Chapter 2

SPECTRAL THEORY FOR POSITIVE SEMIGROUPS

In this chapter we are concerned with the remarkable spectral properties shown by positive semigroups on Banach lattices.

Throughout this chapter we suppose that $E \neq \{0\}$ is a complex Banach lattice.

2.1 STABILITY OF STRONGLY CONTINUOUS SEMIGROUPS

In this section we study the asymptotic behaviour of the solution of the abstract Cauchy problem

(ACP)
$$\begin{cases} u'(t) = Au(t), & t \ge 0, \\ u(0) = x, \end{cases}$$

where *A* is the generator of a C_0 -semigroup $T(\cdot)$ on a Banach space *E*. To this purpose we define *the type of the trajectory* $T(\cdot)x$ by

$$\omega(x) := \inf\{\omega : ||T(t)x|| \le Me^{\omega t} \text{ for a constant } M \text{ and all } t \ge 0\},\$$

and the *growth bound* (or type) of $T(\cdot)$ by

 $\omega_0(A) := \sup\{\omega(x) : x \in E\}$ = $\inf\{\omega \in \mathbb{R} : ||T(t)|| \le Me^{\omega t} \text{ for some constant } M \text{ and all } t \ge 0\}.$

The type of the solutions of (ACP) is

$$\omega_1(A) := \sup\{\omega(x) : x \in D(A)\}).$$

We now introduce different stability concepts.

Definition 2.1.1 A C_0 -semigroup $T(\cdot)$ with generator A is called

- (*i*) uniformly exponentially stable if $\omega_0(A) < 0$,
- (*ii*) exponentially stable if $\omega_1(A) < 0$,
- (iii) strongly stable if $\lim_{t\to\infty} ||T(t)x|| = 0$ for every $x \in E$,
- (iv) stable if $\lim_{t\to\infty} ||T(t)x|| = 0$ for every $x \in D(A)$.

It is clear that

$$\begin{array}{rcl} (i) \implies (ii) \\ \Downarrow & \Downarrow \\ (iii) \implies (iv). \end{array}$$

If $A \in \mathcal{L}(E)$, then $(i) \iff (ii)$ and $(iii) \iff (iv)$. In the case where A is unbounded the above concepts of stability may differ as one can see in the following examples.

Example 2.1.2 1. On $E := C_0(\mathbb{R}^n)$ we consider the heat semigroup defined by

$$(T(t)f)(x) := \frac{1}{(4\pi t)^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{-\frac{(x-y)^2}{4t}} f(y) \, dy \quad \text{for } t > 0 \text{ and}$$
$$T(0)f := f \in E.$$

Then $T(\cdot)$ is a bounded holomorphic semigroup and it generator is the Laplacian Δ on $C_0(\mathbb{R}^n)$. Since $T(t)f = k_t * f$, where $k_t(y) := \frac{1}{(4\pi t)^{\frac{n}{2}}} e^{-\frac{y^2}{4t}}$, $y \in \mathbb{R}^n$, and since $||k_t||_{L^1} = 1$, it follows that

$$||T(t)|| \le 1, \,\forall t \ge 0.$$
(2.1)

Take now $f \in C_c(\mathbb{R}^n)$. Then,

$$||T(t)f|| \le (4\pi t)^{-\frac{n}{2}} \int_{\mathbb{R}^n} |f(y)| \, dy \to 0 \text{ as } t \to \infty.$$

Hence, it follows from the density of $C_c(\mathbb{R}^n)$ in $C_0(\mathbb{R}^n)$ and (reflap) that $\lim_{t\to\infty} T(t)f = 0$, for every $f \in E$. This means that $T(\cdot)$ is strongly stable. On the other hand one can see that $\operatorname{Im}\Delta \neq C_0(\mathbb{R}^n)$, which implies that $0 \in \sigma(\Delta)$. Thus, $T(\cdot)$ is not uniformly exponentially stable, since $s(\Delta) \leq \omega_0(\Delta)$. For the definition of s(A) see Section 2.3.

2. We consider the translation semigroup

$$(T(t)f)(s) = f(s+t), \quad t, s \ge 0,$$

on $E := C_0(\mathbb{R}_+) \cap L^1(\mathbb{R}_+, e^s ds)$. Then E is a Banach lattice and $T(\cdot)$ is a C_0 -semigroup with generator A given by

$$Af = f' \text{ for } f \in D(A) = \{ f \in E : f \in C^1(\mathbb{R}_+) \text{ and } f' \in E \}.$$

Moreover,

$$\rho(A) = \{\lambda \in \mathbb{C} : \Re(\lambda) > -1\}$$

and for $\Re(\lambda) > -1$,

$$R(\lambda, A)f = \int_0^\infty e^{-\lambda t} T(t)f \, dt \quad \text{ exists for all } f \in E$$

One can see that ||T(t)|| = 1 and so $\omega_0(A) = 0$. On the other hand, for $\Re(\lambda) > -1$, we have

$$T(t)f = e^{\lambda t} \left(f - \int_0^t e^{-\lambda s} T(s)(\lambda - A) f \, ds \right), \quad f \in D(A),$$

and since $\lim_{t\to\infty} \int_0^t e^{-\lambda s} T(s)(\lambda - A) f \, ds$ exists, it follows that

$$||T(t)f|| \le Ne^{\lambda t}$$
, for all $f \in D(A)$.

Hence,

$$\omega_1(A) \leq -1 < 0 = \omega_0(A).$$

Consequently, $T(\cdot)$ is exponentially stable but not uniformly exponentially stable. For more details see [9, Example V.1.4].

The definition of the growth bound yields the following characterization of uniform exponential stability.

Proposition 2.1.3 For the generator A of a C_0 -semigroup $T(\cdot)$ on a Banach space *E*, the following assertions are equivalent.

- (a) $\omega_0(A) < 0$, *i.e.*, $T(\cdot)$ is uniformly exponentially stable.
- (b) $\lim_{t\to\infty} ||T(t)|| = 0.$
- (c) $||T(t_0)|| < 1$ for some $t_0 > 0$.
- (d) $r(T(t_1)) < 1$ for some $t_1 > 0$.

Proof: The implications $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d)$ are easy.

 $(d) \Rightarrow (c)$: Since $r(T(t_1)) = \lim_{k\to\infty} ||T(t_1k)||^{\frac{1}{k}} < 1$, it follows that there is $k_0 \in \mathbb{N}$ with $||T(k_0t_1)|| < 1$.

(c) \Rightarrow (a): For $\alpha := ||T(t_0)|| < 1, M := \sup_{0 \le s \le t_0} ||T(s)||$ and $t = kt_0 + s$ with $s \in [0, t_0)$, we have

$$\begin{aligned} \|T(t)\| &\leq \|T(s)\| \|T(t_0k)\| \\ &\leq M\alpha^k = Me^{k\ln\alpha}. \end{aligned}$$

If we set $\varepsilon := \frac{-\ln \alpha}{t_0} > 0$ (because $\alpha < 1$), then

$$||T(t)|| \leq M e^{k \ln \alpha} \leq \frac{M}{\alpha} e^{-\varepsilon t}.$$

It is clear that if $\omega_0(A) < 0$, then there are constants $\varepsilon > 0$ and $M \ge 1$ such that

$$||T(t)|| \le Me^{-\varepsilon t}, \quad t \ge 0.$$

Hence, for every $p \in [1,\infty)$, $\int_0^\infty ||T(t)x||^p dt < \infty$ for all $x \in E$. The following result due to Datko [6] shows that the converse is also true.

Theorem 2.1.4 A C_0 -semigroup $T(\cdot)$ on a Banach space E is uniformly exponentially stable if and only if for some (and hence for every) $p \in [1,\infty)$,

$$\int_0^\infty \|T(t)x\|^p dt < \infty$$

for all $x \in E$.

Proof: We have only to prove the converse. By Proposition 2.1.3 it suffices to prove that $\lim_{t\to\infty} ||T(t)|| = 0$. Since there are $M, \omega \in \mathbb{R}_+$ with $||T(t)|| \le Me^{\omega t}, t \ge 0$, we obtain

$$\frac{1-e^{-p\omega t}}{p\omega} \|T(t)x\|^p = \int_0^t e^{-p\omega s} \|T(s)T(t-s)x\|^p ds$$

$$\leq M^p \int_0^t \|T(t-s)x\|^p ds$$

$$\leq M^p C^p \|x\|^p$$

for all $x \in E$ and $t \ge 0$. Hence, $||T(t)x||^p \le \frac{p\omega}{1-e^{-p\omega}}M^pC^p||x||^p$ for $x \in E$ and $t \ge 1$. Thus, there exists a constant L > 0 with $||T(t)|| \le L$ for all $t \ge 0$. Therefore,

$$t||T(t)x||^{p} = \int_{0}^{t} ||T(t-s)T(s)x||^{p} ds$$

$$\leq L^{p} \int_{0}^{t} ||T(s)x||^{p} ds$$

$$\leq L^{p} C^{p} ||x||^{p}$$

for all $x \in E$ and $t \ge 0$. Thus,

$$||T(t)|| \le LCt^{-\frac{1}{p}}, \quad t > 0,$$

which implies $\lim_{t\to\infty} ||T(t)|| = 0$.

