
CHAPTER 2

HEAT EQUATIONS IN HILBERT

SPACES

In this chapter,H is a separable Hilbert space and (en)n∈N is an orthonormal
basis of H.
For ϕ ∈ Cb(H), the space of continuous and bounded functions ϕ : H → R,
we say that ϕ is differentiable in the direction ek, k ∈ N, if the limit

Dkϕ(x) := lim
h→0

1

h
(ϕ(x+ hek)− ϕ(x)) , x ∈ H

exists in Cb(H). The operator Dk will be considered as the linear operator
in Cb(H) defined by

D(Dk) :=

{
ϕ ∈ Cb(H) : lim

h→0

1

h
(ϕ(·+ hek)− ϕ(·)) exists in Cb(H)

}

and

Dkϕ(x) = lim
h→0

1

h
(ϕ(x+ hek)− ϕ(x)) , ϕ ∈ D(Dk), x ∈ H, h ∈ R.

We start by showing that Dk is a closed operator on Cb(H), for every k ∈ N.
In fact, let (ϕn)n∈N ⊆ D(Dk), and ϕ, ψ ∈ Cb(H) such that

ϕn −→ ϕ and Dkϕn −→ ψ in Cb(H).

We consider φn, φ ∈ C(C[−1, 1], Cb(H)) defined by

φ(h)(x) := ϕ(x+ hek) and φn(h)(x) := ϕn(x+ hek),

x ∈ H, h ∈ [−1, 1] and n ∈ N.



26 Heat equations in Hilbert spaces

Then φn is differentiable, as a function of the variable h, and

d

dh
φn(h)(x) = Dkϕn(x+ hek).

So we have

φn(h)− φn(0) =

∫ h

0

dφn
dh

(s) ds

and by the assumption we obtain

φ(h)− φ(0) =

∫ h

0

ψ(·+ sek) ds,

which implies that ϕ ∈ D(Dk) and Dkϕ = ψ.
In a similar way we can define partial derivatives of any order.
Now, we fix a sequence (λn)n∈N, λn > 0 for n ∈ N. In this chapter we are
interested to solve the heat equation

(HE)

{
∂
∂tu(t, x) = 1

2

∑∞
n=1 λnD

2
nu(t, x), t > 0, x ∈ H,

u(0, x) = ϕ(x), x ∈ H, ϕ ∈ Cb(H)

and to study the regularity of the solution u of (HE) in the case dimH =∞.
For this purpose, let consider its finite dimensional approximation

(HE)n

{
∂
∂tu(t, x) = 1

2

∑n
k=1 λkD

2
ku(t, x), t > 0, x ∈ H,

u(0, x) = ϕ(x), x ∈ H, ϕ ∈ Cb(H).

It is easy to see that, for all ϕ ∈ Cb(H), (HE)n has a unique classical
solution given by




un(t, x) = (2πt)−
n
2 (λ1 . . . λn)−

1
2

∫
Rn e

−Pn
k=1

ξ2k
2tλk ϕ(x−∑n

k=1 ξkek) dξ,
if t > 0

un(0, x) = ϕ(x), x ∈ H.

If we denote by
xk :=< x, ek >, x ∈ H

and

Bn :=




λ1 0 · · · 0
...

. . .
...

0 · · · λn




then

un(t, x) =

∫

Rn
ϕ

(
y +

∞∑

k=n+1

xkek

)
N (x, tBn)(dy), x ∈ H, t > 0.
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In the sequel we denote by

P
(n)
t ϕ(x) := un(t, x)

for t ≥ 0, x ∈ H, n ∈ N, and ϕ ∈ Cb(H). By an easy computation one
has, for all n ∈ N, (P

(n)
t )t≥0 is a semigroup on Cb(H). Moreover, on Cb(H),

(P
(n)
t ) is not strongly continuous at 0. In order to have strong continuity at

0 we have to work, for example, in BUC(H), the space of all bounded and
uniformly continuous functions from H into R. Now, it is well-known that
(P

(n)
t ) is an analytic semigroup on BUC(H) and

‖P (n)
t ϕ‖∞ ≤ ‖ϕ‖∞

for ϕ ∈ BUC(H), t ≥ 0, and n ∈ N.
Now, one asks under which conditions the limit

lim
n→∞

un(t, x) exists in BUC(H)

for all ϕ ∈ BUC(H)?
A necessary condition for the existence of the above limit is

∞∑

n=1

λn <∞.

In fact, let ϕ(x) :=exp
(
− 1

2‖x‖2
)
. By applying Proposition 1.2.8 with

α = −1, m = x, and B = tBn one has

un(t, x) =

n∏

k=1

(1 + λkt)
− 1

2 exp

(
−1

2

n∑

k=1

x2
k

1 + λkt
− 1

2

∞∑

k=n+1

x2
k

)
.

If limn→∞ un(t, x) exists, then
∏∞
k=1(1 + tλk)−

1
2 exists for t > 0. Hence,

log
∞∏

k=1

(1 + tλk) =
∞∑

k=1

log(1 + tλk), t > 0

exists. In particular, limk→∞ λk = 0. Set M := supn λn. Then we have

mtλk ≤ log(1 + tλk) ≤ tλk, t > 0, k ∈ N,

where m := inf{ 1
α log(1 + α), 0 < α ≤M}. Therefore,

∞∑

k=1

λk <∞

and

lim
n→∞

un(t, x) = u(t, x) =
∞∏

k=1

(1 + λkt)
− 1

2 e
− 1

2

P∞
k=1

x2
k

1+tλk , t > 0, x ∈ H.
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If
∑∞
k=1 λk =∞, then

lim
n→∞

un(t, x) =

{
0 if x = 0, t 6= 0
1 if x = 0, t = 0.

