+,*)
by

Vz,y€ Q:(zoe)x(eocy)=zo0y.
Then Q. is the quasifield that normalizes the prequasifield (Q,+,0) at e.

Thus we have established:

Proposition 5.2.14 Let ) be a prequasifield normalized by a quasifield R
at e € Q*. Let 7o and 7r be respectively the slopeset of two systems. Then
tr = E7lrg, where E is the slopemap of e regarded as member of Q. In
particular, the spreads defined by a prequasifield is isomorphic to the spreads
obtained by any of its normalized quasifields, and the external kernel of the
two systems are the same.

It is worth stressing that normalising a prequasifield to a quasifield is equiv-
alent to introducing a multiplicative identity in its spreadset 7 by replacing
7 by T~ '7, where T is any non-zero element in 7.

5.3 Substructures of Quasifields.

In this lecture, we introduce certain additive and multiplicative substructures
associated with quasificlds and prequasifields and consider their connection
with the associated spreadscts.

Note that we have already considered the most important case, viz., the
kern: all the quasificlds coordinatizing a translation plane, and, a fortiori,
those associated with a given spreadset, have isomorphic kerns since they
may be identified with the group of homologies with the ideal line as axis.

The aim here is to consider several other substructures of prequasifields
that extend the notion of the kern in various ways, and thus have some
geometric significance. Our main concern here is the extent to which these
structure are invariant, as the quasifields from which they arise range over
all the quasifields associated with a fixed spreadset.
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There are basically two types of substructures that we consider here:
the extreme case of each type being nearfields (associative quasifields) and
semificlds (distributive quasifields).

In nearly everv case, our goal is to show that each type of substructure is
an invariant for all the prequasifields coordinatizing a fixed spreadset S. This
reflects the fact, as we shall see in the next chapter, that the snbstructures we
consider are nearly alwayvs associated with certain maximal groups of central
collineations of the spread coordinatized by S.

We deal first with the multiplicative substructures associated with a
(pre)quasifield @, and then turn to an additive analogue. In the multi-
plicative cases, the structures we refer to are just the seminuclei of the mul-
tiplicative quasigroup structure of @*, and we have already et these in the
context of loops (rather than just quasigroups).

Although our definitions are formulated to hold for the general case, to
maintain clarity, all the results in this section are established only for the
finite case. We begin by repeating the definition of the nuclei of a loop in
the context of prequasifields.

Definition 5.3.1 Let Q = (Q, +,0) be a finite prequasificld. Then the mid-
dle, left and right nucleus are respectively defined as follows:

1.

No={f€Q|(zofloy=zo(foyNVr,ye Q)
2.

N, ={feQ]|(zoy)of=rc(yofW¥eye Q)
J.

Ne={feQ|fo(roy)=(foz)oyvae,ye Q}

Each of the above are called semi-nuclet of of (Q., and their intersection N
is the nucleus of (..

We consider here the miclel of the [prejquasifields @, associated with a fixed
spreadset §. Since the choice of Q. depends on the choice of the left identity
e, 1t 1s reasonable to ask to what extent the nuclel depend on the choice of e,
for a fixed spreadset §. Our aim is to show that, in the finite case, the right
and middle nuclei are essentially independent of the choice of e.

As far as the left nucleus N; is concerned, there is no general coherent
theory, probably because this is the only type of nucleus that turns out not
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to have a geometric interpretation in the general case. However, the kern of
a quasifield is contained in its left nucleus and this certainly has a geometric
meaning, and is arguably fully understood. Hence we shall not consider
further the left nucleus in this section, apart from noting that in the case of
finite quasifelds its non-zero elements. as well as those of the other seminuclei.
form a multiplicative group.

Remark 5.3.2 Let () be a finite quasifield with multiplicative identity e.
Then N} (Q), N:(Q) and N{(Q) are multiplicative groups, with identity el-
ement e.

Proof: Trivial. =
We now show the invariance of the middle nucleus of all the quasifields co-
ordinatizing a given finite spreadset.

Theorem 5.3.3 Let 7 be o finite spreadset. Let o C 7 be the largest non-
zero subset of v satisfying the condition oot C 7 note that this is equivalent
to at* = 7 and « is a group [under map composition] iff the identity is in
7. Let Q. be the (pre)quasifield coordinatizing T relative to some chosen left
identity e € Q*. Then the (semi)group

a={frzaof|feN,(Q)}=NLQ),
where N (Q.) is viewed as a multiplicative (semi)group.
Proof: The element f € Q* lies in N} (Q,) iff for 2,y € @:

(zof)oy = zo(foy)
== (2T7)T, = 2Ty,
= 17T, = Ty,

and this is equivalent to Ty € «, and also shows that that f ~ T defines
a semigroup isomorphism from N7 (Q.) onto «a of the required type. The
result follows. =

Now we consider the analogue of the above with the middle nucleus replaced
by the right nucleus.

Theorem 5.3.4 Let 7 be a finite spreadset. Let a C 1 be the largest non-
zero subset of T* satisfying the condition 7"« C 7 note that this is equivalent
to T*a = 7 and « 1s a group [under map composition] iff the identity is in
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7. Let Q. be the (pre)quasifield coordinatizing 1 relative to some chosen left
identity e € Q*. Then the (semi)group

a={f:zzof|feN(Q)}=N(Q)
where N} (Q.) is viewed as a multiplicative (semi)group..
Proof: The element f € Q* lies in NJ(Q.) iff for z,y € Q:
(zoy)of = zo(yof)

= (2T,)Ty = 2T,y
— T:;Tf - Tyﬂf

and this is equivalent to 7y € «, and also shows that that f + T} defines a
semigroup isomorphism from N} (Q.) onto « of the required type. The result
follows. =

We now specialize to nearfields.

Definition 5.3.5 A quasifield with associative product is called a nearfield.

A classical theorem of Zassenhaus gives a complete classification of all finite
nearfields: apart from fields they are either the Dickson nearfields, introduced
ahead, or they are among a finite list of sporadic nearfields called irregular
nearfields. The results above imply that

Corollary 5.3.6 Let S be a finite spreadset containing the identity. Then
the following are equivalent:

1. 8" 1s a group of non-singular lincar maps.

-

2. Some quasifield Q). coordinatizing S is a nearfield.

All quasifields (. coordinatizing S are nearfields.

o

Moreover, if S* is a group, then all the nearfields coordinatizing S* have
1somorphic multiplicative groups.

In fact, inspecting the isomorphism from « to its nuclei, developed above
shows:

Corollary 5.3.7 All the nearficlds coordinatizing a given spreadset are iso-

morphic as spreadscts.
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So far we have considered multiplicatively closed subsets « of spreadset S.
We now turn to the additive version of this theory. To emphasize the analogy
with the multiplicative case we introduce a non-standard definition.
Definition 5.3.8 Let Q be any prequasifield. Then its distributor is the
additive semigroup:

8Q)={ceQ|xzo(c+y)=(zoc)+ (zoy)Vz,y € Q}
So, at least in the finite case, 6(Q) is an additive subgroup of Q.

Theorem 5.3.9 Let 7 be a finite spreadset over a finite field K, and o« C 7
be the largest non-zero subset of T satisfying the condition ™+« C 7, or
equivalently, the condition ™ + « = 7; thus « is an additive group of linear
maps over K. Let Q. be the (pre)quasifield coordinatizing T relative to some
chosen left identity e € Q*. Then there is an additive group isomorphism:

oz {fixaof|fes(Q)}=8Qe)
Proof: The element ¢ € @, lies in 6(Q.) iff for z,y € Q,:
zoc+xzoy = zo(c+y)
= a1, + 2T, = 2(T.yy

and this is equivalent to 7, € «, and also shows that that ¢ — T, defines
an additive group isomorphism from §(Q.) onto « of the required type. The
result follows. m
A distributive (pre)quasifield @ is called a pre{semifield). We state this
clefinition in terms of &(Q):
Definition 5.3.10 A (pre)quasifield (Q,+,0) is a (pre)semifield if §(Q) =
Q. A semifield is said to be proper if its multiplictaion is not associative.
Theorem 5.3.9 above imniediately yields the following characterization of the
spreadsets whose associated (pre)quasifields are semifields.
Theorem 5.3.11 Let 7 be a finite spreadset. Then the following are equiv-
alent.

1. Some quasifield () coordinatizing v is a (pre)semifield.

2. 1 is additively closed iff cvery (pre)quasifield () coordinatizing 7 15 a

(pre)semifield.
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5.4 Hall Systems

Let A’ be any field. Choose an indeterminate ¢ and consider the rank two
left. K" vector space defined on ), = K + Kt, where z + yt € () is identified
with (z,y) € K?: so addition and scalar multiplication on Q, are done
componentwise:

Ve, 2,y € K (z+yt) + (2" +y't) = (e+2)+(y+ o)t
andVk,z,ye K : k(z+yt) = kax+ (ky)t.

Any quasifield that has rank two over its kernel A may thus be regarded as
being of form (Qy, +, o), where addition is standard and the multiplication
o i3 an extension of left multiplication by the scalars in X C @ with the
general elements of (). Morover, for each a € @, the map

R, : @Q—-Q

T T 0o0a

is required to be a K-linear bijection of (J;, and the quasifield (Q,, +,0) is
completely specified when all the slope-maps E,, for a € ) are specified. To
specify the R,’s it is now sufficient to write the 2 x 2 matrix over K for the
linear maps R, relative to the basis (1,¢) of @;; so Ry is assigned the zero
matrix, and the quasifield identity is assigned the identity matrix.

We now seck to classify all the quasifield (Qy, +,0) associated with the
K-vector space (Q;, such that the following conditions hold:

Condition 5.4.1 (Hall Conditions.)
1. (Aut(Qi.+,0))x s transitive on QQ — K; and
2. K s central In Q).

This classification here is the first step towards classification of all the finite
quasifields that admit maximally transitive automorphism groups, i.e. acting
transitively on the non-kern elements.

Since K centralizes (2 it centralizes the standard basis (1, ¢), so the matri-
ces [always relative to the standard basis| of its elements are just the scalars:

o
VkEK':Rk:—(?} ;)
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That the above definition is expressed using different notation in definition
6.3.1 ahead.
Partial spreads all whose components lie across some subspread are called

rational partial spreads.

Definition 5.7.2 Let (V,T') be a partial spread and let A be a non-zero ad-
ditive subspace of V' such that A is a subspread of (V,I') and additionally:

yel = yNV #0O;

thus A is a subspread (or a ‘subplane’) across I'. The partial spread (V,T) is
called a rational partial spread if I has at least one subspread across it. If,
additionally, (V,A) is a Desarguesian spread such that A DT then (V,I') is
called a rational Desarguesian partial spread.

Note that essentially the same definition, but in different terminolgy is cov-
ered by definitions 6.3.3 and 6.3.1 ahead.

If @ is a quasifield and R is a subquasifield then the spread 7(Q), coor-
dinatized by @, has a subspread that may be identified with 7(R) and, by
definition, the partial spread I' determined by 7 (R) is rational, with #(R)
across it. The converse is also true: any rational spread I' C S, contained in
a spread (V,S), may be ‘coordinatized’ by a subquasifield R of a quasifield @
coordinatizing (V,S). We now verify this elementary, but fundamental, prop-
erty of rational partial spreads; it reflects the fact that subplanes Agy, of any
affine plane A, are coordinatized in the classical sense by some subternary
ring Ty of a ternary ring coordinatizing A.

Remark 5.7.3 Let S be a spreadset defined on a vector space T'. Suppose
that wg = (T & T.,%), the spread coordinatized by S, contains a rational
partial spread I' C Y such that I' contains the standard components X =
Te0O,Y=08T and I ={(t,t) |t €T}. Let U <T T be any subspread
of ws that lies across I'. Then

R={reT|rearelnU},

s a subspace of T' such that U = R& R, and for each e € R*, the quasifield
Q. = (T,+,0), coordinatizing the spreadset S, contains the system G, =
(R,+,0) as a subquasifield and the standard isomorphism from = (Q.) onto
s’

V:n(Q.) = n(TeT,S),
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and hence, since Ry is the scalar map k15, @, is not a quasifield unless
a € Qy — K = R, has no eigenvalues in K.
But the eigenvalues of R, are just thc roots of f(z) so we have established:

Lemma 5.4.2 Q, cannot be a quasificld satisfying the Hall conditions 5.4.1
unless the common quadratic f(z) = —x° + az + 8 is irreducible over K.

Hence we shall assume that f(z) is irreducible from here on: so 8 # 0. But
since the determinant of 7, is just /3 it follows that every non-zero R,y is
non-singular and the quasigroup condition on multiplication (z,y) o (a,b) =
(r; d) is met To meet the remaining conglition for quasigroup multiplication

a,b) o = (e¢,d), where (2,y) is the ‘unkown’, we first note that if
( d) = A(a b) then (x,y) = (£,0) is a solution. Thus our main task, to show
that quasigroup multiplication works, requires us to show that a solution for
(z,y) exists in the following matrix equation:

(a,b) lfl(uz,) N ?i . | =(cd), ad—1bc#0, (5.4)

y
and, tacitly assuming ad — bc # 0, the equation may be written
b
az+ -f(z) = ¢
Y
ay+bla—z) = d

which obviously has a solution if b = 0. So assuming from now on that b 5 0,
we obtain from the above:

ary + (B +ax —2?) = cy
azy + blaz - 2*) = dzx

vielding on recalling equation (5.5):

cy —de =/
ay —bax = d — ba

and now our assumption ad — bc # 0 shows that this equation has a unique
solution for (z,y), and this ba(.k-tld(.es to establish a unique solution for
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the equation (5.4). Thus the multiplication specified is a loop, and as a
consequence (Qq. +, o) is a quasifield: the reader is invited to check the minor
details that have not been explicitly discussed.

To verify that the group G = (Aut(Qy, +,0))x does act on the quasifield
(Q¢, +.0) we note that GG, as a matrix group relative to (1,t), is clearly the

group:
{(i E ) |U€£K,UGK*}}

and it can be directly verifed that this group preserves the multiplication.
Thus we have established:

Theorem 5.4.3 Suppose K is a field and f(z) = —2? + az + 3 is an irre-
ducible quadratic over K. Let Q = K & O and define Qs := (Q), +,0), where
+ s the standard addition on K & K, by

Va € K : (a,b) o (z,0) = (az, bzx),

ind
e I * b ar) — ¥ Yy
Vee K,ye K" : (q,b) o(z,y) = ( if(m) o 2 ) .

Then Qy is a quasified iff f(x) is irreducible in K, and when this is the case
K = K&K s in the kern of Q¢ and centralizes the quasifield multiplicatively.
Let G = Aut(Qf)g be the elementwise stabliser of the kern field K in the
automorphism group of the quasifield. Then G is regular on the set of all
non-kern elements K @ K — K &0 of Q. Such Q; are called Hall systems.
Conversely if a quasifield ) is rank two over its kern K such that K
centralizes Q and (AutQ)r has Q — K as an orbit then Q is a Hall sytem.

Exercise 5.4.4

1. Show that GF(4) may be regarded as a Hall system and all other Hall
systems are of dimension exactly two over K.

o

Show that GF(4) s the only Hall sytem which is also a field.

3. Show that no Hall system can have an elgebraic-closed field as its kern.
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5.5 Coordinatizing Spreads by Spreadsets.

Let # = (V,T') be a spread over a skewfield K'; so all its components are
isomorphic as vector spaces to a commot vector space I17. We seek to identify
7 with 7y, the spread on W& W coordinatized by some spreadset 7; we shall
regard a K-linear isomorphism ¢ from « to 7,y as being a coordinatization
of m by 7.

Our goal here is to show that every spread is coordinatized by at least
one spreadset 7, and that 7 can be chosen so that it contains the identity. It
is also possible to ensure that 7 and the coordinatizing isomorphism 1 may
be chosen so that any ordered triple of distinct components (Xy, Yy, Zv)
are mapped under ¢ to the ordered triple (y =0,z =0,y =z),in W e W.
However, it is desirable to consider the more general situation, where Xy and
Y\ are mapped respectively to 1 & 0 and 0 @ W, but where no component
is necessarily required to be mapped to the unit line z = y; for example, it
is often useful to have ¢ send a Baer subplane of (V,I') onto the unit line of

WelV.

Theorem 5.5.1 (Coordinatizing Spreads By Spreadsets.) Let7 = (V,T)
be a spread over a skewfield K, such that all the components in T' are isomor-
phic as K -vector spaces to a K vector space W. Leta: X - W, B:Y = W

be arbitrary vector space isomorphisms from two distinct X,Y € I' onto W.
Then

1. Therc is a unique linear byection:
acf: V-oWwel,
whose restrictions to X and Y are respectively a and (.
2. EachT € T —{X,Y} is associated with a unique pair of linear bijections
(X¢:T—-> X, Yr:T->Y),

such that:
T = {(t)_X'T + (t)er :te T} .

3. The set of linear maps on W specified by:

T = {a_lz\-_’f'_l}/j"ﬁ | T € F} U {Ow} ,
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is a spreadset on W, anda@ 8:V - W e W is a K-linear isomor-
phism from the spread (V,T') onto the spread 7. coordinatized by 7, see
definition 5.2.7.

4. T contains the identity, or equivalently the unique line lies in W, if and
only if a = .

Proof: We give a sketch; it is left to the reader to make the proof more
precise. The components of V|, regarded as X @Y, are of form ((¢) X7, (¢)Y7,
and may be rewritten (z, (z)Xr~'Y7), or (z, My(z)), where My := Xp7 1Yy
is essentially the slope of T. Now 7 is essentially the set of images of the
Myp’s, together with the zero-map of W, induced on W when V is identified
iwth W&lWusinga @ . m
Thus all spreads are coordinatized by some spreadset. Hence we may assume
that any spread is of type W, and three selected components arez = 0, y = 0
and z = 0 respectively.

5.6 Inventory of Quasifields Coordinatizing a
Fixed Spread.

From now on, a prequasificld will always be assumed to have at least left
tdentity. We are here concerned with the description of all the non-isomorphic
prequasifields @ such that the associated spread is is isomorphic to a given
spread 7. If ¢ is an isomorphism from 7 to 7((Q) then ¢ will be called a
coordinatization of w by ). Thus we are concerned with the description of
all the non-isomorphic prequasifields that coordinatize =.

We now describe a concrete procedure that yields a @ coordinatizing the
given 7 uniquely once certain geometric choices are made, and also leads to
a unique isomorphism ¥ from 7 onto #(Q), in terms of certain ‘geometric’
options: the choice of the z-axis, the y-axis, etc. We shall see that the
isomorphism types of all (pre)quasifelds Q such that 7(Q) = = may be
obtained as an immage of some W determined by fixing the geometric options.

5.6.1 Coordinatization Algorithm.

There are two basic situations to consider: determine all the isomorphism
types for the prequasifields coordinatizing a spread, and also all the quasi-
fields, with a two-sided multiplicative identity, coordinatizing the spread. We
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first describe all the prequasifield coordinatizing a given spread, and then
specialize to describe all the quasifields coordinatizing it.

Let # = (V,I') be a spread on a K-space V', K a skew-field, such that the
components are all K-subspaces of V.

1. Choose distinct components Xy, Yy € I'; these are called the z and
y-axis of the coordinatization scheme.

2. Choose a unit pointu € V — (Xy UYy), and hence: u = u, B uy,; S0 u,
and u, are the projections of v on X and y.

3. Let W be a K-space isomorphic to the members of I', and choose an
identity e € W — {0}.

4. Select linear bijections a : Xy — W, and § : Yy — W such that

alu,) = B(u,) =e.

5. The linear bijection a ® 3 : V — W © W defines a spread on W o IV
whose component-set is given by:

A={a®p(y)|yeTtu{osW}

Thus o @ § is a K-linear isomorphism from V onto W @ W that is
also an isomorphism from the spread (V,I') onto the W-labelled spread
(W @ W, A), and this isomorphism sends u to (e, e).

6. Let Q. be the standard prequasifield coordinatizing (W @ W, A), and
let o be the associated K-linear isomorphism from (W © W, A) onto

7(Q.)-
The K-linear bijection

cla®f):V-oWelW

is a K-linear ‘spread isomorphism from (V,I') onto n(Q.) such that u is
mapped onto e. The prequasifield Q. is said to coordinatize (V,T') relative
to the axes Xy, Yy, the unit point u and identifiers a and 3; the kern of Q.
contains K. _

Let v denote the component in I' that passes through u. Choose any
K-linear bijection = : v — W such that =Z(u) = e, and define

Yz € va(rx(2)) = 2(z) = B(my(z)),



CHAPTER 5. COORDINATIZATION. 106

where mx and 7wy denote the projection of V' onto Vx and Vy respectively.
Such a and f are completely determined = and satisfy all the requirements
of a and 8 as defined carlier. In this case the resulting prequasifield is a
quasifield, and we call it the quasifield obtained when (V,I') is assigned a
labelling with v as unit line relative to the coordinate axes Vy and Vy.

Every coordinatization of @ by a quasifield is obtainable by a labelling
relative to some unit line and point, and a pair of X and Y axis. (N.B. The
statement is intended to imply that the isomorphism onto W is immaterial,
once the unit point and all three axes are fixed: it is pointless to make other
variations in the choice of = as this will not yield coordinatizations by any
new quasifields.)

5.6.2 Properties Of Coordinatization.

Theorem 5.6.1 Let # = (V,I') be a spread, coordinatized by a quasifield
Qe = (W, +,0), e € W* is the identity. Thus there is a linear bijection

V:V-Wealv

such that U is also an isomorphism from the spread = onto w(Q). Let u =
(uy,us) denote the unit point, so ¥(u) = (e,e). Then

1. If A is a subspread of V*, that contains the coordinate frame e, the
z-azis and the y-axis then W(A) is a subquasifield Ag of Qe; thus A s
coordinatized by the Ag relative to the ‘same frame’, as used on 7 to
yield w(Q); the labelling map for A is the restriction of Z: U — W to
ANU.

Conversely, if R is a subquasifield of Q) then R = Ag, where A is a
subspread of type just described.

2. Suppose o € GL(W,+). Then « is an autornorphism of (Q, +,0) iff the
map & : (2,y) +— (2%, 9%) of =(Q) is a collineation of the plane 7(Q)
that fizes (e,e). Now Fix(c) is a subquasifield A of Q, and Fiz(&) is

the subplane w(A) of 7(Q).

8. If a group G < GL(W,+) is in Aut(Q,+,0), and A denotes the sub-
quasifield Fiz(G), then G is permutation isomorphic to the (clearly

Tn the sense that it is an additive subgroup and the components meeting it non-trivially

define a spread on it.
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faithful) action of the collineation group G retricted to any line that it
fixes. Conversely, any collineation group acting on 7(Q) and fizing the
unit point and the axes must be of type G, and such groups are planar,
in fact, their fized points define the subplane w(A), where A = Fiz(G).

Thus, subquasifields of a quasifield @, and subplanes of 7(Q?) containing
the unit point, are linked by a natural one-one correspondence. Similarly,
there is a natural correspondence between subgroups of Aut(Q) and planar
collineation groups of 7(Q) that fix the two axis and the unit point, and the
correspondence is such that the action of the collineation on any fixed com-
ponent is isomorphic as an additive group to the action of the corresponding
subgroup of Aut(Q) on Q.

Of course, using the coordinatizifig isomorphism, we can extend these
links in the obvious way to encompass subgroups and subplanes of any spread
coordinatized (). These connections are freely used in the literature, with-
out explicit reference, and we shall normally follow this practice. However,
even at the cost of being repetitive, we shall consider all this explictly in
the following section, without referring to the above analysis, for the very
important case associated with rational partial spreads.

5.7 Coordinatizing Rational Partial Spreads.

Given a spread (V,S), we regard a subspace A < V' as being a subspread of
(V,S) if the components o € S that meet A non-trivially induce a spread on
A. More generally:

Definition 5.7.1 Let (V,S) be a [partial] spread and suppose A is a non-zero
additive subspace of (V,+). Thus

S(A) = {s € S|snA#D0}

denotes the set of components in S that meet A non-trivially. The subspace
A is called a subspread of the [partiel] spread (V,S) if

Sa={sNA|seSA)}

is the set of components of a spread on A.

In general, if A is a subspread, of a partial spread (V,S), then S(A) 1s the
partial spread determined by the subspace A, and A is said to be a subspace
across the partial spread S(A).
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That the above definition is expressed using different notation in definition
6.3.1 ahead.

Partial spreads all whose components lie across some subspread are called
rational partial spreads.

Definition 5.7.2 Let (V,I') be a partial spread and let A be a non-zero ad-
ditive subspace of V' such that A is a subspread of (V,T') and additionally:

yel'=~vNV # O;

thus A is a subspread (or a ‘subplane’) across I'. The partial spread (V,T) is
called o rational partial spread if I' has at least one subspread across it. If,
additionally, (V,A) is a Desarguesian spread such that A D T then (V,I') is
called a rational Desarquesian partial spread.

Note that essentially the same definition, but in different terminolgy is cov-
cred by definitions 6.3.3 and 6.3.1 ahead.

If Q is a quasifield and R is a subquasifield then the spread 7(Q), coor-
dinatized by @, has a subspread that may be identified with n(R) and, by
definition, the partial spread I determined by 7(R) is rational, with 7(R)
across it. The converse is also true: any rational spread I' C S, contained in
a spread (V,S), may be ‘coordinatized’ by a subquasifield R of a quasifield Q
coordinatizing (1, §). We now verify this elementary, but fundamental, prop-
erty of rational partial spreads; it reflects the fact that subplanes Ag, of any
affine plane A, are coordinatized in the classical sense by some subternary
ring Ty of a ternary ring coordinatizing A.

Remark 5.7.3 Let § be a spreadsct defined on a vector space T'. Suppose
that ws := (T & T.,X), the spread coordinatized by S, contains a rational
partial spread I' C Y such that T' contains the standard components X =
TeO,Y=08T andI = {(t,t) |t €T}. Let U <T&T be any subspread
of ©s that lies across I'. Then

R:={reT|rerelnlU},

is a subspace of T such that U = R & R, and for each e € R*, the quasifield
Qe = (T,+,0), coordinatizing the spreadset S, contains the system G, =
(R,+,0) as a subquasifield and the standard isomorphism from w(Q.) onto
s’

\y o ',T(Qe) — ’JT(T@ TS)\



CHAPTER 5. COORDINATIZATION. 109

identifies ©(G.) with the subspread #(R & R.T) of (T & T,S); thus 7(G.)
represents a standard coordinatization of (U,T'), relative to e € R*, by the
quasifield G..

Conversely, given a spread (V,X) coordinatized by a subquasifield Q =
(T,+,0), such that Qg = (R.+,0) is a subquasifield (so they share the
multiplicative identity), then the components y = zor, r € R, along with
Y :=0&T, defines a rational partial subspread of (V,X), across w(Qo).

Proof: The converse part is a matter of unravelling the terminology, so we
only consider ‘=’. Since U meets the three standard components, it is evident
that R is a subspace of the vector space T, and {r @ r | r € R} is a compo-
nent of U. Thus, any line z = 7, for r € R, is a line of the translation plane
associated with U .and hence z = 7 meets X in U, and this clearly implies
that X, := R& O is a component of the spread U. Similarly, Yz := O® R is
also a component of of U and this means U = Xp®Yr = R& R, in particular
R & R is an additive subspace of T & T.

We now show that the elments of I', other than Y are of form y = z o r, for
some 7 € R. First observe that any member v # Y, of the spread #gs, has
form y = zog for some g € T. Now choosing 2 = e shows (e, g) € 7). Hence,
since I' is the partial spread determined by U = R & R, it follows that all
members of I' \ {Y'} are of form y = z o 7, for some r € R, and conversely
that all such components y =z or, r € R, lieI'.

But for r,c € R, y = r or and z = oc are two non-parallel lines of the affine
plane associated with U, so their intersection point (c,cog) € R@ R, hence R
is closed under the binary operation o. But since (), has no zero divisors, it
follows that R* is a subloop of (T, 0),both with the same identity e. Thus we
have established that (R, +,0) is such that (I, +) is an additive group with
a zero, (R*, o) is a loop and left or right multiplication by zero always yields
zero, since (T, +, o) is a quasificld. Thus we clearly have a zero-linked system
(R, +,0), see definition 4.2.1 satisfying the right distributive law and hence,
by proposition 4.2.3, (R,+,0) is a translation algebra. But the associated
incidence structure n(2, +, o) is, by hypothesis, an affine translation plane,
and now, by proposition 4.2.4, (R, +,0) is a quasifield. =



Chapter 6

Central Collineations and
Desarguesian Nets.

Central collineations have a strong bearing on the planes upon which they
act. In this section we study central collineations using two parallel but
distinct approaches: the quasifield approach and the spreadset approach.
The machinery developed provides useful characterizations of rational De-
sarguesian net, those nets that are isomorphic to the nets defined by the par-
allel classes of subplanes of a Desarguesian plane. Note that rational partial
spreads were introduced in defintion 5.7.2 and the associated nets, particu-
larly the associated rational Desarguesian nets will be further considered in

6.3.

6.1 Central Collineations in Standard Form.

In this section, w((@) is a translation plane coordinatized by a quasifield
(Q.+,0). So the associated spread on Q9@ has as its components X = Q%0
and Y = 06 Q and all subspaces y = xom, m € Q; thus, m = 0 corresponds
to X.