In Hilbert spaces uniform exponential stability can be characterized in term of the generator as the following Gearhart-Prüss's result shows (see [11], [22, A-III.7], [25]).

Theorem 2.1.5 Let $T(\cdot)$ be a C_0 -semigroup on a Hilbert space H with generator A. Then $T(\cdot)$ is uniformly exponentially stable if and only if

$$\{\lambda \in \mathbb{C} : \Re(\lambda) > 0\} \subseteq \rho(A) \text{ and } M := \sup_{\Re(\lambda) > 0} ||R(\lambda, A)|| < \infty.$$

Proof: Assume that $\omega_0(A) < 0$. Then $\int_0^\infty e^{-\lambda t} T(t) dt$ exists for all $\Re(\lambda) > 0$. So by [9, Theorem II.1.10], $\{\lambda \in \mathbb{C} : \Re(\lambda) > 0\} \subseteq \rho(A)$ and $R(\lambda, A) = \int_0^\infty e^{-\lambda t} T(t) dt$ and therefore

$$\sup_{\Re(\lambda)>0} \|R(\lambda,A)\| < \infty.$$

We now prove the converse. We know from the spectral theory for closed operators (cf. [9, Corollary IV.1.14]) that

dist
$$(\lambda, \sigma(A)) \ge \frac{1}{\|R(\lambda, A)\|} \ge M^{-1}$$
, for all $\Re(\lambda) > 0$.

Thus, $i\mathbb{R} \subseteq \rho(A)$ and $\sup_{\Re(\lambda) \ge 0} ||R(\lambda, A)|| < \infty$. Let $\omega > |\omega_0(A)| + 1$ and consider the C_0 -semigroup $T_{-\omega}(\cdot)$ defined by $T_{-\omega}(t) := e^{-\omega t}T(t), t \ge 0$. By [9, Theorem II.1.10] we have

$$R(\omega + is, A)x = R(is, A - \omega)x$$

=
$$\int_0^\infty e^{-ist} T_{-\omega}(t)x dt$$

=
$$\mathcal{F}(T_{-\omega}(\cdot)x)(s),$$

where $\mathcal{F}f(s) := \int_{-\infty}^{\infty} e^{-ist} f(t) dt$ denotes de Fourier transform from $L^2(\mathbb{R}, H)$ into $L^2(\mathbb{R}, H)$. Here we extend $T_{-\omega}(\cdot)$ to \mathbb{R} by taking $T_{-\omega}(t) = 0$ for t < 0. Since $T_{-\omega}(\cdot)$ is uniformly exponentially stable, we obtain $T_{-\omega}(\cdot)x \in L^2(\mathbb{R}, H)$. Then one can apply Plancherel's theorem, and we obtain

$$\int_{-\infty}^{\infty} \|R(\omega + is, A)x\|^2 ds = 2\pi \int_{0}^{\infty} \|T_{-\omega}(t)x\|^2 dt \le L \|x\|^2$$

for some constant L > 0 and all $x \in H$. The resolvent identity gives

$$R(is,A) = R(\omega + is,A) + \omega R(is,A)R(\omega + is,A), \quad \text{for all } s \in \mathbb{R}.$$

Hence, $||R(is,A)x|| \le (1 + M\omega) ||R(\omega + is,A)x||$ for $s \in \mathbb{R}$ and $x \in H$. This implies

$$\int_{-\infty}^{\infty} \|R(is,A)x\|^2 ds \leq (1+\omega M)^2 \int_{-\infty}^{\infty} \|R(\omega+is,A)x\|^2 ds$$
$$\leq (1+M\omega)^2 L\|x\|^2.$$

On the other hand, by the inverse Laplace transform formula (cf. [9, Corollary III.5.16]) we know that

$$T(t)x = \frac{1}{2i\pi t} \lim_{n \to \infty} \int_{\omega - in}^{\omega + in} e^{\lambda t} R(\lambda, A)^2 x d\lambda, \quad t \ge 0, x \in D(A^2).$$

Then, by Cauchy's integral theorem,

$$(tT(t)x|y) = \frac{1}{2i\pi} \int_{-\infty}^{\infty} e^{(\omega+is)t} \left(R(\omega+is,A)^2 x|y \right) ds$$
$$= \frac{1}{2i\pi} \int_{-\infty}^{\infty} e^{ist} \left(R(is,A)^2 x|y \right) ds$$
$$= \frac{1}{2i\pi} \int_{-\infty}^{\infty} e^{ist} \left(R(is,A)x|R(-is,A^*)y \right) ds$$

for all $x \in D(A^2)$ and $y \in H$. As above one can see that

$$\int_{-\infty}^{\infty} \|R(is,A^*)y\|^2 ds \le (1+M\omega)^2 L \|y\|^2, \quad y \in H.$$

By applying the Cauchy-Schwarz inequality we obtain

$$\begin{aligned} |(tT(t)x|y)| &\leq \frac{1}{2\pi} \left(\int_{-\infty}^{\infty} ||R(is,A)x||^2 \, ds \right)^{\frac{1}{2}} \left(\int_{-\infty}^{\infty} ||R(is,A^*)y||^2 \, ds \right)^{\frac{1}{2}} \\ &\leq \frac{(1+M\omega)^2 L}{2\pi} ||x|| ||y|| \end{aligned}$$

for all $x \in D(A^2)$ and $y \in H$. Since $\overline{D(A^2)} = H$, it follows that

$$\|tT(t)\| = \sup\{|(tT(t)x|y)|; x, y \in D(A^2), \|x\| = \|y\| = 1\}$$

$$\leq \frac{(1+M\omega)^2}{2\pi}L.$$

Hence, $\lim_{t\to\infty} ||T(t)|| = 0$ and therefore, $\omega_0(A) < 0$.

2.2 THE ESSENTIAL SPECTRUM AND QUASI-COMPACT SEMIGROUPS

In this section we study the essential growth bound $\omega_{ess}(A)$ of the generator A of a C_0 -semigroup $T(\cdot)$ on a Banach space E, in the case $\omega_{ess}(A) < 0$. Then we deduce important consequences for the asymptotic behaviour of $T(\cdot)$.

We start with some definitions. A bounded operator $S \in \mathcal{L}(E)$ is called a *Fred*holm operator if there is $T \in \mathcal{L}(E)$ such that Id - TS and Id - ST are compact. We denote by

$$\sigma_{ess}(S) = \mathbb{C} \setminus \rho_F(S)$$

the essential spectrum of S, where

$$\rho_F(S) := \{\lambda \in \mathbb{C} : (\lambda - S) \text{ is a Fredholm operator } \}.$$

The *Calkin algebra* $C(E) := \mathcal{L}(E) / \mathcal{K}(E)$ equipped with the quotient norm

$$||S||_{ess} := ||S + \mathcal{K}(E)|| = \operatorname{dist}(S, \mathcal{K}(E)) = \inf\{||S - K|| : K \in \mathcal{K}(E)\}$$

is a Banach algebra with unit. The essential spectrum of $S \in \mathcal{L}(E)$ can also defined as the spectrum of $S + \mathcal{K}(E)$ in the Banach algebra $\mathcal{C}(E)$. This implies that, for $S \in \mathcal{L}(E)$, $\sigma_{ess}(S)$ is non-empty and compact.

For $S \in \mathcal{L}(E)$ we define the *essential spectral radius* by

$$r_{ess}(S) := r(S + \mathcal{K}(E)) = \max\{|\lambda| : \lambda \in \sigma_{ess}(S)\}.$$

Since $(S + \mathcal{K}(E))^n = S^n + \mathcal{K}(E)$ for $n \in \mathbb{N}$, we have $r_{ess}(S) = \lim_{n \to \infty} ||S^n||_{ess}^{\frac{1}{n}}$ and consequently,

$$r_{ess}(S+K) = r_{ess}(S)$$
, for every $K \in \mathcal{K}(E)$.

If we denote by

 $Pol(S) := \{\lambda \in \mathbb{C} : \lambda \text{ is a pole of finite algebraic multiplicity of } R(\cdot, S) \},\$

then one can prove that $Pol(S) \subseteq \rho_F(S)$ and an element of the unbounded connected component of $\rho_F(S)$ either is in $\rho(S)$ or a pole of finite algebraic multiplicity. For details concerning the essential spectrum we refer to [20, Sec. IV.5.6], [13, Chap. XVII] or [12, Sec. IV.2]. Thus we obtain the following characterization.