Hence, un does not converge to a continuous function.
Now, in the sequel we assume that

∑∞
k=1 λk < ∞. Set

Bx :=
∑∞
k=1 λkxk, x ∈ H. Then B ∈ L+

1 (H), kerB = {0}, and Equation
(HE) can be written as follows:

(HE)

{
∂
∂tu(t, x) = 1

2Tr[BD2u(t, x)], t > 0, x ∈ H,
u(0, x) = ϕ(x), x ∈ H,

where ϕ ∈ BUC(H).
Many results of this chapter can be found in the monographs [12] and

[13].

2.1 CONSTRUCTION OF THE HEAT SEMIGROUP

In this section we are concerned with the construction of the solution of
Equation (HE). To this purpose we suppose without loss of generality that
λk > 0 for all k ∈ N and

∑∞
k=1 λk < ∞. The semigroup (P

(n)
t ) can be

written as

P
(n)
t ϕ =

n∏

k=1

Tk(t)ϕ, t ≥ 0, ϕ ∈ BUC(H),

where

Tk(t)ϕ(x) :=

{
(2πtλk)−

1
2

∫
R e
− s2

2tλk ϕ(x− sek) ds if t > 0
ϕ(x), if t = 0

for x ∈ H and ϕ ∈ BUC(H). Note that Tk(·) is a C0-semigroup of con-
tractions on BUC(H) for k ∈ N. Before proving the strong convergence of
Pnt , t ≥ 0, on BUC(H), we recall some definitions and fix some notations.

We denote by BUC1(H) the subspace of BUC(H) of all functions ϕ :
H → R which are Fréchet differentiable on H and the Fréchet derivative
Dϕ : H → H is uniformly continuous and bounded. For ϕ ∈ BUC1(H) we
set

‖ϕ‖1 := ‖ϕ‖∞ + sup
x∈H
‖Dϕ(x)‖.

In the sequel we need the subspace BUC1,1(H) of BUC1(H) consisting of
all functions ϕ ∈ BUC1(H) such that Dϕ : H → H is Lipschitz continuous
and, for ϕ ∈ BUC1,1(H), we set

‖ϕ‖1,1 := ‖ϕ‖1 + sup
x,y∈H,x6=y

‖Dϕ(x)−Dϕ(y)‖
‖x− y‖ .
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Theorem 2.1.1 For all ϕ ∈ BUC(H), the limit

Ptϕ := lim
n→∞

Pnt ϕ

exists in BUC(H), uniformly in t on bounded subsets of R+. Moreover (Pt) is
a C0-semigroup on BUC(H) and

‖Ptϕ‖∞ ≤ ‖ϕ‖∞

for t ≥ 0 and ϕ ∈ BUC(H).

Proof: Let compute first

Pnt ϕ− Pn−1
t ϕ =

n∏

k=1

Tk(t)ϕ−
n−1∏

k=1

Tk(t)ϕ

=

n−1∏

k=1

Tk(t)(Tn(t)ϕ− ϕ),

and hence,

‖Pnt ϕ− Pn−1
t ϕ‖∞ ≤ ‖Tn(t)ϕ− ϕ‖∞, t ≥ 0, ϕ ∈ BUC(H), n ∈ N.

So, for ϕ ∈ BUC1,1(H), we have

(Tn(t)ϕ− ϕ) (x) = (2πλnt)
− 1

2

∫

R
e−

s2

2λnt (ϕ(x− sen)− ϕ(x)) ds

= (2πλnt)
− 1

2

∫

R
e−

s2

2λnt

∫ 1

0

− ∂

∂γ
ϕ (x− s(1− γ)en) dγ ds

= −(2πλnt)
− 1

2

∫

R
e−

s2

2λnt

∫ 1

0

< Dϕ (x− s(1− γ)en) ,

sen > dγ ds.

Since,
∫

R
e−

s2

2λnt < Dϕ(x), sen > ds =< Dϕ(x), en >

∫

R
e−

s2

2λnt s ds = 0,

it follows that

Tn(t)ϕ(x)−ϕ(x) = −(2πλnt)
− 1

2

∫

R
e−

s2

2λnt

∫ 1

0

< Dϕ(x−s(1−γ)en)−Dϕ(x),

sen > dγ ds.
Thus,

|Tn(t)ϕ(x)− ϕ(x)| ≤ (2πλnt)
1
2 ‖ϕ‖1,1

∫

R
s2e−

s2

2λnt ds = λnt‖ϕ‖1,1.
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Hence,

‖Tn(t)ϕ− ϕ‖∞ ≤ λnt‖ϕ‖1,1

for t ≥ 0, ϕ ∈ BUC1,1(H), and n ∈ N. Therefore,

‖Pn+p
t ϕ− Pnt ϕ‖∞

≤ ‖
n+p∏

k=1

Tk(t)ϕ−
n+p−1∏

k=1

Tk(t)ϕ‖∞ + · · ·+ ‖
n+1∏

k=1

Tk(t)ϕ−
n+1∏

k=1

Tk(t)ϕ‖∞

≤ ‖Tn+p(t)ϕ− ϕ‖∞ + · · ·+ ‖Tn+1(t)ϕ− ϕ‖∞

≤ t‖ϕ‖1,1
n+p∑

k=n+1

λk, n, p ∈ N.

