
CHAPTER 2

SPECTRAL THEORY FOR

POSITIVE SEMIGROUPS

In this chapter we are concerned with the remarkable spectral properties shown by
positive semigroups on Banach lattices.
Throughout this chapter we suppose that E �� � 0 � is a complex Banach lattice.

2.1 STABILITY OF STRONGLY CONTINUOUS

SEMIGROUPS

In this section we study the asymptotic behaviour of the solution of the abstract
Cauchy problem

�
ACP �

�
u �
�
t � � Au

�
t � � t � 0 �

u
�
0 � � x �

where A is the generator of a C0–semigroup T
�
� � on a Banach space E.

To this purpose we define the type of the trajectory T
�
� � x by

ω
�
x � : � inf � ω : # T � t � x # � Meωt for a constant M and all t � 0 � �

and the growth bound (or type) of T
�
� � by

ω0
�
A � : � sup � ω � x � : x

�
E �

� inf � ω ��� : # T � t � # � Meωt for some constant M and all t � 0 � �
The type of the solutions of (ACP) is

ω1
�
A � : � sup � ω � x � : x

�
D
�
A � � ���

We now introduce different stability concepts.
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Definition 2.1.1 A C0–semigroup T
�
� � with generator A is called

(i) uniformly exponentially stable if ω0
�
A � � 0,

(ii) exponentially stable if ω1
�
A � � 0,

(iii) strongly stable if limt � ∞ # T � t � x # � 0 for every x
�

E,

(iv) stable if limt � ∞ # T � t � x # � 0 for every x
�

D
�
A � .

It is clear that
�
i � �  �

ii �
� �

�
iii � �  �

iv � �
If A

� L
�
E � , then

�
i ���  �

ii � and
�
iii ���  �

iv � . In the case where A is unbounded
the above concepts of stability may differ as one can see in the following examples.

Example 2.1.2 1. On E : � C0
� � n � we consider the heat semigroup defined by

�
T
�
t � f � � x � : � 1�

4πt � n
2

�
� n

e �
�
x � y � 2

4t f
�
y � dy for t � 0 and

T
�
0 � f : � f � E �

Then T
�
� � is a bounded holomorphic semigroup and it generator is the

Laplacian ∆ on C0
� � n � . Since T

�
t � f � kt � f , where kt

�
y � : � 1�

4πt 	 n
2

e � y2
4t � y �

� n , and since # kt # L1 � 1, it follows that

# T � t � # � 1 ��
 t � 0 � (2.1)

Take now f � Cc
� � n � . Then,

# T � t � f # � � 4πt � � n
2

�
� n

� f � y � � dy 	 0 as t 	 ∞ �
Hence, it follows from the density of Cc

� � n � in C0
� � n � and (reflap) that

limt � ∞ T
�
t � f � 0, for every f

�
E. This means that T

�
� � is strongly stable.

On the other hand one can see that Im∆ �� C0
� � n � , which implies that 0 �

σ
�
∆ � . Thus, T

�
� � is not uniformly exponentially stable, since s

�
∆ � � ω0

�
∆ � .

For the definition of s
�
A � see Section 2.3.

2. We consider the translation semigroup
�
T
�
t � f � � s � � f

�
s � t � � t � s � 0 �

on E : � C0
� � � � � L1 � � � � esds � . Then E is a Banach lattice and T

�
� � is a

C0–semigroup with generator A given by

A f � f � for f
�

D
�
A � � � f

�
E : f

�
C1 � ��� � and f � � E ���
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Moreover,
ρ
�
A ����� λ ��� : ℜ

�
λ � � �

1 �
and for ℜ

�
λ � � �

1,

R
�
λ � A � f �

� ∞

0
e � λtT

�
t � f dt exists for all f

�
E �

One can see that # T � t � # � 1 and so ω0
�
A � � 0. On the other hand, for

ℜ
�
λ ��� �

1, we have

T
�
t � f � eλt

�
f
� � t

0
e � λsT

�
s � � λ �

A � f ds � � f � D
�
A � �

and since limt � ∞ � t
0 e � λsT

�
s � � λ �

A � f ds exists, it follows that

# T � t � f # � Neλt � for all f
�

D
�
A ���

Hence,
ω1
�
A � � �

1 � 0 � ω0
�
A � �

Consequently, T
�
� � is exponentially stable but not uniformly exponentially

stable. For more details see [9, Example V.1.4].

The definition of the growth bound yields the following characterization of uni-
form exponential stability.

Proposition 2.1.3 For the generator A of a C0–semigroup T
�
� � on a Banach space

E, the following assertions are equivalent.

(a) ω0
�
A � � 0, i.e., T

�
� � is uniformly exponentially stable.

(b) limt � ∞ # T � t � # � 0.

(c) # T � t0 � # � 1 for some t0 � 0.

(d) r
�
T
�
t1 � � � 1 for some t1 � 0.

Proof: The implications
�
a �  �

b �  �
c �  �

d � are easy.�
d �  �

c � : Since r
�
T
�
t1 � � � limk � ∞ # T � t1k � # 1

k � 1, it follows that there is
k0

� � with # T � k0t1 � # � 1.�
c �  �

a � : For α : � # T � t0 � # � 1 � M : � sup0 � s � t0 # T � s � # and t � kt0 � s with
s �
�
0 � t0 � , we have

# T � t � # � # T � s � # # T � t0k � #
� Mαk � Mek lnα �

If we set ε : � � lnα
t0

� 0 (because α � 1), then

# T � t � # � Mek lnα � M
α

e � εt �
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�
It is clear that if ω0

�
A � � 0, then there are constants ε � 0 and M � 1 such that

# T � t � # � Me � εt � t � 0 �
Hence, for every p

�
�
1 � ∞ � , � ∞

0 # T � t � x # p dt � ∞ for all x
�

E. The following result
due to Datko [6] shows that the converse is also true.

Theorem 2.1.4 A C0–semigroup T
�
� � on a Banach space E is uniformly exponen-

tially stable if and only if for some (and hence for every) p
�
�
1 � ∞ � ,

� ∞

0
# T � t � x # p dt � ∞

for all x
�

E.

Proof: We have only to prove the converse. By Proposition 2.1.3 it suffices to
prove that limt � ∞ # T � t � # � 0 � Since there are M � ω ����� with # T � t � # � Meωt � t �
0 � we obtain

1
�

e � pωt

pω
# T � t � x # p �

� t

0
e � pωs # T � s � T � t � s � x # p ds

� Mp
� t

0
# T � t � s � x # p ds

� MpCp # x # p

for all x
�

E and t � 0. Hence, # T � t � x # p � pω
1 � e � pω MpCp # x # p for x

�
E and t � 1.

Thus, there exists a constant L � 0 with # T � t � # � L for all t � 0. Therefore,

t # T � t � x # p �
� t

0
# T � t � s � T � s � x # p ds

� Lp
� t

0
# T � s � x # p ds

� LpCp # x # p

for all x
�

E and t � 0. Thus,

# T � t � # � LCt � 1
p � t � 0 �

which implies limt � ∞ # T � t � # � 0. �
In Hilbert spaces uniform exponential stability can be characterized in term

of the generator as the following Gearhart-Prüss’s result shows (see [11], [22, A-
III.7], [25]).

