
CHAPTER 3

THE ORNSTEIN-UHLENBECK

SEMIGROUP

In this chapter we are concerned with the Ornstein-Uhlenbeck semigroup,
first on Cb(H), and finally on Lp–spaces with invariant measure. The
Ornstein-Uhlenbeck semigroup is related to the solution of the following
linear stochastic differential equation

(SDE)

{
dX(t, x) = AX(t, x)dt+Q

1
2 dW (t), t ≥ 0

X(0, x) = x ∈ H,
where Q ∈ L(H) is selfadjoint and nonnegative and A generates a
C0–semigroup (etA)t≥0 on H. The process W is a standard cylindrical
Wiener process on H. Under appropriate assumptions (see [12]) the
solution to (SDE) is a Gaussian and Markov process in H, called the
Ornstein-Uhlenbeck process. The associated Ornstein-Uhlenbeck semigroup
on Bb(H), the space of bounded and Borel functions from H into R, is given
by

Rtϕ(x) := E (ϕ(X(t, x))) , t ≥ 0, x ∈ H, ϕ ∈ Bb(H).

This is the semigroup solution of the associated Kolmogorov equation

(KE)

{
∂
∂tu(t, x) = 1

2Tr(QD2u(t, x) + 〈x,A∗Du(t, x)〉, t > 0, x ∈ H,
u(0, x) = ϕ(x), x ∈ H.

The basic assumption in this chapter is

(H1) Qt :=

∫ t

0

esAQesA
∗
ds ∈ L+

1 (H), t > 0.

Under (H1) and by the change of variables

v(t, etAx) := u(t, x), t ≥ 0, x ∈ H,
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one can see (cf. [8], [4]) that v is the unique solution of the parabolic
equation

(PE)

{
∂
∂tv(t, x) = 1

2Tr
(
etAQetA

∗
D2v(t, x)

)
, t > 0, x ∈ H,

v(0, x) = ϕ(x), x ∈ H,

and is given by

v(t, x) =

∫

H

ϕ(x+ y)N (0, Qt)(dy), x ∈ H, t ≥ 0,

where ϕ ∈ BUC2(H). Therefore, if we suppose (H1) then the Ornstein-
Uhlenbeck semigroup is given by

Rtϕ(x) =

∫

H

ϕ(etAx+ y)N (0, Qt)(dy), x ∈ H, t ≥ 0,

for ϕ ∈ Bb(H). Now, by Lemma 1.2.7, we have, for ϕ ∈ Bb(H),

Rtϕ(x) =

∫

H

ϕ(y)N (etAx,Qt)(dy), x ∈ H, t ≥ 0.

3.1 THE ORNSTEIN-UHLENBECK SEMIGROUP ON

Cb(H)

The aim of this section is to study the global regularity of the Ornstein-
Uhlenbeck semigroup (Rt)t≥0 on Cb(H). Existence and uniqueness of a
classical solution for (KE) will be also considered.

In this section we assume the controllability condition (see [31])

(H2) etA(H) ⊆ Q
1
2
t (H) for all t > 0.

If we suppose in addition that (etA)t≥0 is exponentially stable, that is, there
are constants M ≥ 1 and ω > 0 such that ‖etA‖ ≤Me−tω for all t ≥ 0, then
it follows from the strong continuity of the semigroup (etA)t≥0 and Exercise

3.3.22 that, for any t > 0, the subspace Q
1
2
t (H) is dense in H and so, by

Remark 1.3.2,
kerQt = {0} for all t > 0.

This will be needed for the application of the Cameron-Martin formula.
Regularity properties of the semigroup (Rt)t≥0 are given by the following
result.

Theorem 3.1.1 Suppose that (H1) and (H2) are satisfied and kerQt = {0}
for all t > 0. Then, for any ϕ ∈ Bb(H) and t > 0, we have Rtϕ ∈ BUC∞(H)
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and in particular, for x, y, z ∈ H,

〈DRtϕ(x), y〉 =

∫

H

〈Λty,Q−
1
2

t h〉ϕ(etAx+ h)N (0, Qt)(dh),

〈D2Rtϕ(x)y, z〉 =

∫

H

[
〈Λty,Q−

1
2

t v〉〈Λtz,Q−
1
2

t v〉 − 〈Λty,Λtz〉
]
·

ϕ(etAx+ v)N (0, Qt)(dv),

where Λt := Q
− 1

2
t etA, t > 0. Moreover,

|DRtϕ(x)| ≤ ‖Λt‖‖ϕ‖∞,
‖D2Rtϕ(x)‖ ≤

√
2‖Λt‖2‖ϕ‖∞.

Furthermore, if for any t > 0, RtBb(H) ⊂ Cb(H), then (H2) holds.

Proof: Let t > 0, ϕ ∈ Bb(H) and x ∈ H. Since, by (H2), etAx ∈ Q
1
2
t (H),

it follows from the Cameron-Martin formula (see Corollary 1.3.5) that
N (etAx,Qt) ∼ N (0, Qt) and

dN (etAx,Qt)

dN (0, Qt)
(y) = exp

(
−1

2
|Λtx|2 + 〈Λtx,Q−

1
2

t y〉
)
.

Thus,

Rtϕ(x) =

∫

H

ϕ(y) exp

(
−1

2
|Λtx|2 + 〈Λtx,Q−

1
2

t y〉
)
N (0, Qt)(dy).

Therefore, by a change of variables (see Lemma 1.2.7), we obtain

〈DRtϕ(x), y〉 =

∫

H

〈Λty,Q−
1
2

t (h− etAx)〉ϕ(h)N (etAx,Qt)(dh)

=

∫

H

〈Λty,Q−
1
2

t h〉ϕ(etAx+ h)N (0, Qt)(dh).

So by Proposition 1.3.1 we have

|〈DRtϕ(x), y〉|2 ≤ ‖ϕ‖∞
∫

H

|〈Λty,Q
1
2
t h〉|2N (0, Qt)(dh)

= ‖ϕ‖∞|Λty|2

for all y ∈ H. Similarly one obtains the second derivative of Rtϕ and the
estimate follows by a simple computation. Let now prove the last assertion.
Suppose that for any ϕ ∈ Bb(H), the function Rtϕ(·) is continuous and

there is x0 ∈ H such that etAx0 6∈ Q
1
2
t (H). It follows from the Cameron-

Martin formula (Corollary 1.3.5) that, for any n ∈ N, N ( 1
ne

tAx0, Qt) ⊥
N (0, Qt). This means that , for any n ∈ N, there is Γn ∈ B(H) with

N
(

1

n
etAx0, Qt

)
(Γn) = 0 and N (0, Qt)(Γn) = 1.
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If we set Γ := ∩n∈NΓn, then

N
(

1

n
etAx0, Qt

)
(Γ) = 0 and N (0, Qt)(Γ) = 1.

Now, we consider the characteristic function ϕ := χΓ. Then, for any n ∈ N,
we have

Rtϕ
(x0

n

)
= N

(
1

n
etAx0, Qt

)
(Γ) = 0 and

Rtϕ(0) = N (0, Qt)(Γ) = 1.

Hence, the function Rtϕ(·) is not continuous at zero. This end the proof of
the theorem. 2

We show now that the Ornstein-Uhlenbeck semigroup (Rt)t≥0 solves the
Kolmogorov equation (KE) in the following sense.
We say that a function u(t, x), t ≥ 0, x ∈ H, is a classical solution of (KE) if

(a) u : [0,∞)×H → R is continuous and u(0, ·) = ϕ,

(b) u(t, ·) ∈ BUC2(H) for all t > 0, and QD2u(t, x) is a trace class oper-
ator on H for all x ∈ H and t > 0,

(c) Du(t, x) ∈ D(A∗) for all x ∈ H and t > 0,

(d) for any x ∈ H, u(·, x) is continuously differentiable on (0,∞) and
fulfills (KE)

Under appropriate conditions we show now the existence and the unique-
ness of a classical solution for (KE) (cf. [13, Theorem 6.2.4]).

Theorem 3.1.2 Suppose(H1), (H2) and kerQt = {0} for all t > 0. If ΛtA

has a continuous extension ΛtA on H and ΛtQ
1
2 is a Hilbert-Schmidt operator

on H for every t > 0, then (KE) has a unique classical solution.