Since
∑∞
n=1 λn < ∞, it follows that (P nt ϕ)n is a Cauchy sequence in

BUC(H), uniformly for t in bounded subsets of R+. Thus, the limit exists
in BUC(H) for all ϕ ∈ BUC1,1(H). Since BUC1,1(H) is dense in BUC(H)
(see [28] or [23]) and ‖Pnt ‖ ≤ 1 for all n ∈ N and t ≥ 0, the limit exists for
all ϕ ∈ BUC(H) and will be denoted by

Ptϕ := lim
n→∞

Pnt ϕ, t ≥ 0, ϕ ∈ BUC(H).

The family (Pt)t≥0 satisfies Pt+sϕ = PtPsϕ, P0ϕ = ϕ for all t, s ≥ 0. This
follows from the estimates ‖P nt ‖ ≤ 1 and the fact that (P nt ) is a semigroup
on BUC(H). The strong continuity of (Pt)t≥0 follows from the uniform
convergence of Pnt on bounded subsets of R+, and the strong continuity of
(Pnt )t≥0 for every n ∈ N. 2

Remark 2.1.2 An other proof of Theorem 2.1.1, using the Mittag-Leffler the-
orem, can be found in [2]. In this work the authors find conditions implying
the convergence of the infinite product of commuting C0-semigroups.

Let show now that the semigroup (Pt)t≥0 is given by a Gaussian measure.

Theorem 2.1.3 If we denote by µ := N (x, tB) the Gaussian measure with
means x ∈ H and covariance operator tB, then

(Ptϕ)(x) =

∫

H

ϕ(y)N (x, tB)(dy)

for ϕ ∈ BUC(H), and t > 0, where B = diag(λ1, . . . , λn, . . .).

Proof: For n ∈ N, ϕ ∈ BUC(H), t > 0, and x ∈ B 1
2 (H), it follows from
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the Cameron-Martin formula (see Corollary 1.3.5) that
∫

H

ϕ

(
n∑

k=1

ykek +

∞∑

k=n+1

xkek

)
N (x, tB)(dy)

=

∫

Rn
ϕ

(
n∑

k=1

ykek +
∞∑

k=n+1

xkek

)
·

exp

(
− 1

2t
|B− 1

2x|2 +
1

t
〈B−

1
2

n y,B
− 1

2
n x〉

)
N (0, tBn)(dy)

=

∫

Rn
ϕ

(
n∑

k=1

ykek +
∞∑

k=n+1

xkek

)

exp

(
− 1

2t

(
|B− 1

2x|2 − |B−
1
2

n x|2
))
N (x, tBn)(dy)

= exp

(
− 1

2t
(|B− 1

2x|2 − |B−
1
2

n x|2)

)
(Pnt ϕ) (x).

So it follows from Theorem 2.1.1 that

lim
n→∞

(Pnt ϕ) (x)exp

(
−1

2
(|B− 1

2x|2 − |B−
1
2

n x|2)

)
= (Ptϕ) (x).

So by the dominated convergence theorem and Lemma 1.2.7 we obtain

(Ptϕ) (x) =

∫

H

ϕ(y)N (x, tB)(dy)

=

∫

H

ϕ(y + x)N (0, tB)(dy), x ∈ B 1
2 (H).

Since B
1
2 (H) = H (see Remark 1.3.2), it follows that

(Ptϕ)(x) =

∫

H

ϕ(y + x)N (0, tB)(dy), x ∈ H,

and the theorem follows now from Lemma 1.2.7. 2

2.2 REGULARITY OF THE HEAT SEMIGROUP

Let prove first the differentiability of Ptϕ in any direction ek, k ∈ N, for
t > 0 and ϕ ∈ BUC(H).

Proposition 2.2.1 Let ϕ ∈ BUC(H) and t > 0. Then Ptϕ ∈ D(Dk) for all
k ∈ N and

DkPtϕ(x) =
1

λkt

∫

H

ykϕ(x+ y)N (0, tB)(dy), x ∈ H.
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Proof: By the Cameron-Martin formula (see Corollary 1.3.5) we know that

Ptϕ(x) =

∫

H

ϕ(y)exp

(
− 1

2t
|B− 1

2x|2 +
1

t
< B−

1
2 y,B−

1
2x >

)
N (0, tB)(dy)

for t > 0, x ∈ H and ϕ ∈ BUC(H).
It is now easy to see that Ptϕ is differentiable in the direction ek and by
Lemma 1.2.7 we obtain

DkPtϕ(x) =
1

tλk

∫

H

(yk − xk)ϕ(y)N (x, tB)(dy)

=
1

tλk

∫

H

ykϕ(x+ y)N (0, tB)(dy).

2

By applying the Cameron-Martin formula to the derivatives DkPtϕ ob-
tained in Proposition 2.2.1 one obtains by similar arguments the following
result.

Proposition 2.2.2 For ϕ ∈ BUC(H) and t > 0 we have Ptϕ ∈ D(DlDk) for
all l, k ∈ N, and

DlDkPtϕ(x) =
1

λlλkt2

∫

H

ylykϕ(x+ y)N (0, tB)(dy)− δl,k
λlt

Ptϕ(x), x ∈ H,

where δl,k :=

{
1 if l = k,
0 if l 6= k.