Theorem 2.1.5 Let T
�
� � be a C0–semigroup on a Hilbert space H with generator

A. Then T
�
� � is uniformly exponentially stable if and only if

� λ ��� : ℜ
�
λ � � 0 � � ρ

�
A � and M : � sup

ℜ
�
λ 	�� 0

# R � λ � A � # � ∞ �
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Proof: Assume that ω0
�
A � � 0. Then � ∞

0 e � λtT
�
t � dt exists for all ℜ

�
λ � � 0. So

by [9, Theorem II.1.10], � λ � � : ℜ
�
λ � � 0 � � ρ

�
A � and R

�
λ � A � � � ∞

0 e � λt T
�
t � dt

and therefore
sup

ℜ
�
λ 	�� 0

# R � λ � A � # � ∞ �
We now prove the converse. We know from the spectral theory for closed

operators (cf. [9, Corollary IV.1.14]) that

dist
�
λ � σ

�
A � � � 1

# R � λ � A � # � M � 1 � for all ℜ
�
λ � � 0 �

Thus, i
� � ρ

�
A � and supℜ

�
λ 	�� 0 # R � λ � A � # � ∞. Let ω ��� ω0

�
A � ��� 1 and consider

the C0–semigroup T� ω
�
� � defined by T� ω

�
t � : � e � ωt T

�
t � � t � 0 � By [9, Theorem

II.1.10] we have

R
�
ω � is � A � x � R

�
is � A

�
ω � x

�
� ∞

0
e � istT� ω

�
t � xdt

� F
�
T� ω

�
� � x � � s ���

where F f
�
s � : � � ∞

� ∞ e � ist f
�
t � dt denotes de Fourier transform from L2 � � � H � into

L2 � � � H � . Here we extend T� ω
�
� � to � by taking T� ω

�
t � � 0 for t � 0. Since

T� ω
�
� � is uniformly exponentially stable, we obtain T� ω

�
� � x � L2 � � � H � . Then one

can apply Plancherel’s theorem, and we obtain� ∞

� ∞
# R � ω � is � A � x # 2 ds � 2π

� ∞

0
# T� ω

�
t � x # 2 dt � L # x # 2

for some constant L � 0 and all x
�

H. The resolvent identity gives

R
�
is � A � � R

�
ω � is � A �
� ωR

�
is � A � R � ω � is � A � � for all s

��� �
Hence, # R � is � A � x # � � 1 � Mω � # R � ω � is � A � x # for s

��� and x
�

H. This implies� ∞

� ∞
# R � is � A � x # 2 ds � �

1 � ωM � 2
� ∞

� ∞
# R � ω � is � A � x # 2 ds

� �
1 � Mω � 2L # x # 2 �

On the other hand, by the inverse Laplace transform formula (cf. [9, Corollary
III.5.16]) we know that

T
�
t � x � 1

2iπt
lim
n � ∞

� ω
�

in

ω � in
eλtR

�
λ � A � 2xdλ � t � 0 � x �

D
�
A2 � �

Then, by Cauchy’s integral theorem,

�
tT
�
t � x � y � � 1

2iπ

� ∞

� ∞
e
�
ω
�

is 	 t � R � ω � is � A � 2x � y � ds

� 1
2iπ

� ∞

� ∞
eist � R � is � A � 2x � y � ds

� 1
2iπ

� ∞

� ∞
eist � R � is � A � x � R ��� is � A � � y � ds
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for all x
�

D
�
A2 � and y

�
H. As above one can see that

� ∞

� ∞
# R � is � A � � y # 2 ds � � 1 � Mω � 2L # y # 2 � y

�
H �

By applying the Cauchy-Schwarz inequality we obtain

� � tT � t � x � y � � � 1
2π

� � ∞

� ∞
# R � is � A � x # 2 ds � 1

2
� � ∞

� ∞
# R � is � A � � y # 2 ds � 1

2

�
�
1 � Mω � 2L

2π
# x # # y #

for all x
�

D
�
A2 � and y

�
H. Since D

�
A2 ��� H, it follows that

# tT � t � # � sup � � � tT � t � x � y � � ; x � y �
D
�
A2 � �
# x # ��# y # � 1 �

�
�
1 � Mω � 2

2π
L �

Hence, limt � ∞ # T � t � # � 0 and therefore, ω0
�
A � � 0. �

2.2 THE ESSENTIAL SPECTRUM AND

QUASI-COMPACT SEMIGROUPS

In this section we study the essential growth bound ωess
�
A � of the generator A of a

C0–semigroup T
�
� � on a Banach space E, in the case ωess

�
A � � 0. Then we deduce

important consequences for the asymptotic behaviour of T
�
� � .

We start with some definitions. A bounded operator S
� L

�
E � is called a Fred-

holm operator if there is T
� L

�
E � such that Id

�
TS and Id

�
ST are compact.

We denote by
σess

�
S � � ��� ρF

�
S �

the essential spectrum of S, where

ρF
�
S � : � � λ ��� :

�
λ
�

S � is a Fredholm operator � �
The Calkin algebra C

�
E � : � L

�
E ��� K �

E � equipped with the quotient norm

# S # ess : ��# S � K
�
E � # � dist

�
S � K

�
E � ��� inf �
# S �

K # : K
� K

�
E � �

is a Banach algebra with unit. The essential spectrum of S
� L

�
E � can also defined

as the spectrum of S � K
�
E � in the Banach algebra C

�
E � . This implies that, for

S
� L

�
E � , σess

�
S � is non-empty and compact.

For S
� L

�
E � we define the essential spectral radius by

ress
�
S � : � r

�
S � K

�
E � ��� max ��� λ � : λ � σess

�
S � ���
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Since
�
S � K

�
E � � n � Sn � K

�
E � for n

� � , we have ress
�
S � � limn � ∞ # Sn # 1

n
ess and

consequently,

ress
�
S � K � � ress

�
S � � for every K

� K
�
E ���

If we denote by

Pol
�
S � : � � λ � � : λ is a pole of finite algebraic multiplicity of R

�
� � S � � �

then one can prove that Pol
�
S � � ρF

�
S � and an element of the unbounded con-

nected component of ρF
�
S � either is in ρ

�
S � or a pole of finite algebraic multiplic-

ity. For details concerning the essential spectrum we refer to [20, Sec. IV.5.6], [13,
Chap. XVII] or [12, Sec. IV.2]. Thus we obtain the following characterization.

Proposition 2.2.1 For S
� L

�
E � the essential spectral radius is given by

ress
�
S � � inf � r � 0 : λ � σ

�
S � � � λ � � r and λ �

Pol
�
S � � �

Proof: If we set

a : � inf � r � 0 : λ � σ
�
S � ��� λ � � r and λ �

Pol
�
S � � �

then for all ε � 0 there is rε � 0 such that

� λ � σ
�
S � : � λ � � rε � �

Pol
�
S �

and rε
�

ε � a. On the other hand, we know that there is λ0
� σess

�
S � with ress

�
S � �

� λ0 � . If we suppose that ress
�
S � � rε, then λ0

�
Pol

�
S ��� This implies that λ0

� ρF
�
S �

which is a contradiction. Hence, ress
�
S � � rε � a � ε. Thus, ress

�
S � � a.