Proof: For ϕ ∈ Bb(H) we know, from Theorem 3.1.1, that, for any t >
0, Rtϕ ∈ BUC∞(H) and

〈DRtϕ(x), Ay〉 =

∫

H

〈ΛtAy,Q−
1
2

t h〉ϕ(etAx+ h)N (0, Qt)(dh)

for y ∈ D(A), t > 0 and x ∈ H. So by Proposition 1.3.1, we obtain

|〈DRtϕ(x), Ay〉| ≤ ‖ϕ‖∞‖ΛtA‖|y|, ∀y ∈ D(A),

for t > 0 and x ∈ H. Hence, DRtϕ(x) ∈ D(A∗) for all x ∈ H and t > 0.
Again from Theorem 3.1.1 we deduce that

〈D2Rtϕ(x)Q
1
2 ej , Q

1
2 ej〉 =

=
∫
H

(
〈ΛtQ

1
2 ej , Q

− 1
2

t y〉2 − |ΛtQ
1
2 ej |2

)
ϕ(etAx+ y)N (0, Qt)(dy)
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for x ∈ H, t > 0 and j ∈ N. It follows from Proposition 1.3.1 that
∣∣∣〈D2Rtϕ(x)Q

1
2 ej , Q

1
2 ej〉

∣∣∣ ≤ 2|ΛtQ
1
2 ej |2‖ϕ‖∞

for x ∈ H and t > 0. This implies that QD2Rtϕ(x) is a trace class operator
on H for all x ∈ H and t > 0.
For any x ∈ H, the function t 7→ Rtϕ(x) fulfills (KE) follows from a straight-
forward computation and is left to the reader. The uniqueness follows
from the fact that Equation (PE) has a unique solution for an initial data
ϕ ∈ BUC2(H). 2

If the semigroup (etA)t≥0 is exponentially stable then the assumption
“ΛtQ

1
2 is a Hilbert-Schmidt operator on H” is automatically satisfied as the

following corollary shows.

Corollary 3.1.3 Assume (H1) and (H2). If ΛtA has a continuous extension
ΛtA on H for every t > 0 and (etA)t≥0 is exponentially stable then (KE) has
a unique classical solution.

Proof: It suffices to prove that the assumptions of Theorem 3.1.2 are
satisfied. Since

Λt = Q
− 1

2
t etA = (Q

− 1
2

t Q
1
2∞)(Q

− 1
2∞ e

t
2A)e

t
2A, t > 0,

it follows from Exercise 3.3.22 that Λt is a trace class operator and hence
ΛtQ

1
2 is a Hilbert-Schmidt operator on H for every t > 0. 2

3.2 SOBOLEV SPACES WITH RESPECT TO

GAUSSIAN MEASURES ON H

In this section we propose to define and study the Sobolev spaces
W 1,2(H,µ), W 1,2

B (H,µ) and W 2,2(H,µ), where µ := N (0, B) and B ∈
L+

1 (H). Without loss of generality we suppose that kerB = {0} and con-
sider an orthonormal system (ek) and positive numbers λk with Bek = λkek
for k ∈ N.
Define the subspaces E(H) and EA(H) of BUC(H) by

E(H) := Span{ei〈x,h〉;h ∈ H}
EA(H) := Span{ei〈x,h〉;h ∈ D(A∗)}.

In the sequel the following lemma will play a crucial role.

Lemma 3.2.1 For any ϕ ∈ BUC(H), there is a sequence (ϕn,k)n,k∈N ⊂ E(H)
with
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(a) limk→∞ limn→∞ ϕn,k(x) = ϕ(x), ∀x ∈ H,
(b) ‖ϕn,k‖∞ ≤ ‖ϕ‖∞, ∀n, k ∈ N.

Thus, E(H) (resp. EA(H)) is dense in L2(H,µ).

Proof: Since D(A∗) is dense in H and BUC(H) is dense in L2(H,µ), and
by the dominated convergence theorem, it suffices to show the existence of
such a sequence.
To this purpose we assume first that dimH := d < ∞ and consider the
function ϕn satisfying

(i) ϕn is periodic with period n in all coordinate xk, k = 1, . . . , d,

(ii) ϕn(x) = ϕ(x), ∀x ∈ [−n− 1
2 , n− 1

2 ]d,

(iii) ‖ϕn‖∞ ≤ ‖ϕ‖∞.
Hence,

lim
n→∞

ϕn(x) = ϕ(x), ∀x ∈ H.

On the other hand, any function ϕn, n ∈ N, can be approximate, by using
Fourier series, by functions in E(H). This proves the lemma for finite di-
mensional Hilbert spaces.
In the general case, let ϕ ∈ BUC(H). Take

ψk(x) := ϕ(x1, x2, . . . , xk, 0, . . .), x ∈ H, k ∈ N.

Then it follows from the first step that there is (ϕn,k)n,k∈N ⊂ E(H) with

lim
n→∞

ϕn,k(x) = ψk(x), ∀x ∈ H,
‖ϕn,k‖∞ ≤ ‖ψk‖∞ ≤ ‖ϕ‖∞.

Therefore, for any x ∈ H,

lim
k→∞

lim
n→∞

ϕn,k(x) = ϕ(x), ∀x ∈ H.

2

For any k ∈ N we define the partial derivative in the direction ek by

Dkϕ(x) := lim
t→0

1

t
(ϕ(x+ tek)− ϕ(x)), x ∈ H

for ϕ ∈ EA(H) (or ϕ ∈ E(H)). We note that for ϕ(x) := ei〈x,h〉, we have
Dkϕ(x) = ihei〈x,h〉 for x, h ∈ H.
The following proposition gives an integration by part formula.

Proposition 3.2.2 For ϕ, ϕ̃ ∈ E(H) and k ∈ N the following holds
∫

H

Dkϕ(x)ϕ̃(x)µ(dx) = −
∫

H

ϕ(x)Dhϕ̃(x)µ(dx) +
1

λk

∫

H

xkϕ(x)ϕ̃(x)µ(dx).
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Proof: For ϕ, ϕ̃ ∈ E(H) we have
∫

H

Dkϕ(x)ϕ̃(x)µ(dx) =

∫

H

ihke
i〈x,h〉ei〈x,h̃〉µ(dx)

= ihk

∫

H

ei〈x,h+h̃〉µ(dx)

= ihke
− 1

2 〈B(h+h̃),h+h̃〉 and∫

H

ϕ(x)Dkϕ̃(x)µ(dx) = ih̃ke
− 1

2 〈B(h+h̃),h+h̃〉.

On the other hand, we obtain

1

λk

∫

H

xkϕ(x)ϕ̃(x)µ(dx) =

=
1

λk

∫

H

xke
i〈x,h+h̃〉µ(dx)

=
1

iλk

d

dt

(∫

H

eit〈x,ek〉ei〈x,h+h̃〉µ(dx)

)

|t=0

=
1

iλk

d

dt

(∫

H

ei〈x,tek+h+h̃〉µ(dx)

)

|t=0

=
1

iλk

d

dt

[
exp

(
−1

2
〈B(tek + h+ h̃), tek + h+ h̃〉

)]

|t=0

=
1

iλk

[
−λk(hk + h̃k)e−

1
2 〈B(h+h̃),h+h̃〉

]

= i(hk + h̃k)e−
1
2 〈B(h+h̃),h+h̃〉.

This proves the integration by part formula. 2

The following proposition permits us to define the first Sobolev space
with respect to the Gaussian measure µ.

Proposition 3.2.3 For any k ∈ N, the operator Dk with domain E(H) is
closable on L2(H,µ).

Proof: Let (ϕn) ⊂ E(H) be such that limn→∞ ϕn = 0 and limn→∞Dkϕn =
ψ in L2(H,µ). By Proposition 3.2.2 we have
∫

H

Dkϕn(x)ϕ(x)µ(dx)+

∫

H

ϕn(x)Dkϕ(x)µ(dx) =
1

λk

∫

H

xkϕn(x)ϕ(x)µ(dx).