Now, we are interested in global regularity properties of the semigroup (Pt)
on BUC(H). To this purpose we define two subspaces BUC1

B(H) and
BUC2

B(H) of BUC(H).

Definition 2.2.3 We said that a function ϕ ∈ BUC(H) is in BUC1
B(H) if

(i) ϕ ∈ ⋂∞k=1D(Dk);

(ii) supx∈H
∑∞
k=1 λk|Dkϕ(x)|2 <∞;

(iii) the mapping DBϕ : H → H; x 7→ ∑∞
k=1

√
λkDkϕ(x)ek is uniformly

continuous.

It is clear that BUC1(H) ⊆ BUC1
B(H) and DBϕ(x) = B

1
2Dϕ(x) for x ∈ H,

and ϕ ∈ BUC1(H).

Definition 2.2.4 A function ϕ ∈ BUC(H) is in BUC2
B(H) if

(i) ϕ ∈ ⋂∞l,k=1 D(DlDk);

(ii) supx∈H
∑∞
l=1

(∑∞
k=1

√
λlλkDlDkϕ(x)yk

)2 ≤ C2|y|2 for all y ∈ H and
some constant C > 0;
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(iii) the mapping D2
Bϕ defined by D2

Bϕ(x) : H → L(H); x 7→ D2
Bϕ(x),

where

〈D2
Bϕ(x)y, z〉 :=

∞∑

l,k=1

√
λlλkDlDkϕ(x)ylzk, y, z ∈ H,

is uniformly continuous.

We propose now to show some auxiliary results.

Lemma 2.2.5 The linear operator

DB : BUC1
B(H)→ BUC(H,H)

is closed.

Proof: Let (ϕn) ⊂ BUC1
B(H), ϕ ∈ BUC(H), and F ∈ BUC(H,H) are

such that

lim
n→∞

‖ϕn − ϕ‖∞ = 0, and lim
n→∞

‖DBϕ− F‖BUC(H,H) = 0.

For any k ∈ N, we have

lim
n→∞

sup
x∈H
|〈DBϕn(x)− F (x), ek〉| =

= lim
n→∞

sup
x∈H

∣∣∣
√
λkDkϕn(x)− 〈F (x), ek〉

∣∣∣ = 0.

Thus,

lim
n→∞

sup
x∈H

∣∣∣∣Dkϕ(x)− 1√
λk
〈F (x), ek〉

∣∣∣∣ = 0.

Since Dk is closed in BUC(H), it follows that ϕ ∈ D(Dk) and

Dkϕ(x) =
1√
λk
〈F (x), ek〉, k ∈ N.

Hence,

∞∑

k=1

λk|Dkϕ(x)|2 =

∞∑

k=1

|〈F (x), ek〉|2

= |F (x)|2 ≤ ‖F‖2∞.

Moreover,
∞∑

k=1

√
λkDkϕ(x)ek =

∞∑

k=1

〈F (x), ek〉ek = F (x)

is uniformly continuous. Therefore, ϕ ∈ BUC1
B(H) and DBϕ = F . 2
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Lemma 2.2.6 For ϕ ∈ ⋂∞l,k=1 D(DlDk) and x ∈ H, we define D2
Bn
ϕ(x) by

〈D2
Bnϕ(x)y, z〉 =

n∑

l,k=1

√
λlλkDlDkϕ(x)ylzk, y, z ∈ H.

Assume that

(i) there is a constant c > 0 such that
∣∣〈D2

Bnϕ(x)y, z〉
∣∣ ≤ c|y||z|, ∀x, y, z ∈ H, n ∈ N;

(ii) for all y, z ∈ H, the limit

lim
n→∞

〈D2
Bnϕ(x)y, z〉 exists uniformly in x ∈ H.

Then, ϕ ∈ BUC2
B(H) and

lim
n→∞

sup
x∈H

∣∣〈D2
Bnϕ(x)y, z〉 − 〈D2

Bϕ(x)y, z〉
∣∣ = 0, y, z ∈ H.

Proof: From the assumptions we have

(i) ϕ ∈ ⋂∞l,k=1 D(DlDk);

(ii) supx∈H
∣∣∑n

l=1

(∑n
k=1

√
λlλkDlDkϕ(x)yk

)
zl
∣∣ ≤ c|y||z| for all n ∈ N

and y, z ∈ H. Thus,

sup
x∈H

n∑

l=1

(
n∑

k=1

√
λlλkDlDkϕ(x)yk

)2

≤ c2|y|2, ∀n ∈ N.

(iii) Since the limit limn→∞〈D2
Bn
ϕ(x)y, z〉 exists uniformly in x ∈ H, for

all y, z ∈ H, it follows that the mapping

D2
Bϕ : H → L(H); x 7→ D2

Bϕ(x)

is uniformly continuous.

Thus, ϕ ∈ BUC2
B(H). The last assertion follows easily from the definition

of D2
Bn
ϕ. 2

We are now able to show global regularity results for the heat semigroup
(Pt).

Theorem 2.2.7 Let ϕ ∈ BUC(H) and t > 0. Then Ptϕ ∈ BUC1
B(H) and

〈DBPtϕ(x), z〉 =
1

t

∫

H

〈z,B− 1
2 y〉ϕ(x+ y)N (0, tB)(dy), x, z ∈ H.