We shall investigate affine affine central collineations when their axes and
coaxes are chosen canonically. Specifically, when dealing with homologies,
we assume that the axis and coaxis have been chosen from the two standard
components, X and Y, and when dealing with affine elations we take Y as

the axis.
Since all such collineations g are among the additive bijections of Q & Q

110
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that leave X and Y invariant, the action of g on the affine pointset Q & Q is
specified by:

g:(z,0) — (A(z), B(z))
Forall z,me Q: ¢:(0,z) — (C(z),D(x)) | (6.1)
g:(m) — (m®
where A, B, C and D are all additive maps of (Q, +)

6.1.1 When g is a Y-elation of n(Q).

We consider the case when g is an elation with axis Y. So g fixes Y identically,
and since (oc) is the center, g leaves the z-coordinate of all points unchanged.
So the eqns (6.1) become:

9:(2,0) — (z,B(z))
Forall z,yme @: ¢:(0,y) — (0,y)
g:(m) — (m®),

and now the point (:r,:r om), on the component y = zom, gets mapped onto
the point of (z, B(z) + « o m) and this must lie on y = x o m5, thus:

Vz,m € Q: B(z)+zom=2zom®,
and putting 0% := q, yields B:
Vo€ Q:B(x)=xzo0a.
Hence:

Ve,me€Q:zoa+zom=zom®,

and choosing = = e, a left identity, yields ¢ + m = m®

, SO
Veme @ :xoa+zom==zxo(a+m).

Thus, we may summarize our conclusions as follows.

Theorem 6.1.1 Suppose Q is a quasifield such that in the associated trans-
lation plane w(Q) the full shears group with azisY is G. Then g € G maps
the axis X onto a component y =z oa, a € Q, iff:

VYe,me@Q:zo(a+m)=zo0a+x0om,
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and when this condition holds the shear g is the collineation:
(z,y) — (z,20a+y)
(m) — (m+a)

In particular, g maps the component y = xom, form € Q, onto the compo-
nent y = z o (a +m).

6.1.2 When g is a Y-axis homology of 7(Q).

We consider the case when g is a homology of 7 (Q) with axis ¥ and coaxis X.
So g fixes Y elementwise and, since (0) is the center, g leaves the y-coordinate
of all points unchanged. So the eqns (6.1) yield:

9:(z,y) = (Alx)y)
For all z,yyme @: g¢g:(m) (m:s) )
g:(0) = (0°)=(0)

and now the point (z,z om) on the component y = x o m gets mapped to
the point (A(z),z om), and since this must lie on the component y = zom?,
we have:

VemeQ:Alz)om® =zom
ey . . . - . -1
and writing ¢* := f, where e is a right identity for o, yields A = Ty, so the
above equation becomes

Ve,meQ: (:z:):i}_1 om® =zxom

hence:
s :
Ve,m € Q: (z)om” =zTyom

(CL')T;,!S = :rTme
and z = e yields
vm e Q:m° = fom,
so both A and S have been determined in terms of f, where y = z o f is the
g-image of the unit line y = z o e. Thus g is the map:
-1
g:(m) — (fom)
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and so
z,zom)+— (zT _I,:rom,
( ) ( I

and the image can lies on the component y = z o (f o m) only if

gl 'o(fom) = zom,
= zo(fom)=(zTf)om = (zof)om,

yielding:

Theorem 6.1.2 Let w(Q) be the translation plane associated with a quasi-
field (Q, +, o), with multiplicative identity e. Let G be the group of affine ho-
molngies of m(Q) with axis Y and coaris X. Then the G-orbit of the unit line
y = zoe consists of all components of typc y = xo f, where f € N,,(Q)*, and
now the unique g € G that maps the unit line ontoy = zo f, for f € N,(Q)*,
is the collineation:

g9:(z,y) = (()T; )
g:{(m) — (fom),

where Ty : x v z o f 1is the slope of f. Moreover, the component y = x om,
m € Q*, ts mapped by g onto the component y =z o (f om).

6.1.3 When ¢ is an X-axis homology of 7(Q).

We consider the case when ¢ is a homology of #(Q) with axis X and coaxis
Y. So g fixes X elementwise and, since (oo) is the center, g leaves the
z-coordinate of all points unchanged. So the eqns (6.1) yield:

9:(x.y) = (2,B(y))
Ve,ymeQ: g:(m) ()
g:(0) — (0%)=(0)

and now the point (2, x om) on the component y = o m gets mapped onto
the point of (z, B(z ¢ m)) and this must liec on the component y = z o m¥,
thus:

Vz,m € Q:zom® = B(z om)
and writing €5 := f, where e is the identity for o, yields B = S and so the
above equation becomes:

Ve,m € Q:zom® = (xom)®
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and m = e gives z o f = (2)% so
VemeQ:zo(mof)=(zom)of

and f € N}, yiclding:

Theorem 6.1.3 Let w(Q) be the translation plane associated with a quasi-
field (Q, +,0), with multiplicative identity e. Let G be the group of affine
homologies of w(Q)) with axis X and coazis Y. Then the G-orbit of the unit
line y = xoe consists of all components of type y = z o f, where f € N,(Q)*,
and now the unique g € G that maps the unit line onto y = x o f, for
f € N.(Q)*, is the collineation:

g:(z,y) — (z,y0f)
g:(m) — (mof),

where Ty : © +— z o f is the slope of f. Moreover, g maps the component
y=zxom, m€ Q¥ onto the component y=zo (mo f).

6.2 Central Collineations In Matrix Form.

We have just seen how the properties of a quasifield @) are related to cer-
tain ‘standard’ affine central collineation groups of #(Q). We now repeat
the analysis for spreadsets coordinatizing a spread 7. One way to proceed
would be to express the results of the last section in spread-theoretic terms.
But we prefer to directly establish these results so as to introduce the reader
to matrixtbased techniques that are indispensible in translation plane the-
ory. For example, transposing the matrices of a spreadset, sometimes leads
to a new translation plane with distinct geometric properties: this method
of getting new-planes-from-old is not available without stepping back from
quasifields, and even translation planes, to spreadsets.

However, working with spreadsets of matrices becomes very messy when
dealing with translation planes that are infinite-dimensional over their kerns.
Thus, we shall only consider spreads that are finite dimensional over a field
K, and leave it to the determined reader to consider more general situations.
Hence, by the basis decomposition theorem we are entitled to focus on the con-
crete case, when the spreads are constructed on the ambient space K™ & K7,
and all K-linear automorphism and spreadset elements are K-matrices.
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Throughout the section, 7 denotes a spreadset of n X n matrices, that
includes zero, over a field K, and », = (W © W,I';) is an associated spread,
where W = K™, and the members of I'; are y = 27T, T € 7, along with z = 0:
so the subspaces X = W @ O and ¥ = O © W are among the components.
Now any K-linear automorphism g of the spread 7, may will be regarded as
a 2 X 2 block matrix, where each block is an n X n matrix over XK.

Exercise 6.2.1 Any central collineation of the K-spread w, (so the origin
is fired by convention) is a K-linear map and hence may be represented by a
2 X 2 block matriz.

Suppose E is the elation group of 7, with axis Y. We shall describe E in
terms of the matrices in 7.

Lemma 6.2.2 Supppose A is a matriz such that A+ 7 C 7 (or equivalently
A+ 71 = 7); so the matriz A € 7, and the additive matriz group < A >
partitions the set of matrices T into a union of cosets of < A >.

Now the block matriz
(1 A
942 =1 0 1

is a an elation with aris Y that mapsy = 2T, T € 7, toy = (T + A).
Hence the orbit under ga, of any component y = T, T € 7, consists of the
the components y = zC' where C' ranges over the additive coset T+ < A >.

Proof: For T € 7, we have:

(z,2T)ga = (z,2T) ( (1) il ) = (z,z(A+T)).

But since by hypothesis A 4+ T € 7, the mapping g4 is an automorphism of
the spread 7 that leaves Y elementwise fixed, and cannot be a homology as
it is semiregular on the other components. The lemma follows easily. m

We now verify the converse of the lemma: all elations with axis Y have form
ga- Assume g is any elation with axis Y. Thus g fixes Y identically so its
matrix on the standard basis has form

(61)

and to determine the two upper blocks we note that g leaves the X-component
of any x5y € W W unchanged because the lines of form = = C pass through
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the center of g. Thus ¢ fixes identically the first n clements of the canonical
T,

basis of K™ @ K™
(31'@0, ’i=1,...7}.,

(1 4
gfl_“ol':

and this matrix maps the component y = 2 ontoy = x(AM + A),so M + A
must be in 7, in order that g preserves the spread. Thus 7 is closed under
addition by A, and, by lemma 6.2.2 above, this is sufficient for 7, to admit g4
as an elation. Thus all the Y-axis clations are of form g4, where A runs over
the largest subset a C 7 such that o + 7 C 7. Now a is clearly an additive
group of matrices and the map F € « — gg is an isomorphism from a onto
the group of all Y-axis elations of 7. Hence we have obtained the following
description of the group of Y-axis clations in matrix termns.

so g can now be written as

Theorem 6.2.3 Let 7 be a spreadset of matrices, that incudes zero, and let
7w, be the associated standard spread. Let

E={Aer|A+rC7},

and define for cach A € E the block matriz (all blocks with same order):
1 A
g/\ = ( O 1 ) -

1. E is an additive group and T is the union of a set of additive E-cosets,
including F.

Then

2. A collineation g of @, is an elation with axis Y if and only if g = ga,
for some A in E; ga maps X onto the component y = zA.

3. The map A v g4 defines an isomorphism from the additive group of
matrices E onto the full group of Y -elations of w,.

4. Let S < E be an additive subgroup of E and gs be the corresponding
elation group, defined by A v~ ga. Then the component orbits of gs,
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other than Y, are in natural one-one correspondence with the additive
cosets of S in 1, that union to 7: thus if t € T then the coset t + S
defines the components of the gs-orbit of the component y = zt to be
the set of all components y =zu, u€t+ 9.

Corollary 6.2.4 A translation plane admits a transitive group of affine ela-
tions iff it is isomorphic to the translation plane associated with a spread =,
where T is a matriz spreadset closed under addition.

The following exercise considers the extension of the above to the infinite-
dimensional case.

Exercise 6.2.5 Let V' be a finite-dimensional vector space over any [skew/
field K. Define a spreadset to be a sharply one-transitive set Suppose T €
GL(V, K) be a sharply one-transitive sct of lincar bijections of V' : this means
that for any x,y € V* there is a unique t € 7 such that 2* = y. Determine the
elation subgroup of the associated 7., in terms of T, by generalising the above.
Hence prove corollary 6.2.4for this case. Are there any problems in proving
this corollary when the finite-diinensional restriction is removed? What hap-
pens if K is commutative but the vector space V' is infinite-dimensional over

K?
Now we turn to the full group of homologies of w, with axis ¥ and with coaxis

X. We follow the procedure for the elation case, but we shall insist that 7
contains the multiplicative identity (to substitute for the additive identity in

the elation case).
Lemma 6.2.6 Assume the spread-set 7 contins the identity matriz. Supp-
pose A is a non-zero matrix such that Ar C 1; thus A € 7, A s non-singular

and hence At = 7.
Now the block matrix

Al O
hy:= o 1

is a homology with axis Y and coaris X. Hence the orbit under ha, of any
non-zero component y = xl', T € 1*, consists of the components y = zC
where C ranges over the multiplicative coset T < A >, of the multiplicative

group < A >.
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Proof: The map h,4 sends the component y = 2T onto the subspace y =
zAT, so AT € 7. Now continue arguing as in lemma 6.2.2, to get the desired
result. =

Conversely suppose that h is any homology with axis Y and coaxis X. Thus h
has matrix Diag(H, 1), for some non-singular H corresponding to 2| X. Now
the component y = zM maps to the subspace y = xH M, so H = A~1M.
Now, if 7 contains the matriz 1, then H € 77!, Now repeating the argument
used in the elation case we get an analogue of the theorem above.

Theorem 6.2.7 Let 7 be a spreadset of matrices, that includes zero and the
identity matriz. Let m, be the associated standard spread; so Z = {(w,w) | w € K"},
the unit line is in w,. Let:

M ={Aer | Ar C 1},

and define for each A € M* the block matriz (all blocks with same order):

(o 7)
hy = o 1/

Then

1. M* is a multiplicative group of matrices such that 7 is the union of a
set of right multiplicative M*-cosets, including M*.

2. A collineation h of 7. is a homology with axis Y and coaxis X if and
only if h = hy, for some A in M; hy maps X onto the component
Yy =zA.

3. The map A +— h, defines an isomorphism from the multiplicative group
of matrices M* onto the full group of homologies, of w,, with axis Y
and coazis X.

4. Let S < M* be a multiplicative subgroup of M* and hg the correspond-
ing homology group, defined by A — hy. Then the component orbits of
hg, other than X and Y, are in natural one-one correspondence with
the left multiplicative cosets of S in T, that union to 7: thus if tr then
the left cosettS defines the components of the hg-orbit of the component
y = xt to be the set of all components y = zu, u € tS.
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Corollary 6.2.8 A translation plane admits a transitive group of affine ho-
mologies sharing the same axis and coaxis iff it is isomorphic to the trans-
lation plane associated with a spread m,, where T is a matriz spreadset such
that T* is a multiplicative group.

Next consider the situation when X is the axis and Y the coaxis of the
homology group. Using a slightly ‘dualised’ version of the above analysis we
get results similar to the above. For example, the general form the homologies
being considered are matrices of type Diag(1, A) and this maps a component
y = zT onto y = 2T A, so 7 is closed under multiplication by A from the
right. Continuing in this way we obtain:

Theorem 6.2.9 Let 7 be a spreadset of matrices, that includes zero and the
identity matriz. Letm, be the associated standard spread; so Z = {(w,w) | w € K"},
the unit line is in w,. Let:

L'=s{Aerm | xAC T},

and define for each A € L* the block matriz (all blocks with same order):
P O
A7\ o0 A )
Then

1. L* is a multiplicative group of matrices such that T is the union of a
set of right multiplicative L*-cosets, including L*.

o

A collineation h of 7, is a homology with axis X and coaris Y if and
only if h = hy, for some A in M; hy maps I onto the component
y=zA.

8. The map A +— h, defines an isomorphism from the multiplicative group
of matrices L* onto the full group of homologies, of w,, with axis Y and
coaxis X.

4. Let S < L* be a multiplicative subgroup of L* and hg the corresponding
homology group, defined by A v hy. Then the component orbits of hs,
other than X and Y, are in natural one-one correspondence with the
multiplicative right cosets of S in T, that union to 7: thus if tT then the
right coset tS defines the components of the hg-orbit of the component
y = xt to be the set of all components y = zu, u € St.
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Corollary 6.2.10 A translation plane admits a transitive group of affine
homologies sharing the same axis and coazis iff it is isomorphic to the trans-
lation plane associated with a spread w,, where T is a matriz spreadset such
that 7* is a multiplicative group.

Corollaries 6.2.8 and 6.2.10 are each equivalent to asserting that the non-
zero elements of a spreadset form a multiplicative group. Hence the spread
mr admits a Y-axis-X-coaxis transitive homology group iff it admits an X-
axis-Y-coaxis transitive homology group. So if a translation plane of order n
admits an affine homology group of order n — 1 then it admits another with
axis and coaxis reversed! Thus we have:

Corollary 6.2.11 A translation plane admits a transitive group M of affine
homologies with azis Y and coaxis X iff it admits another transitive homology

group L with with axis X and coazis Y.

6.3 Rational Desarguesian Partial Spreads.

We have already encountered rational partial spreads in section 5.7. The
point being made there was that rational partial subspreads (and hence their
nets) are just those arising from a subquasifield of a coordinatising quasifield.
In this section we focus on rational Desarguesian partial spreads. and the
point we make is that partial spreads defined by a Desarguesian subplane
need not be Desarguesian: that is, a partial spread with a Desarguesian
plane across it need not be embedable in a Desarguesian spread.

In view of the importance of this fact, we have kept this section indepen-
dent of our earlier treatment in section 5.7. The notation here also differs
slightly from our earlier notation: there is as yet no standard notation in this

area.
Definition 6.3.1 Let wa := (V,A) be a partial spread, or a spread, on
(V,+), the additive group of a vector space. Suppose W is any non-trivial

additive subgroup of V', such that W s V. Then the components of ma
DETERMINED BY W, or the components ACROSS W is the subset of the com-

ponent set A given by
Wa:={DeA|DNW # 0},
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and the corresponding INDUCED STRUCTURE on W s wy := (W, Wa) where
W4 consists of the non-trivial intersections of the components of wa with W:

Wa:={dnW|de W"}.

The subspace W is called a SUBSPREAD of wa if the structure my induced on
it, i1s a spread in the usual sense, that is, every pair of distinct members of
Wa direct-sum to W.

To get. used to this terminology we observe:

Remark 6.3.2 A subspace W of a spread « = (V,A) is a subspread of ma
iff the components W2 across W induce a spread on it.

Note that the spread induced on W depends only on the set of components
across it, viz. W2, and not on any larger [partial] spread § D A. Such partial
spreads, defined by the components of a subspread of a [partial] spread are
called rational partial spreads.

Definition 6.3.3 A partial spread (V,A) of a [partial] spread 7g = (V,0Q)
is a RATIONAL partial spread if an additive subspace W, of (V,+), is such
that: (1) W is a subspread of we; and (2) the components of mg meeting W
non-trivially are precisely the members of the partial spread A.

A rational partial spread (V,A) is said to be a rational DESARGUESIAN
partial spread if A is a subset of a Desarguesian spread A on V.

Thus a rational Desarguesian partial spread is a partial spread obtained from
a Desarguesian spread 7 by taking as its components all the components
of some subsplane 7y of 7. We shall usually follow the common practice
of calling a Desarguesian partial spread a Desarguesian net; thus rational
Desarguesian nets will mean the partial spread determined by a rational
Desarguesian partial spread, according to our convention, and will also mean
the net, in the strict sense of the word, determined by this partial spread.

If a subspace W of a partial spread defines a rational Desarguesian net
of a partial spread or a spread (V,A), then W is Desarguesian as it lies in
a Desarguesian plane. However, the converse is false: this will emerge from
the following exercise.

Exercise 6.3.4 In the following exercise assume all spreads etc. are finite.
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1. Let mp = (V,A) be a finite spread, two-dimensional over a kern field
K. Then a K-subspace W, of V, is either a component A or a Desar-
guesian Baer subplane of wa.

2. Let F be a subspreadset of a spreadset T, such that O,vecl € F. Then
the partial spread defined by F is a rational Desarguesian spread iff F
s a field under matriz operations.

3. If Q is a right quasifield then w(F') is a rational Desarguesian net iff Q
is a right vector space over F'.

4. Let Q be a quasifield and K a kern field. Show that n(K) need not
* define a rational Desarguesian net.

5. Show that a spread (V,T') can contain a Desarguesian subplane W such
that the partial spread defined by W, viz., WY, nced not be Desargue-
sian.



Chapter 7

Simple T-extensions of
Desarguesian Nets.

The aim of this chapter is to construct three methods for generating finite
spreads 7, and hence also translation planes. The distinguishing feature of
these methods is that they each involve a partial spreadset F associated
with a rational Desarguesian partial spread and another slope matrix ‘T”:
the spread = is then ‘generated’, in some case-dependent sense, by {T} U F.
The exact conditions for T' to succeed depends on the individual case,
but in each instance a wide range of planes can be constructed, in the sense
that the dimensions over the kern can be almost arbitrary. Before describing
the methods we need to take a closer look at spreadsets containing fields.

7.1 Spreadsets Containing Fields.

Let S be a finite spreadset, and suppose 7 C S, |F| > 1. Hence, F is a field
of linear maps iff it is additively and multiplicatively closed. We examine
separately the meaning of additive and multiplicative closure of F using:

Hypothesis (x) Let S is a spreadsct associated with the additive group of a
finite vector space V. Assume S is coordinatized by any one of the prequasi-
fields Q. = (V,+,0), with o specified by choosing the left identity e € V.
Let F # {O} be any non-empty subset of S, and let F C V be the set of all
elements in V whose slope maps lie in F relative to the choice of e as the
identity, thus:

F:={feV]|f=/(e)¢3p € F}.

123
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and

F={Ty | f € F},

where T, € § denotes the slope map of x € V, relative to e as the left identity.
e, T, :y—yoz,yecV.

First we consider the additive closure of F.

Proposition 7.1.1 Assume hypothesis (%), in particular, F = (e)F C V.
Then the following are equivalent.

1. VzeV,f,geF.:zo(f+g)=zo0of+zo0g.
2. F is an additive group.
3. F s additively closed.

Proof: The condition

Ve eV, f,ge F:xzo(f+g)=z0f+2z0¢g
< VzeV fige F:oxoTs,=2Ts+ 2T,
= Tpig =Ty + T,

and this cannot hold unless the slopeset of F' is additively closed and, con-
versely, if the slopeset of F' is additively closed then the element M =
Ty +T, € F agrees with Ty, at the non-zero element e. Hence Ty, , = Ty +1,
is equivalent to F being additively closed. Finally, the additive closure of
is equivalent to it being an additive group by our finiteness hy po’rhesxs n
Now we consider the multiplicative closure of F.

Proposition 7.1.2 Assume hypothesis (x), in particular, F = (e)F C V.
Then the following are equivalent.

1.VzeV,f,ge F:zo(fog)=(zo0f)og.
2. F is a multipicative group.

3. F is multiplicatively closed.
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Proof: The the condition

VeeV, f,geF:xzo(fog)=(xof)oyg
= Vz eV, f,g€ F 2T, =TT,
> Tjoq =TT,

and this cannot hold unless the slopeset of F' is multiplicatively closed and,
conversely, if the slopeset of F' is multiplicatively closed then Ty, = 74T,
since they have the same value at the non-zero point e. Hence T, = T¥7T,
is equivalent to F being multiplicatively closed. Finally, the multiplicative
closure of F is equivalent to it being a multiplicative group since this hold
for any finite multiplicative closed set of linear bijections. m

Now consider any quasifield @ = (V,+,0) such that a subset F C Vis a
field relative to the quasifield operations and that for z € @Q the following
identities hold:

zo(f+g) = wof+zog
(zof)og = zo(foy)

It is clear from the axioms of a quasifield that (V| +) is a vector space relative
to the field F' operating from the right via quasifield multiplication iff the
above pair of conditions hold. Thus, when these conditions hold, we shall say
the quasifield (@ s a right vector space over F; it will be tacitly assumed that
the vector space is defined relative to the quasifield operations. On comparing
these conditions with propositions 7.1.1 and 7.1.2, we immediately deduce:

Proposition 7.1.3 Let S be any finite spreadset, containing the identity
map, associated with the additive group (V,+) of some vector space; so Q. =
(V,+,0) denotes the quasifield determined by S and e € V*. Assign to any
{0} C F C S the set of images F of e under F, thus:

F={feV|f=(e)¢6€F}.
Then the following are equivalent: |
1. F 1is a ficld of linear maps.
2. F 1is closed under addition and composition.

3. For some non-zero e: F is a field and Q. is a right vector space over
F.
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4. For all non-zero e: F is a field and Q). is a right vector space over F.

Suppose Q. = (V,+,0) is a finite quasifield, with identity e, such that
Qe is a right vector space over a subfield F = (U, +, o), for some additive
group (U,+) < (V,+). Now (V,+) may be assigned the structure of a field
K = (V,+,9), such that:

YoeV,feF:vof=vef

The proof is an exercise in linear-algebra/field-extensions: if V' is a k-dimensiona
right vector space over a field F' = GF(q), then V can be given an F-linear
identification with a right vector space K, where K is a k-dimensional field
extension of the field F: for example, view F as the field of scalar k x k
matrices in Hom(k,q), and then choose as K a field of matrices of order

| £7]"; this field exists in Hom(k, g) by Galois theory.

Hence y = zo f and y = z e f define the same subspace of V @ V, for
all f € F. Hence all these subspaces are components shared by the spreads
7(Qe) and w(K), and this clearly means that the rational partial spread
associated with w(F) is a subpartial spreads of both, 7(Q.) and n(K), and
since the latter is Desarguesian, we conclude that 7 (F") determines a rational
Desarguesian partial spread.

We now consider the converse of this assertion. Hence, our goal is to
demonstrate that if 7(Q.), the spread associated with a finite quasifield Q. =
(V, 4+, 0), contains a rational Desarguesian partial spread 6 whose components
include X, Y and I, then Q. contains a subfield F' such that (V| ) is a right
vector space over F' and the components of § is the partial spread determined
by w(F’), or equivalently, the 7w(F’) is a spread across 6).

Since § is Desarguesian and rational, there is a Desarguesian spread A =
w(K), where K = (V,+,9) is a field that may be chosen so that it contains
a subfield F' such that 7(F) is across 6, and contains (e, e). It is possible to
insist further that e, the identity of Q. = (V,+, o), is also the identity of K,
and hence of F: use the spreadset associated with K — it clearly contains
the spreadset associated with é — to define e in terms of e.

Since § is the rational partial spread determined by #(F'), and lies in both
7(K) and 7(Q.), we have the subspace y = zo f, for f € F, may be expressed
as y = x e f' for some f' € F, and vice versa. Choosing = e shows that in
every case f = f', since K and (). both have the same multiplicative identity
e. Thus, we have the identity:

VeeV,feF:zof==xef.
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Hence @), is a right vector space over F', because X has this property. So we
have established that ¢ is the rational partial spread determined by = (F),
where F' is a field in Q. such that the latter is a vector space over F.

Hence we have shown that if a finite quasifield @ is a right vector space
over a field F' then w(Q) the rational spread determined by 7m(F’) is a rational
Desarguesian partial spread whose components include the standard compo-
nents X, Y and I of 7(Q), and, conversely, a rational Desarguesian partial
spread § in w(Q) that includes the standard components among its members
must be determined by some #w(F'), where F' is a subfield of @ over which
the latter is a right F-vector space. Thus the above theorem extends to in-
clude another equivalence: 7(F') determines a rational Desarguesian spread
is equivalent to all the other parts of the theorem.

In the context of finite spreadsets S D 1, associated with a vector space
on (V,+), the above has the following interpretation:
F C S is afield of matrices iff the components associated with F in 7(Q.) de-
fines a rational Desarguesian partial spread that contains the three standard
components X, Y and I of 7(Q.).

Thus proposition 7.1.3 may be restated in more detail as follows:

Theorem 7.1.4 Assume the hypothesis of proposition 7.1.3. Let S be any
finite spreadset, containing the identity map, associated with the additive
group (V,+) of some vector space; so Q. = (V,+,0) denotes the quasifield
determined by S and ¢ € V*. Suppose F C S and let

F={feV:f=(e)¢.¢€F}
Then the following are equivalent:
1. F 1s closed under addition and composition.
2. F is a field of linear maps.

3. (F,+,0) is field and V 1is a right vector space over F, for some choice
of e V*.

4. (F,+,0) is field and V' is a right vector space over F, for all choice of
ec V.

The partial spread =n(F) in =(S), that is w(Q.), determines a rational
Desarguesian partial spread in w(S) that includes its three standard
components, X, Y and I.

Ty
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Note that in attempting to state the infinite analogue of the theorem above,
care must be taken regarding two points: (1) multiplicative and additive
closure will no longer force F to be a field, and (2) the field F may not be
embeddable in a larger field of dimension k, where k := dimgpV.

7.2 T-extensions of Fields.

If § is a finite spreadset, in some GL(V, +), that contains a field F, then the
associated spread ws contains the rational Desarguesian partial spread =r.
In this section, we consider some ways of extending a ficld of matrices F to
a spread S so that the latter is in some sense ‘generated’ by F U {T'}, where
T is a suitably chosen in GL(V, +)\ {F}. These procedures will yield classes
of semifields, and also spreads of order ¢* admitting GL(2, q).

The first method is based on having available a quasifield Q = (V, +, o),
of sngare order, that contains a subfield F, such that ) is a two-dimensional
vector space over F'. Since such sitnations arise iff the spread «(Q) is deriv-
able relative to the slopes of @w(F), we shall refer to the corresponding spreads
as being obtained by T-derivation. This method yields a range of semifields
that are two dimensional over at least one of their seminuclei, and, in a
somewhat vaccuous sense yields them ‘all’: every such semifield ‘yields itself’
by the procedure to be described. However, the method is also effective in
genuinely constructing long chains of two-dimensional semifields when used
sensibly.

The next method is concerned with ‘cyclic T-extensions’ of a field F that
also yields semifields of non-square order, but this time the field F lies in
at least two semi-nuclei: N, and N, but these can be changed by dualising
and/or transposing. Thus neither of the two constructions indicated so far
entirely replace the other.

The final construction we discuss is a modification of the above indicated
method in the three dimensional case. This yields semifields spreads (not
semifield spreads) of order ¢* that admit GL(2, q), acting as it does on the
Desarguesian spread of order ¢°. The dimension of the spread over its kern
can be made arbitrarily large, demonstrating that non-solvable groups can
act on spreads of arbitrarily large dimensions: so far this phenomenon is
known in suprisingly few cases.

We now describe each of the above indicated constructions.
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7.2.1 7T-Derivations.

We describe here a method of constructing semifields of order ¢* that have
GF(q) over their middle nucleus. By transposing and/or dualising the re-
sultant semifield plane, the GF(q) can be can be taken to be any of the
three seminuclei. Hence, we focus on the middle or right nucleus case (as the
treatment is almost identical) and we shall generally ignore the right nucleus
(which involves dualising the left nucleus).

Basically, the method begins with a quasifield @ = (V,+, o), of arbitrary
order ¢*, that contains a subfield (F,+,0) & GF(q) such that (V,+) is a
right vector space over F'. Such quasifields, as we saw earlier, are essentially
those obtainable from spreadsets S on (V,+) that contain a subfield F, or
equivalently, from spreads of order ¢® that contain rational Desarguesian
partial spreads of degree g + 1.