By Hölder’s inequality, one can estimate the right hand side of the above
equation and obtains

lim
n→∞

∣∣∣∣
∫

H

xkϕn(x)ϕ(x)µ(dx)

∣∣∣∣
2

≤

≤ lim
n→∞

(∫

H

ϕn(x)2µ(dx) ·
∫

H

x2
kϕ(x)2µ(dx)

)
= 0
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for ϕ ∈ E(H). Hence,
∫

H

ψ(x)ϕ(x)µ(dx) = 0, ∀ϕ ∈ E(H).

Since E(H) is dense in L2(H,µ), it follows that ψ ≡ 0. 2

In the sequel we use the notation Dk := Dk for k ∈ N.

Definition 3.2.4 The first order Sobolev space W 1,2(H,µ) is defined by

W 1,2(H,µ) :=

{ϕ ∈ L2(H,µ) : ϕ ∈ D(Dk), ∀k ∈ N, and
∞∑

k=1

∫

H

|Dkϕ(x)|2µ(dx) <∞}.

For ϕ ∈W 1,2(H,µ), we denote by

Dϕ(x) :=
∞∑

k=1

Dkϕ(x)ek, x ∈ H,

the gradient of ϕ at x, which exists as a L2(H,µ)–function and hence for
almost every x ∈ H. It is clear that W 1,2(H,µ) endowed with the inner
product

〈ϕ, ψ〉W 1,2(H,µ) :=

〈ϕ, ψ〉L2(H,µ) +

∫

H

〈Dϕ(x), Dψ(x)〉µ(dx), ϕ, ψ ∈W 1,2(H,µ),

is a Hilbert space.
Now, we show that Proposition 3.2.2 remains valid in W 1,2(H,µ). To

this purpose we need the following lemma.

Lemma 3.2.5 If ϕ ∈W 1,2(H,µ), then, for any k ∈ N, xkϕ ∈ L2(H,µ).

Proof: It is easy to see that Proposition 3.2.2 holds for all ϕ ∈ W 1,2(H,µ)
and ϕ̃ ∈ E(H). So if we apply Proposition 3.2.2 with ϕ = xkg and ϕ̃ = g for
k ∈ N and g ∈ E(H), then
∫

H

x2
kg(x)2µ(dx) =

= λk

∫

H

(g(x) + xkDkg(x))g(x)µ(dx) + λk

∫

H

xkg(x)Dkg(x)µ(dx)

= λk

∫

H

g(x)2µ(dx) + 2λk

∫

H

xkg(x)Dkg(x)µ(dx).

So by Young’s inequality we obtain
∫

H

x2
kg(x)2µ(dx) ≤

≤ λk

∫

H

g(x)2µ(dx) +
1

2

∫

H

x2
kg(x)2µ(dx) + 2λ2

k

∫

H

Dkg(x)2µ(dx).
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Thus,
∫

H

x2
kg(x)2µ(dx) ≤ 2λk

∫

H

g(x)2µ(dx) + 4λ2
k

∫

H

Dkg(x)2µ(dx).

This end the proof of the lemma. 2

From the above lemma we obtain the following corollaries.

Corollary 3.2.6 If ϕ ∈ W 1,2(H,µ), then |x|ϕ ∈ L2(H,µ) and the following
holds
∫

H

|x|2ϕ(x)2µ(dx) ≤ 2TrB

∫

H

ϕ(x)2µ(dx) + 4‖B‖2
∫

H

|Dϕ(x)|2µ(dx).

Corollary 3.2.7 For ϕ, ψ ∈W 1,2(H,µ) the following holds
∫

H

Dkϕ(x)ψ(x)µ(dx) +

∫

H

ϕ(x)Dkψ(x)µ(dx) =
1

λk

∫

H

xkϕ(x)ψ(x)µ(dx).

By the same proof as for the first derivative one can see that, for any h, k ∈ N
the operatorDhDk : E(H)→ L2(H,µ) is closable on L2(H,µ) and as before
we use the notation DhDk := DhDk.

Definition 3.2.8 The second order Sobolev space W 2,2(H,µ) is defined by

W 2,2(H,µ) :=

{ϕ ∈ L2(H,µ) : ϕ ∈
⋂

h,k∈N
D(DhDk) and

∞∑

h,k=1

∫

H

|DhDkϕ(x)|2µ(dx) <∞}.

If ϕ ∈ W 2,2(H,µ), then, for a.e. x ∈ H one can define a Hilbert-Schmidt
operator D2ϕ(x) (since

∑
h,k∈N |DhDkϕ(x)|2 <∞ for a.e. x ∈ H) by

〈D2ϕ(x)y, z〉 :=
∞∑

h,k=1

DhDkϕ(x)yhzk, y, z ∈ H, a.e. x ∈ H.

It is easy to see that W 2,2(H,µ) endowed with the inner product

〈ϕ, ψ〉W 2,2(H,µ) := 〈ϕ, ψ〉W 1,2(H,µ) +
∞∑

h,k=1

∫

H

〈DhDkϕ(x), DhDkψ(x)〉µ(dx)

is a Hilbert space.
In a similar way one can obtain the following useful result.
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Proposition 3.2.9 If ϕ ∈ W 2,2(H,µ), then |x|ϕ ∈ W 1,2(H,µ), |x|2ϕ ∈
L2(H,µ) and the following estimates hold
∫

H

|x|2|Dϕ(x)|2µ(dx) ≤ 2

∫

H

ϕ(x)2µ(dx) + 4TrB

∫

H

|Dϕ(x)|2µ(x) +

8‖B‖2
∫

H

Tr(D2ϕ(x))2µ(dx),

∫

H

|x|4ϕ(x)2µ(dx) ≤ c

(∫

H

ϕ(x)2µ(dx) +

∫

H

|Dϕ(x)|2µ(dx)+

∫

H

Tr(D2ϕ(x))2µ(dx)

)
.

For the characterization of the generator of the Ornstein-Uhlenbeck semi-
group on L2(H,µ) we need the notion of Malliavin derivatives.

We consider the operator DB : E(H)→ L2(H,µ;H) defined by

DBϕ := B
1
2Dϕ for ϕ ∈ E(H).

Here L2(H,µ;H) denotes the space of all strongly measurable functions
Φ : H → H satisfying

∫
H
|Φ(x)|2µ(dx) <∞.

Proposition 3.2.10 The operator DB with domain E(H) is closable in
L2(H,µ;H).

Proof: Let (ϕn) ⊂ E(H) and F ∈ L2(H,µ;H) are such that limn→∞ ϕn = 0
in L2(H,µ) and limn→∞DBϕn = F in L2(H,µ;H). This means that

lim
n→∞

∫

H

|DBϕn(x)− F (x)|2µ(dx) =

= lim
n→∞

∫

H

∞∑

k=1

|
√
λkDkϕn(x)− Fk(x)|2µ(dx) = 0.

Since we have supposed that kerB = {0}, it follows that, for any k ∈ N,

lim
n→∞

Dkϕn =
1√
λk
Fk in L2(H,µ).

So by Proposition 3.2.3 we have, for any k ∈ N, Fk ≡ 0, which proves the
claim. 2

As before we use the notation DB := DB and this will be called the
Malliavin derivative. In a similar way we define the following spaces

W 1,2
B (H,µ) := {ϕ ∈ L2(H,µ) : DBϕ ∈ L2(H,µ;H)},

W 2,2
B (H,µ) := {ϕ ∈ L2(H,µ) : ϕ ∈

⋂

h,k∈N
D(DhDk) and

∞∑

h,k=1

∫

H

λhλk|DhDkϕ(x)|2µ(dx) <∞}.
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3.3 THE ORNSTEIN-UHLENBECK SEMIGROUP ON

Lp-SPACES WITH INVARIANT MEASURE

The aim of this section is to study the Ornstein-Uhlenbeck semigroup on
Lp–spaces with respect to an invariant measure.
Under appropriate assumptions we prove the existence and uniqueness of
an invariant measure µ for the Ornstein-Uhlenbeck semigroup (Rt). This al-
lows us to extend (Rt) to a C0–semigroup on Lp(H,µ), 1 ≤ p <∞. We find
sufficient conditions for the existence and uniqueness of a classical solution
for (KE) on Lp(H,µ), 1 < p <∞ and finally we characterize the domain of
the generator of the symmetric Ornstein-Uhlenbeck semigroup on L2(H,µ).