Moreover,

‖DBPtϕ(x)‖ ≤ 1√
t
‖ϕ‖∞, ∀x ∈ H.
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Proof: By Proposition 2.2.1 we have, Ptϕ ∈ D(Dk) for all k ∈ N, and

n∑

k=1

√
λkDkPtϕ(x)zk =

n∑

k=1

1

t
√
λk

∫

H

ykzkϕ(x+ y)N (0, tB)(dy).

So by the Hölder inequality we obtain
∣∣∣∣∣
n∑

k=1

√
λkDkPtϕ(x)zk

∣∣∣∣∣

2

≤ ‖ϕ‖2∞
t2

∫

H

(
n∑

k=1

ykzk√
λk

)2

N (0, tB)(dy)

=
‖ϕ‖2∞
t2

n∑

l,k=1

zlzk√
λlλk

∫

H

ylykN (0, tB)(dy)

=
‖ϕ‖2∞
t2

n∑

k=1

z2
k

λk

∫

H

y2
kN (0, tB)(dy)

=
‖ϕ‖2∞
t2

n∑

k=1

z2
k

λk

∫

R
y2
kN (0, tλk)(dyk)

=
‖ϕ‖2∞
t

n∑

k=1

z2
k.

Hence,
n∑

k=1

λk|DkPtϕ(x)|2 ≤ ‖ϕ‖
2
∞
t

, ∀n ∈ N.

It remains to prove that the mapping

DBPtϕ : x 7→
∞∑

k=1

√
λkDkPtϕ(x)ek

is uniformly continuous. First, we note that, by the last estimate, the series

DBPtϕ(x) =
∞∑

k=1

√
λkDkPtϕ(x)ek

converges and we have

〈DBPtϕ(x), z〉 =
1

t

∫

H

〈z,B− 1
2 y〉ϕ(x+ y)N (0, tB)(dy), z ∈ H.

Now, we introduce the uniform continuity modulus of ϕ ∈ BUC(H),

ωϕ(t) := sup{|ϕ(x)− ϕ(y)| : x, y ∈ H, |x− y| ≤ t}, t ≥ 0.

Since ϕ is uniformly continuous, it is easy to see that ωϕ is continuous in
[0,∞). Let x, y ∈ H. By Hölder’s inequality and Proposition 1.3.1, we
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obtain

|〈DBPtϕ(x)−DBPtϕ(y), z〉|2

=

∣∣∣∣
1

t

∫

H

〈z,B− 1
2α〉(ϕ(x+ α)− ϕ(y + α))N (0, tB)(dα)

∣∣∣∣
2

≤ ωϕ(|x− y|)2

t2

∫

H

|〈z,B− 1
2α〉|2N (0, tB)(dα)

=
ωϕ(|x− y|)2

t
|z|2.

Hence,

‖DBPtϕ(x)−DBPtϕ(y)‖ ≤ 1√
t
ωϕ(|x− y|).

Then, Ptϕ ∈ BUC1
B(H) for all ϕ ∈ BUC(H) and t > 0. Moreover, by the

same computation as above, we obtain

‖DBPtϕ(x)‖ ≤ 1√
t
‖ϕ‖∞

for all ϕ ∈ BUC(H), t > 0, and x ∈ H. 2

More global regularity is given by the following theorem.

Theorem 2.2.8 For ϕ ∈ BUC(H) and t > 0, we have Ptϕ ∈ BUC2
B(H) and

〈D2
BPtϕ(x)z1, z2〉 =

1

t2

∫

H

〈z1, B
− 1

2 y〉〈z2, B
− 1

2 y〉ϕ(x+ y)N (0, tB)(dy)

−1

t
〈z1, z2〉Ptϕ(x)

for z1, z2, x ∈ H. If in addition ϕ ∈ BUC1
B(H), then

〈D2
BPtϕ(x)z1, z2〉 =

1

t

∫

H

〈DBϕ(x+ y), z2〉〈z1, B
− 1

2 y〉N (0, tB)(dy)

for x, z1, z2 ∈ H. Moreover, for all x ∈ H,

‖D2
BPtϕ(x)‖L(H) ≤

√
2

t
‖ϕ‖∞ for ϕ ∈ BUC(H), (2.1)

‖D2
BPtϕ(x)‖L(H) ≤ 1√

t
‖DBϕ‖BUC(H,H) for ϕ ∈ BUC1

B(H).

Proof: From Proposition 2.2.2 it follows that

〈D2
BnPtϕ(x)z1, z2〉 =

1

t2

∫

H

〈z1, B
− 1

2
n y〉〈z2, B

− 1
2

n y〉ϕ(x+ y)N (0, tB)(dy)

−1

t
〈z1, z2〉Ptϕ(x), z1, z2, x ∈ H.
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It is easy to see that all the assumptions of Lemma 2.2.6 are satisfied. Thus,
Ptϕ ∈ BUC2

B(H) and

〈D2
BPtϕ(x)z1, z2〉 =

1

t2

∫

H

〈z1, B
− 1

2 y〉〈z2, B
− 1

2 y〉ϕ(x+ y)N (0, tB)(dy)

−1

t
〈z1, z2〉Ptϕ(x), z1, z2, x ∈ H.