To show the other inequality we know that

� λ � σ
�
S � : � λ � � ress

�
S � � � ρF

�
S ���

Therefore,
� λ � σ

�
S � : � λ � � ress

�
S � � �

Pol
�
S ���

Consequently, a � ress
�
S � and the proposition is proved. �

We define the essential growth bound ωess
�
A � of a C0–semigroup T

�
� � with

generator A as the growth bound of the quotient semigroup T
�
� ��� K

�
E � on C

�
E � ,

i.e.,

ωess
�
A � : � inf � ω ��� : � M � 0 such that # T � t � # ess � Meωt � 
 t � 0 � �

Then, for all t0 � 0, one can see that

ωess
�
A � � logress

�
T
�
t0 � �

t0
� lim

t � ∞

log # T � t � # ess

t
� (2.2)

The following result gives the relationship between ωess
�
A � and ω0

�
A � .
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Proposition 2.2.2 Let T
�
� � be a C0–semigroup with generator A on a Banach

space E. Then one has

ω0
�
A � � max � s � A � � ωess

�
A � ���

Proof: If ωess
�
A � � ω0

�
A � , then ress

�
T
�
1 � � � r

�
T
�
1 � � . Let λ � σ

�
T
�
1 � � such

that � λ � � r
�
T
�
1 � � . So by Proposition 2.2.1, λ is an eigenvalue of T

�
1 � and by the

spectral mapping theorem for the point spectrum (cf. [9, Theorem IV.3.7]) there is
λ1

� σp
�
A � with eλ1 � λ. Therefore, ℜ

�
λ1 ��� ω0

�
A � and thus ω0

�
A ��� s

�
A � . �

By using the essential growth bound one can deduces important consequences
for the asymptotic behaviour, the proof can be found in [9, Theorem V.3.1]

Theorem 2.2.3 Let A be the generator of a C0–semigroup T
�
� � on a Banach space

E and λ1 �	� �	� � λm
� σ

�
A � with ℜ

�
λ1 � � �	� � � ℜ �

λm � � ωess
�
A � . Then λ1 � �	�	� � λm are

isolated spectral values of A with finite algebraic multiplicity. Furthermore, if
P1 � �	�	� � Pm denote the corresponding spectral projections and k1 �	� �	� � km the corre-
sponding orders of poles of R

�
� � A � , then

T
�
t � � T1

�
t ���"� �	�	� Tm

�
t �
� Rm

�
t ���

where

Tn
�
t � : � eλnt

kn � 1

∑
j 
 0

t j

j!

�
A
�

λn � jPn � n � 1 � �	� � � m �
Moreover, for every ω � sup � ωess

�
A � � � � ℜ �

λ � : λ � σ
�
A � � � λ1 � �	�	� � λm � � , there

is M � 0 such that
# Rm

�
t � # � Meωt for t � 0 �

We now introduce the concept of quasi-compact semigroups,

Definition 2.2.4 A C0–semigroup T
�
� � with generator A on a Banach space E is

called quasi-compact if ωess
�
A � � 0.

From (2.2) we deduce that any eventually compact C0–semigroup is quasi-compact.
The following description of the asymptotic behaviour of quasi-compact semi-

groups is an immediate consequence of Theorem 2.2.3.

Theorem 2.2.5 Let A be the generator of a quasi-compact C0–semigroup T
�
� � on

a Banach space E. Then the following assertions hold.

(a) The set � λ � σ
�
A � : ℜ

�
λ � � 0 � is finite (or empty) and consists of poles of

R
�
� � A � of finite algebraic multiplicity.

Denoting these poles by λ1 �	� �	� � λm, the corresponding spectral projections
P1 �	� �	� � Pm and the order of the poles k1 � �	�	� � km, we have

(b) T
�
t ��� T1

�
t ���"�	� �	� Tm

�
t ��� R

�
t � , where

Tn
�
t � : � eλnt

kn � 1

∑
j 
 0

t j

j!

�
A
�

λn � jPn � n � 1 � �	�	� � m �

and
# R � t � # � Me � εt for some ε � 0 � M � 1 and all t � 0 �
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2.3 SPECTRAL BOUNDS FOR POSITIVE

SEMIGROUPS

In this section we characterize the spectral bound

s
�
A � : � sup � ℜ �

λ � : λ � σ
�
A � �

of the generator of a positive C0–semigroup T
�
� � on a complex Banach lattice E.

We will see that s
�
A � is always contained in σ

�
A � provided that σ

�
A � �� /0.

To that purpose the following result is essential.

Theorem 2.3.1 Let A be the generator of a positive C0–semigroup T
�
� � on E. For

ℜ
�
λ � � s

�
A � we have

R
�
λ � A � x � lim

t � ∞

� t

0
e � λsT

�
s � xds � x

�
E �

Moreover, � t
0 e � λsT

�
s � ds converges to R

�
λ � A � with respect to the operator norm

as t 	 ∞.

Proof: Let λ0 � ω0
�
A � be fixed. Since R

�
λ0 � A � x � � ∞

0 e � λ0t T
�
t � xdt and by the

resolvent identity we obtain

R
�
λ0 � A � n

�
1x � 1

n!

� ∞

0
tne � λ0t T

�
t � xdt

for n
� � and x

�
E. Let µ

� �
s
�
A ��� λ0 ��� x

�
E
� and x � � E �� . By the spectral

mapping theorem for the resolvent (cf. [9, Theorem IV.1.13]) one has 1
λ0 � µ �

r
�
R
�
λ0 � A � � and hence,

� R � µ � A � x � x � � �
∞

∑
n 
 0

�
λ0

�
µ � n � R � λ0 � A � n

�
1x � x � �

�
∞

∑
n 
 0

� ∞

0

1
n!

� �
λ0

�
µ � s � n e � λ0s � T � s � x � x � � ds

�
� ∞

0

�
∞

∑
n 
 0

1
n!

� �
λ0

�
µ � s � n � e � λ0s � T � s � x � x � � ds

�
� ∞

0
e
�
λ0 � µ 	 se � λ0s � T � s � x � x � � ds

�
� ∞

0
e � µs � T � s � x � x � � ds

� lim
t � ∞

�
� t

0
e � µsT

�
s � xds � x � ���

Hence, � � t
0 e � µsT

�
s � xds � converges weakly to R

�
µ � A � x as t 	 ∞. Since x

�
E
� ,

it follows that � � t
0 e � µsT

�
s � xds � t � 0 is monotone increasing and so, by Proposition

1.1.13, we have strong convergence. Thus,

lim
t � ∞

� t

0
e � µsT

�
s � xds � R

�
µ � A � x � for all x

�
E �
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If λ � µ � iγ with µ � γ ��� and µ � s
�
A � , then for any x

�
E and x � � E � , we have

�
�
�
� �

� t

r
e � λsT

�
s � xds � x � �

�
�
�
� �

� t

r
e � µs � T � s � � x � � � x � � � ds �

Hence, �
�
�
�

� t

r
e � λsT

�
s � xds

�
�
�
� �

�
�
�
�

� t

r
e � µsT

�
s � � x � ds

�
�
�
� �

which implies that

lim
t � ∞

� t

0
e � λsT

�
s � xds exists for all x

�
E �

Then, by [9, Theorem II.1.10],

λ � ρ
�
A � and R

�
λ � A � x �

� ∞

0
e � λtT

�
t � xdt for all x

�
E �

It remains to prove that � � t
0 e � λsT

�
s � ds � converges in the operator norm as t 	 ∞.