In order to have an invariant measure for the Ornstein-Uhlenbeck semi-
group we suppose in this section the following assumptions

(H3) A : D(A)→ H generates a C0 − semigoup (etA)t≥0 satisfying

‖etA‖ ≤Me−ωt for some constants M ≥ 1, ω > 0.

(H4) Q ∈ L(H) is a symmetric and positive operator and

Qt :=

∫ t

0

esAQesA
∗
ds ∈ L+

1 (H), t ≥ 0.

If we set Q∞x :=
∫∞

0
esAQesA

∗
ds, x ∈ H, then

Q∞x =
∞∑

n=0

∫ n+1

n

esAQesA
∗
ds =

∞∑

n=0

enAQ1e
nA∗x, x ∈ H.

Hence,

TrQ∞ ≤M2TrQ1

∞∑

n=0

e−2ωn <∞,

which implies that Q∞ ∈ L+
1 (H).

The following result shows the existence and uniqueness of invariant mea-
sure for the Ornstein-Uhlenbeck semigroup.

Proposition 3.3.1 Assume that (H3) and (H4) hold. Then the Gaussian
measure µ := N (0, Q∞) is the unique invariant measure for the Ornstein-
Uhlenbeck semigroup (Rt)t≥0. This means that, for all ϕ ∈ BUC(H),

∫

H

Rtϕ(x)µ(dx) =

∫

H

ϕ(x)µ(dx).

Moreover, for all ϕ ∈ BUC(H) and x ∈ H,

lim
t→∞

Rtϕ(x) =

∫

H

ϕ(x)µ(dx).
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Proof: It follows from Lemma 3.2.1 that it suffices to show the proposition
for ϕ ∈ EA(H). For ϕh(x) := ei〈h,x〉, x, h ∈ H, we have

∫

H

Rtϕh(x)µ(dx) =

∫

H

∫

H

ei〈h,e
tAx+y〉N (0, Qt)(dy)µ(dx)

=

∫

H

ei〈e
tAx,h〉− 1

2 〈Qth,h〉µ(dx)

= e−
1
2 〈Qth,h〉− 1

2 〈Q∞etA
∗
h,etA

∗
h〉

= e−
1
2 〈(Qt+etAQ∞etA

∗
)h,h〉

=

∫

H

ϕh(x)µ(dx),

where the last equality follows from the equation

Qt + etAQ∞e
tA∗ = Q∞, t ≥ 0. (3.1)

On the other hand, we obtain

lim
t→∞

Rtϕh(x) = lim
t→∞

ei〈e
tAh,x〉− 1

2 〈Qth,h〉

= e−
1
2 〈Q∞h,h〉

=

∫

H

ϕh(x)µ(dx).

For the uniqueness, we suppose that there is an invariant measure ν for
(Rt). In particular ν satisfies

∫

H

Rtϕh(x)ν(dx) =

∫

H

ϕh(x)ν(dx)

for ϕh(x) := ei〈h,x〉, x, h ∈ H. This implies that

e−
1
2 〈Qth,h〉ν̂(etA

∗
h) = ν̂(h).

So by letting t→∞ we obtain

ν̂(h) = e−
1
2 〈Q∞h,h〉 = µ̂(h)

and the uniqueness follows now from the characterization of Gaussian mea-
sures (see Theorem 1.2.5). 2

Now, one can extend the semigroup (Rt)t≥0 to a C0–semigroup on
Lp(H,µ),
1 ≤ p <∞.

Theorem 3.3.2 Assume that (H3) and (H4) are satisfied. Then, for all t ≥ 0,
Rt can be extended to a bounded linear operator on Lp(H,µ) and (Rt)t≥0

defines a C0–semigroup of contractions on Lp(H,µ) for 1 ≤ p <∞.
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Proof: Let t ≥ 0 and ϕ ∈ BUC(H). By Hölder’s inequality we have

|Rtϕ(x)|p ≤ (Rt|ϕ|p)(x), x ∈ H.

Hence,
∫

H

|Rtϕ(x)|pµ(dx) ≤
∫

H

Rt|ϕ|p(x)µ(dx)

=

∫

H

|ϕ(x)|pµ(dx).

So, the first assertion follows from the density of BUC(H) in Lp(H,µ) for
1 ≤ p <∞ and we have

‖Rtϕ‖Lp(H,µ) ≤ ‖ϕ‖Lp(H,µ), t ≥ 0, ϕ ∈ Lp(H,µ).

Finally, the strong continuity follows from the dominated convergence the-
orem. 2

As in Section 3.1 we show that u(t, x) := (Rtϕ)(x), t ≥ 0, x ∈ H, and
ϕ ∈ Lp(H,µ) is the unique classical solution of (KE), which means that

(a) u is continuous on [0,∞)×H, u(t, ·) ∈ C2(H) for all t > 0,

(b) QD2u(t, x) is a trace class operator on H and Du(t, x) ∈ D(A∗) for
every t > 0 and x ∈ H,

(c) A∗Du and Tr(QD2u) are two continuous functions on (0,∞)×H and
u satisfies (KE) for all t > 0 and x ∈ D(A).

This result can be found in [6, Theorem 5].
To this purpose we need the following lemmas (see [6, Proposition 2] and
[5, Proposition 1] or [13, Theorem 10.3.5]).

Lemma 3.3.3 Suppose (H2), (H3) and (H4). Then the following hold.

(i) The family S0(t) := Q
− 1

2∞ etAQ
1
2∞, t ≥ 0, defines a C0–semigroup of

contractions on H.

(ii) The operators S0(t)S∗0(t), t > 0, satisfy

‖S0(t)S∗0(t)‖ < 1 and

ΛtΛ
∗
t (Q

− 1
2∞ etA)∗(I − S0(t)S∗0(t))−1(Q

− 1
2∞ etA).

(iii) For 0 < t0 < t1, the function [t0, t1] 3 t 7→ Λt ∈ L(H) is bounded.
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Lemma 3.3.4 Assume (H2), (H3) and (H4) and let ϕ ∈ Lp(H,µ), 1 < p <
∞. Then, for any t > 0, (Rtϕ)(·) ∈ C∞(H) and

|DnRtϕ(x)| ≤ c(t, n, p, ϕ) <∞

uniformly on bounded subsets of H for n = 0, 1, . . . and some constant
c(t, n, p, ϕ) > 0.

Proof of Lemma 3.3.3: (i) It follows from (H2) and Exercise 3.3.22 that
S0(t), t ≥ 0, are bounded linear operators on H and

S∗0 (t) = Q
1
2∞etA

∗Q
− 1

2∞ , t ≥ 0,

which can be defined on H, since kerQ∞ = {0} and hence, Q
1
2∞(H) = H

by Remark 1.3.2. Now, from (3.1), we obtain

0 ≤ 〈Qtx, x〉 = 〈(I − S0(t)S∗0(t))Q
1
2∞x,Q

1
2∞x〉, t ≥ 0, x ∈ H.

Hence, ‖S∗0(t)Q
1
2∞x‖ ≤ ‖Q

1
2∞x‖, t ≥ 0, x ∈ H. Since Q

1
2∞(H) = H, we

deduce that
‖S0(t)‖ ≤ 1, t ≥ 0. (3.2)

The semigroup property can be easily verified. It suffices now to show that
S0(·) is weakly continuous at zero. Let x, y ∈ H. Then,

lim
t→0+

〈S0(t)x,Q
1
2∞y〉 = 〈x,Q

1
2∞y〉,

and the weak continuity follows from (3.2) and the density of Q
1
2∞(H) in H.

(ii) From (3.1) and Exercise 3.3.22 it follows that

I − S0(t)S∗0(t) = (Q
− 1

2∞ Q
1
2
t )(Q

1
2
t Q
− 1

2∞ ), t > 0.

By Exercise 3.3.22 we have that Q−
1
2∞ Q

1
2
t has a bounded inverse and so does

I − S0(t)S∗0(t) for t > 0. Since I − S0(t)S∗0(t) is selfadjoint and positive, we
deduce that

‖S0(t)S∗0(t)‖ < 1 for all t > 0.