Hence, by Hölder’s inequality and Theorem 2.1.3, we obtain

|〈D2
BPtϕ(x)z, z〉|2 =

=

∣∣∣∣
1

t2

∫

H

|〈z,B− 1
2 y〉|2ϕ(x+ y)N (0, tB)(dy)− 1

t
|z|2Ptϕ(x)

∣∣∣∣
2

=
1

t4

∣∣∣∣
∫

H

(
|〈z,B− 1

2 y〉|2 − t|z|2
)
ϕ(x+ y)N (0, tB)(dy)

∣∣∣∣
2

≤ ‖ϕ‖2∞
t4

∫

H

(
|〈z,B− 1

2 y〉|2 − t|z|2
)2

N (0, tB)(dy).

Since
∫

H

|〈z,B− 1
2 y〉|4N (0, tB)(dy) = 3t2|z|4 and

∫

H

|〈z,B− 1
2 y〉|2N (0, tB)(dy) = t|z|2 (see Proposition 1.3.1),

it follows that
|〈D2

BPtϕ(x)z, z〉|2 ≤ 2

t2
|z|4‖ϕ‖2∞

for all x, z ∈ H. Consequently,

‖D2
BPtϕ(x)‖L(H) ≤

√
2

t
‖ϕ‖∞, ∀x ∈ H.

The second equality can be obtained similarly, by using Theorem 2.2.7 and
the last estimate is a consequence of Proposition 1.3.1. 2

We propose now to prove an additional regularity result, which will be
needed to solve (HE).
We start by the following auxiliary result, where the proof can be founded
in [15, Lemma XI.9.14 (a), p. 1098].

Lemma 2.2.9 Let B ∈ L(H) and suppose that there is a constant c > 0 such
that, for all finite rank linear operator N in L(H), |Tr(NB)| ≤ c‖N‖. Then
B is a trace class operator on H and

Tr B ≤ c .



38 Heat equations in Hilbert spaces

The following result was proved first by L. Gross [19] by using proba-
bilistic methods.

Theorem 2.2.10 For ϕ ∈ BUC1(H) and t > 0, we have D2
BPtϕ(x) is a trace

class operator on H for all x ∈ H, and

Tr (D2
BPtϕ(x)) =

1

t

∫

H

< Dϕ(x+ y), y > N (0, tB)(dy) , x ∈ H.

Moreover, TrD2
BPtϕ(·) ∈ BUC(H) and

|TrD2
BPtϕ(x)| ≤ 1√

t
‖ϕ‖1(TrB)

1
2 .

Proof: Since ϕ ∈ BUC1(H), it follows that, for z1 ∈ H,

< DPtϕ(x), B
1
2 z1 > =

∫

H

< Dϕ(x+ y), B
1
2 z1 > N (0, tB)(dy)

= Ptψ(x),

where ψ(x) :=< Dϕ(x), B
1
2 z1 >, x ∈ H. From Theorem 2.2.7 we have

< DBPtψ(x), z2 > =
1

t

∫

H

< z2, B
− 1

2 y > ψ(x+ y)N (0, tB)(dy)

=
1

t

∫

H

< z2, B
− 1

2 y >< Dϕ(x+ y), B
1
2 z1 (2.2)

> N (0, tB)(dy)

for z2 ∈ H. On the other hand, by an easy computation, one can see,

< DBPtψ(x), z2 >=< D2
BPtϕ(x)z1, z2 > .

Hence,

< D2
BPtϕ(x)z1, z2 > =

= 1
t

∫
H
< Dϕ(x+ y), B

1
2 z1 >< z2, B

− 1
2 y > N (0, tB)(dy).

Now, take N ∈ L(H) a finite rank operator. We obtain

< ND2
BPtϕ(x)z1, z2 > =

= 1
t

∫
H
< Dϕ(x+ y), B

1
2 z1 >< N∗z2, B

− 1
2 y > N (0, tB)(dy).

Hence,

Tr(ND2
BPtϕ(x)) =

1

t

∫

H

< Dϕ(x+ y), B
1
2NB−

1
2 y > N (0, tB)(dy),
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and by Hölder’s inequality, we obtain

|Tr(ND2
BPtϕ(x))|2 ≤ ‖ϕ‖21

t2

∫

H

|B 1
2NB−

1
2 y|2N (0, tB)(dy)

=
‖ϕ‖21
t2

t Tr(B
1
2NN∗B

1
2 ) (see Example 1.2.9.(b))

=
‖ϕ‖21
t

Tr(NN∗B).

Thus,

|Tr(ND2
BPtϕ(x))| ≤ 1√

t
‖ϕ‖1‖N‖(TrB)

1
2 , x ∈ H.

So, by Lemma 2.2.9, Tr(D2
BPtϕ(x)) <∞ for all x ∈ H. Moreover,

Tr(D2
BPtϕ(x)) =

1

t

∫

H

< Dϕ(x+ y), y > N (0, tB)(dy), x ∈ H,

and

|Tr(D2
BPtϕ(x))| ≤ 1√

t
‖ϕ‖1(TrB)

1
2 , x ∈ H.