The key idea is that for any choice of T € § \ F, regardless of the @
yielding S, the additive group F+F7T is an additive spreadset. We shall refer
to spreads constructed in this manner, as arising by applying a T'-catensions

to S:
Proposition 7.2.1 (T-Derivations.) Let S be a spreadset (or even a par-
tial spreadset!) on a finite additive group (V,+) such that S D F, where F
is o field =2 GF(q),and V has order g°. Then for any T € §—F, the additive
set of matrices

©:=7(T,F)={a+Tb|a,be F}
is a spreadset, and hence so is the transpose:

T ={a+bTT |a,be FT).

In particular, OF = O and FTOT = 0T

Proof: If za + 2T/ = O, for # # O, then za3 - = 2T so F =T is
singular for some F' € F, contradicting the hypothesis that {T} UF is a
subset of the (partial!) spreadset §. Thus © = ©F. The rest follows easily.
"
Note that by allowiﬁg S to be a partial spread, the method can be extended
even to cartesian groups Q = (V, +, o) of order ¢* that are right vector spaces
over a subfield F' = GF(q), provided that some t € Q — F' defines an additive
map z +— z ot on (V,+).

Recall, theorem5.3.3, that for additive spreadsets S the middle nucleus
corresponds to the largest subset F such that 7S = &, and the right nucleus
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corresponds to the transpose situation, viz., the largest F C F such that
S = SF, theorem 5.3.4. Hence, for convenience and for its future role, we
shall usnally only comment on the middle nucleus situation. We note that
any semifield spreadset of order ¢? is obtained by applying a T-extension to
itself.

Remark 7.2.2 If 7 is a spreadset of order q* containing a field F & GF(q)
such that FT C 7 then

T =F+ FT,
whenever T € T \ F; in particular, T coincides with (T, F)T, using the
notation of proposition 7.2.1.

Thus all semifields that are two-dimensional over their middle (or left) nu-
cleus are T-extensions — of themselves! However, the process of T-extensions
can be effectively used to yicld a variety of examples of semifields that are
two dimensional over the middle nucleus, and indeed, by transposing and du-
alising, over any semifield. To generate such examples, using T-extensions,
one can arbitrarily repeat arbitrary long chains of steps, each step involving
one of dualising-transposing-T-deriving-recordinatising and collecting the re-
quired spreadsets at each stage, for example by adopting using a loop such
as the following:

Generating Two Dimensional Semifields.
a Choose spread with derivable partial spread é.
b Coordinatise by a quasifield @) so that 6 is coordinatized by a field F'.

¢ Now either form Q' containing field F’ such that Q' coordinatizes the
transpose spread and @’ is a right vector space over F” a field isomorphic
to F, or simply choose ()' = @ and F' = F'.

d Obtain two-dimensional semifield associated with any ¢ € ' — F’, with
middle nucleus F”.

e Dualise and/ or transpose the semifield and/or derive relative to F'-
slopes.

f Return to step [a] or stop.
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Certainly many non-isomorphic spreads arise thus, and as indicated above,
‘all’ finite semifields that are two dimensional over a seminucleus are of this
form, albiet in a somewhat vaccuous sense; although T-extensions provide
a useful method for generating examples of two-dimensional semifields it is
not meaningful to ask if their are ‘other’ semifields of order ¢?, with GF(q)

in seminucelus.

7.2.2 Cyclic Semifields.

Let W be a finite n-dimensional vector space, n > 1 over a field F' and sup-
pose T' € TL(W, F) \ GL(W, F') is a strictly semi-linear bijection of W, re-
garded as an F-space; also let K be a subfield of F such that 7' € GL(W, K),
for example K might be chosen to be the prime subfield of F.

We are interested here in the case when 7" is F-irreducible, that is, when T
does not leave invariant any non-trivial proper F-subspace of W. Examples
of such T are easily constructed, for instance on choosing § € GL(W, F) to
correspond to a Singer cycle of PG(n — 1, F), o € Gal(F')*, we might define
T = Sé; it is also not hard to see that S*, for many values of k, work as well
as S itself.

We now observe that the F-subspace of Hom (W, F'), generated by the
powers of T, form an additive spreadset and thus yields a semifield; the
strict F-semiinearity of T" ensures that these semifields will not be a field.
We shall call these semifields cyclic. '

Proposition 7.2.3 Suppose W is a finite n-dimensional vector space, n > 1,
over a field F' and that T € GL(W, K), where K is a proper subfield of F.
If T e TL(W, F)\ GL(W, F) is F-irreducible, then viewing T and f € F as
elements of GL(W, K), the set:

AT, F):={lag+Tay+...+T" ta,_1 | ag,a1,...an_1 € F}

is an additive spreadset over the field K. Such spreadsets will be called cyclic
semifield spreadsets.

Proof: If some lag+Tay+...T'a;+ ...+ Trap, for0<i<k<n-1,
where ay # 0, is singular then there is an € W* such that:

0 = (z)lag+Tay+...+ T ay

. 1
so (z)T* = (2) (]_CLU +Tay+...+ T’”‘lak_l) —
Gk
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and hence the F-subspace of W generated by {z,zT,z2T?...,2T* 1} is T-
invariant contradicting the F-irreducibilty of T". Thus all elements of type
lag + Ta; + ... + T 'a,_,, other than when ¢g = a; = ... = a,,_;, are
non-singular, and hence A(T, F) is an additive group of linear non-singular
K-linear maps that has the correct size to be a spreadset. The result follows.

Remark 7.2.4 The kern of A(T, F) is isomorphic to the centralizer of {T}U
F in Hom(W, +).

Proof: The kern is the centralizer of the slope set of A(T', F) and this lies
in the subalgebra, over the prime field, of Hom(I, +) generated by {T'}UF.
n

The Sandler semifields and the finite Hughes-Kleinfeld semifields are cyclic
semifields, and as pointed out by Kallaher [29], almost all cyclic semifields
are of these types. Thus cyclic semifields may be regarded as providing a uni-
form characterization of the finite Hughes-Kleinfeld and Sandler semifields,
in slightly generalized form.

7.2.3 T-Cyclic GL(2,q)-spreads

We now define spreads that are never semifield-spreads, but still based on
a field F of K-linear maps of an n-dimensional K-vector space W, K any
finite field.

The construction is best described directly, as a spread on V =W & 11,
rather than via a spreadset, so it becomes convenient, to work with matrices,
relative to a chosen K'-basis of 11, and we make the identifications W = K™,
V = K@ K™ Now the field of lincar maps associated with the scalar action
of F on W, viz., f : £ — zf, becomes identified with a field F of n x n
matrices over K, acting on K™, and T € GL(n, K) is still required to be
strictly F-semilinear on I{"*, or equivalently:

T e A’r(c;L(nT;.;J (..7:) - C(GL(n,Ix") (-7:)1

and we shall insist that T does not leave invariant any non-trivial F-subspace
of rank < 2, rather than insisting that 7" acts irreducibly, as in the previous

case.
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We shall demonstrate that the orbit 7 of the subspace y = 2T of V, under
the standard action of G = GL(2,F) on V, forms a partial spread that ex-
tends to a larger G-invariant partial spread (7T, ) := w#UT, where 7 is the
[rational Desarguesian| partial spread associated with F. On specialising to
the case dimpW = 3, the partial spread n (7', ) becomes a non-Desarguesian
spread of order ¢* admitting GL(2, q), where F & GF(q).

Proposition 7.2.5 Let W = K" be the standard n-dimensional vector space
over a finite field K = GF(q), for n > 3. Suppose F C GL(n,K) is a field,
containing the scalar field K, and

T € AT(GL(?L,K)(F) - C{GL(R,I‘:}(F)?
so there is a non-trivial field automorphism o € Gal(F/K)* such that
VX € F: X°=T"XT.

Let wx be the rational Desarguesian partial spread determined on'V := W&V
by the spreadset F, and let 7 be the orbit of the K-subspace y = =T, of V,
under the group:

G = {( @ b) | a,b,c,de.?:,ad—bc;é{]} = GL(2,F),

c d

in its standard action on V.
Put:
(T, F) :=1U7x.

Suppose T does not leave tnvariant any non-zero F-subspace of W that has
rank < 2. Then the following hold.

1. 7 is a partial spread containing q(q> — 1) components and the global
stabilizer of y = T in G is the diagonal group

{Diag{A, A% | A€ F*}.
2. The rational Desarguesian partial spread wx is a G-orbit, and G acts
triply transtively on its components.

3. The G-orbits, T and wx, do not share any components and n(T,F) is
also a partial spread.
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4. @(T,F) 1s a spread iff dimzWVW = 3. In this case, the spread admits
G = GL(2,F) so that this group partitions the components of w(T,F)
into two orbits, viz., 7 and 7wy, and G acts triply transitively on the
orbit wr and transitively on the orbit .

The kern of (T, F) is tsomorphic to the centralizer of {T'} U F 1n
Hom(W,+); hence K = GF(q) is always in the kern, and F is not: so
the spread 1s non-Desarguesian.

Proof: The image of (z,27), « € K", x # 0, under an element of G:
(A B
=\c D
is (xA + 2TC, xB + 2T D), and this meets the component y = zT iff the

conditions u = zA+27'C and uT" = 2B +2T D hold simultaneously for some
u € [V*, and this is cquivalent to

(zA+2TC)T = 2B + 2TD,
and since T normalizes F, and induces o on it the above is equivalent to:
tT*C° = 2B + 2T (D — A%),

and this means that the F-subspace generated by {z,zT} is T-invariant,
contradicting the hypothesis that T cannot leave invariant non-trivial F-
subpace of dimension < 2, unless B = C = O and D = A?. Now the image
of (z,2T) is (xA,zAT), for all z.

Thus, the orbit 7 of the component y = 27" under G contains, in addition to
y = 2T, only subspaces that are disjoint from y = z7" and, additionally, the
global stabilizer of y = 2T is given by

g{y:r’f} = {Daag(A,A") | A€ F*}:

80
7l = 1GL(2,9)|/ (1= 1) = al¢” — 1).

Thus we have established that the G-orbit of y = 2T, viz., 7, is a collection
of q(g* — 1) subspaces that have the same size as y = 2T and all members of
7\ {y = 2T} are disjoint from y = 2T. It follows that if R and S are any
two distinct members of 7, then they are disjoint because if RN .S # O then
we may choose g € G such that (R)g = (y = 27") and now y = 2T meets the
element (S)g € 7.
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Instructive Diversion. This is a case of a simple but useful principle: (a)
if a rank r subspace A of a vector space V' of rank 2r has an orbit A under
a subgroup G < GL(V,+) such that A — A9 is non-singular or zero for all g
then A 1is a partial spread that is G-invariant; (b) if the subspace A is disjoint
from all the members of a G-invariant partial spread B then AU B is also a
partial spread.

Next, to apply the second part of the above principle, consider the possibility
that y = 2T meets 7x, the rational Desarguesian spread coordinatized by F.
If T — A is singular for A € F*, then 2T = z A, for some A € F*, z € W*.
Thus y = 2T and y = z A are disjoint subspaces of V, for A € F*: otherwise
T leaves invariant the rank-space zF, contrary to hypothesis. Moreover,
y = zT is certainly disjoint from O & W. Hence y = zT is disjoint from the
rational Desarguesian partial spread coordinatized by the spreadset 7. But
this partial spread, viz.,

nr:={y=zA|Ae F}U{Y}

is also invariant under G because

(0,u) ( S 3 ) = (uc, ud)

shows that Y is left invariant when ¢ = 0, and otherwise, when cu # 0, Y
maps to y = z(uc) 'ud, which is a component of type y =z f, f € F.
Similarly, we can determine that y = zf, f € F, maps under G into the
rational Desarguesian partial spread 7z:

(y=xf)(‘§ b)H (y=2(a+ fo) b+ fd)) ifa+ fo O;

d (z =0) otherwise.

In particular, Y is not G invariant, and the global stabilizer Gy} of Y is
doubly transitive on all the other components of 7w£: for example, note that
G(Y'} does not leave X invariant and the global stabilizer of X in Gyyy is
transitive on the components in 7 \ {X,Y}. Hence G leaves 7z invariant
and acts 3-transitively on its components.

Thus, recalling that the members of 7 are disjoint from y = 2T, we see that
the orbit (y = 2T')G is a partial spread such that its members all have trivial
intersection with the members of 7.

Now specialize to the case 7 = GF(q) and dimzW = 3. Now the partial
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spreads mz and 7T together contribute q + 1 + ¢(g? — 1) = ¢* + 1 components
of the partial spread #(7T,F), and this is the size needed to make it into a
spread. Since the G-orbit 7 now has the size of #(T,F) \ 7x, we conclude
that G is transitive on the components of the spread outside nx.

This spread is coordinatized by a spreadset S D F U {T'}, that includes the
identity and yet S is not a field because T does not centralize F. The slope-
set of w(T, F) is clearly in Hom(W,+) so its kern is as claimed. m

By varying T, for a fixed choice of F, it is possible to ensure that the dimen-
sion of the spread w(T, F), over its kern, can be made arbitrarily large; in
partciular this means that non-Desarguesian translation planes of order g3
that admit SL(2,¢q) can be chosen to have arbitrarily large dimension. We
leave this verification as an exercise for the reader. '



Chapter 8

Semifields.

Recall that a distributive quasificld is called a semifield. Equivalently, a semi-
field is a ‘non-associative [skew]field’ as seen in the following characterization.
The aim of this chapter is to address the following question: what are the
possible sizes of finite non-associative semifelds? We shall see that semifields
that are of order p? are always fields. Also all translation planes of order 8
are known to be Desarguesian. But the twisted fields of A. A. Albert and the
even order commutative semifelds of D. E. Knuth, taken together, demon-
strate that for all other prime-powers orders n at least one non-associative
semifield plane of order n exists. The main goal of this chapter is to intro-
duce these planes and demonstrate that they are non-associative. This is
preceeded by some after some basic results have been established.

8.1 General Remarks On Semifelds.

The following theorem is an analogue of the elementary result: finite [associa-
tive] integral domains are fields. Here we prove that finite ‘non-associative’
integral domains are semifields. Many important constructions of finite
[prejsemifelds are based on this principle.

Remark 8.1.1 A system (D,+,0) is a semifield iff the following azioms
hold:

1. (D,+) is an abelian group;

2. The distributive laws are valid for x,y,z € D:

137
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() zo(y+2)=z0y+2z02
(b) (y+z)ox=yozx+zox.

3. (D*,0) is a loop.

A semifield that is not a [skew]field is called a proper semifield. We shall be
concerned with finite semifields from now on. Thus the basic question is what
are the possible orders of proper non-associative semifields? This question
has a complete answer, but first we draw attention to some elementary facts.

Remark 8.1.2 Let (D, +,0) be a finite semifield. Then its three seminuclei
N¢, N,, and N, are all fields, in particular its kern coincides with N, and
(D, +) is a vector space over each of these nuclei, as well as over its nucleus
and center (both of which are also fields).

Proof: Exercise. m

Remark 8.1.3 A semifield two dimensional over a field in its center is a
field. Hence all semifields of order p* are known.

Proof: Exercise. m

Thus all semifield planes of order p? are known. A spectacular extension of
this result follows form a theorem of Menichetti: all semifield planes of order
p? are known. They are forced to be coordinatized by the generalized twisted

fields of Albert, see 147.

8.2 The Knuth Commutative Semifields.

Finite commutative semifields (that are not associative) appear to be quite
hard to find. The following construction due to Knuth, [30], established the
existence of commutative semifields of even order N, where N > 8 is not a
power of 2. |

Theorem 8.2.1 (The Binary Knuth Semifields.) Let K = GF(2"™) D
GF(2™) = Ky, where n > 1 is odd. Let f : K — Ky be any nonzero linear
functional of K as a Ky vector space. Define a new multiplication as follows:

aob=ab+ (f(a)b+ f(b)a)’.

The algebraic system (K, +,0) is a pre-semifield.
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Proof: The fact that z + z? is additive in the characteristic 2 case, yields
the distributive laws. So it remains to verify a o b = 0 is impossible if a and
b are non-zero. Denying this, we have non-zero a and b such that

ab + (f(a)*” + f(b)*a®) =0,
SO )
S+ i+ 102 (3) =0,
which may be written as a quadratic in z = a/b:
f(b)*z* +z + f(a)* =0,

and this quadratic in z, with coefficients in K, is reducible in K because
z = a/b is a solution. But since K is odd dimension over Ky, the quadratic
must be reducible even in Ky, so z = a/b € K. Hence by the definition of

O:

aob = ab+ (f(a)b+ f(b)a)?
= ab+ (f(bz)b+ f(b)a)?
= ab+ (f(b)bx + f(b)bz)?, by linearity of f
= ab, in charactersitic 2.

so aob=ab # 0, a contradiction. =

Exercise 8.2.2 Show how to obtain a commutative semifeld of the same
order as the above pre-semifield.

The usual procedure for converting a pre-quasifield to a quasifield ‘(a o b) =
(aoe)x(eob)’, where e is an arbitrary non-zero element, of course solves exer-
cise 8.2.2 above. However, to ensure that the resulting comutative semifield
is not a field f needs to be chosen with some care. Such an f is introduced
in the following theorem.

The theorem also demonstrates that in converting a presemifield to a
semifield it is desirable to choose the identity ‘e’ with care, to avoid creat-
ing a semifield with a more opaque structure than the presemifield used to
construct it.
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Theorem 8.2.3 (The Binary Knuth Semifields.) Let K = GF(2"™) D
GF(2™) = Ky, wheren > 3 is odd. Fiz a Ky-basis of K of type (1,a,a?, ... o™

and choose the Ko-valued functional f : K — Ky such that f(a ) = O for
0<i<n-2 and f(e®') = 1. Define new multiplications o and ® on K
as follows for all a,b € K:

aob = ab+ (f(a)b+ f(b)a)?
aob = (aol)®(lobd)

The algebraic system (K, +,0) is a commutative presemifield and (K, +,®)
is a commutative semifield (but not a field) such that they both coordinatize

the same semifield plane.

Proof: In view of theorem 8.2.1, it follows easily that (X,+,®) is a com-
mutative semifield, with identity 1o1, and that the two systems coordinatize
the same plane. It remains to check that © is not associative. The main step
is to obtain a direct representation of ®, viz.:

a®b=(ao1)o(lob) (8.1)

Since K is in the null space of f, and also its image, we obtain 1oa =
a+ f(a)?, f(a)? € Ky, and hence f(10a) = f(a). Thus we have

lo(loa)=a+ f(a)* + (f(a) +0)*
yielding the identity in a € K:
lo(lo a,) = a. (8.2)

Now replacing a and b resp. by 1 o0a and 10 in the defining identity for ®
we have:

(aol)o(lob) = ((ael)el)©(lo(l0ob))
= aQ® bby (8.2),

thus (8.1) has been established.
We can now verify that ® is not associative by demonstrating that a multipli-
cation involving o, k = n — 1/2, fails to be associative; exponents here and

throughout the pmof are assumed relative to field multplication. Note that
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k=n—1/2, and n > 3 means that k < n — 2, so, by definition, f(a*)=0.
Hence the formula for © given in (8.1) above yields

oF @ =(aFol)o(aFol)=aroaf=a"",
since z 0 z = z° in characteristic 2. Similarly,

adFOa=(afFol)o(aol)=cart,

as by definition a*, o and 1 are all in the kernel of f. We now show that
© is not associative, by deducing a cntradiction from the following power

associativity identity:
a O (of @) =la® o) ®df, (8.3)

which implies that
a®a™ ! = ook

But remembering that f(a™! = 1, the LHS becomes

(aol)o(a™ tol) = ao(a"'+1) = aoa™ ' +a = a"+(0+al)*+a = o+’ +a,

and the RHS becomes
ak+1 @O’k — (ak+1 o 1) o (1 OO:k) — ak-{-l o Ofk = o™ + (02) —_ aﬂ,

so the associativity fails unless o™ +o? 4+ @ = o™ and this means o = 1 or
a = 0, contradicting: o € K — K. Thus the power associativity claimed in
(8.3) fails and the desired result follows. =

Exercise 8.2.4 Show that the theorem is valid even for n = 3 provided Ko =
GF(2™), and m > 1.

Perhaps the most important feature of the theorem above is that it ensures
the existence of non-Desarguesian projective planes of order 27, p any prime

> 3.
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8.3 Twisted Fields.

Let ¢ € K = GF(q") such that ¢ ¢ K7 '. Then GF(g)-linear maps of
K = GF(q") defined by:

P! . K- K (8.4)
T+ —cx?
Q' : K—K (8.5)

z— 2?7 —cx

are bijective (thus justifying the inverse notation) because z = zc? or 29 = cz

both contradict the assumption ¢ ¢ K971,
Since P~! and Q! both map 1 to 1 — ¢ = f, we also have

P(f)=Q(f) =1, (8.6)

We now define the semifield associated with (P, Q); the above equation will
establish the multiplicative identity:.

Theorem 8.3.1 Define © by:
zQy=zP(yQ) — (zP)"(yQ)c,

and let f = 1—c. Then (K,+,®) is a division algebra with identity f =1—c
and center F'© f where F = GF(q) C GF(q").

Proof: Since P and () are inverses of F-linear bijections they too must be
F-linear bijections. Now since P, ) and the field automorphism z + 27 are
all additive, the distributive laws hold. Zero divisors exist only if for some
non-zero x and y:

zP(yQ)" = (zP)"(yQ)c = (zP/yQ)/(xP/yQ)? = c,

contradicting the hypothesis that ¢ is not a ¢ — 1-th power. Hence the system

is a presemifield.
To verify that f is the multiplicative identity, apply eq (8.6) to

@ f=xzP— (zP)lc= (zP)P ' =1z

and similarly:

fozr=2Q"-2Qc=(zQ)Q! = =.
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Thus f is the multiplicative identity. Now we establish that FF © f may
be identified with F', by remembering that S, P and @Q are all members of
GL(K,+) that are linear over F, and that fP = fQ = 1; for all z € K and
a€F:

20 (fa) = zP(fa)Q - (zP)*(fa)Qc
(zP(f)Q — (zP)*(f)Qc) a
(zP - (zP)%c) o
(zP)Pla = za

I

and similarly

(fa) ez = (2Q7—-zQc)a = (zQ)Q 'a = za.
Thus we have shown:
(fa) Oz =za=20 (fa)Vz € Ka € F. (8.7)

Now it is straightforward to check that F'® f is in the middle and left nuclei;
for example (z @ fa) ©y and also 2 ® (fa © y) may be written, by eq 8.7, as
(ra) © y and z © (ay) respectively and these are equal because all the three
maps defining ® are linear over o € F. The result follows. m

It appears to be surprisingly hard to determine whether or not F' ® f is the
full center of the semifield. In fact, it appears hard to verify even that the
semifield is not a field. To verify this we shall determine when the semifield is
non-commutative. This requires an explicit form for the Vaughan polynomial
for P: our definition of P is specified indirectly, in terms of the Vaughan
Polynomial of P!,

As indicated by Albert, the product ® cannot be regarded as explicitly
known until the Vaughan polynomials for P and @ are explicitly known.
However, in view fo the close connection between the definitions of P~! and
Q71, cf (8.4) and (8.5), it is possible to deduce the Vaughan polynomial of
@ from that of P, so we only compute P explicitly.

8.3.1 DPolynomial for P; Non-Commutivity of Semi-
field.
In this section we adopt the following:

Notation 8.3.2 Regarding K = GF(q™) D F = GF(q) as a rank n vector
space over F, and define the F-linear maps of K :
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1. S:2+ 29
2. R, :x v za, fora € K;

We regard members of Homp(K,+) as acting on K from the right. The
associative ring 377 S’R,,, for a; € K, forms an F-algebra; F' may be
identified with the central field {R; | f € F}. By Vaughan polynomials
the S's in the expression are linearly independent over F' and hence the
expressions account for | K|* K-linear maps in Homp (K, +), but since this set
has size |Ff“2, we have a fundamental fact concerning Vaughan polynomials.

Result 8.3.3 (Fundamental Theorem of Vaughan Polynomials.) The
K-algebra Homp(K,+) is the K-algebra:
n—1
{Zﬁ&ﬂmeRWemm—U}
1=0

We now compute P using eq(8.4), which may be written as P~! = z —zSR,,
and the elementary ring identity

1-0)(1+60+6*+...+6" ) =1-6",
by noticing that 6 := SR, implies:
1-8=pP"
Thus we have:
P (14 SR+ (SR)*+...+ (SR)™™) =1— (SR.)"  (88)
and now (SR.)' may be expressed in the following notation,
(SR.)' = S'R.,, (8.9)

where ¢; € F™* is uniquely defined by the above requirement. In particular,
we need to record:

Remark 8.3.4 Define ¢; € F in terms of ¢ by:
Vi€ [L,n]: (SR.)' = S’R,,. (8.10)

Then
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1. P7' commutes with all terms of type S*R,,
2. Cn € GF(Q) Ciy1 = (Cz')SC.
3. cn € GF(q)*, but c, # 1.

Proof: The first part holds because, by definition, P~! = 1 — (SR,) and
terms S'R,, are all powers of a single term SR,. In particular, eq (8.10)

means that

Si-i-lR e (SRC)‘H_! — (SRc)iSRc — Sé+1R(c;)Sc-

Cit1 *
The next case follows from eq (8.10) by putting ¢ = n and noting:
Cn = 5" = (SR)" = 8™c(c8)(cS?) ... (cS™ 1) = v(c),

where the norm v(c) relative to S must lie in its fixed field, so ¢ € GF(q)
Now if 1 = v(C) = ¢ ~1/971 then we claim c is a g— 1-th power. Now writing
¢ = wh@ D+, a primitive element of GF(q")* and 0 < r < (¢ — 1), implies
W@ 1=1 s0r=0.m

Now the commutivity condition for P~!, the fact that (SR.)" = S"R,, =
R, and by the final case above, 1 — R, € GF(q)*, means that the identity
(8.8) may be restated as follows:

P=(1+48R,+S°R.,+...+S"'R.,,_)(1-R, ) (8.11)

The above identity is the Vaughan polynomial for P. If desired, a similar
identity for 2 may be-obtained, or deduced from the expression for P.

We now use the above Vaughan polynomial for P to determine when the
divison algebra (D, +, ®) is commutative. The definition of ® means that it

is commutative iff:
zP(yQ)? — (zP)'yQc = yP(zQ)? — (yP)*(zQ)c
so putting y — y@~! shows commutivity is equivalent to the identity:
zPy? — (zP)%yc = yQ ™' P(zQ)? — (yQ™' P)*(zQ)c

and viewing both sides as functions of y, implies that the commutivity is
equivalent to:

SR.p — Rizp)sc = Q7' P(Rzgs — SRzq)c),



CHAPTER 8. SEMIFIELDS. 146

and using the Vaughan expansion for P in eq (8.11) above, and recalling
the definition of Q~?, eq (8.5), we see that commutivity of the semifield is
equivalent to the following identity after the GF(g)* element (1 — R,,)™! is
shifted to the LHS.

(SR:p — Rzp)sc)(1 — Re,) = (S—R.)(1+ SR, + S*Re, +...5R,,...
.8 'R, W(Rzqs — SREg)e),

and on making the substitution z@) « t we have:

(SR.p — Rizpysc)(1 — R.,) = (S—Rc)(1+ SR, +S*Re, +...5'R,,...
.8 1R, )(Ris — SR:),

We now compute the coefficient of the powers of $' > 5% on the RHS when
this is expressed in standard S-polynomial form:

((S+ S?R., + S®R., +...S*'R.,...) — R.(1+SR;+S*R,,+...+5'R,, ...
oo SR, ..)) X (Ris — SRy) =
((S+52Rcl +SBR£2 +"'+Si+chi)"' - (Rc+SRcS'ch +S2Rc82cg + "'+SiRcSi€i"

'}'Si—HR,:Sz'ﬂc‘.+1 1)) X (R;S - SR:G),
and the terms in S* above, after expansion, have form
= S'R._,Ris — S'R.gic, Ris — S"'Re,_,SRyc + S ' Regi-1,_, SRie

= S'Rei_y5) — ' Resicyesy — S Rey_gstc + S Riesiyei_y8)(te)
= SRei_yit5) — Resia(ts) = Beiastc + R(esty(cims)(ta)s

and this coefficient for 7 € [2,n — 1] must vanish for all ¢, which means
(cim1 — (€S)e:)t? + (eS'ci—1.S — ¢i_28)te =0
and this is equivalent, for 7 > 1, to
cic1 — (¢S = 0
and ¢Sic;_1S — c;_2S = 0,

and the case i = 2, remembering c; := ¢, yields: ¢; = ¢S%c,, but now by
¢a = cSc we have ¢! = ¢S, hence also ¢; = 1. Now lemma 8.3.4(2), page
144, above shows that the ¢; for ¢ > 1 alternates: :

aa=cc=lc=cc=1c=c¢...cn=1,
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where ¢, = 1 is forced because, by lemma 8.3.4 again, ¢, is in GF(q), unless
c itself is in GF(q). But recall that 1 — ¢, # 0 means that only the latter
case can occur. But also remember that ¢? = ¢~! means that ¢? =1 as §
fixes GF(q) elementwise. So ¢ = +1 and ¢ = 1 means it is a ¢ — 1-th power.
Hence ¢ = —1 is the only possibility, and this actually works: now P = Q is
automatic and the above constraints are all met easily.