On the other hand, by Exercise 3.3.22, we have

Λ∗tΛt = (Q
− 1

2
t etA)∗(Q

− 1
2

t etA)

= (Q
− 1

2∞ etA)∗(Q
− 1

2
t Q

1
2∞)∗(Q

− 1
2

t Q
1
2∞)(Q

− 1
2∞ etA)

= (Q
− 1

2∞ etA)∗(I − S0(t)S∗0(t))−1(Q
− 1

2∞ etA)

for every t > 0.
(iii) Take a > 0 such that

‖S0(t0)S∗0(t0)‖ < a < 1.
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Then,

‖S0(t)S∗0(t)‖ = ‖S0(t− t0)S0(t0)S∗0(t0)S∗0(t− t0)‖
≤ ‖S0(t0)S∗0(t0)‖ < a

for t ∈ [t0, t1]. Now, (iii) follows from the identity

Q
− 1

2∞ etA = (Q
− 1

2∞ et0A)e(t−t0)A

for t ∈ [t0, t1]. 2

Proof of Lemma 3.3.4: We fix t > 0 and ϕ ∈ Lp(H,µ). Suppose without
loss of generality that

∫

H

|ϕ(etAx+ y)|pN (0, Qt)(dy) <∞ for x = 0. (3.3)

Let consider a sequence (ϕn) ⊂ Bb(H) with |ϕn(x)| ≤ |ϕ(x)| and
limn→∞ ϕn(x) = ϕ(x) for µ–a.a. x and hence, by Exercise 3.3.20, for
N (0, Qt)–a.a. x. So, by (3.3), ϕn converges also to ϕ in Lp(H,N (0, Qt)).
On the other hand, we know from Theorem 3.1.1 that Rtϕn ∈ BUC∞(H).
So, by the Cameron-Martin formula and Hölder’s inequality, we obtain

|Rtϕ(x)−Rtϕn(x)|

≤
∫

H

|ϕ(etAx+ y)− ϕn(etAx+ y)|N (0, Qt)(dy)

=

∫

H

exp

(
−1

2
|Λtx|2 + 〈Λtx,Q−

1
2

t y〉
)
|ϕ(y)− ϕn(y)|N (0, Qt)(dy)

≤
(∫

H

exp

(
−1

2
|Λtx|2 + 〈Λtx,Q−

1
2

t y〉
)q
N (0, Qt)(dy)

) 1
q

(∫

H

|ϕ(y)− ϕn(y)|pN (0, Qt)(dy)

) 1
p

for 1
p + 1

q = 1. Thus, it follows from Proposition 1.3.3 that

sup
‖x‖≤K

|Rtϕ(x)−Rtϕn(x)| ≤ sup
‖x‖≤K

exp

(
q − 1

2
|Λtx|2

)
‖ϕ−ϕn‖Lp(H,N (0,Qt))

for t > 0 and any constant K > 0. This implies that Rtϕ ∈ C(H).
On the other hand, from Exercise 3.3.21 and the Cameron-Martin formula,
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we have

|〈DRtϕn(x)−DRtϕm(x), y〉|

≤
∫

H

|〈Λty,Q−
1
2

t h〉(ϕn(etAx+ h)− ϕm(etAx+ h))|N (0, Qt)(dh)

≤
(∫

H

|〈Λty,Q−
1
2

t h〉|r′N (0, Qt)(dh)

) 1
r′

(∫

H

|ϕn(etAx+ h)− ϕm(etAx+ h)|rN (0, Qt)(dh)

) 1
r

= cr|Λty|
( ∫

H

exp

(
−1

2
|Λtx|2 + 〈Λtx,Q−

1
2

t h〉
)

|ϕn(h)− ϕm(h)|rN (0, Qt)(dh)
) 1
r

≤ cr|Λty|
(∫

H

exp

(
− b

2
|Λtx|2 + b〈Λtx,Q−

1
2

t h〉
)
N (0, Qt)(dh)

) 1
rb

(∫

H

|ϕn(h)− ϕm(h)|pN (0, Qt)(dh)

) 1
p

,

where 1
r + 1

r′ = 1, r > 1, and 1
b + r

p = 1. So, by Proposition 1.3.3, it follows
that

|DRtϕn(x)−DRtϕm(x)| ≤ c(t, p) exp

(
b− 1

2r
|Λtx|2

)
‖ϕn−ϕm‖Lp(H,N (0,Qt))

for x ∈ H. Thus, DRtϕn converges uniformly on bounded subsets of H to a
continuous function. Using Theorem 3.1.1 and by the same argument one
can show the result for arbitrary n. 2

The following result shows the existence and uniqueness of the classical
solution for (KE), for any ϕ ∈ Lp(H,µ), 1 < p <∞.

Theorem 3.3.5 Let (H2), (H3) and (H4) hold. If the operator ΛtA has a
continuous extension ΛtA on H then the function (t, x) 7→ (Rtϕ)(x) is the
unique classical solution for (KE) for any ϕ ∈ Lp(H,µ), 1 < p <∞.

Proof: As in Theorem 3.1.2 we prove first that, for every ϕ ∈ Lp(H,µ),
and x ∈ H,

DRtϕ(x) ∈ D(A∗) for all t > 0.

Let t > 0 and ϕ ∈ Lp(H,µ) be fixed. We know from Theorem 3.1.1 and
Lemma 3.3.4 that, for y ∈ D(A),

〈DRtϕ(x), Ay〉 =

∫

H

〈ΛtAy,Q−
1
2

t h〉ϕ(etAx+ h)N (0, Qt)(dh).
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Thus, by Hölder’s inequality and Exercise 3.3.21, we obtain

|〈DRtϕ(x), Ay〉| ≤
(∫

H

|〈ΛtAy,Q−
1
2

t h〉|r′N (0, Qt)(dh)

) 1
r′

(∫

H

|ϕ(etAx+ h)|rN (0, Qt)(dh)

) 1
r

≤ cr|ΛtAy| (Rt|ϕ|r(x))
1
r (3.4)

≤ cr‖ΛtA‖|y| (Rt|ϕ|r(x))
1
r

for x ∈ H, 1
r′ + 1

r = 1, 1 < r < p, and all y ∈ D(A). Since |ϕ|r ∈ L p
r (H,µ),

it follows from Lemma 3.3.4 that

c(r, ϕ, x) := cr (Rt|ϕ|r(x))
1
r <∞.

Hence, DRtϕ(x) ∈ D(A∗) for t > 0 and x ∈ H.
On the other hand, by Theorem 3.1.1 and Lemma 3.3.4, we have D2Rtϕ(x)
exists for all x ∈ H and

〈D2Rtϕ(x)ej , ej〉 =

∫

H

[
|〈Λtej , Q−

1
2

t y〉|2 − |Λtej |2
]
ϕ(etAx+y)N (0, Qt)(dy).

Take 1 < r < p. Then, it follows from Hölder’s inequality and Exercise
3.3.21 that

|〈D2Rtϕ(x)ej , ej〉| ≤
(∫

H

[
|〈Λtej , Q−

1
2

t y〉|2 − |Λtej |2
]r′
N (0, Qt)(dy)

) 1
r′

(∫

H

|ϕ(etAx+ y)|rN (0, Qt)(dy)

) 1
r

≤ cr|Λtej |2 (Rt|ϕ|r(x))
1
r (3.5)

for x ∈ H, and 1
r′ + 1

r = 1, 1 < r < p. By the same argument as above and

Corollary 3.1.3 we have c(r, ϕ, x) := cr (Rt|ϕ|r(x))
1
r <∞ and

∞∑

j=1

|〈D2Rtϕ(x)ej , ej〉| ≤ c(r, ϕ, x)
∞∑

j=1

|Λjej |2 <∞.