The uniform continuity of Tr(D2
BPtϕ(·)) follows from the fact that ϕ ∈

BUC1(H). 2

2.3 SOLUTIONS OF (HE) AND CHARACTERIZATION

OF THE GENERATOR OF (Pt)

We denote by (G,D(G)) the generator of (Pt) on BUC(H).
First, we propose to compare G with the following operator
D(G0) :=

{
ϕ ∈ BUC2

B(H), D2
Bϕ(x) ∈ L1(H), ∀ x ∈ H and Tr(D2

Bϕ(·)) ∈ BUC(H)
}
,

G0ϕ =
1

2
Tr(D2

Bϕ),

where L1(H) denotes the set of S ∈ L(H) with TrS <∞.

Proposition 2.3.1 The following hold:

(a) D(G0) = BUC(H);

(b) G0 = G.
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Proof: (a) Let ϕ ∈ BUC(H). Since BUC1(H) is dense in BUC(H), it
follows that, for any ε > 0 there is ϕε ∈ BUC1(H) such that ‖ϕ−ϕε‖∞ < ε

2 .
On the other hand, from the strong continuity of (Pt) we have, for any ε > 0
there exists δ > 0 with

0 < t < δ =⇒ ‖ϕε − Ptϕε‖∞ <
ε

2
.

Thus, for 0 < t < δ,
‖ϕ− Ptϕε‖ < ε.

Now, (a) follows from Theorem 2.2.10.
(b) Let ϕ ∈ D(G0) and take g(t) := Ptϕ and gn(t) : Pnt ϕ.
It follows from Theorem 2.1.1 that

gn −→ g in C ([0, 1];BUC(H)) .

Moreover,

dgn
dt

(t) =
1

2

n∑

k=1

λkD
2
kgn(t) =

1

2

n∑

k=1

λkD
2
kP

n
t ϕ = Pnt

(
1

2

n∑

k=1

λkD
2
kϕ

)
.

Hence,
dgn
dt

(t) −→ Pt(G0ϕ) in C ([0, 1], BUC(H)) .

Consequently,
dg

dt
(t) = Pt(G0ϕ) and by taking t = 0 we have ϕ ∈ D(G) and

Gϕ = G0ϕ, i.e., G0 ⊆ G. In particular G0 is closable. Now, take ϕ ∈ D(G),
λ > 0 and set ψ := λϕ − Gϕ. We know that there is (ψn)n∈N ⊆ BUC1(H)
such that ψn → ψ in BUC(H). Since (Pt) is a semigroup of contractions
on BUC(H), we can define ϕn := R(λ,G)ψn. It is clear that ϕn → ϕ in

BUC(H). Since ϕn =

∫ ∞

0

e−λtPtψndt, it follows from Theorem 2.2.10 that

ϕn ∈ D(G0) and ‖G0ϕn‖∞ ≤
(∫ ∞

0

e−λt
1√
t
dt

)
(TrB)

1
2 ‖ψn‖1 .

Moreover, since
G0ϕn = Gϕn = λR(λ,G)ψn − ψn,

it follows that

lim
n→∞

G0ϕn = λR(λ,G)ψ − ψ = GR(λ,G)ψ = Gϕ.

This proves that G0 = G. 2

We solve now the heat equation. Let ϕ ∈ BUC1(H) and set

u(t, x) = Ptϕ(x), t ≥ 0, x ∈ H.
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From Theorem 2.2.10 we know that Ptϕ ∈ D(G0) for t > 0. Since G0 ⊆ G
we obtain

d

dt
Ptϕ = GPtϕ = G0Ptϕ, t > 0.

Thus, we have the following result.

Theorem 2.3.2 Let ϕ ∈ BUC1(H). Then the function

u(t, x) = Ptϕ(x), t > 0,

is a classical solution of (HE) with u(0, x) = ϕ(x), x ∈ H.

An other characterization of the generator (G,D(G)) of the heat semi-
group (Pt) on BUC(H), which will play an important role in Section 2.4, is
given by the following proposition.

Proposition 2.3.3 The set

D0(G) := {ϕ ∈ BUC1,1(H) : DkDlϕ ∈ BUC(H),

for all k, l ∈ N, sup
k,l∈N

‖DkDlϕ‖∞ <∞}

is a Pt-invariant core for G. Moreover,

Gϕ =

∞∑

k=1

λkD
2
kϕ for ϕ ∈ D0(G).

Proof: Let show first that, for ϕ ∈ BUC1,1(H),

sup
l,k∈N

‖DlDkPtϕ‖∞ ≤ ‖ϕ‖1,1, t > 0. (2.3)

Let ϕ ∈ BUC1,1(H) and k ∈ N. Since Dk is closed and DkP
n
t ϕ = Pnt Dkϕ

for t ≥ 0 and n ∈ N, it follows from Theorem 2.1.1 that

DkPtϕ = PtDkϕ

for all t ≥ 0. So by Proposition 2.2.1 we have

DkPtϕ ∈ D(Dl) for all t > 0, and l ∈ N.

Thus, by Theorem 2.1.3, we deduce that

|DlDkPtϕ(x)| =
= |DlPtDkϕ(x)|

=

∣∣∣∣ limh→0

1

h
(PtDkϕ(x+ hel)− PtDkϕ(x)

∣∣∣∣

=

∣∣∣∣ limh→0

∫

H

1

h
(Dkϕ(x+ y + hel)−Dkϕ(x+ y)N (0, tB)(dy)

∣∣∣∣
≤ ‖ϕ‖1,1
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for all l, k ∈ N, and x ∈ H. This proves (2.3). So we obtain

PtD0(G) ⊆ D0(G), ∀t ≥ 0.