We fix µ
� �

s
�
A � � ℜ �

λ � � . As we have seen above, the function

fx � x � : s �	 e � µs � T � s � x � x � � belongs to L1 � ��� � for all x
�

E � x � � E � �
It follows from the closed graph theorem that the bilinear form

b : E � E � 	 L1 � ��� � ; � x � x � � �	 fx � x �

is separately continuous and hence continuous. Thus, there exists M � 0 such that
� ∞

0
e � µs � � T � s � x � x � � � ds � M # x # # x � # � x

�
E � x � � E � �

For 0 � t � r and ε : � ℜ
�
λ � � µ we have

�
�
�
�

� r

t
e � λs � T � s � x � x � � ds

�
�
�
� �

� r

t
e � � ℜ � λ 	 � µ 	 se � µs � � T � s � x � x � � � ds

� e � εt
� r

t
e � µs � � T � s � x � x � � � ds

� e � εt M # x # # x � # �
Hence,

�
� � r

t e � λsT
�
s � ds

�
� � Me � εt and this implies that � � t

0 e � λsT
�
s � ds � is a Cauchy

sequence in L
�
E � . �

As an immediate consequence we obtain the following corollary.

Corollary 2.3.2 Let A be the generator of a positive C0–semigroup T
�
� � on E. If

ℜ
�
λ � � s

�
A � , then

� R � λ � A � x � � R
�
ℜ
�
λ � � A � � x � for all x � E �
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An other interesting corollary is the following.

Corollary 2.3.3 If A is the generator of a positive C0–semigroup T
�
� � on E, then

s
�
A � � σ

�
A � or s

�
A ��� �

∞ �
Proof: Assume that s

�
A � � �

∞ and s
�
A � �� σ

�
A � . So it follows from Corollary

2.3.2 that

� R � λ � A � x � � R
�
ℜ
�
λ � � A � � x � � R

�
s
�
A � � A � � x � for all ℜ

�
λ ��� s

�
A � � x

�
E �

Hence the set � R � λ � A � : ℜ
�
λ � � s

�
A � � is uniformly bounded in L

�
E � . Let M : �

supℜ
�
λ 	 � s

�
A 	 # R � λ � A � # � Since # R � λ � A � # � 1

dist
�
λ � σ

�
A 	 	 for λ � ρ

�
A � (cf. [9, Corol-

lary IV.1.14]), it follows that

� λ ��� : ℜ
�
λ � � s

�
A � � � ρ

�
A � and # R � λ � A � # � M � 
 ℜ

�
λ � � s

�
A � �

Thus,
� λ � � : �ℜ �

λ � � s
�
A � � � M � 1 � � ρ

�
A ���

This contradicts the definition of s
�
A � . �

The following consequence gives a relation between s
�
A � and the positivity of

the resolvent.

Corollary 2.3.4 Suppose that A generates a positive on E and λ0
� ρ

�
A � . Then

the following assertions hold.

(i) R
�
λ0 � A � is positive if and only if λ0 � s

�
A � .

(ii) If λ � s
�
A � , then r

�
R
�
λ � A � ��� 1

λ � s
�
A 	 .

Proof: (ii) is a simple consequence from Corollary 2.3.3 and the spectral mapping
theorem for the resolvent (cf. [9, Theorem IV.1.13]).
(i) Assume first that R

�
λ0 � A � � 0. Since Ag

�
E � for all 0 � g

�
D
�
A � , we have

λ0
� � . On the other hand, Theorem 2.3.1 implies that R

�
λ � A � � 0 for all λ �

max
�
λ0 � s

�
A � � and hence

R
�
λ0 � A � � R

�
λ � A ��� �

λ
�

λ0 � R
�
λ � A � R � λ0 � A �

� R
�
λ � A � � 0

for all λ � max
�
λ0 � s

�
A � � . Therefore,

�
λ
�

s
�
A � � � 1 � r

�
R
�
λ � A � � ��# R � λ � A � # ��# R � λ0 � A � #

for all λ � max
�
λ0 � s

�
A � ��� But this is only true if λ0 � s

�
A � .

The converse follows from Theorem 2.3.1. �
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Remark 2.3.5 (a) As an immediate consequence of Corollary 2.3.4 we obtain

s
�
A � � inf � λ � ρ

�
A � : R

�
λ � A � � 0 �

for the generator A of a positive C0–semigroup on a Banach lattice E.
(b) If E : � C

�
K � , K compact, then s

�
A �	� �

∞. In fact: We know from the theory
of C0–semigroups that limλ � ∞ λR

�
λ � A � f � f for all f

�
E. In particular we find

λ0
���

sufficiently large such that

λ0R
�
λ0 � A � 1I � 1

2
1I �

where 1I
�
x � : � 1 for all x � K. Since R

�
λ0 � A ��� 0, it follows that

R
�
λ0 � A � n1I � 1�

2λ0 � n 1I for all n
� � �

Thus,

r
�
R
�
λ0 � A � ��� lim

n � ∞
# R � λ0 � A � n # 1

n � 1
2λ0

� 0

and hence σ
�
A � �� /0.

The spectrum of a generator of a positive C0–semigroup can be empty as the fol-
lowing examples show.

Example 2.3.6 (a) On E : � C0

�
0 � 1 � : � � f

�
C
�
0 � 1 � : f

�
1 � � 0 � we consider

the nilpotent C0–semigroup T
�
� � given by

�
T
�
t � f � � x � �

�
f
�
x � t � if x � t � 1

0 if x � t � 1

for t � 0 � x �
�
0 � 1 � and f

�
E. Then, T

�
t � � 0 for t � 1 and hence σ

�
T
�
t � � �

� 0 � . So by the spectral inclusion theorem (cf. [9, Theorem IV.3.6]), σ
�
A ���

/0.

(b) Let E : � C0

�
0 � ∞ � : � � f

�
C
� � � � : limt � �

∞ f
�
t � � 0 � . On E, we define the

C0–semigroup T
�
� � by

�
T
�
t � f � � x � : � e � t2

2 � xt f
�
x � t � � x � t � 0 and f

�
E �

Then, one can see that the generator A of T
�
� � on E is given by

�
A f � � x � � f �

�
x � � x f

�
x ��� x � 0 � and

f
�

D
�
A ��� � f

�
E : f

�
C1 � � � � and A f

�
E ���

By a simple computation one obtains that σ
�
A ��� /0.