This shows that D2Rtϕ(x) is a trace class operator on H for x ∈ H, t > 0
and ϕ ∈ Lp(H,µ). From Corollary 3.1.3 we know that (KE) has a unique
classical solution u(t, x) := Rtϕ(x) for ϕ ∈ Bb(H). Now, for ϕ ∈ Lp(H,µ),
there is a sequence (ϕn) ⊂ Bb(H) with |ϕn(x)| ≤ |ϕ(x)| and limn→∞ ϕn(x) =



62 The Ornstein-Uhlenbeck semigroup

ϕ(x) for µ–a.a. x ∈ H. It follows from Exercise 3.3.23 that

|Rtϕn(x)−Rtϕ(x)| ≤

≤
(∫

H

k(t, x, y)qµ(dy)

) 1
q

‖ϕn − ϕ‖Lp(H,µ)

= det(I − S0(t)S∗0(t))
1−q
2q det(I + (q − 1)S0(t)S∗0(t))−

1
2q

exp

(
q − 1

2
〈(I + (q − 1)S0(t)S∗0(t))−1Q

− 1
2∞ etAx,Q

− 1
2∞ etAx〉

)

for t > 0, x ∈ H and 1
q+ 1

p = 1. So, by Lemma 3.3.3(iii), Rtϕn(x)→ Rtϕ(x)

uniformly in (t, x) ∈ [t0, t1] × {x ∈ H : |x| ≤ K} for 0 < t0 < t1 and any
constant K > 0. Again by Exercise 3.3.23, we obtain

Rt|ϕ|r(x) ≤

≤
(∫

H

k(t, x, y)
p
r µ(dy)

) r
p

‖ϕ‖rLp(H,µ)

= det(I − S0(t)S∗0(t))
r−p
2p det(I + (

p

r
− 1)S0(t)S∗0(t))−

r
2p

exp

(
p− r

2r
〈(I + (

p

r
− 1)S0(t)S∗0(t))−1Q

− 1
2∞ etAx,Q

− 1
2∞ etAx〉

)

for t > 0, x ∈ H and 1 < r < p. So, by Lemma 3.3.3(iii), (3.4) and (3.5),
it follows that ∂

∂tRtϕn(x) converges uniformly in (t, x) ∈ [t0, t1]× {x ∈ H :
|x| ≤ K}. Hence the function (t, x) 7→ Rtϕ(x) is a classical solution for
(KE). The uniqueness follows from Theorem 3.1.2. 2

We propose now to characterize symmetric Ornstein-Uhlenbeck semi-
groups on L2(H,µ). To this purpose we need the following lemma.

Lemma 3.3.6 Assume that (H3) and (H4) hold. Then the operator Q∞ is the
only positive and symmetric solution of the following Lyapunov equation

〈Q∞x,A∗y〉+ 〈Q∞A∗x, y〉 = −〈Qx, y〉, x, y ∈ D(A∗). (3.6)

Proof: For x, y ∈ D(A∗), by using integration by part, we have

〈Q∞x,A∗y〉 =

∫ ∞

0

〈esAQesA∗x,A∗y〉 ds

=

∫ ∞

0

〈QesA∗x, d
ds
esA

∗
y〉 ds

= −〈Qx, y〉 − 〈Q∞A∗x, y〉.

Suppose now that there is a positive and symmetric opertor R ∈ L(H)
solution of the Lyapunov equation (3.6). Then we obtain

d

dt
〈RetA∗x, etA∗x〉 = −〈QetA∗x, etA∗x〉, x ∈ D(A∗).
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So by integrating between 0 and t we obtain

〈RetA∗x, etA∗x〉 − 〈Rx, x〉 = −〈Qtx, x〉, x ∈ D(A∗).

Now, by letting t→∞ we get

〈Rx, x〉 = 〈Q∞x, x〉 for all x ∈ D(A∗).

This implies that R = Q∞. 2

Symmetric Ornstein-Uhlenbeck semigroups on L2(H,µ) are character-
ized by the following result.

Proposition 3.3.7 Suppose (H3) and (H4) hold. Then the following assertion
are equivalent

(i) (Rt)t≥0 is symmetric in L2(H,µ).

(ii) Q∞etA
∗

= etAQ∞ for all t ≥ 0.

(iii) QetA
∗

= etAQ for all t ≥ 0.

If (Rt)t≥0 is symmetric then Q∞ = − 1
2A
−1Q.

Proof: For ϕ(x) := ei〈x,h〉 and ϕ̃(x) := ei〈x,h̃〉, x, h ∈ H, we have

Rtϕ(x) = ei〈e
tAx,h〉− 1

2 〈Qth,h〉 and

Rtϕ̃(x) = ei〈e
tAx,h̃〉− 1

2 〈Qth̃,h̃〉.

Thus,
∫

H

Rtϕ(x)ϕ̃(x)µ(dx) = e−
1
2 〈Qth,h〉

∫

H

ei〈x,h̃+etA
∗
h〉µ(dx)

= e−
1
2 〈Qth,h〉ei〈Q∞(h̃+etA

∗
h),h̃+etA

∗
h〉

= e−
1
2 〈(Qt+etAQ∞etA

∗
)h,h〉e−

1
2 〈Q∞h̃,h̃〉e−〈Q∞e

tA∗h,h̃〉.

So by (3.1) we obtain
∫

H

Rtϕ(x)ϕ̃(x)µ(dx)e−
1
2 〈Q∞h,h〉− 1

2 〈Q∞h̃,h̃〉−〈Q∞etA
∗
h,h̃〉.

By the same computation we have
∫

H

Rtϕ̃(x)ϕ(x)µ(dx)e−
1
2 〈Q∞h,h〉− 1

2 〈Q∞h̃,h̃〉−〈Q∞etA
∗
h̃,h〉.

Therefore,
∫

H

Rtϕ(x)ϕ̃(x)µ(dx) =

∫

H

Rtϕ̃(x)ϕ(x)µ(dx) if and only if

e−〈Q∞e
tA∗h,h̃〉 = e−〈Q∞e

tA∗ h̃,h〉 if and only if

Q∞e
tA∗ = etAQ∞.
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Hence the equivalence (i) ⇔ (ii) follows from the density of EA(H) in
L2(H,µ) (see Lemma 3.2.1).
The implication (iii)⇒ (ii) is trivial. It remains to prove (ii)⇒ (iii). To this
purpose we consider x ∈ D(A∗). It follows from (ii) that Q∞x ∈ D(A) and

Q∞A
∗x = AQ∞x.

So by Lemma 3.3.6 it follows that 2AQ∞ = −Q and hence

Q∞ = −1

2
A−1Q,

which proves the last assertion of the theorem. Again by Lemma 3.3.6 we
have

〈QetA∗x, y〉 = −〈Q∞etA
∗
x,A∗y〉 − 〈Q∞A∗etA

∗
x, y〉

= −〈Q∞x,A∗etA
∗
y〉 − 〈Q∞A∗x, etA

∗
y〉.

On the other hand, it follows from Lemma 3.3.6 that

〈etAQx, y〉 = 〈Qx, etA∗y〉
= −〈Q∞x,A∗etA

∗
y〉 − 〈Q∞A∗x, etA

∗
y〉.

This implies that

〈QetA∗x, y〉 = 〈etAQx, y〉, x, y ∈ D(A∗), t ≥ 0,

which is equivalent to QetA
∗

= etAQ for all t ≥ 0. 2

In the particular case where A is selfadjoint we have the following result.

Corollary 3.3.8 If the following assumptions are satisfied

1. A : D(A) → H is selfadjoint and there is ω > 0 such that 〈Ax, x〉 ≤
−ω|x|2 for all x ∈ D(A),

2. QetA = etAQ for all t ≥ 0,

3. QA−1 ∈ L(H) is a trace class operator,

then (Rt)t≥0 is symmetric on L2(H,µ).

Proof: In this particular case we have

Qt = Q

∫ t

0

e2sA ds =
1

2
QA−1(e2tA − I), t ≥ 0.

From the third assumption we have TrQ < ∞ and the second assumption
is exactly the third assertion in Proposition 3.3.7. This end the proof of the
corollary. 2

In the special case Q = I we obtain
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Corollary 3.3.9 Assume that A : D(A) → H is selfadjoint, there is ω > 0
such that 〈Ax, x〉 ≤ −ω|x|2 for all x ∈ D(A), A−1 is a trace class operator
and Q = I. Then (Rt)t≥0 is symmetric on L2(H,µ).