Thus we have established

Theorem 8.3.5 Assume n > 2. (D,+,0®) 1is commutative iff c = —1 # 1
and P=Q = (1+19).

8.4 (Generalised Twisted Fields.

The twisted fields of Albert, discussed in the previous section, are important,
partly because they help to demonstrate that non-associative semifields of
odd order p" exist, for p prime, iff r > 2. The generalized twisted fields,
introduced in this section, have proven to be of importance because they
arise in several major classification theorems: Menichetti’s classification of
the semifields of order p® and in the Cordero-Figueroa-Liebler classification
of semifield planes admitting large autotopism groups of various types. In all
these cases the associated planes are shown to be among th class of general-
ized twisted fields of Albert, rather than in the class of planes coordinatized
by just the ordinary twisted fields of the previous section.

We begin with an elementary result from arithmetic that has wide appli-
cations in the exploitation of finite fields.

Result 8.4.1 Let q be a prime power. Then
ng (qa _ l,qb _ 1) — qgcd(a,b) -1.

Proof: The RHS divides the LHS because, in general, g™ — 1 divides g" — 1
if m divides n. Let u be any maximal prime power dividing LHS. Then ¢* = 1
(mod u) and ¢®* =1 (mod u) and also g is invertible (mod u). So a and
b are divisible by the order A of ¢ (mod ). So A divides ged(a, b), hence
u divides ¢&4(@®) — 1. so u divides the RHS. m

Throughout the section we adopt the following hypothesis:

Notation 8.4.2 The integer ¢ = p® > 1 is a power of the prime p. K =
GF(q") and AutK denotes the associated Galois group generated by p : x —
29. Assume S,T € AutK such that
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1. 145 #T+#1; and
2. Fiz(S,T) = GF(q).

Note that any finite field with two distinct non-trivial automorphisms, S and
T, can be viewed as satisfying all the above conditions if we define GF(q) to
be the fixed field of the group < 5,7 >.

Write N = K5 'K7T-!, so N* is a multiplicative subgroup of K*. Fix an

element ce N — K.

Exercise 8.4.3 Take K = GF(q"), S:z+ 2% and T = S~!. Show that ¢
can be chosen provided n > 2 and ¢ > 2. What goes wrong when n = 27

The Albert product on K, written < z,y >. and abbreviated to zoy is defined
by:

Vz,y € K :zoy :=<z,y >a=zy — z yc. (8.12)
Remark 8.4.4 <z,y>=04=z=0Vy=0.

Since S and T are additive, (K,+,0) must also satisfy both distributive
laws: so we have a finite ‘non-associative integral domain’ and, as in the
associative case, this means that multiplication defines a quasigroup on the
non-zero elements. Thus we have:

Lemma 8.4.5 Suppose the triple (D,+,0) is such that (D,+) is a FINITE
abelian group such that both the distributive laws hold. Then (D*,0) is a
quasigroup, or equivalently, (D, +,0) is a presemifield if and only if:

zoy=0<=22z=0vy=0.

Proof: The distributive laws imply that the maps x +— zoaand z +— bozx
are additive and so the no-zero-divisor hypothesis holds iff both maps are
injective and hence bijective. The lemnma follows. =

In view of eqn 8.12, lemma 8.4.5 above, applied to the Albert product, im-

mediately yields:

Theorem 8.4.6 Let A. := (K,+,0), where o =<, >, is an Albert product
on K = GF(q¢") and (K, +) is the additive group of of the field. Then A, is
a pre-semifield.

The planes coordinatized by the presemifields A, will be called the Albert

planes. The presemifields A, will be called generalized twisted fields.
The following proposition yields the list of orders that Albert plane have.
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Proposition 8.4.7 Let K = GF(q"), Fiz(< S,T >) = GF(q), where S #
T are distinct nontrivial GF(g)-linear field automorphisms in AutK such
that Fiz(< S, T >) = GF(q). Let N = K5 'KT-1 then K — N # { iff

1. ¢ > 2 and n > 2; now any pair of distinct non-trivial S and T will
yield K — N # 0;

2. If g =2 and n is not a prime; now, wlog 1 < a < b < n, the pair
(S::rl—)xpﬂ,T:wr—)pr)

yields K — N # 0 iff and ged(a, b) > 1 shares a non-trivial factor with
n.

Proof: We may write S—1=¢°—1land T —1 = ¢* — 1. So N* only
contains powers of w?™! where w is a primitive generator of GF'(¢"). So if
g > 2 then an Albert sytem exists so long distinct S and T exist such that
Fiz(< §,T >) = GF(q). This can be arranged by taking S : z+> 2? and T
to be a power of S but distinct from it: unless S? is the identity, i.e., n = 2.
If n = 2 then obviously no T satisfying are requirements exist.

So it remains to consider the case when q = 2, again n > 2 is forced. Now
putting S:z+— z* and T : z +— mQh, we clearly have 1 < a,b < n, where

ged(a,n) # 1 # ged(b, )
since for integer z > 1:
N*DK*2® —1=<uw¥ ! >=<w>,

holds unless 1 # ged(2™ — 1, 2% — 1) = ged(n, x), by result 8.4.1, 147. Thus n
cannot be prime, and furthermore a and b must share a proper prime factor
with n. Now '

N* = <Lu2¢*—1w2”—1 >
{wm(2“—1)+y(2b—1) |:1:,y € Z}

< wgcd(?“—l,?—l)

- < w(zgcd{u,b)_l) >
- ?

>

and so N* < K* iff
K* %< w(Qgcd(a,b)_l) >
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and this holds iff
(258 — 1,27 —1) #1,

and this is equivalent to ged(a, b) and n sharing a non-trivial factor. m

Exercise 8.4.8

1. There are no generalized twisted fields of order < 64 and there do exist
gtt of order 64.

2. There exists generalized twisted fields of order 2", provided n is not a
prime and n > 4.

3. Using Albert’s approach for twisted fields, determine when generalized
twisted fields coordinatize non-Desarguesian translation planes.

8.5 Some Two-Dimensional Semifields.

In this section we mention two classes of semifields whose planes admit geo-
metric characterizations. They are also associated with tangentially transi-

tive planes. We use the following notation.
Let F' be a finite field of odd order and ¢ € F* a non-square in F. Let
A be an indeterminate over F, and € a non-trivial field automorphism of F.

Let D=F & AF.

Theorem 8.5.1 (Dickson’s Commutative Semifields.) Supposea € F*
s non-square, so F' is odd. Then

(z + Ay) o (z + At = (zz + a(yt)?) + A(yz + =t)
is a commutative semifield such that:

1. F is the middle nucelus of (D,+,0);

2. K = Fiz(0) N F is the rightnucleus, the left nucelus and hence also the
center of D.



CHAPTER 8. SEMIFIELDS. 151

Theorem 8.5.2 (Hughes-Kleinfeld Semifelds.) Suppose a = z1+% + zb
has no solution for x in F'. Then

(z+ Ay) o (z+ At = (zz + aty’) + Myz + (z° + %)t

is a semifield and F' is its right and middle nucleus. Conversely, if D is a
semifield that is a finite two dimensional over a field F' such that the middle
and right nucelus of D coincide then D is a Hughes-Kleinfeld semifield.



Chapter 9

Generalised André Systems and
Nearfields.

In this section we introduce important classes of quasifields that do not co-
ordinatize semifeld planes.

9.1 Construction Of .Generalised André Sys-
tems.

Let F' be an extension field of a field K, A = Gal(F/K), and let A : F* — A
be any map such that the A(1) = 1. Then Q) = (F, +, o) is defined by taking
(F,+) as the additive group of the field F' and o is defined, in terms of field
multiplication, so that for z, f € F

zof = @Mf f#0
zol = 0.

So (0, obeys the right distributive law, has a multiplicative identity, has a
unique solution for [ Jo f = g, whenever f # 0, and multiplying by zero
yields zero. Hence, in the finite case, (0, is a quasifield iff the equation
fo[_]= g has a unique solution for [ | when f,g € F*. For a treatment
of the general case, including when K is a skewfield, see Liineburg [31]. The
system @y is called a A-system, or a generalized André system, if turns out
to be a quasifield; the corresponding translation plane is called a generalized

André plane.
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We shall only consider finite generalized André planes here. An effective
way to study them is to describe them in number-theoretic terms. We denote
the set of the first k natural numbers 0,1,...,k« 1 by I;.

Definition 9.1.1 Let F = GF(¢%) D K = GF(q), n = ¢® > q, and let
p:z +— z9 be the generator of Gal(F/K). Choose a primitive generator w
of the multiplicative group F*. Let X : i — A; be any map from I,_; into I
such that A\g = 0. Define Q) := (F,+,0), where + is field addition, and o is
given by:
Wwow = (w")ql"wj = w*‘qx””j,

and o0 =0 = 0oz forallz € F. We regard Qx as the A-structure
associated with (X, q,q%).

We now consider which choices of A make () a quasifield. As indicated
above, @, will be a quasifield provided the equation f o[ ] = g has, for
f,g € F*, a unique solution for [ ], and by owr finiteness hypothesis, this
is equivalent to the the injectivity of all the maps z — ¢ o 2, for ¢ € F*.
However, this condition fails iff there exists z,y € I,, z Z y (mod n), so
wlog Az > Ay, such that

3fel,:wfow® =w/ow?
> 3Ifel,:fe*+z=fgv+y (modn—1)
= Efefn:a:—yzf(q)"—q"y) (mod n — 1),

so (2, fails to be a quasifield is equivalent, for A, > A,, to the following

sy
AnmAiEiAn.

= 3fel,:z—y=fg¥ (q""_’\y = 1) (mod n — 1). (9.1)

But choosing t = ¢, = ged(A; — Ay, d — 1) in the above condition (9.1)
above means that

and now, since by an elementary result 8.4.1, page 147, we have

A:_Ay'-']. d_l
ecd (g4 g =1,
qt_]_ qt_l
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a solution for f in equation (9.1) exists iff Z=% is an integer, thatisz =y
(mod ¢* — 1). Thus, the condition that z — ¢ o z is injective for for all
non-zero f, is equivalent to ensuring that z =y (mod ¢* — 1) cannot hold,

unless * =y (mod n). Thus we have

Theorem 9.1.2 (Fundamental A-Law.) [12, Lemma 2.1] Let Q5 be a )-
structure on GF(q%), defined in terms of the field automorphism p : x +» 29
of GF(q?), and the primitive element w of order n — 1, n := ¢*. Assign to
every two distinct integers x,y € I,:

try = ged (A — Ay, d)
Then Q) s a quasifield iﬁ‘.‘I
z=y (mod g+ —1)=z=y (modn-—1).

In particular, if A yields a quasifield for some choice of the primitive w then
it works for all choices of w. However, changing w, while holding A fixed, will

in general yield non-isomorphic quasifields.
The following exercise will be used in normalising A-systems.

Exercise 9.1.3 Suppose
GF(¢") > GF(¢") > GF(q)
and let p : x v z? denote the primitive automorphism in Gal(g?/q). Then:
(1) s divides d;
(2) If p* € Gal(q®/q®) then s divides k.

Proof: Part (1): the larger field is a vector space over the smaller field.
Part (2): By Euclid algoritm k = sz +y, 0 < y < s, so p* € Gal(q?/q°)
implies that p¥ also lies in the same field, so ¥ is a multiple of s, since the
Frobenius automorphism for the field is p°. Hence y = 0. m

Proposition 9.1.4 Let A : I,a_y, — Ij, q a prime-power, define the gener-
alsied André system Qy = (F,+,0) on F = GF(g%), based on the Frobenius
automorphism p : z — z9° and the primitive element < w >. Then:
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(1) @) := Fiz{p* |ic€ Ia_1}, is a subfield GF(q°) of F such that s divides
d and also divides A;, for alli € L a_y; and
(2) The function p : Ia_y — Ia defined by p : i %l yields a A-system
Qu = (F+, %) by: o
wixw = ()%,

relative to w and R = p°, the Frobenius automorphism of Gal(q%/q°).

Moreover, ®, = Fiz{p" | i € Ia_,}, is the fired field of the Frobenius
autororphism R : z — z9° defining Q. and (F,+,*) = (F,+,0).
Proof: In view of the previous exercise, it essentially remains to verify that
the two products coincide:
’ 1)}?” i

W
w‘)(Ps)(f\;/S
w

Il

~ T

w* * w’

i

ow3,

€

as required. m
Hence, any finite generalized André system may be expressed in the form

Qx = (F,+,0) where o is determined by a A-function A : I,a_; — I, associ-
ated with GF(g?), such that

d, = Fi:v{p)“' I 1€ qu—l} = GF(Q):

the fixed field of the Frobenius automorphism p :  — 29 used in defining o

from A.
Thus without loss of generality we assume that if A : J,a_; — I defines
a generalized Adré sysytem then the A is chosen so that the fixed field of

the group generted by {p’\*‘ i€l d_l} is just GF(q), the fixed field of the

Frobenius automorphism z — z¢.

9.2 No Shears In A-Systems.

Proposition 9.2.1 In the A-system Q) suppose a,b,a+b € Q3 and that for

all c € Qy:
co(a+b)=coa+cob.

Then A, = Xp.
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Proof: Solving for Ajays):

(c)Aaa + (c) b
Kot =037y

and writing ¢ = zy we get:

_ (zy)Aaa + (zy) ob
(my)A(ﬂ-'{'b) - (a + b) ]

and noting that all A’s are multiplicative bijections:

(I)/\[a-}—b] (y))\(ﬂ+b) — (x))\a(y)’\t(iz ::__ IE;B)Ab(y)’\bb :

and by the formula for cA(a + b):

(5@ + (@b (1)Daa + AD _ (@) Na(m)Aaa + (2)Ne(x) b
(a+ ) (a+b) (a+b) ’

yielding:
r:L‘)/\a (y)/\aa -+ (.’E)/\b(y)a\bb
A ==
(I’.)/\(ﬂ-‘l‘b) (y) (a+b) (a + b) ’

and by the formula for cAg4s):

((z)Aaa + (2)Aed) ((v) Aae + (¥)Ash) =
(Z)Aa(¥)Xaa + (2) Ao(y) Asb(a + b),
and expanding yields:
(@) a(®)Xaa® + (2)e(H) b + (2)Na(y)Noab + (2)Me(y)Ngab =
(z)Xa(¥)Aaa(a+b) + (2)X(y)Nob(a +!
yielding the field automorphism identity in « and y (zero values permitted):

(@) Aa(¥)Xa + (2)Ae(y) he = (2)Aa(y) Ao + (7) As(¥) Aa

and by Vaughan polynomials in two variables these additive identities cannot
be equal unless A, = Ay. m

Corollary 9.2.2 A finite generalized André system cannot be a semifield
unless A is identically zero, in which case it is just a field.
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Exercise 9.2.3 Let n = ¢%, q a prime power, and suppose X : I,y — I  be
a map such that Ap = 0. Put t,, = ged(A, — Ay, d), for z,y € I,,. Assume A
is a A-system in the sense that:

r=y (modqg® —1)=2z2=y (modq®-1).

1. The zero map is a A-function, and the corresponding quasifield Q» is a
field.

2. Find all the A-systems when d = 2.
3. tpy =1 for all distinct z,y € I, iff d is prime.

4. If d is prime then X is constant on the additive cosets of the ideal of I,
generated by g — 1. Conversely, any function constant on the additive

cosets of the principal ideal I, _1(q — 1) is a X function.

e

Show that, apart from fields, no quasifields Q of order n = 2P can exist
iof p is prime.

6. Ifi=j (mod ¢ — 1) for distinct i,j € I,_y then A\; = A;.

9.3 Cyclic Groups In A-Sytems.

Proposition 9.3.1 (Period v, of a A-system.) Call the integer k € I,,_;
a scale for a A function iff:

z=y (modk)= ), =\,

Then the set of scales may be expressed as an ideal val,_1 of I,,_,, where the
integer vyln — 1. The integer v := vy is called the period of X.

Proof: If k is a scale then ka is a scale because £ =y (mod ka) implies
r=y (modk). If m and k are scales we must show m — k, where m > k
wlog, is also a scale. Suppose |z —y| = m — k, and wlog z = y + m — k.
Now A, = Aysm because m is a scale, and Ayyn, = A; because k is a scale.
So Ay = A,. Thus the scales form an additive subgroup of I,,_, and the rest
follows because the integers form a principal ideal domain with I,,_; as an
image. =

The v, := v shows that @, has a cyclic subgroup.
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Corollary 9.3.2 < w® > is a cyclic subgroup of Q, with the same multi-
plication when the field multiplication on < w > is restricted to < w¥ >.

Proof: By scaling law:

Ava = Ay = Ao = 0.

"
The following implies a lower bound for the cyclic group associated with v,

as defined above.

Proposition 9.3.3 Let u = lcm{¢™ -1 | m|d,0 < m < d}. Then vy divides
u.

Proof: We must show u is a scale: z =y (mod u) implies A, = A,. So
assume Az — A, # 0, thus ¢, = ged(A; — Ay, d) is a non-zero divisor of d.

If z =y (mod u), then every non-zero ¢'s* — 1, for distinct a,b € I,_;,
divides u and hence also z — y. But for a = z, b = y we now have z = y
(mod g'sv — 1). Now by the definition of a A-system, we have, see theorem
9.1.2, A\; = Ay. The contradiction yields the result.m

9.4 André Systems.

The following proposition introduces the original André systems in terms of
generalized André systems.

Theorem 9.4.1 Define the map
UV -[n—l — Iq_l
v(i) =1 (mod (g — 1))
and let p: I,y — I be an arbitrary map such that p(0) = 0. Then

1. X = pv() is a A-function defining a quasifield Q) called an André sys-
tem. The v for an André system divides ¢ — 1

2. Conversely, if a A-system has v dividing ¢ — 1 then it must be a gener-
alized André system.
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3. In any André system Az oy) = Azy). Hence the system is nearfield
iff A is a homomorphism from I,,_; to 1.

Proof: If i = j (mod ¢' — 1) then certainly i = j (mod g — 1) and
this implies A; = A;, by the definition of v and u, and now ¢;; =dsoi = j
(mod ¢% — 1), and hence i = j. Thus an André system is a quasifield. Also
ifi =7 (modgq— 1) then the defintion of an Andr’e system implies that
Ai = A;; but v is the least integer for which this holds. Thus v divides ¢ — 1.
The converse follows because v dividing ¢ — 1 means that A is constant on
points differing by multiples of ¢ — 1: so choose u to be the common value
of such additive cosets of < ¢ — 1 >.

To check A(z o y) = A(zy) in additive form we write z = w¥, y = w¥ and
now we need to show

MXY +Y)=MX +Y).

But X¢ +Y = X +Y (modq — 1) certainly holds, because ¢ = 1
(mod g — 1), so the identity holds because the ‘scale’ v for A divides ¢— 1. =

9.5 Highest Prime-Power Divisors of a—1 Di-
viding a? — 1.

Let u« be a prime dividing a — 1. The aim of this section is to consider the
highest power of u that divides a™ — 1, where n > 1 is an integer. A lower
bound follows by a simple induction:

Lemma 9.5.1 Ifu? divides a—1 and u® divides n then uA+® divides a™—1.

Proof: Write n = 42§, where ged(u,8) = 1. Apply induction on B. Since
(a — 1) is a factor of a™ — 1 the desired result holds for B = 0. Assume
uA+B|a™ — 1, when B = b. Then consider the next case B = b+ 1 using:

u—1
b41 b be
a* 6__1:(‘1115__1)2:&1;63,
=0

and now by the inductive hypothesis the term (a*’® — 1) is divisible by u4*+B
and the summation is = u (mod u) since each of the u terms involved in it
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are = 1 (mod u). Thus the lhs is divisible by u#*2, when B = b+ 1. The

desired conclusion follows. =
In the somewhat vacuous case, when ged(n,«) = 1, the lower bound above

implies an exact value for the highest power of u dividing a™ — 1:

Corollary 9.5.2 Suppose u is a prime divisor of a — 1 such that u®ja — 1
and vP|n. Then: u*Pla™ — 1, and if = 0 then u®+P|a™ — 1.

We adopt the hypothesis of the corollary for the rest of the section; v"|R
means u” is the highest power of the prime u dividing the integer R.

Owy principal aim is to show that the corollary 9.5.2 holds in the general
case when u® > 2 and f is arbitrary: thus the exact value of the highest
power of u dividing @™ — 1 is the lower bound given in the corollary, unless
2]a —1, in which case the lower bound u®** is not sharp for # > 0. We verify
this first.

Remark 9.5.3 Suppose 2|a — 1, and write n = 256, so 6 is odd. Then, for

B=>1:
a" —1=0 (mod 2°%%),

Proof: If 3=1 then
a"—1=(a’?-1)(a”*+1)=0 (mod 8),

as required. The general case follows by induction on 3: assume the result
holds when 2°|n, and consider the next case where n = 22°"'% § odd.

Q1= (&"’5 _ 1) (a?"‘S + 1) =0 (mod 2°*%2),

by the inductive hypothesis, so the desired result follows. m

Thus, the remark asserts that if u = 2 and @ = 1 then u**?*+! divides a™ — 1,
where u?|n. The rest of the section is concerned with showing that this does
not happen in any other case, that is, we shall establish that:

wtPla — 1= u® =2,

and this situation has been considered in remark 9.5.3 above.
We begin by noting that in all cases it is justifiable to assume n = u?

whenever convenient:

Remark 9.5.4 When v?|n then ut]a™ — 1 zﬁu"“a”ﬁ -~ 1.
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Proof: Defining m so that n = uPm, we have ged(u,m) = 1, and hence
also

a* — 1= (auﬂ _ 1) z auﬂ't';
and since a = 1 (mod u) we now have
a"—1=(a* —1)m,

yielding the desired result, since ged(u,m) =1. m
So to determine when u®*?|a® — 1, we need to consider its negation, the
following condition:

wotPH g (9.2)

As mentioned earlier, the condition cannot hold when g = 0. Thus if the
condition (9.2) ever holds, for some u®, then there is a maximum integer
b > 1 such that condition (9.2) fails for 8 := b but holds for # = b+ 1. We
have seen already, in remark 9.5.3, that if u* = 2 then b = 1 can be chosen,
and condition (9.2) holds for # > 1. In order to show that condition (9.2)
does not hold in any other circumstance we essentially need to establish if it
fails for a given g (which it always does when 8 = 0) then it cannot hold for
the next 3, unless, as we have seen, u® = 2.

Lemma 9.5.5 Suppose that there is an integer 3 > 0 such that:

a’ -1 # 0 (mod u®+?+1), (9.3)
0

a1 = (mod u®+?+?) (9.4)

Then B =0 and u® = 2.

Proof: Writing

-1 = (a”ﬁ - 1) (uf a“ﬁi) )

i=0

we have by condition (9.4):

u—1 )
(a“ﬁ — 1) (Z a“ﬁz) =0 (mod u**P*2)

i=0
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and since by lemma 9.5.1 and condition (9.3)

,ua+ﬁHauB _ 1’

we now have

uil a’t=0 (mod u?) (9.5)
=0
and we also have from lemma 9.5.1 that for each i:
@’ =1 (mod u**h), (9.6)
and in particular:
If « + 8 > 2 then: ¢ = 1 (mod u?) (9.7)

which combines with (9.5) to yield:

Ifa+3>2then:u=0 (mod u?), (9.8)

which is a contradiction, unless a + 8 < 1.
But since hypothesis u|a — 1, we must now have @ = 1 and § = 0, and
condition (9.3) holds, as remarked earlier. In view of our hypothesis that

u® > 2 we now also have:
u® = u is an odd prime divisor of a — 1 (9.9)
Moreover, the condition (9.4) reduces to
a*—~1=0 (modu?). (9.10)

and on applying (9.9) this yields

u—1
Y a'=0 (mod v?). (9.11)
=0
Moreover,

u—l1 u—-1

Ya = u+) (a—1)

i=0 i=1 "

u—1i-1

= u—l—(a—l)ZZa,j,

i=1 j=1
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and sincea—1=0 (modu)anda’ =1 (mod u) we also have (a—1)a? =
(@a—1)1 (mod u?). Thus

-1
Zai = u+Zz modu

=0

u+ (a— 1)% (mod u?)

il

and since the LHS =0 (mod u?), by eqn (9.11), we now have:

(a—1)(u—1)
2

but since the prime u is an odd divisor a — 1 we have a contradiction. m
Combining lemma 9.5.5 with remark 9.5.3 yields, for u® > 2, u®*# is the
highest power of u dividing a™ — 1

1+ (mod u),

Theorem 9.5.6 Suppose a > 1 and n > 1 are integers and u is a prime
divisor of a — 1 such that u®ja — 1 and v°|n.

1. Ifu® > 2 or =0 then
u*P|a™ — 1.

2. Ifu* =2 and 3 > 1 then

ustPHlgn — 1,

Our next objective is to apply the theorem above to show that under its
hypothesis a* — 1/a — 1 ranges over all residues mod N, as k varies. This is
crucial in defining the Dickson nearfields.

Lemma 9.5.7 Leta > 1 and N > 1 be integers such that:
1. every prime divisor of N divides a — 1; and
2. ifa =3 (mod 4) then N # 0 (mod 4).

Then a™ — 1% 0 (mod N(a—1)) for1<n < N.
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Proof: To obtain a contradiction assume that for some n € [1, N — 1]:
a” —1=0 (mod N(a —1)). (9.1)

Since n < N, there is at least one prime divisor u of N such that for some
integer b > 0, v’|n and v**!|N. By theorem 9.5.6, a® — 1 is divisible by
u®*# and this is the highest power of « dividing a® — 1, unless u® = 2. So
for u® > 2, u®+®|a™ — 1, contrary to eqn (9.1). Thus we may further assume
that u® = 2, So 20! divides N, and this contradicts our hypothesis that
N # 0 (mod 4), when 2|a — 1, unless b = 0. But in this case theorem 9.5.6
still implies u®*®ja™ — 1, again contradicting eqn (9.1). =

We now obtain the desired result, that a* — 1/a — 1 ranges over the residues
modn as k ranges over 1...n.

Proposition 9.5.8 Let a > 1 and n > 1 be integers such that:
1. every prime divisor of n divides a — 1; and
2. ifa =3 (mod 4) then n # 0 (mod 4).

Then the n distinct integers:

a?—1 a2 -1 a® — 1
a—1"a—-1"""Ta-1"

1,
constitute a complete set of n residues modn. In particular, a® —1/a—1=0
(mod n).

Proof: The difference of two distinct terms of the above list, associated
with ¢ > j, yields:

at—1 al —1
— = ——3 (mod n)
at7 — 1
= aJE&-—_—i—— = 0 (modn)
=i 1
aaj = 0 (mOd n)._.

contradicting lemma 9.5.7. Thus each of the n listed terms is a distinct
residue modn. Moreover, a” ~ 1/a — 1 = 0 (mod n) follows directly from

theorem 9.5.6. =
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9.6 Dickson Nearfields.

Let FF = GF(q"), and assume (g, n) is a Dickson pair: so the prime divisors
of n divide ¢ — 1, and if ¢ = 3 (mod 4) then n # 0 (mod 4).

Hence (¢" —1)/n is an integer because the maximum prime-power divisors
of n divide ¢” — 1. So the cyclic group F* has a unique subgroup N of order
¢" — 1/n, and on applying proposition 9.5.8, to the cyclic group F*/N* of
order n, we may write F'* as a union of cosets of NV in the form:

2 _1 3_1 n_1
Fr=oNJoe-InNyoa-1n... o9 1 N,

where § € F* — N is such that /N generates the cyclic group F*/N.

Lemma 9.6.1 Suppose b,c € F™ are given by:
B _ 1 '
b = Gq_Iy,HyeN;
qg’ =1
09— 12 32€ N.

c =
Then
- (,3+1-} mod n_,
bl ced -1 N.
Proof:
a 'r.
g =1 , g '=1
We = (07a—1 y)qjﬁ -1 7z
B+ _ v Y
e  —g g =1
- 9 g-1 qug q-1 z

By _ oY 0¥ 1 -
— = q
= 0T yTy,

B+ g
== T . - v
€ 0 <1 N, by invariance of N under group homomorphisms,

g(:3‘+"f) mod n_y
— 9 g—1 N)

the desired result. m

Definition 9.6.2 (Dickson Nearfields.) Let (g,n) be a Dickson pair. Then

q —1
form € 89~ 1 N, define the field automorphism A(z) € Gal(GF(q")/GF(q)

by:
AMm):zw 2%, i€ {1,2...,n},
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and the product (F,o), f = GF(q"), by 00 =0, forz € F and:

zom = #™m  if me F*
10 ifm =20

We call all any such (F,+,0) a Dickson nearfield, associated with \ and 8.

It is a tautology to claim that any Dickson nearfield is a generalized André
plane. However, we have yet to establish that (F,+, o) is always a nearfield.
This is our goal for the rest of the section, so we assume the notation of’
definition 9.6.2. To establish that the product o yields a quasifield essentially
involves showing that ‘slopemaps’ of the non-identity elements of F'*, relative
to o, are semiregular on F~.

Lemma 9.6.3 Suppose: x om = z for some z,m € F*. Thenm = 1.
Proof: Suppose z cm = z. Writing z = 9% and Yy = 9965%, where

i,7 € [1,n], we have

NG il i_
(aﬂ—) 05T = 65F (mod N),

Pt gl =1
s0f %1 = fa1 (mod N),
gitigJ

so @ a1 € N,
£-1\7
S0 (9 a1 ) € N,

iy

so8T € N ,
yielding i = n. So 1 = x om = 2m, and we have m =1 as required. =
To show that (F*,0) is a group we first note that it is an associative bi-
nary system with identity. The proof depends on extensive tacit use of the
‘product’ computed in lemma 9.6.1.
Lemma 9.6.4 (F*,0) ts an associative binary system with identity 1 € F.