For generators of positive C0–groups the spectrum is always nonempty. This is
given by the following corollary.
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Corollary 2.3.7 If A generates a positive C0–group on a Banach lattice E, then
σ
�
A � �� /0 �

Proof: Assume that σ
�
A � � /0. By Theorem 2.3.1 we have R

�
λ � A � � 0 for all

λ � � . Again, one can apply the same theorem to
�

A and obtains R
�
λ �

�
A � � 0 for

all λ � � . But R
�
λ �

�
A � � �

R
�	�

λ � A � � 0 for all λ � � , and hence, R
�
λ �

�
A � � 0

for all λ ��� . This contradicts the fact that E ���� 0 � . �

2.4 THE PROBLEM ω0 � A ��� s � A � FOR POSITIVE

SEMIGROUPS

In this section we study in detail the growth bound ω0
�
A � of the generator A of

a positive C0–semigroup on a Banach lattice E. In particular, we look for suffi-
cient conditions implying the equality ω0

�
A � � s

�
A � without supposing the spec-

tral mapping theorem.
For a C0–semigroup S

�
� � with generator B on a Banach space X satisfying

# S � t � # � Meωt � t � 0, for some constants M � ω � � , it follows that � λ � � : ℜλ �
ω � � ρ

�
B � . Thus,

s
�
B � � ω0

�
B �

is always satisfied.
By applying the Gearhardt-Pruess’s theorem and Theorem 1.2.2 we obtain the

first result on the opposite inequality.

Theorem 2.4.1 Let A be the generator of a positive C0–semigroup T
�
� � on a Ba-

nach lattice E. Then ω0
�
A � � s

�
A � holds in the followings cases.

(i) E is a Hilbert space.

(ii) E is an AL-space.

(iii) E : � C0
�
Ω � or E : � C

�
K � , where Ω is locally compact Hausdorff and K is

compact Hausdorff.

Proof: (i) Let µ � s
�
A � fixed. It follows from Corollary 2.3.2 that Λ : � � λ � � :

ℜ
�
λ � � 0 � � ρ

�
A
�

µ � and

# R � λ � A
�

µ � # ��# R � ℜ �
λ � � A �

µ � # �$# R � µ � A � # for all λ � Λ �
So, by Theorem 2.1.5, we have ω0

�
A � � µ � 0 and hence,

ω0
�
A � � s

�
A � �

(ii) For λ � s
�
A � and x

�
E � we obtain from Theorem 2.3.1 that

# R � λ � A � x # �
�
�
�
�

� ∞

0
e � λsT

�
s � xds

�
�
�
� �

� ∞

0
e � λs # T � s � x # ds �
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where the second equality follows from the fact that the norm is additive on the
positive cone. Hence,

� ∞

0
# � e � λsT

�
s � � x # ds � ∞ for all x

�
E �

So, by Theorem 2.1.4, we have ω0
�
A � � λ � 0 and thus

ω0
�
A � � s

�
A ���

(iii) It is easy to see that # f � g # ��# f # ��# g # for all f � g �
E
� . Then, for γ � ν �

E �� ,
we have

� f � γ �
� � g � ν � � � f � g � γ � ν �
� # γ � ν # # f � g #
� # γ � ν # � # f # ��# g # � � f � g �

E
� �

Hence, � f � γ � � � g � ν � ��# γ � ν # for all f � g �
E � with # f # � # g # � 1. It follows

from the Hahn-Banach theorem that # γ # ��# ν # �$# γ � ν # and hence,

# γ # � # ν # � # γ � ν # � γ � ν �
E
� �

This implies that E � is an AL-space. If we set F : � D
�
A � � , then it follows from

Theorem 1.2.2 that F is a closed ideal and hence also an AL-space. On F we
consider the positive C0–semigroup S

�
� � given by

S
�
t � : � T

�
t � � � F for t � 0 �

and we denote by B its generator. Then B is the part of A � in F, i.e.,

D
�
B � ��� ν �

D
�
A � � : A � ν �

F � and Bν � A � ν for ν �
D
�
B � �

Moreover, one can show that

σ
�
B � � σ

�
A � ��� σ

�
A ���

Consequently, s
�
B � � s

�
A � holds. Since B is the generator of the positive C0–

semigroup S
�
� � on the AL-space F , it follows from (ii) that s

�
B � � ω0

�
B � . Now,

it suffices to prove that ω0
�
B � � ω0

�
A � . The inequality ω0

�
B � � ω0

�
A � is trivial.

Let ω � ω0
�
B � � f

�
E and ν �

F. Then we have

� � T � t � f � ν � � � � � f � S � t � ν � � � M # f # eωt # ν #
for t � 0 and some constant M � 1. On the other hand, since f � limλ � ∞ λR

�
λ � A � f

for all f
�

E, we have c : � limsupλ � ∞ λ # R � λ � A � # � ∞. Therefore,

� � T � t � f � γ � � � lim
λ � ∞

� � λR
�
λ � A � T � t � f � γ � �

� lim
λ � ∞

� � T � t � f � λR
�
λ � A � � γ � �

� M # f # eωt limsup
λ � ∞

λ # R � λ � A � � γ #
� Mceωt # f # # γ # � γ �

E � �
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Consequently, # T � t � # � Mceωt for all t � 0 and hence ω0
�
A � � ω for all ω �

ω0
�
B � . Thus, we have shown that

ω0
�
B ��� ω0

�
A ���

�
The last result of this section is Weis’s result concerning positive C0–semigroups

on Lp � Ω � : � Lp � Ω � µ ��� 1 � p � ∞, where
�
Ω � µ � a σ–finite measure space (see

[33]). The proof presented here is due to W. Arendt (see [2, Theorem 5.3.6]).
We first need some preparations. We equip �

� Ω with the product measure
λ1 � µ, where λ1 is the Lebesgue measure on � . We recall that Lp � � � Ω � ��
Lp � � � Lp � Ω � . This allows us to identify the notations g

�
t � ξ � and g

�
t � � ξ � for

�
t � ξ � ��

� Ω. Let us consider the non-linear map

Φ : Lp � � � Lp � Ω � � 	 Lp � Ω � ; g �	 Φ
�
g � : �

� �
� � g � t � � p dt � 1

p �
It is clear that Φ is well-defined.

The following lemmas give some properties of the map Φ.

Lemma 2.4.2 Let g � h �
Lp � � � Lp � Ω � � � f

�
L∞ � Ω � , and s

� �
. Then the following

assertions hold.

1. # Φ �
g � # Lp

�
Ω 	 ��# g # Lp

� ��� Ω 	 .

2. Φ
�
gs ��� Φ

�
g � , where gs

�
t � : � g

�
s � t � � t � s ���

.

3. Φ
�
f � g � � � f � Φ �

g � , where
�
f � g � � t � ξ � : � f

�
ξ � g � t � ξ � � � t � ξ � ���

� Ω.

4. Φ
�
g � h � � Φ

�
g ��� Φ

�
h � .

5. Φ is a continuous map.

Proof: Assertions 1 � � 2 � and 3 � are simple to prove. For 4 � we set Gξ
�
t � : �

g
�
t � ξ � � Hξ

�
t � : � h

�
t � ξ ��� � t � ξ � � �

� Ω. For almost all ξ � Ω, we obtain Gξ � Hξ
�

Lp � � � and hence

# Gξ � Hξ # Lp
� � 	 �$# Gξ # Lp

� � 	 � # Hξ # Lp
� � 	 �

Since # Gξ # Lp
� � 	 � � � � � g � t � ξ � � p dt � 1

p � Φ
�
g � � ξ � and also # Hξ # Lp

� � 	 � Φ
�
h � � ξ � , it

follows that

Φ
�
g � h � � ξ � � Φ

�
g � � ξ ��� Φ

�
h � � ξ ��� µ-a.e. ξ � Ω �

Thus, Φ
�
g � h � � Φ

�
g ��� Φ

�
h � .