We propose now to describe the generator Lp of the Ornstein-Uhlenbeck
semigroup (Rt)t≥0 on Lp(H,µ) 1 ≤ p <∞.
We set

L0ϕ(x) :=
1

2
Tr(QD2ϕ(x)) + 〈x,A∗Dϕ(x)〉, x ∈ H, ϕ ∈ EA(H).

Proposition 3.3.10 If the assumptions (H3) and (H4) are satisfied, then
EA(H) is a core for Lp.

Proof: For ϕ(x) := ei〈h,x〉, h ∈ D(A∗), x ∈ H, we have

Rtϕ(x) =

∫

H

ei〈h,e
tAx+y〉N (0, Qt)(dy)

= ei〈e
tA∗h,x〉− 1

2 〈Qth,h〉 ∈ EA(H).

Hence,
RtEA(H) ⊆ EA(H), ∀t ≥ 0.

On the other hand we know that

lim
t→0+

1

t
(Rtϕ− ϕ)(x) = ei〈h,x〉

(
i〈A∗h, x〉 − 1

2
〈Qh, h〉

)

= L0ϕ(x), x ∈ H.

So by the dominated convergence theorem we obtain

lim
t→0+

∥∥∥∥
1

t
(Rtϕ− ϕ)− L0ϕ

∥∥∥∥
Lp(H,µ)

= 0.

Thus, EA(H) ⊂ D(Lp) and the assertion follows from the density of EA(H)
in Lp(H,µ) (see Lemma 3.2.1) and Proposition A.2.5. 2

In the remaining part of this section we propose to describe exactly the
domain D(L2) of the generator of the symmetric Ornstein-Uhlenbeck semi-
group on L2(H,µ). To this purpose we need some auxiliary results. The
following result was proved independently in [3] and [17].

Proposition 3.3.11 Assume (H3) and (H4). Then the following hold
∫

H

L0ϕ(x)ϕ̃(x)µ(dx) =

∫

H

〈Q∞Dϕ̃(x), A∗Dϕ(x)〉µ(dx)

∫

H

L0ϕ(x)ϕ(x)µ(dx) = −1

2

∫

H

〈Q 1
2Dϕ(x), Q

1
2Dϕ(x)〉µ(dx)

for ϕ, ϕ̃ ∈ EA(H).
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Proof: For ϕ(x) := ei〈h,x〉, ϕ̃(x) := ei〈h̃,x〉, h, h̃ ∈ D(A∗), x ∈ H, we have
∫

H

L0ϕ(x)ϕ̃(x)µ(dx)

=

∫

H

ei〈h,x〉
(
i〈A∗h, x〉 − 1

2
〈Qh, h〉

)
ei〈h̃,x〉µ(dx)

= i

∫

H

〈A∗h, x〉ei〈h+h̃,x〉µ(dx)− 1

2
〈Qh, h〉e− 1

2 〈Q∞(h+h̃),h+h̃〉

=
d

dt

(∫

H

ei〈tA
∗h+h+h̃,x〉µ(dx)

)

|t=0

− 1

2
〈Qh, h〉e− 1

2 〈Q∞(h+h̃),h+h̃〉

= −
(
〈Q∞A∗h, h+ h̃〉+

1

2
〈Qh, h〉

)
e−

1
2 〈Q∞(h+h̃),h+h̃〉.

Hence, it follows from Proposition 3.3.6 that
∫

H

〈Q∞Dϕ̃(x), A∗Dϕ(x)〉µ(dx) = −〈A∗h,Q∞h̃〉e−
1
2 〈Q∞(h+h̃),h+h̃〉

=

∫

H

L0ϕ(x)ϕ̃(x)µ(dx).

In particular, and again by Proposition 3.3.6, we obtain
∫

H

L0ϕ(x)ϕ(x)µ(dx) =

∫

H

〈Q∞Dϕ(x), A∗Dϕ(x)〉µ(dx)

= −1

2

∫

H

〈QDϕ(x), Dϕ(x)〉µ(dx).

This end the proof of the proposition. 2

Remark 3.3.12 If the Ornstein Uhlenbeck semigroup is symmetric, then it
follows from Proposition 3.3.7 that

∫

H

L0ϕ(x)ϕ̃(x)µ(dx) = −1

2

∫

H

〈QDϕ(x), Dϕ̃(x)〉µ(dx) (3.7)

for ϕ, ϕ̃ ∈ EA(H).

For the proof of the next proposition we need the following lemma.

Lemma 3.3.13 Assume that kerQ = {0} and Q
1
2∞(H) ⊂ Q

1
2 (H). Then the

operator

DQ : EA(H) ⊂ L2(H,µ)→ L2(H,µ;H); ϕ 7→ Q
1
2Dϕ

is closable.
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Proof: From the closed graph theorem we have K := Q−
1
2Q

1
2∞ is a

bounded linear operator on H. Its adjoint is given by K∗ = Q
1
2∞Q−

1
2 .

Let (ϕn) ⊂ EA(H) and F ∈ L2(H,µ;H) with limn→∞ ‖ϕn‖L2(H,µ) = 0 and
limn→∞ ‖DQϕn − F‖L2(H,µ;H) = 0. Hence,

Q
1
2∞Dϕn = K∗Q

1
2Dϕn → K∗F

in L2(H,µ;H) as n → ∞. Now, it follows from Proposition 3.2.10 that
K∗F ≡ 0 and therefore F ≡ 0. This can be obtain by considering the
orthonormal basis of eigenfunctions en, n ∈ N, of Q∞ and the fact that
kerQ∞ = {0}. 2

As in Section 2 we define The spaces

W 1,2
Q (H,µ) := D(DQ) and

W 2,2
Q (H,µ) :=

:= {ϕ ∈W 1,2
Q (H,µ) : ϕ ∈

⋂

h,k∈N
D(DhDk),

∫

H

Tr(QD2ϕ(x))2µ(dx) <∞}.

In the following result we obtain that D((−L2)
1
2 ) = W 1,2

Q (H,µ) for sym-
metric Ornstein-Uhlenbeck semigroups on L2(H,µ).

Proposition 3.3.14 Suppose (H3), (H4), kerQ = {0}, andQ
1
2∞(H) ⊆ Q 1

2 (H).
Then,

D(L2) ⊂W 1,2
Q (H,µ).

Moreover, for any ϕ ∈ D(L2),
∫

H

L2ϕ(x)ϕ(x)µ(dx)− 1

2

∫

H

〈QDϕ(x), Dϕ(x)〉µ(dx).

In the case where (Rt)t≥0 is symmetric, one has

D((−L2)
1
2 ) = W 1,2

Q (H,µ).

Proof: Let ϕ ∈ D(L2). It follows from Proposition 3.3.10 that there is
(ϕn) ⊂ EA(H) with

lim
n→∞

‖ϕn − ϕ‖L2(H,µ) = 0 and lim
n→∞

‖L0ϕn − L2ϕ‖L2(H,µ) = 0.

By Proposition 3.3.11, we have
∫

H

〈Q 1
2D(ϕn − ϕm)(x), Q

1
2D(ϕn − ϕm)(x)〉µ(dx)

= −2

∫

H

L0(ϕn − ϕm)(x)(ϕn − ϕm)(x)µ(dx).
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Now, one can apply Lemma 3.3.13 and hence ϕ ∈W 1,2
Q (H,µ) and

∫

H

L2ϕ(x)ϕ(x)µ(dx)− 1

2

∫

H

〈QDϕ(x), Dϕ(x)〉µ(dx).

On the other hand the last assertion follows from
∫

H

|(−L2)
1
2ϕ(x)|2µ(dx) =

∫

H

|Q 1
2Dϕ(x)|2µ(dx).

2

Remark 3.3.15 The bilinear form

a(ϕ, ϕ̃) :=

∫

H

〈Q∞Dϕ̃(x), A∗Dϕ(x)〉µ(dx), ϕ, ϕ̃ ∈ EA(H)

is not always continuous on W 1,2
Q (H,µ) × W 1,2

Q (H,µ) and therefore not in
general a Dirichlet form. The continuity of the bilinear form a can be proved
under some additional conditions (see [3] or [17]). In [9] it is proved that a
is a Dirichlet form provided that Q = I, which implies that AQ∞ ∈ L(H).