Proof: Since aob € F* whenever a,b € F* we have a binary system, and
the multiplicative identity of F* is the identity for (F*,0) by the definition
of o. To show o is associative, we represent z,y, z € F* in the form:

a1

r o= Bg'a-_lny,anw € N,
gt

y = 9%—“1"113,_,3713, € N;

gf-1
z = @1in,,3In, €N,
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where a,b,c € {1...,n}. Applying lemma 9.6.1 repeatedly to the definition
of o, we have

o(yoz) = (6%Fn.)o(yo2)

a_,y q(b+c) mod n (b+¢) mod n_ .
g =1 L A R———t
(9 =1 n;r) ) g=1 ngn;

q(a-I-h+c] mod n_q(b+c) mod n ql(b+f:) mod n__y

= @ q—1 0 -1 i

q
y Mz

q(h+c) moud n
Ny

{a-t+bte) mod n_
gq 1 q(h+c) mod n qc

- ‘T Y nz!

qg-—1

and similarly:

{a-{-h) mud n_y b
(zoy)oz = [0 =T nin,|oz

{a+b) mod n _ , <.y
= (9 =1 nl ny) 0f+Tn,

(

i

c

L] i {3 q
ﬂ( +b} d ¥ —1 qb Ec"—l

= |6 =1 nliny| 60ein,

g (u+b+c) mod n —g¢ q(b'l‘c) mod n o 9 c_xl
= nd nd -1,

(a+b+c) mod n -1 b
—_ = g +¢°q°
= q-1 n; ?').y n,,

and the associativity of o follows on comparing the values of (z o y) o 2 and
o (y o z) obtained above. =

The maps T, : £ +— zom, for m € F*, are obviously in GL(F, +) and lemma

9.6.4 above implies that such maps are closed under composition, thus:

T ={Tpm: 2~ z0ome GL(F,+) | m € F*}

is a subgroup of GL(F,+), and by lemma 9.6.3 every T,,, m € F* — {1},
is semiregular on F™. This forces the difference between any two distinct
members of 7 to be a non-singular map of (F,+), since otherwise a non-
identity element of 7 would fix some element of F*. Thus 7 together with
the zeromap forms a spreadset that is multiplicatively closed. Now by this
alone (or alternatively by lemma 9.6.4 above) (F,+,0) is a nearfield. Thus
we have established:
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Theorem 9.6.5 Given a Dickson pair (q,n) and (F,+,0) be as in definition
9.6.2. Then (F,+,0) is a generalized André system relative to the given X that
15 associative. Such generalized André systems are called Dickson nearfields.



Chapter 10

Large Planar Groups.

The aim of this chapter is to consider large planar groups acting on trans-
lation planes, or what amounts to the same thing, to consider quasifields
that admit large automorphism groups, in one sense or another. The em-
phasis here is strongly on the finite case. We shall describe all the finite
quasifields amitting maximal automorphism groups: those admitting auto-
morphism groups that act transitively on their non-fixed points. We also
treat comprehensively the structure of a Baer group and obtain a sharp up-
per bound for the size of a planar p-group of a finite translation plane of
characteristic p.

10.1 Planar and Automorphism Groups.

In this section we make some general remarks concerning planar collineation
groups of arbitrary [affine or projective] planes, and their identification with
the automorphism groups of planar ternary rings coordinatizing the planes.
Our interest is in the case where the planes are translation planes, but the
arguments in the general case is exactly the same. The material covered here
will be taken for granted in the sequel.

Let G be a planar group acting on a plane m, and let 7 be the fixed
plane of G. Now G may be identified with an automorphism group P of any
planar ternary ring () obtained when 7 is coordinatized with the axis chosen
in 7. Thus 7g is coordinatized by a subplanar ternary ring R of Q, and the
elements g € GG are of form

g: (z,y) — (a%,2%),

169
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for some § € (AutQ)g. So the map g + § is a faithful permutation represen-
tation of G into (AutQ)r, and this representation is permutation-isomorphic
to the G-representation G — G* obtained by restricting G to its action on
any line £ that it leaves invariant. Conversely any subgroup J < (AutQ)g is
of form J = G for some subgroup G < Autm, obviously

G={9:(z,9) = (2%,2%) | g € T},

and the fixed plane of G is just w(J).

Hence any planar group G of a plane 7, with fixed plane 7, has a faithful
representation p in (AutQ)gr, where @ is a planar ternary ring obtained when
7 is coordinatized by choosing axes in mp, and R is the subternary ring
coordinatizing w¢. The representation p may be chosen so that if H is a
subgroup of G then Fiz(p(H)) = Qp is the subternary of @ such that 7y is
coordinatized by Qp and p(H) = (AutQ)g,, .

Our interest is the case when 7 is an affine translation plane and G is
a planar group, fixing the line at infinity. So mg is a subaffine translation
plane of m, and 7 may be coordinatized by a quasifield @) such that 7g is
coordinatized by a subquasifield R, and the restriction representation of G
on any component that it fixes is permutation isomorphic to the standard
representation of G in (Aut@)g, indicated above.

However, an additional tool is available in the case of translation planes:
G and all its subgroups are linear over the kern field FF = RN K, where
K = kern(Q). For example F' may always be chosen to be the prime sub-
field in (). Note that the choice of F' may sometimes be more general than
any type of kern field. The main examples arise when @ is a left or right
vector space over a subfield F, relative to the quasifield operations. Such F
can occur, for example, when Q is a semifield and F is some subfield not con-
tained in the kern, or whenever #(F') defines a rational Desarguesian partial
spread of a translation plane 7(Q). In all these cases, not only G is F-linear,
but the Baer condition provides a useful constraint:

If (Q > A > B form a chain of quasifields that are also F-spaces then 2a < b,
where a and b are the dimensions of A and B treated as F-spaces.
However, all this easily generalizes to arbitrary finite planar ternary rings
and finite planes. But translation planes admit further constraints when G
is a Baer group and 7¢ is any Baer subplane. Roughly, we shall show in the
next section that this means that when G gets ‘large’ mg is forced to be De-
sarguesian. This leads to a sharp upper bound for arbitrary planar p-groups
acting on arbitrary finite translation planes with the same characteristic.
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10.2 Baer Collineation Theory.

Let G < (AutQ)r be an automorphism group of a finite quasifield Q of
order ¢ and characteristic p that fixes the Baer subquasifield F elementwise.
We consider the structure of G, and its influence on the structure of F.
Throughout the section, B = (By, B;) is any basis of @ relative to any kern
field K C F such that By is a basis of F'; so K can always be taken to be the
prime subfield of Q. Now for each f € F' its slope map Ty leaves F' invariant
and in fact Tf represents the slope map of f € F), regarded as a member of
the subquasifield F'. Thus on any basis of type B, Ty has matrix form given

by:
My, O
Ty=| "’ ,f €F,
f (Af B;)f

where M is the matrix of the slopemap Tf. Now, on the same basis, g € G

has matrix form
1 O
g = ,9EG
( U, W, )

But since for g € G and f € F we have
(zof)g=(z)go(flg=(z)gof=Tig=gTy,

which in matrix form may be written:

(M, OY(1 O (1 O\(M O
erF’QGG'Tf“(Af Bf)({Ug I--Vg) = (Ug Wg)(Af By

yielding

M O M 0
VieFgegG: ( A+ é;Ug BsW, ) B ( U, My +fﬂf’gAf W,B; )
(10.1)
Moreover, since {77 | f € F} is a set of matrices any two distinct members
of which differ by a non-singular matrix, the same applies to the Bf’s and
the number of these present is sufficient to form a spreadset (which clearly
includes the identity), and so position (2,2) in the above matrix equation
shows that W is in the kern of a spreadset By with identity, In particular:

Remark 10.2.1 {W, | ¢ € G} form a multiplicative group in a field of
matrices. Moreover, if |{W, | g € G}| > /|F|, then

{Bs| f € F}
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is a field.

Next consider the possibility of a p-element p € G, p being the characteristic
of the quasifield. So p has only one eigenvalue in the algebraic closure of the
prime field, viz. 1, since ’? = 1 = X\ = 1, so p must act trivially on the
factor space @/ F, regarding @ and F' as additive groups. Thus its matrix is

of form:
_ 1 O
P=\u, 1

and by the eqn (10.1) we further have:
BsU, = UMy, fVf € F,

and since U, intertwines two sets of irreducible matrices it must be in a field
and hence non-singular. Thus we have shown:

Proposition 10.2.2 (AutQ)r has a unique p-Sylow subgroup P, and this is
elementary abelian of form:

{([1} ?)Ife,HUEJ} (10.2)

where J is an additive group of matrices that is a subgroup of a field of
matrices.

Moreover any p # 1, in the p-Sylow subgroup, can be expressed in the
form where U = 1, provided the basis B = (By, B;) is modified to another
basis B’ = (Bg, B;), without altering B; the basis of the complement F, but
replacing the basis By of F' by a possibly different basis Bj of F. To see this,
note that the matrix for p on the new basis is obtained by conjugating its
given matrix by a matrix of type Diag(C,1): thus we require non-singular
C such that

Diag(C,1) ( : (13 ) Diag(C™1,1) = ( ! (1) )

and this works using C = U1,
Now return to the fundamental equation when B, is modified to ensure

that the p-elements include the matrix

(1 7)
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Feeding this into the fundamental equation shows that By = M/ for all
f € F. Thus we have shown:

Proposition 10.2.3 Suppose (AutQ)r includes a non-trivial p-element p.
Then relative to a basis B = (By, B;), with By chosen to be an arbitrary
basis of F', and appropriate By, the following holds:

1 O\
1 1)
2. By = My for all f € F}

3. The {U, | g € G} forms an additive subgroup in the matriz field asso-
ciated with the outer kern of {M; | f € F}.
In particular, if the p-Sylow subgroup in (AutQ)r has order > /|F|
then F' is a field.

Now consider the group homomorphism v : g +— Wy; the kernel H of v
consists of all members in G that has 1V, = 1, and this we have seen is simply
the unique Sylow p-subgroup of G and so the image is a p-complement.So by
Maschke’s theorem a p-complement of F' relative to H may be chosen and
on that basis H has the form Diag(My, By), with all the W;’s in the kern of
the spreadset {By | f € F}. In particular W’s form a cyclic group so G is
solvable and contains a Hall p' subgroup which is cyclic, and when this group
has order > /|F| then {By | f € F} is a field, and as we’ve seen above, this
means that {My | f € F'}, and hence F also is a field provided a non-trivial
p-element exists in G. We may summarize this as follows, in terms of the
related translation plane.

1. p has the form

Theorem 10.2.4 Let 7 be a translation plane of order ¢*, q a power of the
prime p. Let G be a Baer group, so its fived plane g has order q. Then G
divides q(g — 1) and satisfies the following conditions:

1. G is solvable with a unique elementary abelian Sylow p-subgroup P,
consisting of all the p-elements in G.

2. The kern of mg has an additive subgroup. isomorphic to P; so mg is
Desarguesian if P > \/q.

3. The Hall p'-subgroups of G are cyclic and isomorphic to the multiplica-
tive subgroups of the kern of ng.
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Further properties are developed in the exercises below, based mainly on the
discussion preceeding the theorem above. These exercises are of paramount
importance in the study of translation planes!

Exercise 10.2.5 Suppose G contains non-trivial p-elements and also a non-
trivial p'-group of order > /| F].

1. Relative to some basis the matrices Ty are of form:
{Diag(k,k°) | wherek € K},
where K 1is a field of matrices and o is a field automorphism of K.

2. Q is a vector space over F' under guasifield automorphisms, F acting
from the right.

3. The slopes of n(F) in w(Q) defines a derivable net.

4. If a Desarguesian Baer subplane 1 of a translation plane 7 of order ¢?
1s fized elementunse by an element u such that ged(u,p) = 1, p is the
characteristic, then the slopes of v define a derivable net in .

In the next lecture we shall obtain an upper bound for planar p-groups acting
on translation planes. Our arguments crucially depend on a result that we
establsihed in the present lecture: large Baer groups G have Desarguesian
fixed plane 7g. Since no version of this result is known that applies to planes
that are not translation planes (up to duality), the results of the following
section are only known to hold for translation planes.

10.3 Planar p-Groups.

In this section @ is a finite quasifield with characteristic p, admitting an
automorphism group P. Let Fiz(P) := F; so F is a subquasifield of P, and
|Q| > |F|?, or P is trivial. Assume P is linear map of @) when this is viewed
as a vector space over some field K, over which @ is known to be a vector
space. So we may choose K = GF(p), or, more generally, K may be taken
to be any field contained in F' N Kern(Q), but it will prove useful to permit
yet further possibilities for /. the most important case occurs when w(F)
contains a subplane that defines a rational Desarguesian partial spread in
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the spread associated with (). We shall write f to denote the dimension of
F over K: thus |F| = ¢/.

In all cases, P leaves invariant a GF(p)-space A D P such that |A| = p|F|:
regard @ as a GF(p) vector space and note that the number of rank-one
extensions of a subspace of any subspace of a finite characteristic p vector
space is =1 (mod p). Now the restriction representation p : P — P4 acts
semiregularly on the |A — P| = p|F| — |F| points of A — F, and let 4P
denote the kernel of p. Thus |84P)| > ¢f. For the fixed-quasifield of 8, P,
we use he notation:

8AF = FiI(aAP),
and observe that the Baer condition for subplanes, when applied to non-
trivial P, implies that

|84AF| > ¢* > |FJ%.
Thus we have established:

Remark 10.3.1 For all rank-one GF(p)-extensions A of F in Q:
1. ]ar1pll 2 qf;
2. 10aF| 2 ¢ 2 |FI*.

Note that d4 P and 04 F might vary with the choice of A, we shall only require
the inequalities to hold; accordingly we simplify our notation by writing:

Notation 10.3.2 If P is a non-trivial p-group in Aut@) with fized subquasi-
field F' then choose some P-invariant GF(p)-space A D F, where |A|/|P| =p

and define:
1. 9P = 04 P.
2. OP := 0,P.
3. 0¥*1P = 88*P and 8*'F = 06*F whenever 8% P is non-trivial.

By repeatedly applying remark 10.3.1:

0P| > |P|/¢
and |0F| = ¢**%3d; >0
SO

|8*°P| > |P|/¢’g**"
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and ,aQFl _ q22f+2d1+d23d2 >0
SO
!83P| > Ipl/q_f 2f+d1q22f+2d1+d2
and ’ngl — q23f+2 d1+2d2+d33d3 >0
S0

|B4P| > |P|/qf ?f+d1q22f+2d1+d2q23f+22d1+2d2+d3

and IB4FI — q24f+23d1+22d2+2d3+d43d4 > 0,

and in general:

2 3 2 k k-1 k=2
|ak+1pl > |P|/qf 2/ +dy 2 f+2d1+dgq2 f+22dy+2dy+d3 qu fH2k=1d, 42524y

k+1 k k 1
and |8k+1F| — q2 F+2%d1+2 d2+.,.+dk+13dk+l 2 0,

provided 8% P is non-trivial. We rewrite these as:

Iak-}-l Pf > IP'
- g FH(2f+d1)+(22 f+2d1 +d2)+(28 f+22dy 4+ 2do+d3)... 4+ (2% F42(k—1)d; 4-2(k—2) dpt.,

k41 kg 4 ok-1
and f@k+1F| — q2 fH2%d, 42 d2+...+d,-,+13dk+] 2 0’

and so
Iak+1P| S |pl/qf(zkﬂh1)+d](2*—1)+d2(2'=-2—1)+d3(2*-3—1)...d,¢

3 k41 k k-1,
and |8L+1Fl — q2 fH2%d1+2 d2+"'+dk+13dk+1 2 0

Now choose k so that 8*+! is the trivial (after which @ is no longer defined.
Then we have

]

|p| — qf(2k+1—l)+d1(2"-—1}+d2(2"“2-—1)+d3(‘2’°‘3—1)...dk

and
lQl _ q2k+1f+2kd1+2k"1d2+---+dk+1.

So
A+l fpokd) 425~ 1dy 4., 4-d
|P|qf+d:+d2+d3 +degr q2 f+2%d + 2+ tdpyy IQL
so we get our main result:
Proposition 10.3.3

QI

qf"l-d]_ +d2 +d3 . '+dk+l -

[Pl =
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Corollary 10.3.4 Let quasifield Q with Kern(Q) D K = GF(q), so |Q| =

g" for some positive integer n. Then the Sylow p-subgroups in (AutQ)x have
n—1

order < q

Consider the extremal case |P| = ¢"~!: so f = 1 and all the d,’s vanish. This
means we have a strict Baer chain of quasifields

GF(q)=F=QCQ:CQ:...CQ

such that (AutQ;:+1)g, is divisible by |Q;], and so all the Q;’s with the possible
exception of the last one, viz. @), are fields. But fields @);;; cannot admit
|Q:] automorphisms fixing the Baer subfield |Q;| unless |Q;| = 2. Thus
either [Q1| = ¢, as happens in, say, the Hall planes, or Q@ D @Q; D F where
F=GF(2), Q, = GF(4), and Q has order 4. Thus we have shown

Corollary 10.3.5 If a quasifield of order gq" admité an automorphism p-
group P of order ¢"~! that fizes a kern plane of order q elementwise then
either () is two-dimensional over its kern or |Q| = 16.

Specialising to ¢ = p we obtain an absolute bound for the Sylow p-subgroup
of the automorphism group of a quasifield:

Corollary 10.3.6 A quasifield of order n cannot admit an automorphism
group of order n.

Thus a translation plane of order n does not admit planar groups of order n.
Actually the above corollary may be refined to the following:

Corollary 10.3.7 A quasifield of order p™ cannot admit an automorphism
p-group of order > p*~!, unless n = 2 or p® = 16.

As already indicated both cases do occur.

10.4 Klein Groups On Odd-Order Spreads.

Every finite p-group S, p a prime, contains maximum order elementary
abelian p-subgroup A, and the rank of S is defined to be r if |A| = p";
thus the rank of S is the rank of the maximum G F(p)-subspaces that it con-
tains. For an arbitrary finite group G, its p-rank is defined to be the rank of

its Sylow p-subgroups.
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In the context of translation planes the importance of p-rank stems from
the fact that in certain cases there is a tendency for the p-rank of a group
G acting on a spread 7 of order u” to force n to be very large, provided
ged(u,p) = 1. For Chevalley-type groups, representation theory leads to
such results but are too advanced to introduce at this stage.

However, for p = 2, Ostrom has proved a remarkable theorem, using only
very elementary ideas, that lead to similar conclusions: and these conclusions
apply to all groups with large 2-ranks — not just to the Lie-Chevalley type
of groups. Here we prove Ostrom’s theorem.

We are concerned with the action of elementary abelian 2-groups A on
spreads w = (V,T') of odd order p", p > 2 an odd prime. Ostrom’s theorem
implies that |A] divides 7, thus generalising the standard result on Baer
involutions. Hence the two rank of any finite group G implies information
concerning the lower bound for the size of the odd order spreads 7 on which

it may act.

Theorem 10.4.1 (Ostrom’s Baer Trick.) Let A be an elementary abelian
2-group in Aut(V,T'), where 7 = (V,T'} is a spread of odd order q", whose
kern contains the field F = GF(q). Suppose all the involutions in A are Baer
collineations, linear over the kern field F'. Then |A| divides n.

Proof: We may write |A] = 2. For R = 1 the result holds because n is
even if # admits a Baer involution. We use induction on the exponent R to
complete the proof.

Let o and 8 be any two distinct involutions in A, and consider the Klein

group

K ={a,f,a8,1}.

Since A is abelian 7, is K-invariant. Now [ cannot act trivially on 7, because
this would force 7, to be elementwise fixed by a Klein group, and this cannot
occur in spreads of odd order.

To establish that 3 induces a Baer involution on 7, we need to rule out the
possibility that §]w, is an involutory central collineation.

First consider the case the possibility that 8 induces on 7, a kern involution
B = B|m,; now clearly & = alng is also a kern involution. Thus 5 and &
are both —1, on the spaces w3 and 7, respectively. But since V = n, ® 7,
because the two subspaces are disjoint and of rank n/2, we clearly have

af = G@beta=—-1®—1=—1.
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Now the group K contains a kern involution of 7, contrary to our hypothesis
that the non-trivial elements in A are all Baer collineations.

It remains to rule out the case when f induces an affine homology on 7,
with axis, say, C € I'. Now Cj = C'Nm, is the fixed subspace on C common
to m, and m3. As a and § are both F-linear involutions of the vector space
C with the same fixed space Cy (neither fixed space can be larger because
we are dealing with Baer involutions) they must coincide on C,that is,

a|C‘ =1c, ® ~1p = ﬁ'C,

where D is any complement of Cy in C. But now a3 is a homology with axis
C, contradicting again our hypothesis that A contains only Baer involutions.
Thus we see that A induces on 7, a group of Baer involutions A, of order
2R~1 Now by our inductive hypothesis 2#~! divides the dimension R/2 of
s, and the desired result follows by induction. m

Corollary 10.4.2 Let 7 be a spread of odd order ¢* containing GF(q) in
its kern. If © admits an automorphism group G with two-rank v then 271
divides n.

Proof: Let A be an elementary abelian group of G of rank n. So A is
semilinear on V, the vector space associated with 7, over the kern field
K = GF(q). Now the K-linear part of A has order > |A|/2, and Ostrom’s
Baer trick can be applied to it. m

Corollary 10.4.3 Let 7 be a spread of odd order q* containing GF(q) in
its kern. If m admits an elementary abelian 2-group of order 2" and the
involutions i A form a single conjugacy class in Autw then 27 divides n,
provided |A] > 2.

Proof: If A contains even one Baer involution then the conjugacy hypoth-
esis allows us to apply the Ostrom Baer trick. So assume all the involutions
in A are homologies, and consider a Klein subgroup H < K. Now Ostrom
has observed that there are (in any projective plane) only two possibilities
for such H: (1) all its elements share the same axis and center; or (2) each
of the three non-trivial elements of H have as center and axis the opposite
sides of a triangle: each of the three anti-flags of the triangle corresponding
to one of the three non-trivial elements of H.
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Possibility (1) cannot occur since then on the common coaxis W we the Klein
group H acting semirgularly and faithfully: this is easily seen to be impossi-
ble: e.g. H becomes an elementary abelian non-cyclic Frobenius complement
on W (in a Frobenius group whose kernel consists of all the maps z — z+w,
we W, of W).

Possibilty (2) cannot occur, in the context of our conjugacy hypothesis, for
then the homology whose axis is the ideal line, would be conjugate to a ho-
mology with an affine line as axis. m

10.5 Tangentially Transitive Planes.

Let 7 be any projective [resp. affine] plane, and 7y be a proper subprojective
[resp. subaffine] plane. Then a line is a tangent [line] to mp if it meets it at
exactly one point. Similarly, a point is a tangent [point] if it meets exactly
one line of 7.

. Now suppose G is a planar group with fixed plane mg. Then it is clear
that G permutes the tangents to wg through any element of g, that is, G
leaves invariant. the set of non-fixed elements ©(e) though each of its fixed
elements € € 7e. It is easy to see that all the restriction maps p, : G — G°),
for € € g, are faithful representations of G that are permutation isomorphic,
and hence G is transitive on all the tangents through some fixed element of
7 iff it is transitive on the tangents through each element of wg. When this
happens we say G is tangentially transitive.

Definition 10.5.1 Let G be a planar collineation group of a plane m with
fized plane wg. Then G is said to be tangentially transitive relative to 7, and
7w 18 called a tangentially transitive subplane iff G acts transitively on the
tangents through some (and hence each element of mg). 7 is called tangen-
tially transitive (tt) iff it is tt relative to some proper subplane.

The definition may easily be characterised in algebraic terms, by noting
the equivalence between planar groups and automorphisms of coordinatiz-
ing ternary rings, c.f. section 10.1.

Remark 10.5.2 Let T be a ternary ring and suppose G < AutT is transitive
on T — Fiz(G); so S = F(G) is the subternary ring of T' consisting of the
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fized elements of G. Then w(T'), the plane coordinatized by T, is tangentially
transitive relative to w(S), with respect to the group:

G = {(z,9) ~ (2% y°) | g € G} .

Conversely, suppose 7 is a plane admitting a tangentially transitive group G
coordinatized by a ternary ring T' when the azes are chosen in the fized plane
7g. Then g is coordinatized by a subternary ring S and (AutT)g contains
a subgroup G such that G is transitive on T — S, with Fiz(G) = S.

We saw in an earlier lecture that the Hall quasifields @) are two dimensional
over their kern K, by part of their definition, and that (AutQ)y is transitive
on ) — K, theorem 5.4.3. Hence the algebraic characterization of tt above
yields

Remark 10.5.3 A Hall plane 7 is tangentially transitive relative to some
Baer subplanes my coordinatized by the kern.

A direct explanation of why Hall planes are tangentially transitive may be
given in terms of derivation. A Hall plane H is derived from a Desarguesian
plane A = w(F'), the field F' being a Baer extension of a field K, and A is
derived relative to the slopes of 7w(K). Part of the inherited group includes
a group of central collineations with Y-axis leaving n(K) invariant, viz:

G:{(z,y) — (za+by)|a€ K*',be K}.

Notice G is transitive on {Aa +b | a € K*,b € K}, the set of slopes shared
by the Desarguesian plane and the derived Hall plane. Thus on the derived
side Y becomes a Baer subplane and G acts tangentially transitively relative
to Y.

This can be generalized, by using a semifield D, two dimensional over its
middle nucleus N,,, instead of a field. Now, by repeating the above argument,
7(D) when derived yields a translation plane tt relative to the Baer subplane,
corresponding to the Y-axis of w(D). Thus we have established:

Remark 10.5.4 Let D be a semifield plane with middle nucelus M, which
we assume to be a commutative field. Then ' the plane obtained by deriving

relative to the slopeset of w(M) is tangentially transitive relative to a Baer
subplane. The plane n' is called a GENERALISED HALL PLANE.
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The procedure above can be repeated in more general contexts. Take any
affine plane 7 of order n? admitting a group of central collineations G of order
n? —n that fixes an affine line Y elementwise and leaves invariant a derivable
net A that includes Y and is left invariant by G. Then on the derived side
G becomes a Baer group of order n? — n and hence must act transitively on
all the tangent points on any fixed line of 7g, its fixed Baer subplane.

This procedure permits the construction of tangentially transitive planes
in several Lenz-Barlotti classes, apart from translation planes. The fact that
duals of two dimensional translation planes are derivable and admit large
groups of central collineations makes them promising candidates from.this
procedure. It is an exercise to verify that this procedure actually does work.
Similarly verify that the derived Ostrom-Rosatti planes are tangentially tran-
sitive relative to some Desarguesian planes.

Notice, however, that in the constructions we have sketched so far, be-
cause they are based on derivation, the planes @ are tangentially transitive
relative to subplanes that are both Desarguesian and Baer. This invites the
obvious questions: _

If 7 is tt relative to 7o then does y have to be (1) Desarguesian (2) Baer.
In the finite case there is only one known case where my can be chosen to
be non-Baer — although a Baer choice is also possible in this case — in the
remarkable Lorimer-Rahilly translation plane of order 16, see p 66. In all
known cases, finite or infinite, 7y is Desarguesian.

In this section we consider tangentially transitive finite translation planes.
We show that in this case all tt planes are generalized Hall planes (including
the Lorimer-Rahilly plane), and this essentially answers the two questions
raised above in the affirmative. This leaves open the question of describing
explicitly the generalized Hall planes, or rather, the finite semifield planes
that are two-dimensional over their middle nucleus. We hope to provide a
satisfactory answer to this question too. Note that the Hughes-Kleinfeld
planes are coordinatized by semifields that are two-dimensional over their
middle nucleus.

The rest of the section is devoted to showing that if a finite translation
plane 7 is tangentially transitive relative to a subplane 7y then it is a gener-
alized Hall plane.

We begin by stating a special case of remark 10.5.2, relevant to the trans-

lation plane case.

Remark 10.5.5 Let w be an affine translation plane and wo an affine sub-
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plane. Then 7 is tangentially transitive relative to my iff it can be coordina-
tized by a quasifield QQ such that mq is coordinatized by a subquasifield F' such
that (AutQ)p is transitive on Q — F.

We note that the case |Q| = | F|* has already been covered.

Lemma 10.5.6 If |Q| = |F|* and (AutQ)r is transitive on Q — F then F
is a field and () is a a vector space over F in the sense that for all f,g € F

and z,y € Q:
1. (z+y)of=zof4+yof;
2.zo(f+g)=zo0of+z0g
3. (zof)og=zo0(fog).

Proof: Recall exercise 2.(2). =

Now the condition that ) is a rank-two right vector space over F' means
that the slopes of 7(F') in n(Q) define a rational (Baer) Desarguesian par-
tial spread in (@), and such partial spreads are [generic|] derivable partial
spreads. The derived spread admits a group of central collineations of order
n? — n where |Q| = n®: the group is just the inherited group corresponding

to the Baer group acting on 7(Q):
{§:(z,y) = (2°,9°) | g € G}.

Now it is an exercise to check that a spread of order n? admitting a Baer
group of order n(n — 1) is a semifield spread with GF(n) in N,.
Thus we have shown:

Corollary 10.5.7 If |Q| = |F|? then the plane ©(Q) is obtained by deriving
a a plane coordinatized by a semifield relative to the slopeset of its middle
nucleus. This by definition means that w(Q) is a generalized Hall plane.