By 4 � we have

Φ
�
g � � Φ

�
g
�

h ��� Φ
�
h � and Φ

�
h � � Φ

�
h
�

g ��� Φ
�
g ���
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This implies that � Φ �
g � � Φ

�
h � � � Φ

�
g
�

h � and so by 1 � we obtain

# Φ �
g � � Φ

�
h � # Lp

�
Ω 	 ��# g �

h # Lp
� ��� Ω 	 �

which proves 5 � . �

Lemma 2.4.3 For a continuous function G :
�
a � b � 	 Lp � � � Lp � Ω � � we have

Φ
� � b

a
G
�
s � ds � � � b

a
Φ
�
G
�
s � � ds �

Proof: It follows from Lemma 2.4.2 that

Φ

�
b
�

a
2n

2n � 1

∑
j 
 0

G

�
jb � �

2n �
j � a

2n � � � b
�

a
2n

2n � 1

∑
j 
 0

Φ
�

G

�
jb � �

2n �
j � a

2n � � �

Since Φ is continuous, we obtain the lemma by letting n 	 ∞. �
Let g

�
Lp � � � Lp � Ω � � and T

� L
�
Lp � Ω � � . We consider T � g defined by

�
T � g � � t � : � T

�
g
�
t � � � t

��� �
Lemma 2.4.4 For 0 � T

� L
�
Lp � Ω � � and 0 � g

�
Lp � � � Lp � Ω � � the inequality

Φ
�
T � g � � T

�
Φ
�
g � �

holds.

Proof: By Lemma 2.4.2, it suffices to prove the lemma for simple functions.
Let g : � ∑n

k 
 1 χAk � gk, where A1 �	� �	� � An are disjoint Borel subsets of � , and

g1 �	� �	� � gn
�

Lp � Ω � � . Setting hk : � λ1
�
Ak �

1
p gk for k

� � 1 �	� �	� � n � . Since the sets�
Ak � are disjoint, it follows that

Φ
�
T � g � �

�
n

∑
k 
 1

λ1
�
Ak �

�
T g � p � 1

p

�
�

n

∑
k 
 1

�
T hk � p � 1

p

�

T
�
Φ
�
g � ��� T

�
n

∑
k 
 1

λ1
�
Ak �

�
gk � p � 1

p

� T

�
n

∑
k 
 1

�
hk � p � 1

p

�

Let α : � �
αk � k � � with # α # lq � 1, where 1

q � 1
p � 1. The Hölder inequality

implies �
n

∑
k 
 1

αkhk
� � �

n

∑
k 
 1

� hk � p � 1
p

� Φ
�
g ���

hence �
n

∑
k 
 1

αkT hk
� � T

�
n

∑
k 
 1

αkhk
� � T

�
Φ
�
g � � �
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Consequently,�
n

∑
k 
 1

� � T hk �
�
ξ � � p � 1

p

� sup

� �
n

∑
k 
 1

αk
�
T hk �

�
ξ � � : αk

��� � # � αk � # lq � 1

�

� T
�
Φ
�
g � � � ξ � � µ –a.e.ξ � Ω �

and Φ
�
T � g � � T

�
Φ
�
g � � . �

We are now ready to prove Weis’s result.

Theorem 2.4.5 Let
�
Ω � µ � be a σ–finite measure space, 1 � p � ∞, and T

�
� � a

positive C0–semigroup on Lp � Ω � with generator A. Then ω0
�
A ��� s

�
A � .

Proof: For ξ � s
�
A � we set Tξ

�
t � : � e � ξt T

�
t ��� t � 0. We denote by Aξ : � A

�
ξ

the generator of the positive C0–semigroup Tξ
�
� � on Lp � Ω � . Then s

�
Aξ � � s

�
A � �

ξ � 0. Let α � max
�
0 � ω0

�
Aξ � � fixed. Let f

�
Lp � Ω � and consider the function

g
�

Lp � � � Lp � Ω � � defined by

g
�
t � �

�
e � αtTξ

�
t � f � t � 0

0 � t � 0 �
We now introduce the function

G : � � 	 Lp � � � Lp � Ω � � ; s �	 G
�
s � : � Tξ

�
s � � g � s �

where g � s
�
t � : � g

�
t
�

s ��� t ��� � Hence,

G
�
s � � t � �

�
e � α

�
t � s 	 Tξ

�
t � f � 0 � s � t �

0 � t � s �
Thus,

Φ
� � m

0
G
�
s � ds � �

� � ∞

0

�
�
�
�

� min
�
m � t 	

0
e � α

�
t � s 	 Tξ

�
t � f ds

�
�
�
�

p

dt � 1
p

� 1
α

� � ∞

0

�
e � αmax

�
0 � t � m 	 � e � αt � p � Tξ

�
t � f � p dt � 1

p

and hence

0 � 1
α

� � ∞

0

�
e � αmax

�
0 � t � m 	 � e � αt � p � Tξ

�
t � f � p dt � 1

p

� Φ
� � m

0
G
�
s � ds � � (2.3)
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So, by Lemmas 2.4.3, 2.4.4, and 2.4.2, it follows that

0 � Φ
� � m

0
G
�
s � ds �

�
� m

0
Φ
�
G
�
s � � ds

�
� m

0
Φ
�
Tξ
�
s � � g � s � ds

�
� m

0
Tξ
�
s � � Φ �

g � s � � ds

�
� m

0
Tξ
�
s � � Φ �

g � � ds �
On the other hand, since s

�
Aξ � � 0 and from Theorem 2.3.1, it follows that

lim
m � ∞

� m

0
Tξ
�
s � � Φ �

g � � ds � R
�
0 � Aξ �

�
Φ
�
g � ���

From (2.3) and the monotone convergence theorem we have

0 � 1
α

� � ∞

0

�
1
�

e � αt � p � Tξ
�
t � f � p dt � 1

p � R
�
0 � Aξ �

�
Φ
�
g � ���

This implies �
1
�

e � α

α
� � � ∞

1
� Tξ
�
t � f � p dt � 1

p � R
�
0 � Aξ �

�
Φ
�
g � �

and therefore
�

Ω

� ∞

1
� � Tξ

�
t � f � � y � � p dt dµ

�
y � �

�
α

1
�

e � α � p

# R � 0 � Aξ � # p # Φ �
g � # p

Lp
�
Ω 	 �

which implies that � ∞

1
# Tξ

�
t � f # p

Lp
�
Ω 	 dt � ∞ �

So, by Theorem 2.1.4, we obtain ω0
�
Aξ ��� ω0

�
A � � ξ � 0. Consequently,

ω0
�
A � � s

�
A ���

�

2.5 IRREDUCIBLE SEMIGROUPS

In many concrete examples the semigroup T
�
� � does not have exponential stability,

however possesses an asynchronous exponential growth. This means that there is
a rank one projection P and constants ε � 0, M � 1 such that

# e � s
�
A 	 tT

�
t � � P # � Me � εt for all t � 0 �



2.5 Irreducible semigroups 29

where A denotes the generator of T
�
� � .