Suppose now that the assumptions of Corollary 3.3.9 are satisfied. Then
Q∞ = − 1

2A
−1. Let consider an orthonormal system (en) ⊂ H and (αn) ⊂

(0,∞) such that
Aen = −αnen, n ∈ N.

The following proposition is the main tool used for the characterization of
the domain of L2.

Proposition 3.3.16 Suppose that the assumptions of Corollary 3.3.9 are sat-
isfied. Then,

1

2

∫

H

Tr
(
(D2ϕ(x))2

)
µ(dx)+

∫

H

|(−A)
1
2Dϕ(x)|2µ(dx) = 2

∫

H

(L2ϕ(x))2µ(dx)

for ϕ ∈ EA(H).

Proof: For ϕ ∈ EA(H) we have Dj(L2ϕ) = L2Djϕ − αjDjϕ. Hence, by
Proposition 3.3.14,

∫

H

Djϕ(x)Dj(L2ϕ)(x)µ(dx)

=

∫

H

Djϕ(x)L2(Djϕ)(x)µ(dx)− αj
∫

H

|Djϕ(x)|2µ(dx)

= −1

2

∫

H

〈DDjϕ(x), DDjϕ(x)〉µ(dx)− αj
∫

H

|Djϕ(x)|2µ(dx).
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Now, if we take the sum over j ∈ N, we obtain

1

2

∫

H

Tr
(
(D2ϕ(x))2

)
µ(dx) +

∫

H

|(−A)
1
2Dϕ(x)|2µ(dx)

= −
∫

H

〈Dϕ(x), D(L2ϕ)(x)〉µ(dx).

Since L2ϕ ∈W 1,2(H,µ), it follows from Remark 3.3.12 that
∫

H

〈Dϕ(x), D(L2ϕ)(x)〉µ(dx) = −2

∫

H

|L2ϕ(x)|2µ(dx).

Thus,

1

2

∫

H

Tr
(
(D2ϕ(x))2

)
µ(dx)+

∫

H

|(−A)
1
2Dϕ(x)|2µ(dx) = 2

∫

H

|L2ϕ(x)|2µ(dx).

2

For the characterization of the domain of L2 we need the following space

W 1,2
(−A)(H,µ) := {ϕ ∈W 1,2(H,µ) :

∫

H

|(−A)
1
2Dϕ(x)|2µ(dx) =

∑

k∈N

∫

H

αk|Dkϕ(x)|2µ(dx) <∞}.

Endowed with the inner product

〈ϕ, ψ〉W 1,2
(−A)

(H,µ) := ϕ, ψ〉L2(H,µ) +

∫

H

〈(−A)
1
2Dϕ(x), (−A)

1
2Dψ(x)〉µ(dx),

W 1,2
(−A)(H,µ) is Hilbert space.

Theorem 3.3.17 Assume that the assumptions of Corollary 3.3.9 hold. Then,

D(L2) = W 2,2(H,µ) ∩W 1,2
(−A)(H,µ).

Proof: Let ϕ ∈ D(L2). By Proposition 3.3.10 there is (ϕn) ⊂ EA(H) with
ϕn → ϕ and L2ϕn → L2ϕ in L2(H,µ). For n,m ∈ N, it follows from
Proposition 3.3.16 that

2

∫

H

|L2(ϕn − ϕm)(x)|2µ(dx) =
1

2

∫

H

Tr
(
(D2(ϕn − ϕm)(x))2

)
µ(dx) +

∫

H

|(−A)
1
2D(ϕn − ϕm)(x)|2µ(dx).

Therefore (ϕn) is a Cauchy sequence in both spaces W 2,2(H,µ) and
W 1,2

(−A)(H,µ). This implies that

D(L2) ⊆W 2,2(H,µ) ∩W 1,2
(−A)(H,µ).
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Now, if ϕ ∈ W 2,2(H,µ) ∩ W 1,2
(−A)(H,µ) then one can find a sequence

(ϕn) ⊂ EA(H) such that ϕn converges to ϕ in both spaces W 2,2(H,µ) and
W 1,2

(−A)(H,µ). The other inclusion follows now from Proposition 3.3.16. 2

In the more general assumptions given in Corollary 3.3.8 one has to
prove the formula

1

2

∫

H

Tr
(
(QD2ϕ(x))2

)
µ(dx) +

∫

H

〈(−AQ)Dϕ(x), Dϕ(x)〉µ(dx) =

= 2

∫

H

(L2ϕ(x))2µ(dx). (3.8)

The proof of (3.8) is similar to that of Proposition 3.3.16. As in the proof of
Theorem 3.3.17, (3.8) implies the following general result.

Theorem 3.3.18 Suppose that the assumptions of Corollary 3.3.8 hold.
Then,

D(L2) = {ϕ ∈W 2,2
Q (H,µ) :

∫

H

〈(−AQ)Dϕ(x), Dϕ(x)〉µ(dx) <∞}.

Remark 3.3.19 Theorem 3.3.17 and 3.3.18 are due to Da Prato [10]. In the
finite dimensional case Lunardi [24] proved first that D(L2) = W 2,2(RN , µ),
by making heavy use of interpolation theory. A simpler proof of the same result
can be found in [11]. Recently, this result was extended to p ∈ (1,∞) (see [25]
or [26]).

Exercise 3.3.20 Assume (H1) and (H2). Prove that N (0, Qt) is N (0, Q∞)–
absolutely continuous.

Exercise 3.3.21 Let 1 < p < ∞, and B ∈ L+
1 (H) with kerB = {0}. Show

that ∫

H

|〈h,B− 1
2 y〉|pN (0, B)(dy) = |h|p

∫

R
|y|pN (0, 1)(dy).

This generalizes the case p = 2 proved in Proposition 1.3.1.

Exercise 3.3.22 Assume (H1) and (H2). Show that

(i) Q
1
2
t (H) = Q

1
2∞(H).

(ii) For any t > 0, S0(t) := Q
− 1

2∞ etAQ
1
2∞ is a Hilbert-Schmidt operator on

H.

(iii) Deduce that etA is a trace class operator on H for every t > 0.

Exercise 3.3.23 Assume (H2), (H3) and (H4).
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(a) Show that
Qt = Q

1
2∞(I − S0(t)S∗0(t))Q

1
2∞, t ≥ 0.

(b) By using the Cameron-Martin formula and the Feldman-Hajek theorem
(see Exercise 1.3.6) show that

Rtϕ(x) =

∫

H

k(t, x, y)ϕ(y)µ(dy), µ− a.a. x ∈ H,

with

k(t, x, y) :=

exp

(
−1

2
|Λtx|2 + 〈(I − S0(t)S∗0(t))−1S0(t)Q

− 1
2∞ x,Q

− 1
2∞ y〉
)
·

·det(I − S0(t)S∗0(t))−
1
2 ·

· exp

(
−1

2
〈S0(t)S∗0(t)(I − S0(t)S∗0(t))−1Q

− 1
2∞ y,Q

− 1
2∞ y〉
)

for t > 0, and x, y ∈ H.

(c) Show that, for any 1 < q <∞,
∫

H

k(t, x, y)qµ(dy) =

det(I − S0(t)S∗0(t))
1−q

2 det(I + (q − 1)S0(t)S∗0(t))−
1
2

exp

(
q(q − 1)

2
〈(I + (q − 1)S0(t)S∗0(t))−1Q

− 1
2∞ etAx,Q

− 1
2∞ etAx〉

)

for t > 0 and x ∈ H, (see [6, Lemma 3]).

Exercise 3.3.24 Suppose (H2), (H3) and (H4). Use the formula

〈DRtϕ(x), y〉 =

∫

H

〈Λty,Q−
1
2

t h〉ϕ(etAx+ h)N (0, Qt)(dh),

which, by Lemma 3.3.4, remains valid for t > 0 and ϕ ∈ Lp(H,µ) to prove
that

RtL
p(H,µ) ⊂W 1,p(H,µ)

for t > 0 and 1 ≤ p < ∞. Deduce from [7] that the Ornstein-Uhlenbeck
semigroup (Rt) is immediately compact in Lp(H,µ).