From Proposition A.2.5, it suffices now to prove that D0(G) is dense in
BUC(H). This can be seen by using (2.3) and exactly the same proof as in
Proposition 2.3.1.(a). 2

We end this section by the following remark.

Remark 2.3.4 If we compare the result of Theorem 2.2.8 and Theorem A.2.7
then the following question arise:

Is the semigroup (Pt) analytic or at least differentiable onBUC(H)?

The answer is negative (see [27]) and will be given in the following section
(see Corollary 2.4.2).

2.4 THE SPECTRUM OF THE INFINITE

DIMENSIONAL LAPLACIAN

Let H be a separable, infinite dimensional, real Hilbert space and let (ek) be
an orthonormal basis. We shall regard BUC(Rn) as a subspace of BUC(H)
via the isometric embedding

Jn : BUC(Rn)→ BUC(H), (Jnϕ)(x) := ϕ(x1, . . . , xn),

for ϕ ∈ BUC(Rn), x ∈ H, and xk := 〈x, ek〉. Let λk > 0 with
∑∞
k=1 λk <∞

be given. We know from Theorem 2.1.1 that the infinite dimensional heat
equation (HE) on BUC(H) is solved by the C0-semigroup of contractions

Ptϕ = lim
n→∞

Pnt ϕ, ϕ ∈ BUC(H),

where the above limit exists in BUC(H) uniformly in t on bounded subsets
of [0,∞). We recall that for ϕ ∈ BUC(H), x ∈ H and t > 0,

Pnt ϕ(x) := (2πt)−
n
2 (λ1 · · ·λn)−

1
2

∫

Rn
e
−Pn

k=1

y2
k

2tλk ϕ
(
x−

n∑

k=1

ykek

)
dy.

(2.4)
Let compute the spectrum of the generator (G,D(G) of the semigroup (Pt)
on BUC(H).

Theorem 2.4.1 The spectrum of G is the left half plane {λ ∈ C : Re λ ≤ 0}
and σ(Pt) = {λ ∈ C : |λ| ≤ 1}. Moreover, every λ ∈ σ(G) is an approximate
eigenvalue.
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Proof: Note that the restriction of Pt to BUC(Rn) coincides with the semi-
group generated by Gn :=

∑n
k=1 λkD

2
k. In particular, Gn is the part of G in

BUC(Rn) and, hence, R(λ,Gn) = R(λ,G)|BUC(Rn) for λ ∈ ρ(G) ∩ ρ(Gn).
Therefore, for these values of λ, the sequence ‖R(λ,Gn)‖ is bounded.
Let V : BUC(Rn)→ BUC(Rn) be the isometry defined by

(V ϕ)(x) := ϕ(

√
λ1

2
x1, . . . ,

√
λn
2
xn), ϕ ∈ BUC(Rn), x ∈ Rn.

A simple change of variables in (2.4) shows that etGn = V −1et∆nV for
t ≥ 0, n ∈ N, where ∆n denotes the Laplacian on Rn. This implies that

R(λ,Gn) = V −1R(λ,∆n)V for λ ∈ Σπ := {0 6= λ ∈ C : | arg λ| < π},
so that ‖R(λ,Gn)‖ = ‖R(λ,∆n)‖ for λ ∈ Σπ and n ∈ N.

Fix λ ∈ Σπ with Re λ < 0. For n ∈ N, the function gλ,n(x) := e
λ
2n |x|2 , x ∈

Rn, belongs to BUC(Rn) and ‖gλ,n‖∞ = 1. Setting

fλ,n(x) := (λ−∆n)gλ,n(x)− λ2

n2
|x|2e λ

2n |x|2 , x ∈ Rn,

we compute

‖fλ,n‖∞ =
2|λ|2

ne|Re λ| .

So we derive

‖R(λ,Gn)‖ = ‖R(λ,∆n)‖ ≥ ‖R(λ,∆n)fλ,n‖∞
‖fλ,n‖∞

=
ne|Re λ|

2|λ|2 .

Since the sequence ‖R(λ,Gn)‖ is unbounded, λ must belong to the spec-
trum of G. From standard spectral theory of C0-semigroups,
cf. [16, Chap. IV], now follows the first and second assertion.

To prove the last assertion, we observe that iR is contained in the ap-
proximate point spectrum of G. Let λ = −a2 + ib for a > 0 and b ∈ R. The
first part of the proof applies to the operator G̃ on BUC(H) correspond-
ing to the sequence (λ2, λ3, · · · ). Thus there exist gn ∈ D0(G̃) such that
‖gn‖∞ = 1 and ‖G̃gn − ibgn‖∞ → 0 as n→∞. We now define

fn(x) : exp(iaλ
− 1

2
1 x1) gn(x2, x3, · · · ), x ∈ H.

Clearly, fn ∈ D0(G), ‖fn‖∞ = 1, and

Gfn(x) =

∞∑

k=1

λkD
2
k fn(x) = −a2fn(x) + exp(iaλ

− 1
2

1 x1) (G̃gn)(x2, x3, · · · ),

x ∈ H.
As a result, λ is an approximate eigenvalue of G. 2

As a consequence of Theorem A.2.10 and (11) we immediately obtain
the following result from [14], see also [18], [29] and [2].
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Corollary 2.4.2 The semigroup (Pt) is not eventually norm continuous an
hence not eventually differentiable on BUC(H).