Thus from now on we may assume that |Q] > |F|2. Choose any A € Q — F.
Then since G is transitive on Q@ — F' we see that Ng(G)) induces a regular
group on Fiz(Gy) NQ — F. However, Fiz(G)) is a quasifield @ containing
F, so we now have a quasifield Q) D F such that (AutQ»)r O N, such that
N, is regular on (Q,)r. However N, must contain a Baer involution so the
regularity is confradicted unless @)y is a Baer extension of F, in which case
lemma 10.5.6 so F' is a field and additionally the following identities apply,

for f,g € F:
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1. Ao(f+g)=Aof+Aog;
2 (Ao f)og=Aof o).

However, since A was chosen arbitrarily, and the above identities obviously
apply even when A is replaced by members of F', we conclude from the above
(plus the quasifield distributive law):

Lemma 10.5.8 F is a field and Q is a vector space over F [acting from the
left] of dimension N > 2. Moreover G is a linear group of this vector space.

Now view Q) as the projective space PG(N — 1,q) and observe that the
projective group GG has two point orbits. Hence by an important result, G
also has two hyperplane orbits, one of which must be all the hyperplanes
through the ‘point’ F. The other hyperplane orbit must therefore include
all the hyperplanes ‘off” a point: this is the same number as the number of
points off a hyperplane, viz., ¢V ~!. Thus we have shown

Lemma 10.5.9 If N > 2 then G contains a p-group of order ¢”~1, p being
the characteristic of F.

But now we have seen that this is impossible, unless ¢ = 2 and N = 4,
corresponding to the case when F = GF(2). It can be shown however, that
cven in this case AutQ contains another subgroup H that H fixes a Baer
subfield K elementwise and acts transitively on ) — K, so in a technical
sense we still have a generalized Hall plane. However, the first choice of F
is also possible: corresponding to the Lorimer-Rahilly plane of order 16, and
this is the only known finite plane which is tangentially transitive relative to
a non-Baer subplane. Let us summarize our conclusions:

Theorem 10.5.10 A finite translation plane 7 is tangentially transitive rel-
ative to a subplane o iff @ 1s a generalized Hall plane and my is a Desargue-
sian Baer subplane (defining a derivable net) unless the order of the plane is
16 in which case wy may token as a plane of order to when 7 is the Lorimer-
Rahilly plane of order 16: and this ts the only case where the non-Baer
possibility can occur.

Note that we have not verified here the claimed uniqueness of the Lorimer-
Rahilly plane, although this has been established in the literature, see Walker

40



Chapter 11

Infinite Baer Nets.

In this chapter, we analyze the structure of a net embedded in a translation
plane which contains at least one Baer subplane. Actually, it is not necessary
that the translation plane be finite. In fact, we may analyze any vector space
net containing a weaker version of subplane than Baer.

If a net contains a Baer subplane, it may contain exactly one. Or there
may be exactly two Baer subplanes in the given net such that the subplanes
share all of their parallel classes. In these lectures, we concentrate mainly
on the case where there are at least three Baer subplanes sharing an affine
point (the zero vector) and all of their infinite points (parallel classes).

11.1 Point-Baer And Line Baer Subplanes.

In any finite projective plane 7 of order n, a Baer subplane 7 is just a sub-
plane of order 1/n. Hence, to extend the notion of a Baer subplane usefully
to the infinite case, it becomes necessary to replace the order-property of a
Baer subplane by a characterization that can be used to define this concept
in the infinite case. This lecture reviews some of the possible ways in which
this has been attempted and also introduces a structure theorem of nets con-
taining at least three Baer subplanes due to Johnson and Ostrom. This will
be used in the next two lectures to extend the comprhensive characterization
of such nets in the finite case, due to Foulser, to the infinite case.

A point-Baer subplane of a projective plane is a subplane such that every
point of the plane is incident with a line of the subplane. Similarly, a line-
Baer subplane is a subplane such that every line is incident with a point. of
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the subplane. Every finite point-Baer subplane is line-Baer and conversely.
However, in the infinite case, the concepts of point-Baer and line-Baer are
independent (Barlotti [3]). So, a subplane is Baer if and only if it is both
point-Baer and line-Baer. An affine point-Baer subplane is an affine plane
which is point-Baer when the plane is considered projectively. A collineation
o of an affine plane which fixes a point-Baer subplane pointwise is said to be
a point-Baer perspectivity if and only if the collineation fixes each subplane
of a set C of point-Baer subplanes which form a cover of the points of the
affine plane. The collineation ¢ is a point-Baer elation if and only if Fizo is
in C. Otherwise, ¢ is a point-Baer homology. C is called the center of the
collineation, the elements of C are called the central planes and Fizo is the
axis.

If a collineation fixes a point-Baer subplane pointwise then, conceivably,
it is not a point-Baer perspectivity. However, the structure of point-Baer
collineations is essentially completely determined for translation planes. An
axial-Baer perspectivity o is a point-Baer perspectivity such that Fizo pro-
jectively nontrivially intersects each point-Baer subplane of the center.

The authors have recently provided a general structure theory for point-
Baer and line-Baer perspectivities. In particular, the following result is fun-

damental.

Theorem 11.1.1 (Jha, Johnson [22].) Let m be a translation plane and .
let o be a collineation which fizes a point-Baer subplane pointurse.

Then o is either a point-Baer homology (and hence an axial-Baer homol-
ogy) or ¢ is an axial-Baer elation and in this case all the planes of the center
are proper Baer subplanes. In particular, in all cases, the axis Fizo is a
proper Baer subplane of m and o has a unique center.

Let N be a vector space net which admits at least three distinct point-Baer
subplanes that share the same infinite points and mutually share an affine
point. Assume that N has exactly these same infinite points.

In [10], Foulser completely determined the structure of NV, when the planes
are finite. In the section following this preliminary part, we show that this
theory can also be determined in the more general situation when N is pos-
sibly infinite. When we can, we follow the general outlines of Foulser’s argu-
ment. However, there are some situations which require different approaches
so we will require a slightly different method paying particular attention to
commutativity properties.
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We have mentioned the notation of a direct product of affine planes. We
shall require the following results of Johnson and Ostrom [28].

Theorem 11.1.2 (Johnson-Ostrom [28, (4.20) and (5.1)].) Let M be an
Abelian translation net. If M contains three distinct point-Baer subplanes
incident with a point whose infinite points are the infinite points of M then
M is a reqular direct product net and each pair of the planes are isomorphic.
Furthermore, M 1is then a vector space net over a field L and the point-
Buaer subplanes may be considered L-subspaces.
If one of the subplanes w, has kernel K, and M 1is isomorphic to m, X 7,

then M is a K,-vector space net.
At least three of the point-Baer subplanes of the net which share an affine
point and all of their parallel classes are K,-subspaces but not all point-Baer

subplanes are necessarily K- subspaces.

We point out that in (4.20) of [28], it is proved that L may be taken as the

prime field of any of the affine planes.
In the following result, we specialize to the situation we are discussing.

Theorem 11.1.3 (Johnson-Ostrom (5.2) [28].) Let M be a vector space
net over a skewfield K where M is a regular direct product net of two iso-

morphic point-Baer subplanes with kernel K,.
Then M admitsT = GL(2, K,) as a collineation group that fizes an affine

point and fizes each parallel class.
Furthermore, I is generated by the groups which fix point-Baer subplanes
porntwise.
If M =7, X w, and K, s the kernel of =, as a left K,-subspace then the
action of an invertible element
a b
c d

on M is (po,p1) — (apo + cpy,bp, + dp) for a,b,c,d in K, and p,, p; points
of 7,.

Exercise 11.1.4 Suppose M is a reqular direct product net of two Desar-
guesian affine planes of order ¢ = p". Using the above theorem, show there
is a group tsomorphic to GL(2,q) acting on the net M.
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11.2 Regular Direct Products.

In this lecture, we consider a coordinate set for a regular direct product.
However, before doing this we need to consider in some detail the meaning
of the linear group GL(2, K) when K is a non-commutative skewfield.

When K, is a skewfield which is not a field, there are some important
differences between the commutative and noncommutative case with the con-
sideration of the group GL(2, K,). Actually, the use of the notation is a bit -
problematic as the elements are not necessarily K-linear mappings in the
traditional sense.

Consider a Desarguesian affine plane (z,y) considered as a 2-dimensional
left. vector space over a skewfield (K, +,:). Since we may also consider the
affine plane as a 2-dimensional right space over K, we take components to
have the form y = za for @ in K and 2 = 0 and note that y = za and z =0
are 1-dimensional left K-subspaces. We may consider the mappings called
the kernel mappings

Ts : (z,y) — (Bz, By).

It follows easily that {T | 8 € K}, forms a field isomorphic to K = (K, +, )
and fixes each component of the Desarguesian plane.
Now consider the mappings (z,y) — (za + yb,zc + yd) such that the

corresponding determinant det 2 2 defined as ac™'d —b # 0 if ¢ # 0 and

ad # 0 otherwise. Then it follows easily that each mapping is a {Tj}-linear
mapping. Hence, we may justify the designation GL(2, K).

Traditionally, the kernel of a translation plane is the set of endomor-
phisms which leave each component of the plane invariant. Hence, {T5 | 8 €
K} = K° is the kernel of the Desarguesian plane #. Furthermore, the full
collineation group of & which fixes the zero vector (the translation comple-
ment) is I'L(2, K') or is ' L(2, K°). Since the use of K or K° = K is merely in
the distinction between K and the associated kernel mappings, we also refer
to K as the kernel of the plane. So, considering the translation complement
of m as [L(2, K) then K° = K° — {T,} is a group of semilinear mappings
and as a collineation T3 is in I'L(2, K') but is in GL(2, K) if and only if § is
in Z(K,). That is to say that the elements of GL(2, K) are the elements of
I'L(2, K) which commute with K° and T commutes with K° if and only if
B is in Z(K). The notation can be particularly tricky if one considers Bz as
a linear mapping over the prime field P of K. For example, 8z is normally
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written z/3, when considering # as a P-linear endomorphism. Then consid-
ering an element u in K as a P-linear endomorphism, it follows then that
Bu = u3 when considering the elements as linear endomorphisms whereas it
is not necessarily the case that fu = uf when the operation juxtaposition is
considered as skewfield multiplication.

Note that elements of GL(2, K) act on the elements (z,y) on the right
whereas Tj acts on the elements (z,y) on the left.

In the statement of the above theorem, and we have 7, with kernel K, we
have GL(2, K,) acting on the left side on a subnet instead of the right. If it
occurs that a subgroup R of this group acts as a collineation of a translation
plane ¥ with kernel K containing 7, , then R is a subgroup of I'L(Z, K).
We now consider this situation.

We shall consider an affine translation plane with kernel K as follows:
Let X be a left K-subspace and form V = X @& X. We denote points by
(z,y) for z,y in X.

When we have an affine translation plane ¥ with kernel X, we similarly
consider the lines through (0,0) (components) in the form z = 0,y = zM
where M is a K-linear transformation. The kernel K then gives rise to a set

of kernel mappings
{Ts: (z,y) — (Bz,By) | B€ K} = K°.

In the finite dimensional case, we may take M as a matrix with entries in K,
say as [a;;] and define zM = (zy, 2o, ...2,) M as (3z;a;, ..., 52;0:,). It follows
that M becomes a left K-linear mapping with scalar multiplication defined
by Bz = (Bz1, Bxy, ..., Bz,) and furthermore, {(z,zM)} is a left K-linear
subspace. In this case K° is a skewficld isomorphic to K and as a collineation
group of X, K°* is a semilinear K -group. Similar to the Desarguesian case,
one may consider the left scalar multiplication as a linear endomorphism
over the prime field P of K. When we do this, we shall use the notation K.
Hence, the A{'s now commute with the elements of K.

To be clear, we now have three different uses of the term kernel of a trans-
lation plane. We always consider the translation plane as X & X where X is a
left vector space over a skewfield K, the kernel mappings are denoted by K°
and the component kernel mappings thought of as prime field endomorphism
are denoted by K,. All three skewfields are isomorphic and each is called
the kernel of the translation plane where context usually determines which
skewfield we are actually employing.
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We now consider a coordinate set for a regular direct product net.

We point out that in the proof of (4.20) of [28], it is noted that two
point-Baer subplanes that share the same infinite points and an affine point
sum to the entire vector space and furthermore their intersections on any
line concurrent with the common affine sum to the line.

We may identify any point-Baer subplane as 7, within the direct product
so that the points of the net have the general form (p;,p2) for p; and p; in
7, and the lines have the form L; x Ls for L; and L, parallel lines of 7,. It
follows that the net M is w, X m, with the identity mapping defined on the
set of parallel classes.

Considering the translation plane 7, with kernel K, , we specify two lines
incident. with the zero vector as z, = 0 and y, = 0. We further decompose
7, in terms of these two subspaces and write the elements of 7, as (z,,y,)
where z,, y, are in a common K ,-subspace W, . We may take y, = z, as the
equation of a line of 7, incident with the zero vector so that the remaining
lines are of the general form y, = z,M where M is a K,-linear transformation
of W, for M in a set II,.

The points of the net now have the general form (z,,y,,Z1,%:1) Where
To, Yo, L1,Y1 are in W,. The lines of the net are as follows: (y, = z,M +¢,) X
(yo = 2oM)+cp) for all M in I, containing I and O and (z, = ¢,) X (z, = ¢1).

Note change bases by the mapping x : (Zo, Yo, 21, Y1) — (Z0, Z1, Yo, ylj

Finally, we write (z,,z;) = z and (y,,%1) = v when (z,, Y, Z1,%1) is a
original point of the net or (z,, 1, ¥, %1) is a point after the basis change.

Note that, before the basis change x, the lines of the net are sets of points

{(zo, zoM + o, 21, 71 M +¢4) for all z,, 21 in W}, for fixed ¢, and ¢; in W,
and
{(co,¥1,c1,92) for all y;,ys in W,}, for fixed ¢, and ¢; in W,.
Hence, after the basis change, the lines of the net have the basic form

M O
T = (CO;CI) and y==T { 0 M ] + (Cmcl)'

Before the basis change x, the point-Baer subplanes incident with the
zero vector which are in a GL(2, K,) orbit of 7, have the following form:
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Poc = {(Osonmlayl) for all I1, 91 in "'VO} and Po = {(Io:mlaaxo:aml) for
all z,,z; in W, } for each o in K,. We shall call these subplanes p.., or
po the base subplanes.

We now observe that the group GL(2, K,) acting on the right is repre-
sented by mappings of the form (z,, 21, y1, y2) — (az; +bzs, cx1 +dzo, ayy +
bya, cy1 + dy2).

11.3 Baer Nets: Structure Theory.

As we indicated earlier, Foulser has completely determined in the finite case
the structure of vector space nets that admit at least three Baer subplanes
that share the same slopeset. In this lecture, we extend Foulser’s analysis to
the infinite case.

We assumne that we have a translation plane ¥ with kernel K and there are
at least three point-Baer subplanes as above with kernel K, which are left
invariant under the mappings K°* or equivalently are K-subspaces. Then
there is a regular direct product net N isomorphic to 7, x 7, embedded
in ¥. The translation complement of ¥ is a subgroup of I'L(X, K) with
the elements acting on the left. Furthermore, there is group of the direct
product net N which is isomorphic to GL(2, I{,) and naturally embedded in
GL(4, K,) with the elements acting on the right. It is easy to see that if a
collineation g of ¥ fixes a K-subspace m, pointwise then g is in GL(Z, K)
and hence commutes with the mappings T3. Now any kernel homology group
K°* induces a faithful kernel group on any invariant point-Baer subplane so
K may be considered a subskewfield of K.

We shall use the notation (co) to denote the parallel class containing
the line z = 0 and (0) to denote the parallel class containing the line y =
0. We shall use both the original direct product point notation and the
notation after the basis change x more-or-less simultaneously. After our
main structure theorem, we shall use the representation after the basis change

exclusively.

Lemma 11.3.1 Let ¥ be any point-Baer subplane incident with the zero
vector and sharing all parallel classes with the net. Then (0,z,,0,z1) s in
YN (z =0) if and only if (2,,0,2;,0) is in LN (y = 0).

Proof: Let the infinite points of ¢ = 0,y = z [ Ag A[-)I ] be denoted by
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(cc) and (M) respectively.

Let (z,,0,z1,0) be a point of XN (y = 0). Form the line (c0)(z,, 0, z;,0)
= (z = (z,, 1)) and intersect the line y = z to obtain (z,, ,,z;,71). Since
all such lines are lines of £ , the intersection is a point of ¥. Now form the
line of ¥, (0)(z,,z0,%1,%1) and intersect £ = 0 to obtain (0,z,,0,z;) in

YNz =0).

Exercise 11.3.2 Is there any difference between the proof of the above lemma
in the infinite case and in the finite case?

Lemma 11.3.3 Now assume the subplane X is not a base subpldne.
For (0,z,,0,z;) in XN (z = 0) define a mapping X\ on W, which maps x,
to ;.
Then A is a 1 — 1 and onto additive transformation of W,.
Furthermore, ¥ = {(Zo, Yo, AZo, AYo) for all z,,y, in W,}.

Proof: It is easy to check that no two distinct point-Baer subplanes inci-
dent with a common affine point and sharing all of their parallel classes can
share two distinct affine points. Hence, z, = 0 if and only if z; = 0 when
(0,z,,0,2;) is a point of 2 and ¥ is not the base subplane p, or p,.

It follows that the subplane ¥ is a translation affine subplane and hence
a subspace of the underlying vector space taken over at least over the prime
field.

Hence, it follows that A is 1 — 1 since the intersections with any of the
base subplanes contain exactly the zero vector and it is also now clear that
A is additive. It remains only to show that A is an onto mapping.

From the above remarks, any two distinct point-Baer subplanes sharing
a common affine point and their infinite points sum to the vector space and
their intersections with a line incident with the common point sum to the
line. Hence, given any element z} of W, consider the vector (0,0, 0, z;) there
exists vectors (0,25,0,0 ) in p,N(z = 0) and (0, z,,0,z;) in XN (z = 0) such
that

(0,0,0,z7) = (0,22,0,0) + (0, z,,0, ).
It follows that z; = z] so there exists a vector (0, z,,0,z] in ¥. Hence, the
mapping A : z, — z; is onto.

If (0, z,,0, Az,,0) is in EN{z = 0) then (z,,0, Az,,0) is in LN (y = 0) so
that (2o, Yo, AZo, AY,) is in  for all z,,y, in W, as ¥ is the direct sum of any
two components. Let (z},y:,27,y]) be any point of £ then it follows that



CHAPTER 11. INFINITE BAER NETS. 193

Y. also contains (0,0, Az} — 7, Ay; — y;) and since £ N p, = (0,0,0,0) this
forms z7 = Az} and y} = Ay}. This completes the proof of the lemma.m

Exercise 11.3.4 If the plane is finite, how would the above proof be able to
be simplified?

To see that it is not possible that ¥ is not a base subplane, we show that,
in fact, A is in K.

Lemma 11.3.5 Fory =z [ ]:){ JEI jI a line of the net and (z,,0,z,,0) in

X then (z,, .M, z1,2:M) is also in 3.

Proof: We have seen this previously in the preliminary section. We form
(20,0, 27,0)(00) = (z = (z,,21)) and intersect y = z ﬂ(;{ ]?{ } to obtain
the point (z,,z,M, z1,21M). Since all of the points and lines are points and
lines of %, it follows that the intersection point is also in X. m

The previous lemma shows that if (z,,0,z,,0) isin ¥ then sois (z,, z,M, 21,21 M)
which, in turn, implies that (0,z,M,0,z,M) is in X. However, also we have
that z; = Az, and we know that (0,z,M,0, A(z,M)) is in . Subtracting,
since ¥ is additive, we have that (0,0,0, (Az,)M — A(z,M)) is in X for all

To. Since ¥ N pe = (0,0,0,0), it follows that (Az,)M) = A(z,M).

Let L, be any skewficld such that {M for M in II,} is a set of L,-linear
transformations. Then it follows that L, must be contained in the kernel K,
of m, = poo. Hence, Aisin L, C K,.

Hence, we have proved the following result:

Theorem 11.3.6 Let M be any Abelian net which contains three point-Baer
subplanes that share the same affine point and share all of their parallel
classes.

Then there is a skewfield K, such that M is a K,- vector space net and
there is a K,-space W, such that the points of M may be identified with
Weada W, W, & W,. The set of all point-Baer subplanes of M that share
the zero vector is isomorphic to the set {{(0,0,y,,y1) for all (y,,y1) in W, ®
Wo} Uaer, {(Zo, Yo, 0o, 0y ) for all (zo,9,) in W, & W, }}.
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Furthermore, there is a collineation group I' of the net isomorphic to
GL(2, K,) which fizes (0,0,0,0) and all parallel classes and acts triply tran-
sitively on the set of all point-Baer subplanes incident with (0,0,0,0). More-
over, if B denotes the set of all point-Baer subplanes of M and I'y,) is the
pointwise stabilizer of a subplane n, of B then

I'= <F[Tro] I’.'To € B>

Exercise 11.3.7 Restate this theorem in the finite case assuming that M is
a net of degree q> and degree q + 1 that contains three Baer subplanes. Let
the kernel of any one of the subplanes be GF(h). How many Baer subplanes
are in the net?

Corollary 11.3.8 Let M be Abelian net which contains three point-Baer
subplanes that share the same affine point A and all of their parallel classes.

If one of the point-Baer subplanes has kernel K,then the set of all point-
Baer subplanes of M incident with A is isomorphic to PGL(1, K,).

Proof: e consider the above representation after the basis change . The
group

<Dz’ag [ (1) i‘ } such that )\6K0> : <Diag [ g (1) ] such that BeK, — {0}>

fixes 7, = pspointwise and acts doubly transitively on the point-Baer sub-
. : A 0
planes. Note that DiagA = [ 0 A }

Exercise 11.3.9 Restate the corollary in the finite case assuming that one
of the subplanes has kernel GF'(h).

Below, we completely determine the collineation group of a net of type in
the statement of the above theorem. We first verify the following result.

Theorem 11.3.10 Let R be any Abelian net which contains three point- Baer
subplanes that share the same affine point A and all of their parallel classes.
Let 7, be any point-Baer subplane incident with A. Then 7, is an affine
translation plane with kernel K,. Let G, denote the full linear translation
complement of w,.

Then there is a collineation group of R isomorphic to G, which leaves
T, tnvariant.
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Proof: We have noted that R is a regular direct-product net. The result
then follows from a previous exercise.m

Theorem 11.3.11 Let R be any Abelian net which contains three point-Baer
subplanes that share the same affine point A and all of their parallel classes.
Let m, be any point-Baer subplane incident with A.

Then w, is an affine translation plane with kernel K,. Let G™ denote the
full linear translation complement of =, obtained as a collineation group of
R which leaves 7, invariant.

Then the full collineation group of R which fixes wy is isomorphic to the
product of G™ by GL(2,K,). The two groups intersect in the group kernel
of m, naturally extended to a collineation group of R.

Exercise 11.3.12 Assume that R is a finite net of order ¢* and degree ¢+ 1
and that the kernel of a Baer subplane is GF(q). Show the net defines a
requlus in PG(3,q). Consider the group of the requlus net acting in PG(3,q).
Show there is a subgroup isomorphic to PGL(2,q) x PGL(2,q).

Proof of the theorem: The group GL(2, K,) acts 3-transitively on the
point-Baer subplanes of the net R and fixes i componentwise. Hence, we
may assume that a collineation fixes the zero vector and permutes the point-
Baer subplanes 7o, = {(0,p) such that p € 7,},7x = {(p, Ap) such that
p € 7, and A in the kernel of 7,} (when A = 0 the subplane 7, is identified
with 7, x 0.

So, if a collineation g of R which fixes the zero vector then we may assume
that g leaves 7, T, and 7 invariant. Hence, g is in G, as it acts faithfully
on 7.

Since GL(2, K,) fixes R componentwise, assume g fixes R componentwise.
Then g induces the kernel mappings on 7, and on 7; and is fixed-point-free
as it also leaves 7., invariant. Thus, the faithful stabilizer of m, in GL(2, K,)

0 8

tation. It then follows that the collineation group of R is the product as
maintained.m

: : 0 A\ . :
which fixes 7, 7, and 7 is b such that B¢k, ) in this represen-



Chapter 12

Hering-Ostrom Theory:
Elation-Generated Groups.

The celebrated Lenz-Barlotti theory describes maximal groups of central
collineations of arbitrary projective and affine planes. Similarly, one might
ask for a description of groups that are generated by groups of central
collineations of a plane that share neither an axis nor a center. For ex-
ample, in affine Desarguesian planes of order p”, if E; and E; are groups
of elations with distinct affine axes they generate the group G = SL(2, p®)
whenever s divides .

A fundamental theorem of Ostrom asserts that the same conclusion holds
for arbitrary finite translation planes with characteristic p > 3. The case
p < 3 has been completely resolved by Hering, where the conclusions are
slightly more complicated: for example, in the spreads associated with the
even order Liineburg planes, elation groups might generate Suzuki groups.
Taken together, the Hering-Ostrom theorem provides a complete description
of groups G generated by affine elations of [partial] spreads and has proven
be a powerful tool for the investigation of finite translation planes.

It is thus natural to seek to generalise this theorem. Major results on
finite translation planes have been obtained by Foulser based on extending
the Hering-Ostrom theorem to generalised elations. It turns out that a gen-
eralised elation, in the context of a spread, is either an affine elation or a Baer
p-element, and this leads to a Baer analogue of the Ostrom’s theorem. In
the next chapter, we use this to establish striking incompatibilty results con-
cerning Baer p-elements and affine elations, and also incompatibility among
Baer p-elements that have different slopesets in odd characteristic. These

196
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results are due to Foulser in the odd characteristic case. In characteristic
2, Foulser’s results do not apply as there are counterexamples. However, as
demonstrated by the authors via group-theoretic results of Dempwolff, there
is still still a high degree incompatibility between Baers and elations, even
in spreads of even order. In all cases, the incompatibilities indicated have
a profound influence on the collineation group of a translation plane. For
example, it implies that semifield planes of odd order cannot admit Baer
p-elements.

One of the main goals of the present chapter is to prove Ostrom’s re-
sult, describing the groups G generated by elations acting on finite partial
spreads of characteristic p > 3; we refer the reader to Liineburg’s immaculate
treatment [31] for the full Hering-Ostrom theorem. In addition to Ostrom’s
theorem, and its generalization to finite-dimensional spreads, we shall estab-
lish Foulser’s analogue of Ostrom’s result that applies to generalised elations:
this will be applied in the next chapter to establish the incompatibility the-
orems indicated above.

12.1 Field Extensions and Spreads.

Let V= F" @ F”, and let K D F be an extension field of the finite field F.
Rather than using tensor product notation, we shall write: Vi = K™ & K",
Xk =K"®0, Yy = 06 K™ in general if W is an F-subspace of V then
Wx denotes the K-subspace of Vi generated by W; so Wk consists of all
the K-linear combination of any F'-basis of W. This follows by noting that
F-independent subsets in V are also K-independent: look at the rank of the
matrix My of any F-linear basis of 1V: the rank of My, whether viewed as
an F-matrix or as a K-matrix is always the same.

Next consider g € Hom(V, F); gx is the unique extension gy of g to
Hom(V, K) and the two maps have the same matrix relative to any F-basis
of V, in particular relative to the canonical basis. So g € GL(V, F) if and
only if gx € GL(Vk, K).

We shall be particularly concerned with the action that a group G <
GL(V, F') induces on a K-subspace U < Vi that is Gg-invariant, sometimes
when V NU = O. In all cases, the action of Gx on U is just the action
associated with the matrix group representing G, and we write GV to mean
G%., the action of Gk on U.

A spread I on V' corresponds in the obvious way to a partial spread I'g
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of Vi, and I includes the standard components X and Y of F*" @ F™ iff ['y
does: that is Xx and Yy lie in ', and a similar comment applies to the
unit line I. We always assumne that we are dealing with spreads and partial
spreads containing the standard components X ‘and Y, as well as the unit
line I. Let M be the spreadset of matrices defining I'; so M, viewed as a set
of K-matrices is a partial spreadset defining the partial spread I'g.

Next focus on a rank two K-subspace U < Vi that meets non-trivially
the subsaces X and Y of V, and let I'y be the set of all components v € 'y
that meet U non-trivially. Since U has rank 2 over K, I'y is a Desarguesian
K-spread on U, and it meets non-trivially each of X, Y and I, in three
distinct components.

Next suppose G < GL(V, F) preserves I' and such that G leaves U-
invariant. So Gk is a K-linear automorphism group of the partial spread
'y and also leaves U invariant. Thus G% < GL(2, K). Moreover, the given
clation groups continue to act as elation elation groups on the Desarguesian
spread [y, so GY = SL(2,K’) for some K’ C K. The close connection
between G% and G leads to a similar conclusion for G, as required.

This suggests a strategy: take any F'-spread admitting G, then seek an ex-
tension field X over which G fixes a 2-space made up of distinct eigenvectors
of some normal subgroup of G and then apply the above argument.

Returning to the main theme, assume G acts transitively on the non-zero
points of U. Now the components of I' that meets U non-trivially do so
in at least one non-zero point of V, so the components of I' induce the
standard Desarguesian spread on U. Note that the point of this claim is that
the components of the standard Desarguesian spread that U carries, simply
because it is a 2-dimensional space, must eztend to components of I'k.