Proposition 2.2.1 For $S \in \mathcal{L}(E)$ the essential spectral radius is given by

$$r_{ess}(S) = \inf \{r > 0 : \lambda \in \sigma(S), |\lambda| > r \text{ and } \lambda \in Pol(S) \}$$

Proof: If we set

$$a := \inf \{r > 0 : \lambda \in \sigma(S), |\lambda| > r \text{ and } \lambda \in Pol(S) \},\$$

then for all $\varepsilon > 0$ there is $r_{\varepsilon} > 0$ such that

$$\{\lambda \in \sigma(S) : |\lambda| > r_{\varepsilon}\} \subseteq Pol(S)$$

and $r_{\varepsilon} - \varepsilon \leq a$. On the other hand, we know that there is $\lambda_0 \in \sigma_{ess}(S)$ with $r_{ess}(S) = |\lambda_0|$. If we suppose that $r_{ess}(S) > r_{\varepsilon}$, then $\lambda_0 \in Pol(S)$. This implies that $\lambda_0 \in \rho_F(S)$ which is a contradiction. Hence, $r_{ess}(S) \leq r_{\varepsilon} \leq a + \varepsilon$. Thus, $r_{ess}(S) \leq a$.

To show the other inequality we know that

$$\{\lambda \in \sigma(S) : |\lambda| > r_{ess}(S)\} \subseteq \rho_F(S).$$

Therefore,

$$\{\lambda \in \sigma(S) : |\lambda| > r_{ess}(S)\} \subseteq Pol(S).$$

Consequently, $a \le r_{ess}(S)$ and the proposition is proved.

We define the *essential growth bound* $\omega_{ess}(A)$ of a C_0 -semigroup $T(\cdot)$ with generator A as the growth bound of the quotient semigroup $T(\cdot) + \mathcal{K}(E)$ on C(E), i.e.,

$$\omega_{ess}(A) := \inf\{\omega \in \mathbb{R} : \exists M > 0 \text{ such that } \|T(t)\|_{ess} \le Me^{\omega t}, \forall t \ge 0\}$$

Then, for all $t_0 > 0$, one can see that

$$\omega_{ess}(A) = \frac{\log r_{ess}(T(t_0))}{t_0} = \lim_{t \to \infty} \frac{\log \|T(t)\|_{ess}}{t}.$$
 (2.2)

The following result gives the relationship between $\omega_{ess}(A)$ and $\omega_0(A)$.

Proposition 2.2.2 Let $T(\cdot)$ be a C_0 -semigroup with generator A on a Banach space E. Then one has

$$\omega_0(A) = \max\{s(A), \omega_{ess}(A)\}$$

Proof: If $\omega_{ess}(A) < \omega_0(A)$, then $r_{ess}(T(1)) < r(T(1))$. Let $\lambda \in \sigma(T(1))$ such that $|\lambda| = r(T(1))$. So by Proposition 2.2.1, λ is an eigenvalue of T(1) and by the spectral mapping theorem for the point spectrum (cf. [9, Theorem IV.3.7]) there is $\lambda_1 \in \sigma_p(A)$ with $e^{\lambda_1} = \lambda$. Therefore, $\Re(\lambda_1) = \omega_0(A)$ and thus $\omega_0(A) = s(A)$. \Box

By using the essential growth bound one can deduces important consequences for the asymptotic behaviour, the proof can be found in [9, Theorem V.3.1]

Theorem 2.2.3 Let A be the generator of a C_0 -semigroup $T(\cdot)$ on a Banach space E and $\lambda_1, \ldots, \lambda_m \in \sigma(A)$ with $\Re(\lambda_1), \ldots, \Re(\lambda_m) > \omega_{ess}(A)$. Then $\lambda_1, \ldots, \lambda_m$ are isolated spectral values of A with finite algebraic multiplicity. Furthermore, if P_1, \ldots, P_m denote the corresponding spectral projections and k_1, \ldots, k_m the corresponding orders of poles of $R(\cdot, A)$, then

$$T(t) = T_1(t) + \ldots + T_m(t) + R_m(t),$$

where

$$T_n(t) := e^{\lambda_n t} \sum_{j=0}^{k_n-1} \frac{t^j}{j!} (A - \lambda_n)^j P_n, \quad n = 1, \dots, m.$$

Moreover, for every $\omega > \sup \{\omega_{ess}(A)\} \cup \{\Re(\lambda) : \lambda \in \sigma(A) \setminus \{\lambda_1, \dots, \lambda_m\}\}$, there is M > 0 such that

$$||R_m(t)|| \le M e^{\omega t} \quad for \ t \ge 0$$

We now introduce the concept of quasi-compact semigroups,

Definition 2.2.4 A C_0 -semigroup $T(\cdot)$ with generator A on a Banach space E is called quasi-compact if $\omega_{ess}(A) < 0$.

From (2.2) we deduce that any eventually compact C_0 -semigroup is quasi-compact.

The following description of the asymptotic behaviour of quasi-compact semigroups is an immediate consequence of Theorem 2.2.3.

Theorem 2.2.5 Let A be the generator of a quasi-compact C_0 -semigroup $T(\cdot)$ on a Banach space E. Then the following assertions hold.

(a) The set {λ ∈ σ(A) : ℜ(λ) ≥ 0} is finite (or empty) and consists of poles of R(·,A) of finite algebraic multiplicity.
 Denoting these poles by λ₁,...,λ_m, the corresponding spectral projections

 P_1, \ldots, P_m and the order of the poles k_1, \ldots, k_m , we have

(b) $T(t) = T_1(t) + \ldots + T_m(t) + R(t)$, where

$$T_n(t) := e^{\lambda_n t} \sum_{j=0}^{k_n - 1} \frac{t^j}{j!} (A - \lambda_n)^j P_n, \quad n = 1, \dots, m,$$

and

 $||R(t)|| \le Me^{-\varepsilon t}$ for some $\varepsilon > 0, M \ge 1$ and all $t \ge 0$.

2.3 SPECTRAL BOUNDS FOR POSITIVE SEMIGROUPS

In this section we characterize the spectral bound

$$s(A) := \sup\{\Re(\lambda) : \lambda \in \sigma(A)\}$$

of the generator of a positive C_0 -semigroup $T(\cdot)$ on a complex Banach lattice E. We will see that s(A) is always contained in $\sigma(A)$ provided that $\sigma(A) \neq \emptyset$. To that purpose the following result is essential.

Theorem 2.3.1 Let A be the generator of a positive C_0 -semigroup $T(\cdot)$ on E. For $\Re(\lambda) > s(A)$ we have

$$R(\lambda, A)x = \lim_{t \to \infty} \int_0^t e^{-\lambda s} T(s) x \, ds, \quad x \in E.$$

Moreover, $\int_0^t e^{-\lambda s} T(s) ds$ converges to $R(\lambda, A)$ with respect to the operator norm as $t \to \infty$.

Proof: Let $\lambda_0 > \omega_0(A)$ be fixed. Since $R(\lambda_0, A)x = \int_0^\infty e^{-\lambda_0 t} T(t)x dt$ and by the resolvent identity we obtain

$$R(\lambda_0, A)^{n+1}x = \frac{1}{n!} \int_0^\infty t^n e^{-\lambda_0 t} T(t) x dt$$

for $n \in \mathbb{N}$ and $x \in E$. Let $\mu \in (s(A), \lambda_0), x \in E_+$ and $x^* \in E_+^*$. By the spectral mapping theorem for the resolvent (cf. [9, Theorem IV.1.13]) one has $\frac{1}{\lambda_0 - \mu} > r(R(\lambda_0, A))$ and hence,

$$\begin{split} \langle R(\mu,A)x,x^*\rangle &= \sum_{n=0}^{\infty} (\lambda_0 - \mu)^n \langle R(\lambda_0,A)^{n+1}x,x^*\rangle \\ &= \sum_{n=0}^{\infty} \int_0^{\infty} \frac{1}{n!} \left[(\lambda_0 - \mu)s \right]^n e^{-\lambda_0 s} \langle T(s)x,x^*\rangle ds \\ &= \int_0^{\infty} \left(\sum_{n=0}^{\infty} \frac{1}{n!} \left[(\lambda_0 - \mu)s \right]^n \right) e^{-\lambda_0 s} \langle T(s)x,x^*\rangle ds \\ &= \int_0^{\infty} e^{(\lambda_0 - \mu)s} e^{-\lambda_0 s} \langle T(s)x,x^*\rangle ds \\ &= \int_0^{\infty} e^{-\mu s} \langle T(s)x,x^*\rangle ds \\ &= \lim_{t \to \infty} \langle \int_0^t e^{-\mu s} T(s)x ds,x^*\rangle. \end{split}$$

Hence, $(\int_0^t e^{-\mu s} T(s) x ds)$ converges weakly to $R(\mu, A)x$ as $t \to \infty$. Since $x \in E_+$, it follows that $(\int_0^t e^{-\mu s} T(s) x ds)_{t \ge 0}$ is monotone increasing and so, by Proposition 1.1.13, we have strong convergence. Thus,

$$\lim_{t \to \infty} \int_0^t e^{-\mu s} T(s) x \, ds = R(\mu, A) x, \quad \text{for all } x \in E$$

If $\lambda = \mu + i\gamma$ with $\mu, \gamma \in \mathbb{R}$ and $\mu > s(A)$, then for any $x \in E$ and $x^* \in E^*$, we have

$$\left|\left\langle\int_{r}^{t}e^{-\lambda s}T(s)xds,x^{*}\right\rangle\right|\leq\int_{r}^{t}e^{-\mu s}\left\langle T(s)|x|,|x^{*}|\right\rangle ds$$

Hence,

$$\left\|\int_{r}^{t} e^{-\lambda s} T(s) x ds\right\| \leq \left\|\int_{r}^{t} e^{-\mu s} T(s) |x| ds\right\|,$$

which implies that

$$\lim_{t \to \infty} \int_0^t e^{-\lambda s} T(s) x \, ds \text{ exists for all } x \in E$$

Then, by [9, Theorem II.1.10],

$$\lambda \in \rho(A)$$
 and $R(\lambda, A)x = \int_0^\infty e^{-\lambda t} T(t)x dt$ for all $x \in E$.

It remains to prove that $(\int_0^t e^{-\lambda s} T(s) ds)$ converges in the operator norm as $t \to \infty$. We fix $\mu \in (s(A), \Re(\lambda))$. As we have seen above, the function

$$f_{x,x^*}: s \mapsto e^{-\mu s} \langle T(s)x, x^* \rangle$$
 belongs to $L^1(\mathbb{R}_+)$ for all $x \in E, x^* \in E^*$.

It follows from the closed graph theorem that the bilinear form

$$b: E \times E^* \to L^1(\mathbb{R}_+); (x, x^*) \mapsto f_{x, x^*}$$

is separately continuous and hence continuous. Thus, there exists M > 0 such that

$$\int_0^\infty e^{-\mu s} |\langle T(s)x, x^* \rangle| \, ds \le M ||x|| \, ||x^*||, \quad x \in E, \, x^* \in E^*.$$

For $0 \le t < r$ and $\varepsilon := \Re(\lambda) - \mu$ we have

$$\begin{aligned} \left| \int_{t}^{r} e^{-\lambda s} \langle T(s)x, x^{*} \rangle ds \right| &\leq \int_{t}^{r} e^{-(\Re(\lambda) - \mu)s} e^{-\mu s} |\langle T(s)x, x^{*} \rangle| ds \\ &\leq e^{-\varepsilon t} \int_{t}^{r} e^{-\mu s} |\langle T(s)x, x^{*} \rangle| ds \\ &\leq e^{-\varepsilon t} M ||x|| ||x^{*}||. \end{aligned}$$

Hence, $\left\|\int_{t}^{r} e^{-\lambda s} T(s) ds\right\| \le M e^{-\varepsilon t}$ and this implies that $\left(\int_{0}^{t} e^{-\lambda s} T(s) ds\right)$ is a Cauchy sequence in $\mathcal{L}(E)$.

As an immediate consequence we obtain the following corollary.

Corollary 2.3.2 *Let* A *be the generator of a positive* C_0 *-semigroup* $T(\cdot)$ *on* E*. If* $\Re(\lambda) > s(A)$ *, then*

$$|R(\lambda, A)x| \le R(\Re(\lambda), A)|x|$$
 for all $x \in E$.

An other interesting corollary is the following.

Corollary 2.3.3 If A is the generator of a positive C_0 -semigroup $T(\cdot)$ on E, then

$$s(A) \in \sigma(A) \text{ or } s(A) = -\infty$$

Proof: Assume that $s(A) > -\infty$ and $s(A) \notin \sigma(A)$. So it follows from Corollary 2.3.2 that

$$|R(\lambda, A)x| \le R(\Re(\lambda), A)|x| \le R(s(A), A)|x| \quad \text{for all } \Re(\lambda) > s(A), x \in E.$$

Hence the set { $R(\lambda, A) : \Re(\lambda) > s(A)$ } is uniformly bounded in $\mathcal{L}(E)$. Let $M := \sup_{\Re(\lambda) > s(A)} ||R(\lambda, A)||$. Since $||R(\lambda, A)|| \ge \frac{1}{\operatorname{dist}(\lambda, \sigma(A))}$ for $\lambda \in \rho(A)$ (cf. [9, Corollary IV.1.14]), it follows that

$$\{\lambda \in \mathbb{C} : \Re(\lambda) = s(A)\} \subseteq \rho(A) \text{ and } ||R(\lambda, A)|| \le M, \forall \Re(\lambda) = s(A).$$

Thus,

$$\{\lambda \in \mathbb{C} : |\Re(\lambda) - s(A)| < M^{-1}\} \subseteq \rho(A).$$

This contradicts the definition of s(A).

The following consequence gives a relation between s(A) and the positivity of the resolvent.

Corollary 2.3.4 *Suppose that A generates a positive on* E *and* $\lambda_0 \in \rho(A)$ *. Then the following assertions hold.*

(i) $R(\lambda_0, A)$ is positive if and only if $\lambda_0 > s(A)$.

(ii) If
$$\lambda > s(A)$$
, then $r(R(\lambda, A)) = \frac{1}{\lambda - s(A)}$

Proof: (ii) is a simple consequence from Corollary 2.3.3 and the spectral mapping theorem for the resolvent (cf. [9, Theorem IV.1.13]).

(i) Assume first that $R(\lambda_0, A) \ge 0$. Since $Ag \in E_{\mathbb{R}}$ for all $0 \le g \in D(A)$, we have $\lambda_0 \in \mathbb{R}$. On the other hand, Theorem 2.3.1 implies that $R(\lambda, A) \ge 0$ for all $\lambda > \max(\lambda_0, s(A))$ and hence

$$R(\lambda_0, A) = R(\lambda, A) + (\lambda - \lambda_0)R(\lambda, A)R(\lambda_0, A)$$

> $R(\lambda, A) > 0$

for all $\lambda > \max(\lambda_0, s(A))$. Therefore,

$$(\lambda - s(A))^{-1} = r(R(\lambda, A)) \le ||R(\lambda, A)|| \le ||R(\lambda_0, A)||$$

for all $\lambda > \max(\lambda_0, s(A))$. But this is only true if $\lambda_0 > s(A)$.

The converse follows from Theorem 2.3.1.

Remark 2.3.5 (a) As an immediate consequence of Corollary 2.3.4 we obtain

$$s(A) = \inf\{\lambda \in \rho(A) : R(\lambda, A) \ge 0\}$$

for the generator A of a positive C_0 -semigroup on a Banach lattice E.

(b) If E := C(K), K compact, then $s(A) > -\infty$. In fact: We know from the theory of C_0 -semigroups that $\lim_{\lambda\to\infty} \lambda R(\lambda, A)f = f$ for all $f \in E$. In particular we find $\lambda_0 \in \mathbb{R}$ sufficiently large such that

$$\lambda_0 R(\lambda_0, A)$$
 II $\geq \frac{1}{2}$ II,

where II(x) := 1 for all $x \in K$. Since $R(\lambda_0, A) \ge 0$, it follows that

$$R(\lambda_0, A)^n$$
 II $\geq \frac{1}{(2\lambda_0)^n}$ II for all $n \in \mathbb{N}$.

Thus,

$$r(R(\lambda_0, A)) = \lim_{n \to \infty} \|R(\lambda_0, A)^n\|^{\frac{1}{n}} \ge \frac{1}{2\lambda_0} > 0$$

and hence $\sigma(A) \neq \emptyset$.

The spectrum of a generator of a positive C_0 -semigroup can be empty as the following examples show.

Example 2.3.6 (a) On $E := C_0[0,1) := \{f \in C[0,1] : f(1) = 0\}$ we consider the nilpotent C_0 -semigroup $T(\cdot)$ given by

$$(T(t)f)(x) = \begin{cases} f(x+t) & \text{if } x+t < 1\\ 0 & \text{if } x+t \ge 1 \end{cases}$$

for $t \ge 0$, $x \in [0, 1]$ and $f \in E$. Then, T(t) = 0 for $t \ge 1$ and hence $\sigma(T(t)) = \{0\}$. So by the spectral inclusion theorem (cf. [9, Theorem IV.3.6]), $\sigma(A) = \emptyset$.

(b) Let $E := C_0[0,\infty) := \{f \in C(\mathbb{R}_+) : \lim_{t \to +\infty} f(t) = 0\}$. On E, we define the C_0 -semigroup $T(\cdot)$ by

$$(T(t)f)(x) := e^{-\frac{t^2}{2}-xt}f(x+t), \quad x,t \ge 0 \text{ and } f \in E$$

Then, one can see that the generator A of $T(\cdot)$ on E is given by

$$(Af)(x) = f'(x) - xf(x), x \ge 0, and$$

$$f \in D(A) = \{f \in E : f \in C^1(\mathbb{R}_+) and Af \in E\}$$

By a simple computation one obtains that $\sigma(A) = \emptyset$.

For generators of positive C_0 -groups the spectrum is always nonempty. This is given by the following corollary.

Corollary 2.3.7 If A generates a positive C_0 -group on a Banach lattice E, then $\sigma(A) \neq \emptyset$.

Proof: Assume that $\sigma(A) = \emptyset$. By Theorem 2.3.1 we have $R(\lambda, A) \ge 0$ for all $\lambda \in \mathbb{R}$. Again, one can apply the same theorem to -A and obtains $R(\lambda, -A) \ge 0$ for all $\lambda \in \mathbb{R}$. But $R(\lambda, -A) = -R(-\lambda, A) \le 0$ for all $\lambda \in \mathbb{R}$, and hence, $R(\lambda, -A) = 0$ for all $\lambda \in \mathbb{R}$. This contradicts the fact that $E \ne \{0\}$.

2.4 The problem $\omega_0(A) = s(A)$ for positive semigroups

In this section we study in detail the growth bound $\omega_0(A)$ of the generator A of a positive C_0 -semigroup on a Banach lattice E. In particular, we look for sufficient conditions implying the equality $\omega_0(A) = s(A)$ without supposing the spectral mapping theorem.

For a C_0 -semigroup $S(\cdot)$ with generator B on a Banach space X satisfying $||S(t)|| \le Me^{\omega t}, t \ge 0$, for some constants $M, \omega \in \mathbb{R}$, it follows that $\{\lambda \in \mathbb{C} : \Re \lambda > \omega\} \subseteq \rho(B)$. Thus,

$$s(B) \leq \omega_0(B)$$

is always satisfied.

By applying the Gearhardt-Pruess's theorem and Theorem 1.2.2 we obtain the first result on the opposite inequality.

Theorem 2.4.1 Let A be the generator of a positive C_0 -semigroup $T(\cdot)$ on a Banach lattice E. Then $\omega_0(A) = s(A)$ holds in the followings cases.

- (i) E is a Hilbert space.
- (ii) E is an AL-space.
- (iii) $E := C_0(\Omega)$ or E := C(K), where Ω is locally compact Hausdorff and K is compact Hausdorff.

Proof: (i) Let $\mu > s(A)$ fixed. It follows from Corollary 2.3.2 that $\Lambda := \{\lambda \in \mathbb{C} : \Re(\lambda) > 0\} \subseteq \rho(A - \mu)$ and

$$||R(\lambda, A - \mu)|| \le ||R(\Re(\lambda), A - \mu)|| \le ||R(\mu, A)|| \quad \text{for all } \lambda \in \Lambda.$$

So, by Theorem 2.1.5, we have $\omega_0(A) - \mu < 0$ and hence,

$$\omega_0(A) \le s(A).$$

(ii) For $\lambda > s(A)$ and $x \in E_+$ we obtain from Theorem 2.3.1 that

$$\|R(\lambda,A)x\| = \left\|\int_0^\infty e^{-\lambda s}T(s)x\,ds\right\| = \int_0^\infty e^{-\lambda s}\|T(s)x\|\,ds,$$

where the second equality follows from the fact that the norm is additive on the positive cone. Hence,

$$\int_0^\infty \|(e^{-\lambda s}T(s))x\|\,ds<\infty\quad\text{for all }x\in E.$$

So, by Theorem 2.1.4, we have $\omega_0(A) - \lambda < 0$ and thus

$$\omega_0(A) \leq s(A).$$

(iii) It is easy to see that $||f \lor g|| = ||f|| \lor ||g||$ for all $f, g \in E_+$. Then, for $\gamma, \nu \in E_+^*$, we have

$$\begin{aligned} \langle f, \gamma \rangle + \langle g, \nu \rangle &\leq \langle f \lor g, \gamma + \nu \rangle \\ &\leq \|\gamma + \nu\| \| f \lor g \| \\ &= \|\gamma + \nu\| (\|f\| \lor \|g\|), \quad f, g \in E_+. \end{aligned}$$

Hence, $\langle f, \gamma \rangle + \langle g, \nu \rangle \le ||\gamma + \nu||$ for all $f, g \in E_+$ with ||f|| = ||g|| = 1. It follows from the Hahn-Banach theorem that $||\gamma|| + ||\nu|| \le ||\gamma + \nu||$ and hence,

 $\|\gamma\|+\|\nu\|=\|\gamma+\nu\|, \quad \gamma,\nu\in E_+.$

This implies that E^* is an AL-space. If we set $F := \overline{D(A^*)}$, then it follows from Theorem 1.2.2 that *F* is a closed ideal and hence also an AL-space. On *F* we consider the positive C_0 -semigroup $S(\cdot)$ given by

$$S(t) := T(t)_{|F|}^* \quad \text{for } t \ge 0$$

and we denote by B its generator. Then B is the part of A^* in F, i.e.,

$$D(B) = \{ v \in D(A^*) : A^* v \in F \}$$
 and $Bv = A^* v$ for $v \in D(B)$

Moreover, one can show that

$$\sigma(B) = \sigma(A^*) = \sigma(A)$$

Consequently, s(B) = s(A) holds. Since *B* is the generator of the positive C_{0^-} semigroup $S(\cdot)$ on the AL-space *F*, it follows from (ii) that $s(B) = \omega_0(B)$. Now, it suffices to prove that $\omega_0(B) = \omega_0(A)$. The inequality $\omega_0(B) \le \omega_0(A)$ is trivial. Let $\omega > \omega_0(B)$, $f \in E$ and $\nu \in F$. Then we have

$$|\langle T(t)f, \mathbf{v}\rangle| = |\langle f, S(t)\mathbf{v}\rangle| \le M ||f|| e^{\omega t} ||\mathbf{v}||$$

for $t \ge 0$ and some constant $M \ge 1$. On the other hand, since $f = \lim_{\lambda \to \infty} \lambda R(\lambda, A) f$ for all $f \in E$, we have $c := \limsup_{\lambda \to \infty} \lambda \|R(\lambda, A)\| < \infty$. Therefore,

$$\begin{aligned} |\langle T(t)f,\gamma\rangle| &= \lim_{\lambda\to\infty} |\langle \lambda R(\lambda,A)T(t)f,\gamma\rangle| \\ &= \lim_{\lambda\to\infty} |\langle T(t)f,\lambda R(\lambda,A^*)\gamma\rangle| \\ &\leq M||f||e^{\omega t}\limsup_{\lambda\to\infty} \lambda ||R(\lambda,A)^*\gamma|| \\ &\leq Mce^{\omega t}||f|||\gamma||, \quad \gamma\in E^*. \end{aligned}$$

Consequently, $||T(t)|| \le Mce^{\omega t}$ for all $t \ge 0$ and hence $\omega_0(A) \le \omega$ for all $\omega > \omega_0(B)$. Thus, we have shown that

$$\omega_0(B) = \omega_0(A).$$

The last result of this section is Weis's result concerning positive C_0 -semigroups on $L^p(\Omega) := L^p(\Omega, \mu), 1 \le p < \infty$, where (Ω, μ) a σ -finite measure space (see [33]). The proof presented here is due to W. Arendt (see [2, Theorem 5.3.6]).

We first need some preparations. We equip $\mathbb{R} \times \Omega$ with the product measure $\lambda_1 \otimes \mu$, where λ_1 is the Lebesgue measure on \mathbb{R} . We recall that $L^p(\mathbb{R} \times \Omega) \cong L^p(\mathbb{R}, L^p(\Omega))$. This allows us to identify the notations $g(t, \xi)$ and $g(t)(\xi)$ for $(t, \xi) \in \mathbb{R} \times \Omega$. Let us consider the non-linear map

$$\Phi: L^{p}(\mathbb{R}, L^{p}(\Omega)) \to L^{p}(\Omega); g \mapsto \Phi(g) := \left(\int_{\mathbb{R}} |g(t)|^{p} dt\right)^{\frac{1}{p}}.$$

It is clear that Φ is well-defined.

The following lemmas give some properties of the map Φ .

Lemma 2.4.2 Let $g, h \in L^p(\mathbb{R}, L^p(\Omega))$, $f \in L^{\infty}(\Omega)$, and $s \in \mathbb{R}$. Then the following assertions hold.

- 1. $\|\Phi(g)\|_{L^p(\Omega)} = \|g\|_{L^p(\mathbb{R} \times \Omega)}$.
- 2. $\Phi(g_s) = \Phi(g)$, where $g_s(t) := g(s+t), t, s \in \mathbb{R}$.
- 3. $\Phi(f \cdot g) = |f| \Phi(g)$, where $(f \cdot g)(t, \xi) := f(\xi)g(t, \xi), (t, \xi) \in \mathbb{R} \times \Omega$.
- 4. $\Phi(g+h) \le \Phi(g) + \Phi(h).$
- 5. Φ is a continuous map.