In order to study such kind of behaviour we introduce the concept of irre-
ducibility for positive C0–semigroups. For more details see [22] and the references
therein.

Definition 2.5.1 A positive C0–semigroup T
�
� � on a Banach lattice E with gener-

ator A is called irreducible if one of the following equivalent properties is satisfied

(i) There is no T
�
t � –invariant closed ideal other than � 0 � and E for all t � 0.

(ii) For x
�

E � x � � E � with x � 0 and x � � 0, there is t0 � 0 such that

� T � t0 � x � x � � � 0 �
(iii) For some (and then for every) λ � s

�
A � , there is no R

�
λ � A � –invariant closed

ideal except � 0 � and E.

(iv) For some (and then for every) λ � s
�
A � � R

�
λ � A � x is a quasi-interior point of

E � for every x � 0 �
Example 2.5.2 (a) Let E : � Lp � Ω � µ � � 1 � p � ∞, and T

�
� � be a positive C0–

semigroup on E with generator A. Then, it follows from Example 1.1.7 that
T
�
� � is irreducible if and only if

0 � f
�

E �  �
R
�
λ � A � f � � s ��� 0 for a.e. s

� Ω and some λ � s
�
A � �

(b) If E : � C0
�
Ω � , where Ω is locally compact Hausdorff, and T

�
� � a positive

C0–semigroup on E with generator A, then, by Example 1.1.7, T
�
� � is irre-

ducible if and only if

0 � f
�

E �  �
R
�
λ � A � f � � s ��� 0 for all s

� Ω and some λ � s
�
A ���

We now state some consequences of irreducibility.

Proposition 2.5.3 Assume that A is the generator of an irreducible C0–semigroup T
�
� �

on a Banach lattice E. Then the following assertions hold.

(a) Every positive eigenvector of A is a quasi-interior point.

(b) Every positive eigenvector of A � is strictly positive.

(c) If ker
�
s
�
A � � A � � contains a positive element, then dimker

�
s
�
A � � A � � 1.

(d) If s
�
A � is a pole of the resolvent, then it has algebraic (and geometric) mul-

tiplicity equal to 1. The corresponding residue has the form Ps
�
A 	 � u � � x,

where x � E is a positive eigenvector of A, u � � E � is a positive eigenvector
of A � and � x � u � ��� 1 �
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Proof: (a) Let x be a positive eigenvector of A and Ex : � �
n ��� n
� �

x � x � the ideal
generated by x. If λ is such that Ax � λx, then λ � � . This follows from

x � 0 and Ax � lim
t � 0 �

1
t

�
T
�
t � x �

x ���

Hence, T
�
t � x � eλtx for t � 0 � Thus, for y

�
Ex,

� T � t � y � � T
�
t � � y � � nT

�
t � x � neλtx � t � 0 �

Consequently, T
�
t � Ex

�
Ex holds for all t � 0. Since 0 �� x

�
Ex and T

�
� � is irre-

ducible, it follows that Ex � E.
(b) Let x � be a positive eigenvector of A � and λ its corresponding eigenvalue.

By the same argument we have λ ��� and T
�
t � � x � � eλt x � for t � 0. Hence,

� � T � t � u � � x � � � � T � t � � u � � x ��� � � � u � � eλt x ����� u
�

E � t � 0 �
Thus, I : � � u �

E : � � u � � x � � � 0 � is a T
�
t � –invariant closed ideal for all t � 0. Since

x � �� 0 we have I
�

E and so by the irreducibility we obtain I � � 0 � . Therefore,
x � � 0.

(c) Let 0 � x � � ker
�
s
�
A � � A � � . It follows from (b) that x � is strictly positive.

For x
� ker

�
s
�
A � � A � we have T� s

�
A 	
�
t � x � x and hence,

� x � ��� T� s
�
A 	
�
t � x � � T� s

�
A 	
�
t � � x � � t � 0 �

Thus, for t � 0,

� � x � � x � � � � T� s
�
A 	
�
t � � x � � x ���

� � � x � � x � � �
This implies that � T� s

�
A 	
�
t � � x � � � x � � x � � � 0, and since x � � 0, we obtain T� s

�
A 	
�
t � � x � �

� x � for t � 0. Therefore,
� x � � ker

�
s
�
A � � A ���

Since � T� s
�
A 	
�
t � x �

�
� T� s

�
A 	
�
t � x

�
, one can see by the same arguments as above

that x
� � ker

�
s
�
A � � A � and x � � ker

�
s
�
A � � A � . This implies that F : � E � �

ker
�
s
�
A � � A � is a real sublattice of E. For x

�
F we consider the ideal Ex �

(resp. Ex � ) generated by x
�

(resp. x � ). Then, Ex � and Ex � are T� s
�
A 	
�
t � –invariant

for all t � 0. Since Ex � and Ex � are orthogonal, it follows from the irreducibility of
T� s

�
A 	
�
� � that x

�
� 0 or x � � 0. Consequently, F is totally ordered. So by Lemma

1.1.14 we have
dimF � dimker

�
s
�
A � � A � � 1 �

(d) We claim that if s
�
A � is a pole of the resolvent, then there is an eigenvector

0 � x
�

E of A corresponding to s
�
A � . Indeed, let k be the order of the pole s

�
A �

and R � k � limλ � s
�
A 	��

�
λ
�

s
�
A � � kR

�
λ � A � the corresponding residue. Then, R � k �� 0

and R � � k � 1 	 � 0. Moreover, by Corollary 2.3.4, we have R � k � 0. Hence, there is
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0 � y
�

E with x : � R � ky � 0. By the relation R � � k � 1 	 �
�
A
�

s
�
A � � R � k � 0 we

obtain
�
A
�

s
�
A � � x � 0. This proves the claim.

We can now use (a) to obtain Ex � E. By taking the adjoint R � � � k � 1 	 of R � � k � 1 	
and by the same computation as before one has , if s

�
A � is a pole of the resolvent,

then there is 0 � x � � ker
�
s
�
A � � A � � . So by (c) we have dimker

�
s
�
A � � A � � 1.

Now, assume that k � 2. Then we have

� x � x � � � � R � ky � x � �
� � y � R � � kx ���
� � y � R � � � k � 1 	

�
A �

�
s
�
A � � x � �

� 0 �
Since Ex � E, it follows that � u � x � � � 0 for all u

�
E � . This contradicts the asser-

tion (b). Hence k � 1. From the inequality mg � k
�

1 � ma � mgk (cf. [9] p. 247)
we obtain

ma � mg � dimPs
�
A 	 E � dimker

�
s
�
A � � A � � 1 �

where we recall that Ps
�
A 	 � R � 1. Since Ps

�
A 	 E

�
ker

�
s
�
A � � A � , it follows that

Ps
�
A 	 E � ker

�
s
�
A � � A ���

We now show the last part of Assertion (d). To this purpose let 0 � x
� ker

�
s
�
A � �

A � . Without loss of generality, we suppose that # x # � 1. Then Ps
�
A 	 E � Span � x � ,

i.e. Ps
�
A 	 y � λx for some λ � � and every y � E. By the Hahn-Banach theorem

(see Proposition 1.1.12) there exists 0 � y � �
�
ker

�
s
�
A � � A � � � with # y � # � 1 and

� x � y � ��� # x # � 1. Hence � Ps
�
A 	 y � y � ��� λ � � y � P �s � A 	 y � � . If we put u � : � P �s � A 	 y � �

0, then Ps
�
A 	 � u � � x and � x � u � � � � Ps

�
A 	 x � y � � � � x � y � � � 1. This implies that

0 � u � � P �s � A 	 E �
�

ker
�
s
�
A � � A � � . So u � � 0 by (b). This ends the proof of the

proposition. �
The following result describes the eigenvalues of an irreducible semigroup

which are contained in the boundary spectrum σb
�
A � : � � λ � σ

�
A � : ℜ

�
λ � � s

�
A � � ,

where A is the corresponding generator.