Suppose now that the p-Sylow subgroups of GG are non-trivial but not
planar. So if PP is such a group then Vp is a component of I'. By the
conjugacy of Sylow subgroups it follows that the associated components,
which we call p-axes [of G] form a G-orbit Now P certainly fixes a component
of the Desarguesian spread Ay. Also wlog X is the axis of P. So if more
than one axis is involved then the transitivity of P on the axes implies that
the axes all meet U non-trivially and each corresponds to the axis of a shears
group of Ay. The non-planarity hypothesis means that P acts faithfully on
Ay and hence is elementary abelian. All these groups generate SL(2,L) on
AU: where F' S L S K.
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12.2 Algebra Generated By Matrix A.

Let A be an n X n matrix over a field F’, and define the F-algebra generated
by A to be the smallest ring < A > of matrices containing A and F'1. Since
we have finite dimension, A satisfies a unique monic minimum polynomial
f(z) = 54 fixt over F; thus

k-1
A=Y A =0,
=0

and we have an algebra isomorphism:
< A > Flz]/(f(z)).

Thus we have:

Remark 12.2.1 < A > is a field iff its minimum polynomial f(x) is irre-
ducible and now < A > s isomorphic to an extension field of F' by any of
the roots of f(z) =0.

Now, even in the general case, if A is an eigenvalue of A then f(A) = 0, so
if f(z) is irreducible then the algebra F(X) = Flz]/(f(z)) is the extension
field of F by A. But the eigenvalues of A are just the roots of f(z) = 0,
since the minimum and the characteristic polynomials have the same roots.
In particular, the eigenvalues of A are all congugate in the algebraic closure
of F. Hence the previous remark may be restated as:

Remark 12.2.2 The F-algebra < A > 1is a field iff its minimum polynomial
f(z) s irreducible and now < A > is an extension field of F such that
< A >= F()X), where \ is any eigenvalue of A; the fields F(\) are isomorphic
as A ranges over the eigenvalues of A.

We can now consider the the case of interest: when the F-algebra < A >
does not contain any non-zero singular matrices. In this case, if for some
non-zero T €< A > the minimum polynomial fr(z) = gr(z)hr(z), where
min[dg,0h] > 1, and T €< A > then gr(T) and hr(T) are both non-zero
and singular matrices since ther product fr(T) is zero. This contradicts our
assumption that the non-zero elements in < A > are non-singular, so we
have: '

Proposition 12.2.3 If the F-algebra < A >, i.e. the polynomial ring F[A],
18 a partial spreadset of matrices then it is a field of matrices isomorphic to
the field F()\), where A may be chosen to be any eigenvalue of A: these are
all conjugate over F.
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12.3 Properties of SL(n, K).

In this section, we mention a couple of properties of the unimodular group
SL(2,q). The first property is will be tacitly assumed in several places.

Theorem 12.3.1 Let GL(n, K) be the group of non-singular maps of an n-
dim-ensional vector space over a finite field K and let SL(n, K) be its full
unimodular subgroup.

If H is a subgroup of GL(n,K) such that H = SL(n,K) then H =
SL(n, K).
Proof: Let p denote the characteristic of K. Then every SL(n,K) in
GL(n, K) is generated by the set of all Sylow p-subgroups of GL(n, K), and
these are all in the ‘standard’ unimodular group SL(n, K') since this group
is normal in GL(n, K) and contains at least one of the Sylow p-groups of
GL(n,K). m
In the infinite case the Sylow ‘p-subgroups’ may be identified with the max-
imal groups that have characteristic polynomial (z — 1)", and these groups
are generated by all the transvections, and all transvections are conjugate by
a basis-change argument. Such considerations permit the extension of the
above theorem to the case where K is any infinite field.

We record for convenience: )

P=\11) 2T lo 1) rEC P =l )

12.4 Ostrom’s Theorem.

We adopt the notation:

{10 (1M
P = llpr— 01‘

From now on until Ostrom’s theorem has been established we shall assume:

Hypothesis 12.4.1 N D {X,Y,1} is a partial spread on V = F" @ F"
admitting an automorphism group G =< p,pa >, for some A # 0.

The following elementary observations associated with the above hypothesis
will be frequently used:



CHAPTER 12. HERING-OSTROM THEORY: ELATION-GENERATED GROUPS.201

Remark 12.4.2 The maps p and p4 are non-trivial elations of N with axis
X and Y respectively. Moreover:

1. The map ps € AutN maps X to y = zA; more generally an elation of
N with azis Y mapping X onto a component y = M must be the map
par, and conversely if pyr € AutN then it is an elation of the type just
mentioned.

2. If par € AutN then M is non-singular; so A 1s non-singular.

8. The group Gy of all Y-azes elations in G is isomorphic to an additive
group of matrices £ contained in the full set of slopes of N'. In fact

E={E€F,|ps€G},

or equivalently

E={F|y=2F € Orbg,(X)} = Gy.

4. The elation p maps Y onto the unit line: y=x := 1.
5. The Y -orbit under G includes the unit line 1 among its components.

Proof: The maps p and p,4 are both elations of A since their fixed spaces
are precisely components, viz., X and Y respectively. All the listed items
are equally trivial to verify. m

Now suppose U is any G-invariant rank 2 K-subspace of Vi, using our stan-
dard notation, see page 197. So U cannot be part of a component since GG
contains non-trivial elation groups with distinct axes. Moreover, both p and
pa are elations of U, viewed as a K-spread, and this spread is Desarguesian
because it has order |K| and K is in the kern. So Gg induces a unimodular
group G of U. Furthermore, distinct elation axes associated with non-trivial
elations in G must meet U in distinct components:

Lemma 12.4.3 Suppose a and 3 are components of N' such that each is the
azes of a non-trivial elation in G. Then ax NU and Bx NU are distinct
components of U.

Proof: Let A and B be the groups of elations of A/ whose axes are respec-
tively the components «, 3 € N. Since A and B are both non-trivial p-groups
and are K-linear each fixes a 1-dimensional K-subspace of U elementwise.
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These spaces are disjoint since ak and By are distinct components of Nx. m
The following proposition shows that the group G =< p,pas > leaves in-
variant a rank 2 K-subspace U of Vi and induces on U the group SL(2, K),
when K is taken to be F'()\), where ) is an eigenvalue of A. Thus establishing
Ostrom’s theorem will mainly involve showing that the G induces SL(2, K)
faithfully on U.
Proposition 12.4.4 Assume F = GF(p) is a prime field, p > 3, and fiz the
extension field K = F()), where A is any eigenvalue of an F-matriz A, in
the algebraic closure of F'. Then the group G =< p, pa > leaves invariant a
rank two K-space U such that GY = SL(2, K).
Proof: Thereis a K-matrix B such that

A00 --- 0

BAIAB N B R R , (122)

...............

now by a direct computation

BpB~! = p, (12.3)

where 3 = Diag(B, B). i
Similarly the 8-conjugate of p4 is given by:

(Elg)(cl)?)(B; Bq1)=((1)BA1B_1), (12.4)

and by eqn 12.2 the RHS above has top row of form:
(}10:01'” :q:g\:osoa“' 1Q):

n n

so the B-conjugate of p4 leaves invariant the rank 2 K-space

-(7= {(3::0:0:"'70:1:0101"'10)|‘T7y€ If}’

N

n T
and similarly p, which is its own fB-conjugate, by eqn (12.3), also leaves U
invariant. Thus the B-conjugate group BG3~! of G leaves invariant the 2-
space W and clearly induces on it the group

{10\ (1A
C’_<(1 1)’(0 1)>
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and now by Dickson’s analysis, for p > 3!, the subgroup of H = SL(2, K)
generated by G is SL(2, L), where L = Z()), Z the prime field of F. But
as our hypothesis species that Z = F and K = F()), we conclude that
G = SL(2,K).

Thus we have shown a f-conjugate of G induces SL(2, K) on a rank 2 sub-
space of V. Hence the same must hold for G. =

From now we adopt the hypothesis and notation of the proposition above:
K = F()), where FF = GF(p) and X is any eigenvalue of A; U is a G-
invariant two-dimensional K -subspace of Vi, and as remarked earlier U is a
rank-two K -space that is also a Desarguesian spread; so we have seen that
G = GY = SL(2,K). Tt follows that G is transitive on the non-zero points
of U.

Lemma 12.4.5 The set of azes £ of non-trivial elations in G are in natural
1-1 correspondence with the components of U, i.e., the map

neanKnUa

is a bijection from € onto the one-spaces of U.

Proof: Since by remark 12.4.2X is in £, the transtivity of G on U* implies
that every one-space of U is of form nx NU, for some component n € £. The
converse that every member & meets U in a component, has been mentioned

in lemma 12.4. =
In order to count the conjugacy classes of p-elements in SL(2, ¢) consider:

(0 2)(05) (7o 2)= (o),

and so we have:

Remark 12.4.6 Let P be a p-Sylow subgroup of SL(2,q), g a power of the
prime p. Then N(P) has at most two non-trivial conjugacy classes in P and
distinct classes have the same cardinality.

Lemma 12.4.7 There is an additive group of matrices A = (K,+) such
that the identity I € A and the subgroup of Y -shears in G is:

1 M
{(0 l)|MeA}

1This explains Ostrom’s constraint p > 3.
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Proof: Let E be the elation subgroup of G associated with the Y-axis.
This induces faithfully an elation group on U with axis Y, faithful, because
elations of G extend to elations of G and hence cannot fix any points outside
a component. So E may be identified with a subgroup of 7 the full elation
group in GV with axis Y: it is conceivable that Gy} contains a p-group
P > E such that P, although not itself an elation group, induces on U the
full elation group 7, of size | K|.

Consider the G(yj-conjugacy class of any non-trivial a € E. We show that
E = (K,+) by showing that this class has > |K|/2 elements, and noting
that any elation group in G has order < |K/|, since it must faithfully induce
an elation group of U. .
Consider any non-trivial elation a € E. Hence for any t € G(y}, tat—! agrees
on U with the elation tat~! € E and distinct fat=! are ‘induced’ by distinct
tat™!, since they have distinct actions on U. So the number of elations v € E
must exceed the number of elations of U fixing Y that lie in a conjugacy class
of the stabilizer Y in G. So by remark 12.4.6, and the fact that E contains
the identity, shows that |E| > (¢ — 1)/2,s0 |K| > |E| 2 ¢+ 1/2 > ¢/2 and
this forces £ = K, by Lagrange’s theorem, and the fact that EY may be
identified with a subgroup of (K, +). Since E consists of matrices of type
pum, Where y = zM is a component of A meeting U non-trivially, the desired
result follows once we have noted 1 € A. This holds because by remark
12.4.2.5 the unit line y = z of A/ is in the G-orbit of Y and hence meets U
non-trivially: so p; € G means that 1 € A. =

Lemma 12.4.8 The additive group A == (K, +) is also closed under inver-
sion of its non-zero elements.

Proof: Since 1 € A, we have —1 € A, and the corresponding automor-
phism o € G. Hence by eqn 12.1 G contains:

(19

and now any component y = zM of N’ moves under 7 to the component
y=z(—M"') € N. So for, M € A, we must have —M~! € A since G, and
hence 7, maps components meeting U into other components of the same
type. But since 7 is an additive group M1 € A. n
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Lemma 12.4.9 G contains the map:

6a:(z,y) — (z4,yA7") >

Proof: Since A is closed under inversion we have p4-1 € G, since A € A.
Hence G contains the map

pAT pa-rTpar!,
which by a direct calculations is the matrix Diag[A, A™!] defining §. =
The following result is essentially the theorem of Ostrom. It implies that if
two elations with distinct axes fix a characteristic p partial spread AV, with
p > 3 and |N| > 2, then the group they generate a group G = SL(2,q) and
G leaves invariant a rational Desarguesian net contained in N,

Theorem 12.4.10 (Ostrom’s Elation Theorem.) The spreadset A is a
field =2 K, and G = SL(2, A & SL(2,K). Morover, the partial spread A4
associated with A 1s a rational Desarguesian partial spread and G has the
standard action on this partial spread, induced by its standard action on Ar,
a Desarguesian spread associated with a field extension F of the field A.

Proof: We first establish that the polynomial ring F[A] is a field = K.
Since 64 maps the component y = zM onto y = zA M A1, we have
A"IMA~! € A, whenever M € A. Choosing M from A,I € A, we see that
all odd and even powers of A~!, and hence all powers of A lie in .A. But
since A is an additive group it is also an F-module, over the prime field F.
Thus the polynomial ring F[A] is a subset of A. But the non-zero elements
of the algebra < A > are invertible and, of course, closed under differences.
Thus the algebra < A > is also a partial spreadset of matrices, and hence,
by proposition 12.2.3, the algebra is isomorphic to the field F(A\) = K.

But since, by lemma 12.4.8 A = (K, +), we now have A =< A > is a field of
matrices = K. So, by lemma 12.4.7 we clearly obtain < p, pg >= SL(2, A) =
SL(2,K). Moreover, by lemma 12.4.7, the components of N — {Y'}, meeting
U non-trivially are just those of form y =zk, k€ A= K.

Next choose a matrix field 7 O A such that |F| = |F|*, so the associated
Desarguesian spread Ar contains the partial spread associated with A, that
is the components of A/ that meet U non-trivially, or equivalently, the com-
ponents of A that are the axis of non-trivial elations in the group G.
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Thus G = SL(2,K) leaves invariant a Desarguesian spread Az such that
the components of A that are the non-trivial elation axes of elements in G,
when G is regarded as acting on A, form the slopeset of a subplane of Ar.
[This may be esablished even without reference to ‘U’, since the only way
that SL(2, K') acts on a Desarguesian spread over a larger finite field FF D K

is to leave invariant the subplane K & K.] n
Ostrom’s theorem needs to be slightly modified if we permit characteristic

p = 3. We summarize without proof the situation when p = 3 is permitted
in Ostrom’s theorem.

Theorem 12.4.11 Let 7 be a finite translation plane of odd order p™. Let o
and T denote two elations in the translation complement with distinct azes.
Then one of the two follouing situations occur:

1. {o,7) = SL(2,p%) for some positive integer z and the elation net is a
Desarguesian net which may be coordinatized by GF(p?).

2. (o,7) =2 SL(2,5) and p = 3 and the elation net is a Desarguesian net
which may be coordinatized by GF(9).

Finally, it is noted that Ostrom’s theorem is actually more general than con-
sidered above and can be more generally applied to collineation groups gen-
erated by Baer p-groups. Note that what needs to be considered is whether
the group generated by the set of all elations is also isomorphic to SL(2, p*)
for some positive integer w and what occurs when p = 2 or 3.

We also may observe that this result is generally valid over finite dimen-
sional vector spaces of characteristic p. The proof given uses the above result
to deal with the exceptional case when p = 3, but is otherwise self-contained
although it largely follows the Ostrom argument described above.

Theorem 12.4.12 Let @ be a translation plane which is finite dimensional
over its kernel and let K be o subfield of the kernel of characteristic not 2.
Let o and 7 be affine elations with distinct axes in the translation com-
plement and let G = (o, 7). Let N denote the net each of whose components
are axes of elations in G.
If G is finite then the characteristic of w is p < co and one of the two
following situations occur:

1. G = SL(2,p°) for some positive integer s. Furthermore, N is a Pap-
pian net which may be coordinatized by GF(p®).
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2. G = SL(2,5). In this case, N is a Pappian net which may be coordi-
natized by GF(9).

Proof: Assume the dimension of m over K is 2k. Represent o by (z,y) —
(z,Az + y) and 7 by (z,y) — (= + y,y) where A is a k x k matrix with

elements in K.
Note that the order of ¢ is finite if and only if the characteristic is finite

.
The proof of the theorem now follows from the following sequence of

lemmas.

Lemma 12.4.13 Let A be an eigenvalue of A in some extension field K()).
Then A and hence A has finite order and

F = GF(p)(\) ~ GF(p%),

for some positive integer s.

, I A I0 I+A A

Proof: Consider o7 = [ 0 I ] [I IJ = [ I I
2

to obtain (1 _;IA-l)— ,;_ 4 +I‘2‘ji+ A
that the entries in the (1, 1) -position are always nontrivial polynomial in A
over GF(p). If this element has finite order, it follows that eventurally the
clement in the (1, 1)-entry is a polynomial in A over GF'(p) which is equal to
(1,1) -entry of a previous element in (o7). Hence, A satisfies a polynomial
over GF(p). Thus, the minimal polynomial for A has coefficients in G F(p)
so that every eigenvalue in an extension field does as well.

Consider the field GF(p)(A) within K()). Let the minimal polynomial
for A have degree n so that every element in GF(p)()\) may be written in
the form Y% , A'a; for oy € GF(p). Hence, GF(p)(\) = F is a finite field
isomorphic to GF(p®) for some positive integer s.m

} Now square o7

. Squaring this element, we note

Lemma 12.4.14 Let V denote the underlying vector space over K and let
U be a 1-dimensional A-eigenvector in V Qg K(A) = V*. Then U S U is
G-invariant.

Proof: Realize ¢ and 7 as linear transformations over V* and apply the
form to conclude that U & U is G-invariant. m
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Lemma 12.4.15 U®U defines a Pappian plane which contains a G-invariant
Pappian subplane m, coordinatized by F.

Proof: Since F = GF(p)()) is a subfield of K()), there is a Pappian

subplane 7, of U & U.
Since the elements in G restricted to U @ U are all in Endgp()m,, it fol-

lows that G leaves 7, invariant. =

Lemma 12.4.16 If G | m, is G™ then either G™ ~ SL(2,p*) or p =3 and
G™ ~ SL(2,5).

Proof: Since 7, is a finite translation plane of odd order, the result follows
from Ostrom’s theorem ([34] and [35]). =

Lemma 12.4.17 There are exactly 1 + p® elation azes in N when G™ is
SL(2,p°) and 10 elation azes in N when G™ is SL(2,5).

Proof: It follows exactly as in the previous section that every elation axis
of N is also an axis of @, . Since the group generated by the elations is tran-
sitive on the components of m,(even in the case that the group is SL(2,5)
where F' ~ GF(9) and there are 10 elations in SL(2, 5)), we have that every
component of 7, is an elation axis of N. = |

Lemma 12.4.18 When the group G™ ~ SL(2,p°) then (| A |,p) = 1 and
z=0,y=aM for all M in GF(p)[A] is a partial spread. Hence, GF(p)[A]
15 a field.

Proof: The arguments of the previous section can be utilized in this case to

A-1
conclude that <[ 0 A
Hence, y = = maps to y = zA* under the group and y = A maps to

y = v A%*1, It follows that A’ — I is nonsingular or zero for cach integer j. m

] > is a collineation group of the translation plane.

Lemma 12.4.19 When the group G™ ~ SL(2,5) then (| A|,p=3) =1 and
z =0,y = zM for all M in GF(3)[A] is a partial spread so that GF(3)[A]
is a field.
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Proof: Hence, we may conclude that the net N is {z = 0,y = z(zAa+ [I)
for all o, in GF(3)} assuming that the Ostrom theorem is proved for fi-

nite planes in this case. Moreover, although not a collineation necessarily of

the plaﬁe, the net admits the group <[ é A }_71 } ;0,v€ GF (p)> . Now

again apply the arguments of the previous section again, we may conclude
-1

again that the group < [ AO ?1 }) acts on the elation net NV so that by the

above argument, (| A|,p=3)=1. =

Lemma 12.4.20 The elation net is a Pappian net and the group induced on
UeU is faithful.

Proof: LetV = X&X. Then X is a semi-simple K (A)-module = >, ;.

Let F; denote the restriction of I (A) to N;. Then N; is a 1-dimensional F;
-algebra. Moreover, GF(p)[A] is a field which forms a partial spread set so

that GF(p)[A] acts faithfully on each N;. Since one of these N;’s may be

taken as U, it follows that GF(p)[A] is isomorphic to GF(p°) or GF(9) ex-

actly when the induced group on U @ U is SL(2,p°) or GF(9). =

The main result theorem 12.4.12 has now been established.m -

12.5 Generalized Elations.

In this section, we present the preliminaries for the theorem of Foulser on
Baer p-groups acting on translation planes of order p”. When p 3 2, Foulser
showed that the Baer axes of two distinct Baer p-collineations in the trans-
lation complement are identical or share exactly the zero vector. In the
previous section, Ostrom’s theorem was presented. This theorem can be
viewed as a theorem on partial spreads generated by certain automorphism
groups called generalized elations. Once this is achieved, it is possible to
show that Ostrom’s Theorem may be applied to conclude that the groups
generated by Baer p-elements are exactly those in the elation case. Using
the extension of Ostrom’s theorem, it is possible to extend Foulser’s work to
the finite dimensional case as well.
In this section, we follow Foulser’s work in [11].
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Definition 12.5.1 LetV be a vector space of dimensionn over K ~ GF(p").
Let o be a linear transformation of V . Let Fixo denote the set of vectors
fized by 0. Then o is said to be a generalized elation of V' of type t if and
only if o fizes V/Fizo pointwise and the dimension of Fizo =t..

The subspace Fizo is called the ‘azis’of o and C(o) = (6 — 1)V s called
the ‘center’of o.

Remark 12.5.2 We have seen that elations are generalized elations of type
n/2. Consider a Baer collineation o of order p. We shall show that ¢ a

generalized elation also of type n/2.
Note that o is a generalized elation if and only if (6 —1)> =0 .

Proposition 12.5.3 Let o be a generalized elation of V' of type t. Then
(1) The order of o is p;
(2) dim C(o) + dim Flizo = n;
(3) t >n/2 and

(4) If W is a complement of Fizo then, with respect to Fixoc @ W, ¢ has
the following matriz representation

o 7]

where A is a t x (n —t) matriz.
Exercise 12.5.4 Prove (1).
Exercise 12.5.5 Prove (2) noting that V/Fizo = (6 — 1)V.
Exercise 12.5.6 Use (2) to prove (3) noting that C(o) C Fizo.
Exercise 12.5.7 Prove (4)

Corollary 12.5.8 The group generated by a set of generalized elations with.
the same axis is elementary Abelian of order p® for some positive integer a.
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We now specialize to the case when o is a generalized elation which is
a collineation of a translation plane 7 of order ¢™/? with associated vector
space of dimension n over a field K ~ GF(qg = p").

We recall that if 7 is a projective subplane of order m of a projective
plane 7t of order w then m < /w. Hence, if 7 is a planar collineation of
a translation plane then Fizt has dimension less than or equal to half the

dimension of the underlying vector space.

Theorem 12.5.9 A generalized elation acting as a collineation of a finite
translation plane of order p° is either an elation or a Baer p-element.

Proof. Note that we must have that a generalized elation o is of type s if
the order of the plane is p* since the dimension of the vector space is 2s over

GF(p). Hence, the cardinality of Fizo is also p°.

Exercise 12.5.10 Show that if a collineation o of an affine plane of order
k fizes exactly k points then Fizo is either a line or a Baer subplane.

It remains to show that a Baer p-element is a generalized elation.
Choose any complement W of Fizo so that with respect to the decom-
position Fizo & W, we have the following representation for o

I A
[0 7]

It remains to show that B = I. Note that the order of o is p so we must
have BP = I.

Suppose L and M are components intersecting Fizo in a s/2 -dimensional
subspace. Choose a basis for the intersections with Fizo and extend to a ba-
sis for L and M and hence for the translation plane. With the decomposition
L & M, we have a basis of 4(s/2)-vectors and letting z;,y; be (s/2)-vectors,
the representation is (1,22, %1, y2) where M isz; =29=0,Lisy; =y =0
and Fizo is given by the equation z; = 0 = y,. Without loss of generality,
we assume that y = z is a component-of Fizo.

Now consider the p*? + 1-components of the translation plane that lie
on Fizo. These have matrix equations as follows z = 0,y = 0,y = z,y =
T [ By By } where it may be noted that the components of Fizo are z3 =

0 By
0,y2 = 0,y2 = z2 and generally y, = 29B; for i = 1,2, P2 =1
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Since the collineation fixes z = 0,y = 0,y = z it follows that the form
for o is now
I E 0 0
0 D0 O
0 0 I E
0 0 0D

: : - E
Note that comparing the previous decomposition, we have { 0 E ] =A

D 0
and[O D}—B.

. . . i I —ED™! By B I FE
Since o fixes each line of Fizo so that [ 0 D-1 ] [ 0 B } [0 DJ

= [ BOH gjz } which implies in particular that D~!ByD = By;. Since {By;
i = 1,2,...,p°? — 1} defines a spread set, and a spread set acts transitively
on the non-zero vectors of the associated vector space Vs, it follows that
D centralizes an irreducible set of linear transformations of V3. By Schur’s
lemma, it follows that D belongs to a field (finite division ring) isomorphic
to GF(p®). In any case, since B? =1 also DP = 1 and hence D =1 so that
also B = 1.

We now may restate Ostrom’s theorem for generalized elations of vector
spaces provided the set of images of the fixed point subspaces is a partial
spread. The previous proof may be reread to prove the following theorem.

Theorem 12.5.11 Let V be a finite vector space of dimension 2k over GF(p).
Let o and 7 be generalized elations of V' with distinct azes.

Let S = {Fizo (a,p), FizT (0,p)}.

Then the following are equivalent:

(1) (o, p) ~ SL(2,p*) for some positive integer z.

(2) S is a partial spread of V.

(3) Representing (o, p) = <[ é § } , [ ‘i ? :|> then GF(p)[A] is a field

isomorphic to GF(p?).

Furthermore, when the above conditions are satisfied then S is a De-
sarguesian partial spread coordinatizable by GF(p®) within the Desarguesian
plane coordinatized by GF(p*) and the unique involution in SL(2,p) is the
kernel homology —1.
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The questions now are whether it can be guaranteed that two Baer p
-collineations always or ever have disjoint axes and if it is possible that, in
the above theorem o could be an elation while p is a Baer p-collineation.
Both of these questions have been resolved by Foulser when p > 3. Recall
that a Baer subplane of a finite projective plane of order n is a subplane of

order \/n.



Chapter 13

Foulser’s Theorem:
Baer-Elation Incompatibility.

In this chapter, we demonstrate the high degree of incompatibility between
Baer p-elements and affine elations, acting on a translation plane 7 of order
p*". Among the most startling of such results is Foulser’s theorem, asserting
that non-trivial Baer p-elements and non-trivial affine elations cannot simul-
taneously act on = if p is odd. The first section of this chapter establishes
striking constraints of this type, all due to Foulser, that apply to translation
planes of odd order. The second section is concerned with the even order
versions of Foulser’s theory: here affine elations and Baer 2-elements are
compatible, but they constrain each otehr quite severely.

13.1 Baer-Elation Theory: Odd Order Case.

We begin with a theorem that allows us to use Ostrom’s theorem for gener-
alsied elations due to Foulser.

Theorem 13.1.1 Let 7 be a translation plane of order p** for p > 3.
If o and T are Baer p-collineations in the translation complement whose
axes are distinct then Fizo N FizT = 0.

Proof: Sketch. Suppose not! Then there exist o and 7 as Baer p-collineations
such that FizoNFizT = X has maximum dimension r over GF(p). We note
that if X is a proper subplane of Fizo then r < k/2 and if X is a part of a
line of Fizo this restriction is still valid.

214
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Note that any generalized elation leaves invariant any subspace containing
the axis. Hence, both ¢ and 7 leave Fizo + FizT invariant and act faithfully
as generalized elations of (Fizo+Fixt)/X = V1. Letoy =0 |V}, n =7 | V1.

We consider the following three possible cases:

(1) Fizo, N Fizmy = 0 on V7,

(2) both o) and 7; are non-trivial on V] and Fizo, N Fizm, # 0 and

(3) either o7 or ; = 1.

We consider case (3) first and assume o, = 1.

Exercise 13.1.2 Show that oy = 1 if and only if o fixes FizxT.

Since o fixes Fiz7, o is a generalized elation on F'izT so induces either
an elation or a Baer p-element on Fizt. In either case, we may choose a
decomposition for V' as follows: Let FizT N Fizo = Xy, Firze = Xg & X;,
Fizr=XpoXoand V=X X, X, ® Xs.

The group E generated by the Baer p-collineations with axis Fiz7 is an
elementary Abelian group p-group and all nonidentity elements of this group
have the same axis. It follows that ¢ normalizes E' and since the order of o
is p, o commutes with some element of £ and we may assume that o and 7
commute (here we don’t insist on the maximality condition on intersection

dimension).

Exercise 13.1.3 Under the assumptions that o and 7 are Baer collineations
(generalized elations), and assuming the matriz acts on the right, show that

I 0 00

10 1 00

T 1A Ay I 0

Ay Ay 0 1

and that

I 0 0 O

;o B, I By, 0

0 0 I O

Bg 0 Bd I

Exercise 13.1.4 Using the above exercise and the fact that o and T commute
show that A3 = B, = 0 and
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A 0 00O
Exercise 13.1.5 Change basis by /32 1?)4 ? 8 and realize that the
0 0 01

general form of T does not change to obtain that, without loss of general-
ity, Ay = Ay = I and Ay = 0. Then ,again using the fact that o and 7
commute, show that that B, = Bj.

Exercise 13.1.6 Show that o7 ts a generalized elation by computing o1 and
its fized point space.

Exercise 13.1.7 Compute (o7 — 1)? and show that the following matriz is

obtained:
0

0 0O
0 000
0O 000

000

Now since (o7 —1)? = 0, it follows that B; = 0. From the above exercise,
it turns out that the fixed point space of o7 is too large to be either a line
or a Baer subplane.

This proves case (3). Actually, this same proof can be adapted to show

hat Baer p-elements and elations cannot coexist when p > 2. We shall come
back to this in a later section.

Case (2) both o} and 7y are non-trivial on V; and Fizo; N Fizr; # 0.

Suppose that Fizo, = Fizo/X and Fizm = Fizt/X. Then Fizo/X N
Fizt/X = X or rather Fizoy N Fizm = 0.

Hence, assume without loss of generality, that y +X is in Fizo,—Fizo /X
and write y = v+u where v is in Fizo and v is in Fiz7T. Since o, fixes y+ X,
it follows that o also fixes u + X. Since 7 fixes X = Fizo N FizT pointwise,
it follows that (u, X) C Fizr. Note that u is nonzero by assumption. But,
(u,X) C o(Fiz7) = Fizr°'. But, Fizr®  # Fizr since if it were this
would imply that o; = 1 by an exercise above. Hence, 7 and 7°  are
generalized elations of V' both of whose fixed point space properly contain X
which is contrary to the maximality condition.

Hence, it remains to consider

Case (1) Fizoy N Fizry =0 on V4.

We give the proof in a series of lemmas.
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Lemma 13.1.8 (¢ — 1)FizT & X = Fizo and (1 — 1)Fizo & X = Fizt

Proof: Counsider (0 —1)v for v in Fizr. If (¢6—1)v # 0 then v isnot in X. If
(o —1)visin FizoN FizT then o fixes v+ X and clearly 7 fixes v+ X so that
o1 and 7 fix a common nonidentity element and hence Fizo; N Fizry # 0.

Notice that the kernel of o — 1 in Fiz7 is Fiz7 N Fizo and Fizt/X ~
(6 — 1)Fiz7t. By the rank-nullity theorem, the result now follows.

Lemma 13.1.9 (0,7) = G leaves (0 — 1) FizT® (7 — 1) Fizo = V; invariant.

Proof: Note that (6 — 1)> = (r —1)> =0 and apply (¢ — 1) to (0 — 1)v +
(t — 1)u for v in Fizt and u in Fizo realizing that (7 — 1)w is in FizT for
any w in V. Hence, ¢ —1 and 7—1 and thus ¢ and 7 leave the given subspace

invariant.

Exercise 13.1.10 Check that the sum s a direct sum.

Lemma 13.1.11 Let p; = p | Vo. Let Gy = {(02,72). Then Gy ~ SL(2,p?) .
for some positive integer z.

Proof: The idea of the proof is to show that the set {Fizoj , Fizr} for
g,h in Go} is a partial spread and then apply Ostrom’s theorem. Note that
oy and 75 are generalized elations of V,.

Note that Fizo, = Fizo NV, = (6 — 1)FizT and Fizry = Fizr NV, =
(7 —1)Fizo. These subspaces are both of dimension k — r and since we have
a direct sum above, these particular fixed point spaces are disjoint so that
V, has dimension 2(k — r) and the generalized elations are of type k — 7.

Now assume there exist p and v in G which are conjugate to ¢ and/or
7 such that Fizp; # Fixy, but Fizps N Fizy, # 0. Then, it follows that
Fizp N Fizy C X & Fizoy N Fizp, contrary to the maximality condition.
Hence, Gy ~ SL(2,p*). In particular, —1 is in G2 acting on V5. This proves
the lemma.

Lemma 13.1.12 Let 6 be in G such that 8, =—1. Then 6 =1.

Exercise 13.1.13 Note that any nonidentity collineation can pointwise fix a
subspace of dimension < k (one half the dimension of the translation plane).
Prove the above lemma by considering X @ V, and realizing that G fizes X
pointwise and show that the dimension of X & V5 is 2k —r > k.
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Lemma 13.1.14 G ~ G>.

Proof: Since G fixes V4, the group induced on V; is isomorphic to G/G[V5]
where G[V%] is the subgroup which fixes V; pointwise. The above exercise
shows that G[V,] = (1).m

Remark 13.1.15 A result of Baer’s states that in any finite affine plane,
an involution either fizes pointwise a line or a Baer subplane. Thus, the
dimension of a pointwise fized subspace by an involution of a translation
plane is half the dimension of the translation plane

Note that (—6)? = 1 so that —6 is an involution.

Lemma 13.1.16 The subspace fired pointwise by —8 contains V. Then
r=k/2.
Furthermore, 0 is in Z(G).

Proof: From the preceding, we have 2(k — r) < k so that k/2 < r but
r < k/2 since X is either contained with a line of Fizo or is a subplane
of it (note that the intersections of subplanes is either contained within a
line or is a subplane of each containing subplare). So, r = k/2. Note that
(whw™1)y = 85 = 0, = —1. It follows that Fizf'whw™' contains X & V3
since G fixes X pointwise. Hence, 6 'wfw~! = 1 which proves the lemma.

Thus, it follows that Fiz8 is left invariant by G. Represent Fizf = X&W
where both X and W are k/2-dimensional subspaces.

Lemma 13.1.17 W @ (Fizo + Fizt) = V.

Proof: By the previous notes on dimension, it suffices to show that the
indicated direct sum is, in fact, direct.

If #(v +u) = v+ u for v in Fizo and u in FizT then recalling that 6 is
in Z(G), we have cf(v + u) = 0(v + o(u)) = v+ o(u). It then follows that
o(u) —u = (0 — 1)u is fixed by 6. But, 6 acts as —1 on V; so that u = 0.
Similarly, v = 0.

Now let ¢35 = ¢ | Fizf. Then o3 and 73 are generalized elations of Fiizf
with identical fixed point spaces X since o does not fix a nonidentity element
of W.

Hence, we obtain
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Lemma 13.1.18 (o3, 73) is an elementary Abelian p -group (of order p?).

Exercise 13.1.19 Show that the commutator subgroup G' of G fizes Fizé
pointwise.

However, G’ = G as G ~ SL(2,p*). On the other hand, G leaves invariant
V2 and 0 acts on V5 as —1, Vo N Fiz@ = 0. Hence, there exists an element
g of order p which fixes a nonzero point of V, which implies that Fizg has
dimension strictly larger than k& —a contradiction. Hence, this completes the
proof of case (3) and consequently the proof of the theorem.

It might be pointed out that both Ostrom’s and Foulser’s theorems can be
stated for p = 3 also and in this case, it is possible that SL(2, 5) is generated.
Furthermore, the full group generated by elations or Baer p -collineations is
completely determined by the work of Ostrom, Hering and Foulser.

We mentioned above that an adaption of the.proof of case (3) will show
that it is not possible to have both Baer p-collineations and elations acting
on a translation plane of odd order. We state this formally. We note that

this case only requires that p is odd.

Theorem 13.1.20 Let 7 be a finite translation plane of odd order p".
Then the collineation group of @ does not contain both Baer p -collineations

and elations.

Furthermore, Foulser shows that all Baer axes of p-collineations share
their parallel classes.

Theorem 13.1.21 Let 7 be a finite translation plane of odd order p** for
p > 3.

If B denotes the set of azes of Baer p-collineations in the translation
complement then each subplane of B lies in the same net of degree p* + 1.

Proof: In this case, the group generated by any pair of Baer p -collineations
is SL(2,p*) for some positive integer z. Since any two distinct axes 7y and
m; share exactly the zero vector, we may decompose the space as my @ 7, so
that the collineation group has the form

<[£CI z]md—-bc= 1 for all a,bgcsdezsL(Q’pZ))
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In particular, we have the subgroup <[ g a(_Jl } ;ain K — {O}> Choose a

in the prime subfield F ~ GF(p) of K and since p > 3, we may assume
that a # a~!. We note that a field of 2k x 2k matrices over a field GF(p)
contains the scalars al,,. Hence, a = Ay for A in GF(p) Cthe kernel of the
translation plane.

0 0 } is a kernel homology if a is in the prime subfield

In other words, [ @
a 0
0 at
subplane 7y and 7, so fixes each line of 7, and each line of 7y incident with
the zero vector. But [ a 0 ] { a0 ] = [ a® 0 jl = h # I fixes each
10 a7l 0 a 0 1
line of my and fixes m; pointwise. Since the fixed lines of h are exactly the
lines of 7, it follows that each line of 7y extending to a line of 7 is a line of
m;. Hence, each line of my incident with the zero vector is a line of 7; and
conversely. Hence, the lines of my incident with the zero vector are exactly
the lines of 7; which are incident with the zero vector.
Furthermore, more can be said about the structure of the net Contannng
the Baer axes and we shall come back to this in the next section in more
generality both for even order and for infinite order.

of K. Hence, it follows that = g, acts as a scalar group on each

13.2 Incompatibility Theory: Even Order Trans-
lation Planes.

We have seen in the previous section that, when p is odd, it is not possi-
ble that elations and Baer p-collineations can coexist in translation planes
of order p". This is definitely not the case in planes which are not trans-
lation planes. For example, there exist semi-translation planes of order g*
derived from dual translation planes for which there is a Baer group of order
q and an elation group of order g as well. Furthermore, it is possible that
Baer involutions and elations exist even in Desarguesian affine planes of even
order. If 7 is Desarguesian of order ¢* coordinatized by GF(q?) then the
field automorphism of order 2 which fixes GF(g) pointwise induces a Baer
involution.

When 7 is a semifield plane of even order, Ganley [14] has shown that
if there is a Baer involution then the full group which fixes the Baer axis
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pointwise has order 2.

Exercise 13.2.1 Let nt be any projective plane and 7} a projective sub-
plane. Let o be a central collineation. Then show that o leaves )} invariant
if and only if the center and aris of o are in 7} and for some point P of n}
then o P is also a point of 7}.

Exercise 13.2.2 Let w be a semifield plane with special point (00) on the
line at infinity. Let w, be an affine subplane of order h of m one of whose
parallel classes is (00). Show there exists an elation group of order h which

leaves 7, invariant.

Note that, in a semifield plane of even order ¢2, if there exists a Baer
subplane sharing the special point on the line at infinity then there exists an
elation group of order ¢ which leaves the subplane invariant.

13.2.1 Maximal Elation Groups and Baer involutions.

Here we consider this more generally. The reader is referred to Jha and
Johnson [21] for more details.

Theorem 13.2.3 Let 7 be a translation plane of even order ¢* for q =27 .
Let m, be a Baer subplane of m which is fixed pointwise by a Baer 2 -group B.
If # admits an elation group £ of order q which normalizes B then | B |< 2.
If | B |= 2 then the full collineation group which fires m, pointwise has order
2.

Proof: The proof will be given as a series of lemmas. In particular, we
shall require a more-or-less standard representation of the translation plane
and Baer subplane.

Represent = is the form {(z1,z2,y1,¥y2); =i, ¥: are 7 -vectors over GF(2)
for i = 1,2}. Represent with equation z; = y; = 0 and consider a spread
for 7 is the form lz = 0,y = 0,y = zM where z is a 27 -vector and M is
a nonsingular 2r x 2r matrix. We also assume, with loss of generality, that
z =0,y = 0,y = z are components of 7, also and that the axis of £ is x = 0.

This first lemma depends on the previous representations and should be
clear by now.
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Lemma 13.2.4 Let the kernel of m, be denoted by K, where K, is consider
as the set of v X r matrices centralizing the slopes of x,.
(i) B may be represented in the following form:

(

(i) The components of m, may be represented in the form

z=0,1 =$[C f(C)}

B
I

0 ;BE)\andO,IEA).
0

O ~O00

0
0
B
I

OO O M~

0 C

for C in a set Q0 of matrices where f : Q +——s HOTTIGF(Q)(I/QT, Var) where Va,
is a 2r-dimensional vector space over GF(2) such that f(I) = f(0) = 0.

Exercise 13.2.5 Prove that A is contained in the kernel K, of w,.

Note that since we are assuming that £ normalizes B, it follows that F
acts transitively on the non-axis components of 7, . Hence, we have

Lemma 13.2.6 £ may be represented in the form

I0C fC)
0710 C
<0010’CEQ
000 I

Exercise 13.2.7 Prove that if B has order > 2 then we may take A to include
{0,1,B,B + I} for some fixed B # 0 or I.

I DO O I 0 F f(E)
Now let op = g é ? g € B and let 75 = 8 é ? lg €
0 0 0 I 0 0 O I
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Exercise 13.2.8 Show that op7g is a Baer involution and a component y =

T [ ZL ::2 } is fired by op7E if and only if my = D™'E and Dmy = f(E)+
3 My

ED +myD. (Hint: Write out what the conditions are for a component to
be fired by opTE recalling that D is in the kernel of K, and hence commutes

with E ).

Lemma 13.2.9 Let Sp = {op7c; C € Q}. The components by elements of
Sp cover m. Hence, this implies that, for each C € 2, B~'C 1is also in Q
and furthermore, B* and B’C is in § for all integers i, j.

Exercise 13.2.10 Prove the previous lemma.

Thus, we have:

Lemma 13.2.11 {o;75-1¢,087¢c) fizes the same Baer subplane pointwise
(namely, {(0,y2B~'C,y1,92)}).

Hence, Dmy = f(E) + ED +m,;D for (D, FE) € {(B,C),(I,B~C),(B +
1,(B71+1)C}.

Choose (D, E) = (I,B~'C), we obtain mqy = f(B~'C) + B~C + m;.
Now reapplying (B, C), we obtain

Bmy = B(f(B~'C)+ B~'C+m,;) = f(C) + CB +m;B
which implies that
Bf(B™'C)+ (B +I)C + f(C) = Bm; + m; B.

Let go(C) = Bf(B~'C) + f(C).

Exercise 13.2.12 For k> 1 if
9k(C) = ge1(C)B*~ + B¥*1g,_41(C)

then . X
QK(C) = .82 my + ‘J’TllB2 .

(Hint: Recall that BC = CB.)
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Since B is in the kernel of the subplane of order ¢ , it follows that B? = B.
Hence, when ¢ = 27, it follows that g,.(C) = Bm; +m; B = go(C) + (B +
I)C.

Lemma 13.2.13 Let J(C) = 02| Bif(C)B~.
Then
(i) J(C) + BJ(B~'C) = (I + B)C and
(it) J(B®C) = B2J(C).

Proof:

Exercise 13.2.14 Show that gx(C) = Y251 Bi f(C)B®*-D-i432" Bif(B-1C)B¥ .
Then let k = r and using the fact that g,.(C) 4+ goccy = (I + B)C conclude
that (i) is valid.

Exercise 13.2.15 Since BC is in (), replace C' by BC in (i) to conclude
(11).

Since the above lemma is valid for all elements C of €2, letting C = I, we
obtain by induction that

J(B*) = B¥J(I) = 0.

Letting 7 = k, we have that J(B) = 0. In (i) above, let C = B to obtain
(I + B)B = 0. Hence, B = 0 or I contrary to our assumptions. Hence, the
Baer 2-group has order 2 or 1. If the order is 2 then since the group fixing
the Baer axis normalizes the 2-group fixing it pointwise, it follows that any
Baer group must commute with a given Baer involution which cannot occur
unless the group has order 2 itself. This completes the proof of the theorem.

13.2.2 Large Baer groups and Elations.

Considering possible incompatibility relations, we consider the co-existence of
a ‘large’ Baer group and an elation group of order > 2. Recall that it follows
from the previous subsection that the existence of a Baer group of order > /g
shows that the Baer axis is a Desarguesian subplane. In this subsection, we
consider the possible incompatibility with Baer groups of order > /g and
elation groups of order > 4.

Previously, we required that a given elation group normalizes a Baer group
and hence centralizes it. A result of Dempwolff [9] shows that if a Baer group
of order > ,/q normalizes an elation group E then it must centralize it.
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Exercise 13.2.16 Let 7 be a translation plane of order 2" that admits a
Baer group B of order > ,/q. Let E be any affine elation group. Let Sy be
a Sylow 2-subgroup containing the full elation group E* with azis E. Show
that there exrists a Baer group B* of order | B | contained in S;. Show that
B* normalizes the full group E~.

Hence, if we use the result of Dempwolff, we may assume the existence
of an elation group E and a Baer group B of order > ,/q which centralizes
each other.

Theorem 13.2.17 Let 7 be a translation plane of order q*> = 2% that admits
a Baer group of order > 2,/q. If E is any elation group of m then | E'|< 2.

Proof: We formulate the proof in a manner similar to the above. In par-
ticular, we take the representation exactly as in the previous subsection.
However, now we know that the elements of A belong to a field K ~ GF(q)
that coordinatizes the Baer subplane so that we may assume that the ele-
ments of  belong to the field K. m

Lemma 13.2.18 For each C of Q, then | CAN A |> 4.

Proof: Note that X is a vector space over G F'(2) as it is additive. Similarly,
C\ is a vector space over GF(2). Furthermore, dim\ > r/2 so > r/2 + 1.
Hence, CX + A is a subspace of K so that the dimension of the intersection

CA N is at least 2. Hence, the order is at least 2.
The impact of the previous lemma is that there are at least two Baer

groups of order 4 which come from the same element 7¢.

Lemma 13.2.19 For each C in 2, there exist distinct nonzero elements E
and F' such that

(opTr,0BcTC) fizes a Baer subplane {(0,y2B,v1,y2)} pointwise for B €
{E,F}.

mgz My
if and only if m3 = D™'E and Dmy = f(E)+ED+m;D. Thus, the indicated
group must fix the same Baer subplane pointwise.

Noting that f(I) =0, let D = B and E = I to obtain Bmy = B +m,B.
But, also we may let D = BC and E = C to obtain BCmy = f(C)+ BC?+
my BC.

Thus, C(B + m;B) = f(C) + BC? + m; BC.

Proof: Let CF and CD bein CANA. Recall that op7g fixesy =z [ ™ ™ }
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Exercise 13.2.20 Show that C*m;B +m; BC? = f(C)C + Cf(C).

Exercise 13.2.21 Let f(C) = fo(C), fi(C) = f(C)C+ Cf(C) and, in gen-
eral, let

fi(C) = Czk_lfk-l(c) + fkﬁ1(C)C2k‘1.
Show that fi(C) = C*m,B + m; BC?".

Now let k£ = r where ¢ = 2. Then, f,.(C) = Czr_lfr_l(C)—I—fr_1(C)C2r_1 =
CmB + m;BC. From C(B + m;B) = f(C) + BC? + m; BC, we obtain
CmyB +mBC = CB + CB? + f(C).

Hence, (C +C?)B = C?"" f,_1(C) + fr-1(C)C*" + f(C). Since B can
take on either of the nonzero elements E or F, this can only occur when
C 4+ C? = 0 and hence that C = 0 or I. Hence, we have shown that the only
possible elations 7¢ are 7 and 7;. That is, the elation group has order at
most 2.



Chapter 14

The Translation Planes of order
¢° that admit SL(2,q).

In this final chapter, we consider the set of translation planes of order ¢ that
admit SL(2,q) in the translation complement and mention a classification.
The theory developed from Walker’s thesis who classified all such translation
planes of odd order that have GF(q) in their kern, and Sch—#efer dealt with
the even order case. Foulser and Johnson showed that no further cases occur
when the kern hypothesis is dropped.

The resulting classification, of translation planes of order ¢? admitting
SL(2,q), constitutes one of the most powerful tools in finite translation plane
theory. As a demonstration, we show how the classification allows us to
completely determine the translation planes that admit large Baer groups

that generate a nonsolvable group.
We first, consider the examples that arise in the classification.

14.0.3 Desarguesian Planes.

A Desarguesian plane of order ¢*> may be coordinated by a field F ~ GF(¢?)
and admits I'L(2, ¢) in the translation complement where the p-elements are
elations where p” = ¢. In particular, there is a regulus net R which is left

invariant by a subgroup isomorphic to GL(2,q) .

227
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14.0.4 Hall Planes.

If the net R is derived, the group GL(2,q) is inherited as a collineation
group of the derived plane. Hence, the Hall planes admit GL(2, g) where the
p-elements are Baer p-collineations.

14.0.5 Hering and Ott-Schaeffer Planes.

The reader is referred to Liineburg [31] for details.

Definition 14.0.22 Let' Q be any set of g+ 1 points in PG(3,q) such that
no four of the points are coplanar. Then Q is called a (q + 1)-are.

The (q + 1)-arcs are all determined as follows:

Theorem 14.0.23 Let Q be a (¢ + 1)-arc then Q may be represented as
follows:

(1) (Segre [38]) If q is odd then the representation is {(s3, s°t, st?,t3); s, t
in GF(q), (s,t) # (0,0)}. Even if q is even, if an arc has this representation,
we call this a ‘twisted cubic’Q3.

(2) (Casse and Glynn [8]) If q is even then the representation is Q% =
{s**1, s, st t*t); 5, ¢ in GF(q),(s,t) # (0,0)} where « is an automor-
phism of GF(q) which is a generator.

Theorem 14.0.24 Let V; denote a 4-dimensional vector space over K- ~
GF(q). Consider the following matriz group:

aPtl baP abP B!
8 B 8
§f — < “ g‘;ﬁ Z‘éﬁ jgﬁ ca,b,e,d € K and ad — be # 0>.
cc®  deP cd?  dPH

(1) If q is not 3" or 2 and B = 2 then SP=2 is isomorphic to GL(2,q) and
acts triply transitive on the points of the twisted cubic Q3. Furthermore, S?
acts irreducibly on V.

(2) If g = 2" and 8 is an automorphism a of K then SP=% is isomorphic
to GF(2,q) and acts triply transitive on the points of the (g + 1) — arc, Q°.
Furthermore, S® acts irreducibly on Vj.
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Theorem 14.0.25 Let ¥ be PG(3,q) and consider the plane z4 = 0 where
the points are given homogeneously by (z;, 2, x3,24) for z; in GF(q), i =
1,2,3,4.

(1) Then z123 = x5 for B € {2,a} defines an oval cone Cs with verter
(0,0,0,1) and oval Og = {(1,t,t?,0),(0,0,1,0);t € GF(q)} in 24 = 0.

(2) The (q+ 1)-arc Q° = {(1,t,t°,t5+1),(0,0,0,1);t € GF(q)} is con-
tained in Cy and the q lines Ly = <(O, 0,0,1), (1, t,tﬁ,tﬁﬂ)) intersect Og in
(1,t,t%,0). Hence, there is a unique line Lo, = {(0,0,0,1),(0,0,1,0)) of the
oval cone which does not contain a point of Qg.

We shall call Ly, the ‘tangent’ line to (0,0,0,1). More generally, any
image of Lo, under an element of the group SP is called the tangent line at
the corresponding image point.

(3) Consider the plane x; = 0 which intersects O° in ezactly the point
(0,0,0,1). We shall call z; = 0 the ‘osculating’ plane at (0,0,0,1). FEach
image of z; = 0 under an element of S” is also called an osculating plane
and the corresponding image point.

Theorem 14.0.26 If Q? is a twisted cubic then the set of ¢ + 1-tangents
form a partial spread T .

Theorem 14.0.27 Assume q is even and 3 = « for some automorphism of
GF(q). Let Sy denote a Sylow 2-subgroup of S©.

(1) Then Sy fizes a unique point P of Q% and fizes the tangent plane
T(P).

(2) Choose any point Q@ of Q* — { P} and form the lines XQ and then the
intersection points I = T(P) N XQ and then the lines PI of T(P) incident
with P. Let N;(P) denote the two remaining lines of T(P) incident with P
fori=1,2.

Then R; = N;(P)S“ is a regulus and R; is the opposite requlus to R; for
1# 7.

To construct the Hering and Ott-Schaeffer planes we require that g = —1
(mod 3).

Theorem 14.0.28 When ¢= —1 (mod 3) any element p of order 3 in SP
fizes a 2-dimensional subspace M pointwise.
(1) There is a unique Maschke complement L for p such that Vy = LS M.
(2) If B=2 and q is odd then TU LS? U MS? is the unique S-invariant
spread of Vj. :
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The corresponding translation plane is called the ‘Hering plane’of order
2
q°.
(8) If B = a and q s even then R; U LS*U MS* is a S-invariant spread
of Vy fori =1 or 2 and for any automorphism o of GF(q).
The corresponding translation planes are called the ‘Ott-Schaeffer planes’.

Remark 14.0.29 (1) The Hering and Ott-Schaeffer planes admit affine ho-
mologies of order 3 with q(q — 1) distinct azxes.

(2) Schaeffer determine the planes when « is the Frobenius automorphism
and Ott generalized this to arbitrary automorphisms. (See Hering [17], Scha-
effer [37] and Ott [33].)

(3) Each Ott-Schaeffer plane is derivable. If v is an automorphism for a
given Ott-Schaeffer plane then ™ is the automorhpism for its corresponding
derived plane. (See e.g. Johnson [27]. If g = 27 it turns out that the number
of mutually non-isomorphic planes is o(r) as the automophisms used in the
construction are generators of the cyclic group of order r.

14.0.6 The Three Walker Planes of order 25.

Let
1 0 00
8 0 00
Ts = 382 s 1 0 ;S c GF(:S)
s 352 s 1
and
0 1 0 O
| =-10 0 O
P=1 0 0 0 1
0 0 -1 0
Then (75, p) = S =~ SL(2,5).
Furthermore, let
t 0 0 O
0 ¢t 0 0O
H:< 0 0 ¢ 0 ;tEGF(5)—{O}.>
0 0 0 ¢t

Then, there are exactly three mutually nonisomorphic spreads my, w4, g
of order 25 that admit S such that H fixes exactly 6 components of each
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plane and p fixes either 2, 4, or 6 of these components respectively. These
planes are determined by Walker in [41].

14.0.7 The Translation Planes with Spreads in PG(3, q)
admitting SL(2,q).

The translation planes or order ¢ with kernels containing G F'(q) and admit-
ting SL(2,q) as a collineation group are completely determined by Walker
and Schaeffer.

Theorem 14.0.30 Let 7 be a translation plane of order q*> with spread in
PG(3,q) that admits SL(2,q) as a collineation group.

Then 7 is one of the follounng types of planes:

(1) Desarguesian,

(2) Hall,

(8) Hering and q is odd

(4) Ott-Schaeffer and q is even

(5) one of three planes of order 25 of Walker.

14.0.8 Arbitrary Dimension.

There are exactly three semifields planes of order 16 one each with kernel
GF(2),GF(4) and GF(16) each of which is derivable. We have considered
the planes derived from the semifields planes with kernel GF'(4) that admit
PSL(2,7) as a collineation group. The semifield plane with kernel GF(2) de-
rives the Dempwolff plane of order 16 which admits SL(2,4) as a collineation
group. Furthermore, the kernel of the Dempwolff plane is GF(2) (see e.g.
Johnson [26]).

Using methods of combinatorial group theory and linear algebra, Foulser
and I were able to prove that the only translation plane of order ¢? that
admits SL(2,q) as a collineation group and whose spread is not in PG(2, q)
is, in fact, the Dempwolff planes.

Theorem 14.0.31 (Foulser-Johnson [13]). Let w be a translation plane of
order ¢° that admits a collineation group isomorphic to SL(2,q) in its trans-

lation complement.
Then either the plane has its spread in PG(3,q) or is the Dempwolff plane

of order 16.
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Actually, the way that the proof was given, it was not necessarily to
assume that SL(2,q) acts faithfully on the translation plane. That is, it
is possible that PSL(2,q) acts on the plane. In fact, this essentially never
occurs.

Corollary 14.0.32 Let © be a translation plane of order ¢* that admits a
collineation group isomorphic to PSL(2,q) then w is Desarguesian.

14.0.9 Applications.

Let 7 be a translation plane of odd order p” that admits at least two Baer
p-groups B; and B, in the translation complement with distinct Baer axes.
Assume that | B; |> /p” > 3. Then, by Foulser’s work (which works in the
characteristic 3 case in this situation), it follows that the Baer axes lie in the
same net of degree p” + 1. The Baer groups generate a group G isomorphic
to SL(2,p°) for p° > p’/%. From here, it follows that the group G' must be
SL(2,q). Applying the previous theorem, we have:

Theorem 14.0.33 (Jha and Johnson [25]) Let 7 be a translation plane of
odd order p" that admits at lcast two Baer p-groups of order > \/p" > 3.
Then m is the Hall plane of order p".

Recall, that Foulser’s result is not necessarily valid in translation planes
of even order but there is considerable incompatibility between elation and
Baer 2-groups.

Dempwolff analyzed the groups gencrated by two Baer 2-groups with
distinct axes and orders /27 if the translation plane is of order 2% .

Theorem 14.0.34 (Dempwolff [9]) Let w be a translation plane of even or-
der g* and let G be a collineation group in the translation complement which
contains at least two Baer 2-groups of orders > ,/q with distinct azes. Let
N denote the subgroup of G generated by affine elations.

Then one of the following situations occur:

(1) q*> = 16,G ~ SL(3,2) and « is either the Lorimer-Rahilly or Johnson-

Walker plane, or
(2) G/N ~ SL(2,2%) where 2* > /q and N C Z(G).

Using the incompatibility results previous mentioned, we know that any
elation group centralizing a Baer 2-group can have order < 2. If, in fact, the
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order is 1 then we argue that, in fact, we obtain SL(2, g) so that the results of
Foulser and myself apply. If the order of is 2 then some group representation
theory shows that G ~ SL(2,2%) & N and we argue that SL(2,27) contains a
Baer group of order > ,/q which again shows that SL(2,q) is a collineation
group. We note that the Dempwolff plane of order 16 does not occur here
since there are no large Baer 2-groups in this plane.

Hence, we may show:

Theorem 14.0.35 (Jha and Johnson [2]]) Let w be a translation plane of
even order ¢ that admits at least two Baer groups with distinct azes and

orders > ,/q in the translation complement.
Then, either m is Lorimer-Rahilly or Johnson-Walker of order 16 or

m 15 a Hall plane.
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