Proof: Assertions 1., 2. and 3. are simple to prove. For 4. we set $G_{\xi}(t) := g(t,\xi), H_{\xi}(t) := h(t,\xi), (t,\xi) \in \mathbb{R} \times \Omega$. For almost all $\xi \in \Omega$, we obtain $G_{\xi}, H_{\xi} \in L^{p}(\mathbb{R})$ and hence

$$\|G_{\xi} + H_{\xi}\|_{L^{p}(\mathbb{R})} \le \|G_{\xi}\|_{L^{p}(\mathbb{R})} + \|H_{\xi}\|_{L^{p}(\mathbb{R})}.$$

Since $||G_{\xi}||_{L^{p}(\mathbb{R})} = (\int_{\mathbb{R}} |g(t,\xi)|^{p} dt)^{\frac{1}{p}} = \Phi(g)(\xi)$ and also $||H_{\xi}||_{L^{p}(\mathbb{R})} = \Phi(h)(\xi)$, it follows that

$$\Phi(g+h)(\xi) \le \Phi(g)(\xi) + \Phi(h)(\xi), \quad \mu\text{-a.e. } \xi \in \Omega.$$

Thus, $\Phi(g+h) \le \Phi(g) + \Phi(h)$. By 4. we have

$$\Phi(g) \le \Phi(g-h) + \Phi(h)$$
 and $\Phi(h) \le \Phi(h-g) + \Phi(g)$.

This implies that $|\Phi(g) - \Phi(h)| \le \Phi(g - h)$ and so by 1. we obtain

$$\|\Phi(g) - \Phi(h)\|_{L^p(\Omega)} \le \|g - h\|_{L^p(\mathbb{R} \times \Omega)},$$

which proves 5..

Lemma 2.4.3 For a continuous function $G : [a,b] \to L^p(\mathbb{R}, L^p(\Omega))$ we have

$$\Phi\left(\int_a^b G(s)\,ds\right) \leq \int_a^b \Phi(G(s))\,ds.$$

Proof: It follows from Lemma 2.4.2 that

$$\Phi\left(\frac{b-a}{2^n}\sum_{j=0}^{2^n-1}G\left(\frac{jb+(2^n-j)a}{2^n}\right)\right) \le \frac{b-a}{2^n}\sum_{j=0}^{2^n-1}\Phi\left(G\left(\frac{jb+(2^n-j)a}{2^n}\right)\right).$$

Since Φ is continuous, we obtain the lemma by letting $n \to \infty$.

Let $g \in L^p(\mathbb{R}, L^p(\Omega))$ and $T \in \mathcal{L}(L^p(\Omega))$. We consider $T \circ g$ defined by

 $(T \circ g)(t) := T(g(t)), \quad t \in \mathbb{R}.$

Lemma 2.4.4 For $0 \le T \in \mathcal{L}(L^p(\Omega))$ and $0 \le g \in L^p(\mathbb{R}, L^p(\Omega))$ the inequality

$$\Phi(T \circ g) \le T(\Phi(g))$$

holds.

Proof: By Lemma 2.4.2, it suffices to prove the lemma for simple functions. Let $g := \sum_{k=1}^{n} \chi_{A_k} \otimes g_k$, where A_1, \ldots, A_n are disjoint Borel subsets of \mathbb{R} , and $g_1, \ldots, g_n \in L^p(\Omega)_+$. Setting $h_k := \lambda_1 (A_k)^{\frac{1}{p}} g_k$ for $k \in \{1, \ldots, n\}$. Since the sets (A_k) are disjoint, it follows that

$$\Phi(T \circ g) = \left(\sum_{k=1}^{n} \lambda_1(A_k)(Tg)^p\right)^{\frac{1}{p}} = \left(\sum_{k=1}^{n} (Th_k)^p\right)^{\frac{1}{p}},$$
$$T(\Phi(g)) = T\left(\sum_{k=1}^{n} \lambda_1(A_k)(g_k)^p\right)^{\frac{1}{p}} = T\left(\sum_{k=1}^{n} (h_k)^p\right)^{\frac{1}{p}}.$$

Let $\alpha := (\alpha_k)_k \subset \mathbb{R}$ with $\|\alpha\|_{l^q} \leq 1$, where $\frac{1}{q} + \frac{1}{p} = 1$. The Hölder inequality implies

$$\left(\sum_{k=1}^n \alpha_k h_k\right) \le \left(\sum_{k=1}^n |h_k|^p\right)^{\frac{1}{p}} = \Phi(g),$$

hence

$$\left(\sum_{k=1}^n \alpha_k T h_k\right) = T\left(\sum_{k=1}^n \alpha_k h_k\right) \le T(\Phi(g)).$$

Consequently,

$$\left(\sum_{k=1}^{n} |(Th_k)(\xi)|^p\right)^{\frac{1}{p}} = \sup\left\{\left(\sum_{k=1}^{n} \alpha_k(Th_k)(\xi)\right) : \alpha_k \in \mathbb{R}, \, \|(\alpha_k)\|_{l^q} \le 1\right\}$$
$$\leq T(\Phi(g))(\xi), \quad \mu-\text{a.e.}\, \xi \in \Omega,$$

and $\Phi(T \circ g) \leq T(\Phi(g))$.

We are now ready to prove Weis's result.

Theorem 2.4.5 Let (Ω, μ) be a σ -finite measure space, $1 \le p < \infty$, and $T(\cdot)$ a positive C_0 -semigroup on $L^p(\Omega)$ with generator A. Then $\omega_0(A) = s(A)$.

Proof: For $\xi > s(A)$ we set $T_{\xi}(t) := e^{-\xi t}T(t), t \ge 0$. We denote by $A_{\xi} := A - \xi$ the generator of the positive C_0 -semigroup $T_{\xi}(\cdot)$ on $L^p(\Omega)$. Then $s(A_{\xi}) = s(A) - \xi < 0$. Let $\alpha > \max(0, \omega_0(A_{\xi}))$ fixed. Let $f \in L^p(\Omega)$ and consider the function $g \in L^p(\mathbb{R}, L^p(\Omega))$ defined by

$$g(t) = \begin{cases} e^{-\alpha t} T_{\xi}(t) f, & t \ge 0\\ 0, & t < 0. \end{cases}$$

We now introduce the function

$$G: \mathbb{R}_+ \to L^p(\mathbb{R}, L^p(\Omega)); s \mapsto G(s) := T_{\xi}(s) \circ g_{-s},$$

where $g_{-s}(t) := g(t - s), t \in \mathbb{R}$. Hence,

$$G(s)(t) = \begin{cases} e^{-\alpha(t-s)} T_{\xi}(t) f, & 0 \le s \le t, \\ 0, & t < s. \end{cases}$$

Thus,

$$\Phi\left(\int_0^m G(s)\,ds\right) = \left(\int_0^\infty \left|\int_0^{\min(m,t)} e^{-\alpha(t-s)}T_{\xi}(t)f\,ds\right|^p dt\right)^{\frac{1}{p}}$$
$$= \frac{1}{\alpha}\left(\int_0^\infty (e^{-\alpha\max(0,t-m)} - e^{-\alpha t})^p |T_{\xi}(t)f|^p \,dt\right)^{\frac{1}{p}}$$

and hence

$$0 \le \frac{1}{\alpha} \left(\int_0^\infty (e^{-\alpha \max(0, t-m)} - e^{-\alpha t})^p |T_{\xi}(t)f|^p dt \right)^{\frac{1}{p}} = \Phi\left(\int_0^m G(s) ds \right).$$
(2.3)

So, by Lemmas 2.4.3, 2.4.4, and 2.4.2, it follows that

$$0 \leq \Phi\left(\int_0^m G(s) \, ds\right)$$

$$\leq \int_0^m \Phi(G(s)) \, ds$$

$$= \int_0^m \Phi(T_{\xi}(s) \circ g_{-s}) \, ds$$

$$\leq \int_0^m T_{\xi}(s)(\Phi(g_{-s})) \, ds$$

$$= \int_0^m T_{\xi}(s)(\Phi(g)) \, ds.$$

On the other hand, since $s(A_{\xi}) < 0$ and from Theorem 2.3.1, it follows that

$$\lim_{m\to\infty}\int_0^m T_{\xi}(s)(\Phi(g))\,ds = R(0,A_{\xi})(\Phi(g))\,ds$$

From (2.3) and the monotone convergence theorem we have

$$0 \le \frac{1}{\alpha} \left(\int_0^\infty (1 - e^{-\alpha t})^p |T_{\xi}(t)f|^p dt \right)^{\frac{1}{p}} \le R(0, A_{\xi})(\Phi(g)).$$

This implies

$$\left(\frac{1-e^{-\alpha}}{\alpha}\right)\left(\int_{1}^{\infty}|T_{\xi}(t)f|^{p}\,dt\right)^{\frac{1}{p}}\leq R(0,A_{\xi})(\Phi(g))$$

and therefore

$$\int_{\Omega} \int_{1}^{\infty} |(T_{\xi}(t)f)(y)|^{p} dt d\mu(y) \leq \left(\frac{\alpha}{1-e^{-\alpha}}\right)^{p} ||R(0,A_{\xi})||^{p} ||\Phi(g)||_{L^{p}(\Omega)}^{p},$$

which implies that

$$\int_1^\infty \|T_{\xi}(t)f\|_{L^p(\Omega)}^p \, dt < \infty.$$

So, by Theorem 2.1.4, we obtain $\omega_0(A_{\xi}) = \omega_0(A) - \xi < 0$. Consequently,

 $\omega_0(A) \le s(A).$

2.5 IRREDUCIBLE SEMIGROUPS

In many concrete examples the semigroup $T(\cdot)$ does not have exponential stability, however possesses an *asynchronous exponential growth*. This means that there is a rank one projection *P* and constants $\varepsilon > 0$, $M \ge 1$ such that

$$\|e^{-s(A)t}T(t) - P\| \le Me^{-\varepsilon t}$$
 for all $t \ge 0$,

where A denotes the generator of $T(\cdot)$.

In order to study such kind of behaviour we introduce the concept of irreducibility for positive C_0 -semigroups. For more details see [22] and the references therein.

Definition 2.5.1 A positive C_0 -semigroup $T(\cdot)$ on a Banach lattice E with generator A is called irreducible if one of the following equivalent properties is satisfied

- (i) There is no T(t)-invariant closed ideal other than $\{0\}$ and E for all t > 0.
- (ii) For $x \in E$, $x^* \in E^*$ with $x \ge 0$ and $x^* > 0$, there is $t_0 > 0$ such that

 $\langle T(t_0)x, x^* \rangle > 0.$

- (iii) For some (and then for every) $\lambda > s(A)$, there is no $R(\lambda, A)$ -invariant closed ideal except $\{0\}$ and E.
- (iv) For some (and then for every) $\lambda > s(A)$, $R(\lambda, A)x$ is a quasi-interior point of E_+ for every $x \ge 0$.
- **Example 2.5.2** (a) Let $E := L^p(\Omega, \mu)$, $1 \le p < \infty$, and $T(\cdot)$ be a positive C_0 -semigroup on E with generator A. Then, it follows from Example 1.1.7 that $T(\cdot)$ is irreducible if and only if

$$0 \leq f \in E \Longrightarrow (R(\lambda, A)f)(s) > 0$$
 for a.e. $s \in \Omega$ and some $\lambda > s(A)$.

(b) If E := C₀(Ω), where Ω is locally compact Hausdorff, and T(·) a positive C₀-semigroup on E with generator A, then, by Example 1.1.7, T(·) is irreducible if and only if

 $0 \leq f \in E \Longrightarrow (R(\lambda, A)f)(s) > 0$ for all $s \in \Omega$ and some $\lambda > s(A)$.

We now state some consequences of irreducibility.

Proposition 2.5.3 Assume that A is the generator of an irreducible C_0 -semigroup $T(\cdot)$ on a Banach lattice E. Then the following assertions hold.

- (a) Every positive eigenvector of A is a quasi-interior point.
- (b) Every positive eigenvector of A^* is strictly positive.
- (c) If $\ker(s(A) A^*)$ contains a positive element, then $\dim \ker(s(A) A) \le 1$.
- (d) If s(A) is a pole of the resolvent, then it has algebraic (and geometric) multiplicity equal to 1. The corresponding residue has the form P_{s(A)} = u^{*} ⊗ x, where x ∈ E is a positive eigenvector of A, u^{*} ∈ E^{*} is a positive eigenvector of A^{*} and ⟨x, u^{*}⟩ = 1.

Proof: (a) Let *x* be a positive eigenvector of *A* and $E_x := \bigcup_{n \in \mathbb{N}} n[-x, x]$ the ideal generated by *x*. If λ is such that $Ax = \lambda x$, then $\lambda \in \mathbb{R}$. This follows from

$$x \ge 0$$
 and $Ax = \lim_{t \to 0^+} \frac{1}{t} (T(t)x - x)$.

Hence, $T(t)x = e^{\lambda t}x$ for $t \ge 0$. Thus, for $y \in E_x$,

$$|T(t)y| \le T(t)|y| \le nT(t)x = ne^{\lambda t}x, \quad t \ge 0.$$

Consequently, $T(t)E_x \subseteq E_x$ holds for all $t \ge 0$. Since $0 \ne x \in E_x$ and $T(\cdot)$ is irreducible, it follows that $\overline{E_x} = E$.

(b) Let x^* be a positive eigenvector of A^* and λ its corresponding eigenvalue. By the same argument we have $\lambda \in \mathbb{R}$ and $T(t)^*x^* = e^{\lambda t}x^*$ for $t \ge 0$. Hence,

$$\langle |T(t)u|, x^* \rangle \leq \langle T(t)|u|, x^* \rangle = \langle |u|, e^{\lambda t} x^* \rangle, \quad u \in E, t \ge 0.$$

Thus, $I := \{u \in E : \langle |u|, x^* \rangle = 0\}$ is a T(t)-invariant closed ideal for all $t \ge 0$. Since $x^* \ne 0$ we have $I \subsetneq E$ and so by the irreducibility we obtain $I = \{0\}$. Therefore, $x^* > 0$.

(c) Let $0 \leq x^* \in \ker(s(A) - A^*)$. It follows from (b) that x^* is strictly positive. For $x \in \ker(s(A) - A)$ we have $T_{-s(A)}(t)x = x$ and hence,

$$|x| = |T_{-s(A)}(t)x| \le T_{-s(A)}(t)|x|, \quad t \ge 0.$$

Thus, for $t \ge 0$,

$$\begin{aligned} \langle |x|, x^* \rangle &\leq \langle T_{-s(A)}(t) |x|, x^* \rangle \\ &= \langle |x|, x^* \rangle. \end{aligned}$$

This implies that $\langle T_{-s(A)}(t)|x| - |x|, x^* \rangle = 0$, and since $x^* > 0$, we obtain $T_{-s(A)}(t)|x| = |x|$ for $t \ge 0$. Therefore,

$$|x| \in \ker(s(A) - A).$$

Since $(T_{-s(A)}(t)x)^+ \leq T_{-s(A)}(t)x^+$, one can see by the same arguments as above that $x^+ \in \ker(s(A) - A)$ and $x^- \in \ker(s(A) - A)$. This implies that $F := E_{\mathbb{R}} \cap \ker(s(A) - A)$ is a real sublattice of E. For $x \in F$ we consider the ideal E_{x^+} (resp. E_{x^-}) generated by x^+ (resp. x^-). Then, E_{x^+} and E_{x^-} are $T_{-s(A)}(t)$ -invariant for all $t \geq 0$. Since E_{x^+} and E_{x^-} are orthogonal, it follows from the irreducibility of $T_{-s(A)}(\cdot)$ that $x^+ = 0$ or $x^- = 0$. Consequently, F is totally ordered. So by Lemma 1.1.14 we have

$$\dim F = \dim \ker(s(A) - A) \le 1.$$

(d) We claim that if s(A) is a pole of the resolvent, then there is an eigenvector $0 \leq x \in E$ of A corresponding to s(A). Indeed, let k be the order of the pole s(A) and $R_{-k} = \lim_{\lambda \to s(A)^+} (\lambda - s(A))^k R(\lambda, A)$ the corresponding residue. Then, $R_{-k} \neq 0$ and $R_{-(k+1)} = 0$. Moreover, by Corollary 2.3.4, we have $R_{-k} \geq 0$. Hence, there is

 $0 \le y \in E$ with $x := R_{-ky} \ge 0$. By the relation $R_{-(k+1)} = (A - s(A))R_{-k} = 0$ we obtain (A - s(A))x = 0. This proves the claim.

We can now use (a) to obtain $\overline{E_x} = E$. By taking the adjoint $R^*_{-(k+1)}$ of $R_{-(k+1)}$ and by the same computation as before one has, if s(A) is a pole of the resolvent, then there is $0 \leq x^* \in \ker(s(A) - A^*)$. So by (c) we have dim $\ker(s(A) - A) = 1$.

Now, assume that $k \ge 2$. Then we have

$$\begin{aligned} \langle x, x^* \rangle &= \langle R_{-k}y, x^* \rangle \\ &= \langle y, R_{-k}^* x^* \rangle \\ &= \langle y, R_{-(k-1)}^* (A^* - s(A)) x^* \rangle \\ &= 0. \end{aligned}$$

Since $\overline{E_x} = E$, it follows that $\langle u, x^* \rangle = 0$ for all $u \in E_+$. This contradicts the assertion (b). Hence k = 1. From the inequality $m_g + k - 1 \le m_a \le m_g k$ (cf. [9] p. 247) we obtain

$$m_a = m_g = \dim P_{s(A)}E = \dim \ker(s(A) - A) = 1,$$

where we recall that $P_{s(A)} = R_{-1}$. Since $P_{s(A)}E \subseteq \ker(s(A) - A)$, it follows that

$$P_{s(A)}E = \ker(s(A) - A).$$

We now show the last part of Assertion (d). To this purpose let $0 \leq x \in \ker(s(A) - C)$ *A*). Without loss of generality, we suppose that ||x|| = 1. Then $P_{s(A)}E = \text{Span}\{x\}$, i.e. $P_{s(A)}y = \lambda x$ for some $\lambda \in \mathbb{C}$ and every $y \in E$. By the Hahn-Banach theorem (see Proposition 1.1.12) there exists $0 \le y^* \in (\ker(s(A) - A))^*$ with $||y^*|| = 1$ and $\langle x, y^* \rangle = ||x|| = 1$. Hence $\langle P_{s(A)}y, y^* \rangle = \lambda = \langle y, P^*_{s(A)}y^* \rangle$. If we put $u^* := P^*_{s(A)}y^* \ge 0$ 0, then $P_{s(A)} = u^* \otimes x$ and $\langle x, u^* \rangle = \langle P_{s(A)}x, y^* \rangle = \langle x, y^* \rangle = 1$. This implies that $0 \leq u^* \in P_{s(A)}^* E^* \subseteq \ker(s(A) - A^*)$. So $u^* > 0$ by (b). This ends the proof of the proposition.

The following result describes the eigenvalues of an irreducible semigroup which are contained in the boundary spectrum $\sigma_b(A) := \{\lambda \in \sigma(A) : \Re(\lambda) = s(A)\},\$ where A is the corresponding generator.

Theorem 2.5.4 Let $T(\cdot)$ be an irreducible C_0 -semigroup with generator A on a Banach lattice E. Assume that s(A) = 0 and there is $0 \leq x^* \in D(A^*)$ with $A^*x^* = 0$. If $\sigma_p(A) \cap i\mathbb{R} \neq \emptyset$, then the following assertions hold.

(a) For $0 \neq h \in D(A)$ and $\alpha \in \mathbb{R}$ with $Ah = i\alpha h$, |h| is a quasi-interior point and

$$S_h(D(A)) = D(A) \text{ and } S_h^{-1}AS_h = A + i\alpha$$

hold, where S_h is the signum operator.

- (b) dim ker $(\lambda A) = 1$ for every $\lambda \in \sigma_n(A) \cap i\mathbb{R}$.
- (c) $\sigma_p(A) \cap i\mathbb{R}$ is an additive subgroup of $i\mathbb{R}$.

(d) 0 is the only eigenvalue of A admitting a positive eigenvector.

Proof: We first remark that by Proposition 2.5.3.(b) we have $x^* > 0$ and $T(t)^* x^* = x^*$ for all $t \ge 0$.

(a) Assume that $Ah = i\alpha h$ for $0 \neq h \in D(A)$ and $\alpha \in \mathbb{R}$. Then $T(t)h = e^{i\alpha t}h$ and hence $|h| = |T(t)h| \leq T(t)|h|$. This implies that

$$T(t)|h| - |h| \ge 0 \quad \text{ for all } t \ge 0.$$

On the other hand,

$$\langle T(t)|h| - |h|, x^* \rangle = \langle |h|, T(t)^* x^* \rangle - \langle |h|, x^* \rangle$$

= 0 for all $t \ge 0$.

Since $x^* > 0$, we obtain T(t)|h| = |h| for all $t \ge 0$, which implies that A|h| = 0. So, by Proposition 2.5.3.(a), |h| is a quasi-interior point. If we set $T_{\alpha}(t) := e^{-i\alpha t}T(t), t \ge 0$, then T(t) and $T_{\alpha}(t)$ satisfy the assumptions of Lemma 1.2.5 and hence

$$T(t) = S_h^{-1} T_\alpha(t) S_h, \quad t \ge 0$$

Therefore, $S_h(D(A)) = D(A)$ and $A = S_h^{-1}(A - i\alpha)S_h$ and (a) is proved.

(b) It follows from (a) that $S_h : \ker(i\alpha + A) \to \ker A$ for $i\alpha \in \sigma_p(A) \cap i\mathbb{R}$. On the other hand, the proof of (a) implies that $\ker A \neq \{0\}$. So, by Proposition 2.5.3.(c), dim $\ker A = 1$ and hence dim $\ker(i\alpha + A) = 1$.

(c): Let $0 \neq h, g \in D(A)$, $\alpha, \beta \in \mathbb{R}$ such that $Ah = i\alpha h$ and $Ag = i\beta g$. By (a) we have

$$S_g^{-1}AS_g = A + i\beta$$
 and $S_hAS_h^{-1} = A - i\alpha$.

Thus $A + i(\beta - \alpha) = S_h(A + i\beta)S_h^{-1} = S_hS_g^{-1}AS_gS_h^{-1}$ which implies that ker $(A + i(\beta - \alpha)) = S_hS_g^{-1}$ ker $A \neq \{0\}$. Therefore

$$i(\beta - \alpha) \in \sigma_p(A).$$

(d): If $Ax = \lambda x$, where $0 \leq x \in D(A)$, then

$$\lambda \langle x, x^* \rangle = \langle Ax, x^* \rangle = \langle x, A^* x^* \rangle = 0.$$

Since $x^* > 0$, it follows that $\langle x, x^* \rangle > 0$. Hence, $\lambda = 0$.

For irreducible semigroups we obtain the following description of the boundary spectrum.

Theorem 2.5.5 Let $T(\cdot)$ be an irreducible C_0 -semigroup with generator A on a Banach lattice E and assume that s(A) is a pole of the resolvent. Then there is $\alpha \ge 0$ such that

$$\sigma_b(A) = s(A) + i\alpha\mathbb{Z}.$$

Moreover, $\sigma_b(A)$ *contains only algebraically simple poles.*

Proof: Without loss of generality we suppose that s(A) = 0. It can be shown that $\sigma_b(A) \subseteq \sigma_p(A)$. The proof uses pseudo-resolvents on a suitable \mathcal{F} -product of E, where \mathcal{F} is an ultrafilter on \mathbb{N} which is finer than the Frechet filter (see [22], p. 314). Hence, $\sigma_b(A) = \sigma_p(A) \cap i\mathbb{R}$. By Proposition 2.5.3.(d) we obtain the existence of a positive eigenvector $x^* \in D(A^*)$ corresponding to the eigenvalue s(A) = 0. It follows from Theorem 2.5.4.(c) that $\sigma_b(A)$ is a subgroup of $(i\mathbb{R}, +)$. Since $\sigma_b(A)$ is closed and s(A) = 0 is an isolated point, we have

$$\sigma_b(A) = i\alpha\mathbb{Z}$$
 for some $\alpha \ge 0$.

Proposition 2.5.3.(d) implies that 0 is a simple pole and by Theorem 2.5.4.(a) we have, for $\lambda \in \rho(A)$,

$$R(\lambda + ik\alpha, A) = S_h^k R(\lambda, A) S_h^{-k} \quad \text{for all } k \in \mathbb{Z}.$$

Therefore, $ik\alpha$ is a simple pole for each $k \in \mathbb{Z}$. This ends the proof of the theorem. \Box

We now give sufficient conditions for a C_0 -semigroup to possess an asynchronous exponential growth. This result will be very useful for many applications.

Theorem 2.5.6 Let $T(\cdot)$ be an irreducible C_0 -semigroup with generator A on a Banach lattice E. If $\omega_{ess}(A) < \omega_0(A)$, then there exists a quasi-interior point $0 \le x \in E, 0 < x^* \in E^*$ with $\langle x, x^* \rangle = 1$ such that

$$\|e^{-s(A)t}T(t) - x^* \otimes x\| \le Me^{-\varepsilon t} \quad \text{for all } t \ge 0,$$

and appropriate constants $M \ge 1$ and $\varepsilon > 0$.

Proof: We first remark first that the rescaled semigroup $T_{-\omega_0}(t) := e^{-\omega_0(A)t}T(t)$, for $t \ge 0$, satisfies $\omega_{ess}(A_{-\omega_0}) = \omega_{ess}(A) - \omega_0(A) < 0$, where $A_{-\omega_0} := A - \omega_0(A)$ denotes its generator. Thus, $T_{-\omega_0}(\cdot)$ is quasi-compact and, by Proposition 2.2.2, we have

$$s(A) = \omega_0(A).$$

On the other hand, since $\omega_{ess}(A) < \omega_0(A)$, it follows that $r_{ess}(T(1)) < r(T(1))$. Hence, by Proposition 2.2.1, r(T(1)) is a pole of the resolvent of T(1). This implies that $\omega_0(A) = s(A)$ is a pole of $R(\cdot, A)$. Thus, by Theorem 2.5.5, it follows that there exists $\alpha \ge 0$ such that $\sigma_b(A) = s(A) + i\alpha\mathbb{Z}$ and therefore $\sigma_b(A_{-\omega_0}) = i\alpha\mathbb{Z}$. Since $T_{-\omega_0}(\cdot)$ is quasi-compact and $\omega_0(A_{-\omega_0}) = 0$, we have, by Theorem 2.2.5, that

$$\{\lambda \in \sigma(A_{-\omega_0}) : \Re(\lambda) \ge 0\} = \{\lambda \in \sigma(A_{-\omega_0}) : \Re(\lambda) = 0\} = \sigma_b(A_{-\omega_0})$$

is finite. Therefore $\sigma_b(A_{-\omega_0}) = \{0\}$. The theorem is now proved by applying Theorem 2.2.5 and Proposition 2.5.3 to the rescaled semigroup $T_{-\omega_0}(\cdot)$.