Theorem 2.5.4 Let T
�
� � be an irreducible C0–semigroup with generator A on a

Banach lattice E. Assume that s
�
A � � 0 and there is 0 � x � � D

�
A � � with A � x � � 0.

If σp
�
A � � i

� �� /0, then the following assertions hold.

(a) For 0 �� h
�

D
�
A � and α � �

with Ah � iαh, � h � is a quasi-interior point and

Sh
�
D
�
A � ��� D

�
A � and S � 1

h ASh � A � iα

hold, where Sh is the signum operator.

(b) dimker
�
λ
�

A � � 1 for every λ � σp
�
A � � i � .

(c) σp
�
A � � i

�
is an additive subgroup of i

�
.
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(d) 0 is the only eigenvalue of A admitting a positive eigenvector.

Proof: We first remark that by Proposition 2.5.3.(b) we have x � � 0 and T
�
t � � x � �

x � for all t � 0.
(a) Assume that Ah � iαh for 0 �� h

�
D
�
A � and α � � . Then T

�
t � h � eiαt h and

hence � h � ��� T � t � h � � T
�
t � � h � . This implies that

T
�
t � � h � � � h � � 0 for all t � 0 �

On the other hand,

� T � t � � h � � � h � � x � � � � � h � � T � t � � x ��� � � � h � � x � �
� 0 for all t � 0 �

Since x � � 0, we obtain T
�
t � � h � � � h � for all t � 0, which implies that A � h � �

0. So, by Proposition 2.5.3.(a), � h � is a quasi-interior point. If we set Tα
�
t � : �

e � iαtT
�
t � � t � 0, then T

�
t � and Tα

�
t � satisfy the assumptions of Lemma 1.2.5 and

hence
T
�
t � � S � 1

h Tα
�
t � Sh � t � 0 �

Therefore, Sh
�
D
�
A � ��� D

�
A � and A � S � 1

h

�
A
�

iα � Sh and (a) is proved.
(b) It follows from (a) that Sh : ker

�
iα � A � 	 kerA for iα � σp

�
A � � i

� . On the
other hand, the proof of (a) implies that kerA �� � 0 � . So, by Proposition 2.5.3.(c),
dimkerA � 1 and hence dimker

�
iα � A � � 1.

(c): Let 0 �� h � g �
D
�
A � � α � β ��� such that Ah � iαh and Ag � iβg. By (a) we

have
S � 1

g ASg � A � iβ and ShAS � 1
h � A

�
iα �

Thus A � i
�
β
�

α � � Sh
�
A � iβ � S � 1

h � ShS � 1
g ASgS � 1

h which implies that ker
�
A �

i
�
β
�

α � � � ShS � 1
g kerA �� � 0 � . Therefore

i
�
β
�

α � � σp
�
A ���

(d): If Ax � λx, where 0 � x
�

D
�
A � , then

λ � x � x ��� � � Ax � x ����� � x � A � x ����� 0 �
Since x � � 0, it follows that � x � x � ��� 0. Hence, λ � 0 � �

For irreducible semigroups we obtain the following description of the boundary
spectrum.

Theorem 2.5.5 Let T
�
� � be an irreducible C0–semigroup with generator A on a

Banach lattice E and assume that s
�
A � is a pole of the resolvent. Then there is

α � 0 such that
σb
�
A ��� s

�
A ��� iα � �

Moreover, σb
�
A � contains only algebraically simple poles.
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Proof: Without loss of generality we suppose that s
�
A � � 0. It can be shown

that σb
�
A � � σp

�
A � . The proof uses pseudo-resolvents on a suitable F –product

of E, where F is an ultrafilter on � which is finer than the Frechet filter (see
[22], p. 314). Hence, σb

�
A � � σp

�
A � � i

� . By Proposition 2.5.3.(d) we obtain
the existence of a positive eigenvector x � � D

�
A � � corresponding to the eigenvalue

s
�
A � � 0. It follows from Theorem 2.5.4.(c) that σb

�
A � is a subgroup of

�
i
� ��� � .

Since σb
�
A � is closed and s

�
A � � 0 is an isolated point, we have

σb
�
A � � iα � for some α � 0 �

Proposition 2.5.3.(d) implies that 0 is a simple pole and by Theorem 2.5.4.(a) we
have, for λ � ρ

�
A � ,

R
�
λ � ikα � A � � Sk

hR
�
λ � A � S � k

h for all k
� � �

Therefore, ikα is a simple pole for each k
� � . This ends the proof of the theorem.

�
We now give sufficient conditions for a C0–semigroup to possess an asyn-

chronous exponential growth. This result will be very useful for many applica-
tions.

Theorem 2.5.6 Let T
�
� � be an irreducible C0–semigroup with generator A on a

Banach lattice E. If ωess
�
A � � ω0

�
A � , then there exists a quasi-interior point 0 �

x
�

E � 0 � x � � E � with � x � x � ��� 1 such that

# e � s
�
A 	 tT

�
t � � x � � x # � Me � εt for all t � 0 �

and appropriate constants M � 1 and ε � 0.

Proof: We first remark first that the rescaled semigroup T� ω0

�
t � : � e � ω0

�
A 	 tT

�
t ���

for t � 0, satisfies ωess
�
A � ω0 � � ωess

�
A � � ω0

�
A � � 0, where A � ω0 : � A

�
ω0
�
A �

denotes its generator. Thus, T� ω0

�
� � is quasi-compact and, by Proposition 2.2.2,

we have
s
�
A ��� ω0

�
A ���

On the other hand, since ωess
�
A � � ω0

�
A � , it follows that ress

�
T
�
1 � � � r

�
T
�
1 � � .

Hence, by Proposition 2.2.1, r
�
T
�
1 � � is a pole of the resolvent of T

�
1 � . This

implies that ω0
�
A � � s

�
A � is a pole of R

�
� � A � . Thus, by Theorem 2.5.5, it follows

that there exists α � 0 such that σb
�
A � � s

�
A � � iα � and therefore σb

�
A � ω0 � �

iα � . Since T� ω0

�
� � is quasi-compact and ω0

�
A � ω0 � � 0, we have, by Theorem

2.2.5, that

� λ � σ
�
A � ω0 � : ℜ

�
λ ��� 0 � ��� λ � σ

�
A � ω0 � : ℜ

�
λ � � 0 � � σb

�
A � ω0 �

is finite. Therefore σb
�
A � ω0 � � � 0 � . The theorem is now proved by applying

Theorem 2.2.5 and Proposition 2.5.3 to the rescaled semigroup T � ω0

�
� � . �


