CHAPTER 2

HEAT EQUATIONS IN HILBERT SPACES

In this chapter, H is a separable Hilbert space and $(e_n)_{n\in\mathbb{N}}$ is an orthonormal basis of H.

For $\varphi \in C_b(H)$, the space of continuous and bounded functions $\varphi : H \to \mathbb{R}$, we say that φ is differentiable in the direction $e_k, k \in \mathbb{N}$, if the limit

$$D_k\varphi(x) := \lim_{h \to 0} \frac{1}{h} \left(\varphi(x + he_k) - \varphi(x)\right), \qquad x \in H$$

exists in $C_b(H)$. The operator D_k will be considered as the linear operator in $C_b(H)$ defined by

$$D(D_k) := \left\{ \varphi \in C_b(H) : \lim_{h \to 0} \frac{1}{h} \left(\varphi(\cdot + he_k) - \varphi(\cdot) \right) \text{ exists in } C_b(H) \right\}$$

and

$$D_k\varphi(x) = \lim_{h \to 0} \frac{1}{h} \left(\varphi(x + he_k) - \varphi(x)\right), \quad \varphi \in D(D_k), \ x \in H, \ h \in \mathbb{R}.$$

We start by showing that D_k is a closed operator on $C_b(H)$, for every $k \in \mathbb{N}$. In fact, let $(\varphi_n)_{n \in \mathbb{N}} \subseteq D(D_k)$, and $\varphi, \psi \in C_b(H)$ such that

 $\varphi_n \longrightarrow \varphi$ and $D_k \varphi_n \longrightarrow \psi$ in $C_b(H)$.

We consider $\phi_n, \phi \in C(C[-1, 1], C_b(H))$ defined by

$$\phi(h)(x) := \varphi(x + he_k) \quad \text{and} \quad \phi_n(h)(x) := \varphi_n(x + he_k),$$
$$x \in H, \ h \in [-1, 1] \text{ and } n \in \mathbb{N}.$$

Then ϕ_n is differentiable, as a function of the variable h, and

$$\frac{d}{dh}\phi_n(h)(x) = D_k\varphi_n(x+he_k).$$

So we have

$$\phi_n(h) - \phi_n(0) = \int_0^h \frac{d\phi_n}{dh}(s) \, ds$$

and by the assumption we obtain

$$\phi(h) - \phi(0) = \int_0^h \psi(\cdot + se_k) \, ds,$$

which implies that $\varphi \in D(D_k)$ and $D_k \varphi = \psi$. In a similar way we can define partial derivatives of any order. Now, we fix a sequence $(\lambda_n)_{n \in \mathbb{N}}$, $\lambda_n > 0$ for $n \in \mathbb{N}$. In this chapter we are interested to solve the heat equation

$$(HE) \quad \begin{cases} \frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\sum_{n=1}^{\infty}\lambda_n D_n^2 u(t,x), & t > 0, \ x \in H, \\ u(0,x) = \varphi(x), & x \in H, \ \varphi \in C_b(H) \end{cases}$$

and to study the regularity of the solution u of (HE) in the case dim $H = \infty$. For this purpose, let consider its finite dimensional approximation

$$(HE)_n \begin{cases} \frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\sum_{k=1}^n \lambda_k D_k^2 u(t,x), & t > 0, \ x \in H, \\ u(0,x) = \varphi(x), & x \in H, \ \varphi \in C_b(H). \end{cases}$$

It is easy to see that, for all $\varphi \in C_b(H)$, $(HE)_n$ has a unique classical solution given by

$$\begin{cases} u_n(t,x) = (2\pi t)^{-\frac{n}{2}} (\lambda_1 \dots \lambda_n)^{-\frac{1}{2}} \int_{\mathbb{R}^n} e^{-\sum_{k=1}^n \frac{\xi_k^2}{2t\lambda_k}} \varphi(x - \sum_{k=1}^n \xi_k e_k) \, d\xi, \\ u_n(0,x) = \varphi(x), \quad x \in H. \end{cases}$$

If we denote by

$$x_k := < x, e_k >, x \in H$$

and

$$B_n := \left(\begin{array}{ccc} \lambda_1 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{array}\right)$$

then

$$u_n(t,x) = \int_{\mathbb{R}^n} \varphi\left(y + \sum_{k=n+1}^\infty x_k e_k\right) \mathcal{N}(x,tB_n)(dy), \ x \in H, \ t > 0.$$

In the sequel we denote by

$$P_t^{(n)}\varphi(x) := u_n(t,x)$$

for $t \ge 0$, $x \in H$, $n \in \mathbb{N}$, and $\varphi \in C_b(H)$. By an easy computation one has, for all $n \in \mathbb{N}$, $(P_t^{(n)})_{t\ge 0}$ is a semigroup on $C_b(H)$. Moreover, on $C_b(H)$, $(P_t^{(n)})$ is not strongly continuous at 0. In order to have strong continuity at 0 we have to work, for example, in BUC(H), the space of all bounded and uniformly continuous functions from H into \mathbb{R} . Now, it is well-known that $(P_t^{(n)})$ is an analytic semigroup on BUC(H) and

$$\|P_t^{(n)}\varphi\|_{\infty} \le \|\varphi\|_{\infty}$$

for $\varphi \in BUC(H), t \ge 0$, and $n \in \mathbb{N}$. Now, one asks under which conditions the limit

$$\lim_{n \to \infty} u_n(t, x) \quad \text{exists in } BUC(H)$$

for all $\varphi \in BUC(H)$?

A necessary condition for the existence of the above limit is

$$\sum_{n=1}^{\infty} \lambda_n < \infty.$$

In fact, let $\varphi(x) := \exp\left(-\frac{1}{2}||x||^2\right)$. By applying Proposition 1.2.8 with $\alpha = -1, m = x$, and $B = tB_n$ one has

$$u_n(t,x) = \prod_{k=1}^n (1+\lambda_k t)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}\sum_{k=1}^n \frac{x_k^2}{1+\lambda_k t} - \frac{1}{2}\sum_{k=n+1}^\infty x_k^2\right).$$

If $\lim_{n\to\infty} u_n(t,x)$ exists, then $\prod_{k=1}^{\infty} (1+t\lambda_k)^{-\frac{1}{2}}$ exists for t > 0. Hence,

$$\log \prod_{k=1}^{\infty} (1+t\lambda_k) = \sum_{k=1}^{\infty} \log(1+t\lambda_k), \ t > 0$$

exists. In particular, $\lim_{k\to\infty} \lambda_k = 0$. Set $M := \sup_n \lambda_n$. Then we have

$$mt\lambda_k \leq \log(1+t\lambda_k) \leq t\lambda_k, \ t > 0, \ k \in \mathbb{N},$$

where $m := \inf\{\frac{1}{\alpha}\log(1+\alpha), \ 0 < \alpha \le M\}$. Therefore,

$$\sum_{k=1}^{\infty} \lambda_k < \infty$$

and

$$\lim_{n \to \infty} u_n(t, x) = u(t, x) = \prod_{k=1}^{\infty} (1 + \lambda_k t)^{-\frac{1}{2}} e^{-\frac{1}{2} \sum_{k=1}^{\infty} \frac{x_k^2}{1 + t \lambda_k}}, \quad t > 0, \ x \in H.$$

If $\sum_{k=1}^{\infty} \lambda_k = \infty$, then

$$\lim_{n \to \infty} u_n(t, x) = \begin{cases} 0 & \text{if } x = 0, \ t \neq 0 \\ 1 & \text{if } x = 0, \ t = 0 \end{cases}$$

Hence, u_n does not converge to a continuous function.

Now, in the sequel we assume that $\sum_{k=1}^{\infty} \lambda_k < \infty$. Set $Bx := \sum_{k=1}^{\infty} \lambda_k x_k, x \in H$. Then $B \in \mathcal{L}_1^+(H)$, ker $B = \{0\}$, and Equation (HE) can be written as follows:

$$(HE) \quad \begin{cases} \frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\mathrm{Tr}[BD^2u(t,x)], & t > 0, \ x \in H, \\ u(0,x) = \varphi(x), & x \in H, \end{cases}$$

where $\varphi \in BUC(H)$.

Many results of this chapter can be found in the monographs [12] and [13].

2.1**CONSTRUCTION OF THE HEAT SEMIGROUP**

In this section we are concerned with the construction of the solution of Equation (HE). To this purpose we suppose without loss of generality that $\lambda_k > 0$ for all $k \in \mathbb{N}$ and $\sum_{k=1}^{\infty} \lambda_k < \infty$. The semigroup $(P_t^{(n)})$ can be written as

$$P_t^{(n)}\varphi = \prod_{k=1}^n T_k(t)\varphi, \quad t \ge 0, \ \varphi \in BUC(H),$$

where

$$T_k(t)\varphi(x) := \begin{cases} (2\pi t\lambda_k)^{-\frac{1}{2}} \int_{\mathbb{R}} e^{-\frac{s^2}{2t\lambda_k}}\varphi(x-se_k) \, ds & \text{if } t > 0\\ \varphi(x), & \text{if } t = 0 \end{cases}$$

for $x \in H$ and $\varphi \in BUC(H)$. Note that $T_k(\cdot)$ is a C_0 -semigroup of contractions on BUC(H) for $k \in \mathbb{N}$. Before proving the strong convergence of $P_t^n, t \ge 0$, on BUC(H), we recall some definitions and fix some notations.

We denote by $BUC^{1}(H)$ the subspace of BUC(H) of all functions φ : $H \to \mathbb{R}$ which are Fréchet differentiable on H and the Fréchet derivative $D\varphi: H \to H$ is uniformly continuous and bounded. For $\varphi \in BUC^1(H)$ we set

$$\|\varphi\|_1 := \|\varphi\|_{\infty} + \sup_{x \in H} \|D\varphi(x)\|.$$

In the sequel we need the subspace $BUC^{1,1}(H)$ of $BUC^{1}(H)$ consisting of all functions $\varphi \in BUC^1(H)$ such that $D\varphi : H \to H$ is Lipschitz continuous and, for $\varphi \in BUC^{1,1}(H)$, we set

$$\|\varphi\|_{1,1} := \|\varphi\|_1 + \sup_{x,y \in H, x \neq y} \frac{\|D\varphi(x) - D\varphi(y)\|}{\|x - y\|}.$$

Theorem 2.1.1 For all $\varphi \in BUC(H)$, the limit

$$P_t\varphi := \lim_{n \to \infty} P_t^n \varphi$$

exists in BUC(H), uniformly in t on bounded subsets of \mathbb{R}^+ . Moreover (P_t) is a C_0 -semigroup on BUC(H) and

$$\|P_t\varphi\|_{\infty} \le \|\varphi\|_{\infty}$$

for $t \geq 0$ and $\varphi \in BUC(H)$.

Proof: Let compute first

$$P_t^n \varphi - P_t^{n-1} \varphi = \prod_{k=1}^n T_k(t) \varphi - \prod_{k=1}^{n-1} T_k(t) \varphi$$
$$= \prod_{k=1}^{n-1} T_k(t) (T_n(t) \varphi - \varphi),$$

and hence,

$$\|P_t^n \varphi - P_t^{n-1} \varphi\|_{\infty} \le \|T_n(t)\varphi - \varphi\|_{\infty}, \quad t \ge 0, \ \varphi \in BUC(H), \ n \in \mathbb{N}.$$

So, for $\varphi \in BUC^{1,1}(H)$, we have

$$\begin{aligned} (T_n(t)\varphi - \varphi)\left(x\right) &= (2\pi\lambda_n t)^{-\frac{1}{2}} \int_{\mathbb{R}} e^{-\frac{s^2}{2\lambda_n t}} \left(\varphi(x - se_n) - \varphi(x)\right) \, ds \\ &= (2\pi\lambda_n t)^{-\frac{1}{2}} \int_{\mathbb{R}} e^{-\frac{s^2}{2\lambda_n t}} \int_0^1 -\frac{\partial}{\partial\gamma} \varphi\left(x - s(1 - \gamma)e_n\right) d\gamma \, ds \\ &= -(2\pi\lambda_n t)^{-\frac{1}{2}} \int_{\mathbb{R}} e^{-\frac{s^2}{2\lambda_n t}} \int_0^1 < D\varphi\left(x - s(1 - \gamma)e_n\right), \\ &\quad se_n > d\gamma \, ds. \end{aligned}$$

Since,

$$\int_{\mathbb{R}} e^{-\frac{s^2}{2\lambda_n t}} < D\varphi(x), se_n > ds = < D\varphi(x), e_n > \int_{\mathbb{R}} e^{-\frac{s^2}{2\lambda_n t}} s \, ds = 0,$$

it follows that

$$T_n(t)\varphi(x) - \varphi(x) = -(2\pi\lambda_n t)^{-\frac{1}{2}} \int_{\mathbb{R}} e^{-\frac{s^2}{2\lambda_n t}} \int_0^1 \langle D\varphi(x - s(1 - \gamma)e_n) - D\varphi(x),$$

 $se_n > d\gamma \, ds.$ Thus,

$$|T_n(t)\varphi(x) - \varphi(x)| \le (2\pi\lambda_n t)^{\frac{1}{2}} \|\varphi\|_{1,1} \int_{\mathbb{R}} s^2 e^{-\frac{s^2}{2\lambda_n t}} ds = \lambda_n t \|\varphi\|_{1,1}.$$

Hence,

$$||T_n(t)\varphi - \varphi||_{\infty} \le \lambda_n t ||\varphi||_{1,1}$$

for $t \geq 0$, $\varphi \in BUC^{1,1}(H)$, and $n \in \mathbb{N}$. Therefore,

$$\begin{aligned} \|P_t^{n+p}\varphi - P_t^n\varphi\|_{\infty} \\ &\leq \|\prod_{k=1}^{n+p} T_k(t)\varphi - \prod_{k=1}^{n+p-1} T_k(t)\varphi\|_{\infty} + \dots + \|\prod_{k=1}^{n+1} T_k(t)\varphi - \prod_{k=1}^{n+1} T_k(t)\varphi\|_{\infty} \\ &\leq \|T_{n+p}(t)\varphi - \varphi\|_{\infty} + \dots + \|T_{n+1}(t)\varphi - \varphi\|_{\infty} \\ &\leq t\|\varphi\|_{1,1} \sum_{k=n+1}^{n+p} \lambda_k, \quad n, p \in \mathbb{N}. \end{aligned}$$

Since $\sum_{n=1}^{\infty} \lambda_n < \infty$, it follows that $(P_t^n \varphi)_n$ is a Cauchy sequence in BUC(H), uniformly for t in bounded subsets of \mathbb{R}_+ . Thus, the limit exists in BUC(H) for all $\varphi \in BUC^{1,1}(H)$. Since $BUC^{1,1}(H)$ is dense in BUC(H) (see [28] or [23]) and $||P_t^n|| \leq 1$ for all $n \in \mathbb{N}$ and $t \geq 0$, the limit exists for all $\varphi \in BUC(H)$ and will be denoted by

$$P_t \varphi := \lim_{t \to \infty} P_t^n \varphi, \qquad t \ge 0, \ \varphi \in BUC(H).$$

The family $(P_t)_{t\geq 0}$ satisfies $P_{t+s}\varphi = P_tP_s\varphi$, $P_0\varphi = \varphi$ for all $t, s \geq 0$. This follows from the estimates $||P_t^n|| \leq 1$ and the fact that (P_t^n) is a semigroup on BUC(H). The strong continuity of $(P_t)_{t\geq 0}$ follows from the uniform convergence of P_t^n on bounded subsets of \mathbb{R}_+ , and the strong continuity of $(P_t^n)_{t\geq 0}$ for every $n \in \mathbb{N}$. \Box

Remark 2.1.2 An other proof of Theorem 2.1.1, using the Mittag-Leffler theorem, can be found in [2]. In this work the authors find conditions implying the convergence of the infinite product of commuting C_0 -semigroups.

Let show now that the semigroup $(P_t)_{t>0}$ is given by a Gaussian measure.

Theorem 2.1.3 If we denote by $\mu := \mathcal{N}(x,tB)$ the Gaussian measure with means $x \in H$ and covariance operator tB, then

$$(P_t\varphi)(x) = \int_H \varphi(y)\mathcal{N}(x,tB)(dy)$$

for $\varphi \in BUC(H)$, and t > 0, where $B = \text{diag}(\lambda_1, \ldots, \lambda_n, \ldots)$.

Proof: For $n \in \mathbb{N}$, $\varphi \in BUC(H)$, t > 0, and $x \in B^{\frac{1}{2}}(H)$, it follows from

the Cameron-Martin formula (see Corollary 1.3.5) that

$$\begin{aligned} &\int_{H} \varphi \left(\sum_{k=1}^{n} y_{k} e_{k} + \sum_{k=n+1}^{\infty} x_{k} e_{k} \right) \mathcal{N}(x, tB)(dy) \\ &= \int_{\mathbb{R}^{n}} \varphi \left(\sum_{k=1}^{n} y_{k} e_{k} + \sum_{k=n+1}^{\infty} x_{k} e_{k} \right) \cdot \\ &\quad \exp \left(-\frac{1}{2t} |B^{-\frac{1}{2}}x|^{2} + \frac{1}{t} \langle B_{n}^{-\frac{1}{2}}y, B_{n}^{-\frac{1}{2}}x \rangle \right) \mathcal{N}(0, tB_{n})(dy) \\ &= \int_{\mathbb{R}^{n}} \varphi \left(\sum_{k=1}^{n} y_{k} e_{k} + \sum_{k=n+1}^{\infty} x_{k} e_{k} \right) \\ &\quad \exp \left(-\frac{1}{2t} \left(|B^{-\frac{1}{2}}x|^{2} - |B_{n}^{-\frac{1}{2}}x|^{2} \right) \right) \mathcal{N}(x, tB_{n})(dy) \\ &= \exp \left(-\frac{1}{2t} (|B^{-\frac{1}{2}}x|^{2} - |B_{n}^{-\frac{1}{2}}x|^{2} \right) \right) (P_{t}^{n}\varphi) (x). \end{aligned}$$

So it follows from Theorem 2.1.1 that

$$\lim_{n \to \infty} \left(P_t^n \varphi \right)(x) \exp\left(-\frac{1}{2} (|B^{-\frac{1}{2}} x|^2 - |B_n^{-\frac{1}{2}} x|^2) \right) = (P_t \varphi)(x).$$

So by the dominated convergence theorem and Lemma 1.2.7 we obtain

$$(P_t\varphi)(x) = \int_H \varphi(y)\mathcal{N}(x,tB)(dy)$$

=
$$\int_H \varphi(y+x)\mathcal{N}(0,tB)(dy), \quad x \in B^{\frac{1}{2}}(H).$$

Since $\overline{B^{\frac{1}{2}}(H)} = H$ (see Remark 1.3.2), it follows that

$$(P_t\varphi)(x) = \int_H \varphi(y+x)\mathcal{N}(0,tB)(dy), \quad x \in H,$$

and the theorem follows now from Lemma 1.2.7.

2.2 **Regularity of the heat semigroup**

Let prove first the differentiability of $P_t\varphi$ in any direction $e_k, k \in \mathbb{N}$, for t > 0 and $\varphi \in BUC(H)$.

Proposition 2.2.1 Let $\varphi \in BUC(H)$ and t > 0. Then $P_t \varphi \in D(D_k)$ for all $k \in \mathbb{N}$ and

$$D_k P_t \varphi(x) = \frac{1}{\lambda_k t} \int_H y_k \varphi(x+y) \mathcal{N}(0,tB)(dy), \qquad x \in H.$$

Proof: By the Cameron-Martin formula (see Corollary 1.3.5) we know that

$$P_t\varphi(x) = \int_H \varphi(y) \exp\left(-\frac{1}{2t}|B^{-\frac{1}{2}}x|^2 + \frac{1}{t} < B^{-\frac{1}{2}}y, B^{-\frac{1}{2}}x > \right) \mathcal{N}(0, tB)(dy)$$

for t > 0, $x \in H$ and $\varphi \in BUC(H)$.

It is now easy to see that $P_t\varphi$ is differentiable in the direction e_k and by Lemma 1.2.7 we obtain

$$D_k P_t \varphi(x) = \frac{1}{t\lambda_k} \int_H (y_k - x_k) \varphi(y) \mathcal{N}(x, tB)(dy)$$

= $\frac{1}{t\lambda_k} \int_H y_k \varphi(x+y) \mathcal{N}(0, tB)(dy).$

By applying the Cameron-Martin formula to the derivatives $D_k P_t \varphi$ obtained in Proposition 2.2.1 one obtains by similar arguments the following result.

Proposition 2.2.2 For $\varphi \in BUC(H)$ and t > 0 we have $P_t \varphi \in D(D_l D_k)$ for all $l, k \in \mathbb{N}$, and

$$D_l D_k P_t \varphi(x) = \frac{1}{\lambda_l \lambda_k t^2} \int_H y_l y_k \varphi(x+y) \mathcal{N}(0,tB)(dy) - \frac{\delta_{l,k}}{\lambda_l t} P_t \varphi(x), \quad x \in H,$$

where $\delta_{l,k} := \begin{cases} 1 & \text{if } l = k, \\ 0 & \text{if } l \neq k. \end{cases}$

Now, we are interested in global regularity properties of the semigroup (P_t) on BUC(H). To this purpose we define two subspaces $BUC_B^1(H)$ and $BUC_B^2(H)$ of BUC(H).

Definition 2.2.3 We said that a function $\varphi \in BUC(H)$ is in $BUC_B^1(H)$ if

- (i) $\varphi \in \bigcap_{k=1}^{\infty} D(D_k);$
- (ii) $\sup_{x \in H} \sum_{k=1}^{\infty} \lambda_k |D_k \varphi(x)|^2 < \infty;$
- (iii) the mapping $D_B \varphi : H \to H$; $x \mapsto \sum_{k=1}^{\infty} \sqrt{\lambda_k} D_k \varphi(x) e_k$ is uniformly continuous.

It is clear that $BUC^{1}(H) \subseteq BUC^{1}_{B}(H)$ and $D_{B}\varphi(x) = B^{\frac{1}{2}}D\varphi(x)$ for $x \in H$, and $\varphi \in BUC^{1}(H)$.

Definition 2.2.4 A function $\varphi \in BUC(H)$ is in $BUC_B^2(H)$ if

- (i) $\varphi \in \bigcap_{l,k=1}^{\infty} D(D_l D_k);$
- (ii) $\sup_{x \in H} \sum_{l=1}^{\infty} \left(\sum_{k=1}^{\infty} \sqrt{\lambda_l \lambda_k} D_l D_k \varphi(x) y_k \right)^2 \le C^2 |y|^2$ for all $y \in H$ and some constant C > 0;

(iii) the mapping $D_B^2 \varphi$ defined by $D_B^2 \varphi(x) : H \to \mathcal{L}(H); x \mapsto D_B^2 \varphi(x)$, where

$$\langle D_B^2 \varphi(x)y, z \rangle := \sum_{l,k=1}^{\infty} \sqrt{\lambda_l \lambda_k} D_l D_k \varphi(x) y_l z_k, \quad y, z \in H,$$

is uniformly continuous.

We propose now to show some auxiliary results.

Lemma 2.2.5 The linear operator

$$D_B: BUC^1_B(H) \to BUC(H, H)$$

is closed.

Proof: Let $(\varphi_n) \subset BUC_B^1(H), \varphi \in BUC(H)$, and $F \in BUC(H, H)$ are such that

$$\lim_{n \to \infty} \|\varphi_n - \varphi\|_{\infty} = 0, \text{ and } \lim_{n \to \infty} \|D_B \varphi - F\|_{BUC(H,H)} = 0.$$

For any $k \in \mathbb{N}$, we have

$$\lim_{n \to \infty} \sup_{x \in H} \left| \langle D_B \varphi_n(x) - F(x), e_k \rangle \right| =$$
$$= \lim_{n \to \infty} \sup_{x \in H} \left| \sqrt{\lambda_k} D_k \varphi_n(x) - \langle F(x), e_k \rangle \right| = 0.$$

Thus,

$$\lim_{n \to \infty} \sup_{x \in H} \left| D_k \varphi(x) - \frac{1}{\sqrt{\lambda_k}} \langle F(x), e_k \rangle \right| = 0.$$

Since D_k is closed in BUC(H), it follows that $\varphi \in D(D_k)$ and

$$D_k\varphi(x) = \frac{1}{\sqrt{\lambda_k}} \langle F(x), e_k \rangle, \quad k \in \mathbb{N}.$$

Hence,

$$\sum_{k=1}^{\infty} \lambda_k |D_k \varphi(x)|^2 = \sum_{k=1}^{\infty} |\langle F(x), e_k \rangle|^2$$
$$= |F(x)|^2 \le ||F||_{\infty}^2.$$

Moreover,

$$\sum_{k=1}^{\infty} \sqrt{\lambda_k} D_k \varphi(x) e_k = \sum_{k=1}^{\infty} \langle F(x), e_k \rangle e_k = F(x)$$

is uniformly continuous. Therefore, $\varphi \in BUC_B^1(H)$ and $D_B\varphi = F$.

Lemma 2.2.6 For $\varphi \in \bigcap_{l,k=1}^{\infty} D(D_l D_k)$ and $x \in H$, we define $D_{B_n}^2 \varphi(x)$ by

$$\langle D_{B_n}^2 \varphi(x) y, z \rangle = \sum_{l,k=1}^n \sqrt{\lambda_l \lambda_k} D_l D_k \varphi(x) y_l z_k, \quad y, z \in H$$

Assume that

(i) there is a constant c > 0 such that

$$\left| \langle D_{B_n}^2 \varphi(x) y, z \rangle \right| \le c |y| |z|, \quad \forall x, y, z \in H, \, n \in \mathbb{N};$$

(ii) for all $y, z \in H$, the limit

$$\lim_{n\to\infty} \langle D^2_{B_n} \varphi(x) y, z \rangle \text{ exists uniformly in } x \in H$$

Then, $\varphi \in BUC_B^2(H)$ and

$$\lim_{n\to\infty}\sup_{x\in H}\left|\langle D_{B_n}^2\varphi(x)y,z\rangle-\langle D_B^2\varphi(x)y,z\rangle\right|=0,\quad y,z\in H$$

Proof: From the assumptions we have

(i)
$$\varphi \in \bigcap_{l,k=1}^{\infty} D(D_l D_k);$$

(ii) $\sup_{x \in H} \left| \sum_{l=1}^{n} \left(\sum_{k=1}^{n} \sqrt{\lambda_l \lambda_k} D_l D_k \varphi(x) y_k \right) z_l \right| \leq c|y||z|$ for all $n \in \mathbb{N}$ and $y, z \in H$. Thus,

$$\sup_{x \in H} \sum_{l=1}^{n} \left(\sum_{k=1}^{n} \sqrt{\lambda_l \lambda_k} D_l D_k \varphi(x) y_k \right)^2 \le c^2 |y|^2, \quad \forall n \in \mathbb{N}$$

(iii) Since the limit $\lim_{n\to\infty} \langle D_{B_n}^2 \varphi(x) y, z \rangle$ exists uniformly in $x \in H$, for all $y, z \in H$, it follows that the mapping

$$D_B^2 \varphi : H \to \mathcal{L}(H); x \mapsto D_B^2 \varphi(x)$$

is uniformly continuous.

Thus, $\varphi \in BUC_B^2(H)$. The last assertion follows easily from the definition of $D_{B_n}^2 \varphi$. \Box

We are now able to show global regularity results for the heat semigroup $({\cal P}_t).$

Theorem 2.2.7 Let $\varphi \in BUC(H)$ and t > 0. Then $P_t \varphi \in BUC_B^1(H)$ and

$$\langle D_B P_t \varphi(x), z \rangle = \frac{1}{t} \int_H \langle z, B^{-\frac{1}{2}} y \rangle \varphi(x+y) \mathcal{N}(0, tB)(dy), \quad x, z \in H$$

Moreover,

$$||D_B P_t \varphi(x)|| \le \frac{1}{\sqrt{t}} ||\varphi||_{\infty}, \quad \forall x \in H.$$

Proof: By Proposition 2.2.1 we have, $P_t \varphi \in D(D_k)$ for all $k \in \mathbb{N}$, and

$$\sum_{k=1}^{n} \sqrt{\lambda_k} D_k P_t \varphi(x) z_k = \sum_{k=1}^{n} \frac{1}{t\sqrt{\lambda_k}} \int_H y_k z_k \varphi(x+y) \mathcal{N}(0,tB)(dy).$$

So by the Hölder inequality we obtain

$$\begin{aligned} \left| \sum_{k=1}^{n} \sqrt{\lambda_k} D_k P_t \varphi(x) z_k \right|^2 &\leq \left. \frac{\|\varphi\|_{\infty}^2}{t^2} \int_H \left(\sum_{k=1}^{n} \frac{y_k z_k}{\sqrt{\lambda_k}} \right)^2 \mathcal{N}(0, tB)(dy) \\ &= \left. \frac{\|\varphi\|_{\infty}^2}{t^2} \sum_{l,k=1}^{n} \frac{z_l z_k}{\sqrt{\lambda_l \lambda_k}} \int_H y_l y_k \mathcal{N}(0, tB)(dy) \right. \\ &= \left. \frac{\|\varphi\|_{\infty}^2}{t^2} \sum_{k=1}^{n} \frac{z_k^2}{\lambda_k} \int_H y_k^2 \mathcal{N}(0, tB)(dy) \right. \\ &= \left. \frac{\|\varphi\|_{\infty}^2}{t^2} \sum_{k=1}^{n} \frac{z_k^2}{\lambda_k} \int_{\mathbb{R}} y_k^2 \mathcal{N}(0, t\lambda_k)(dy_k) \right. \\ &= \left. \frac{\|\varphi\|_{\infty}^2}{t} \sum_{k=1}^{n} z_k^2. \end{aligned}$$

Hence,

$$\sum_{k=1}^{n} \lambda_k |D_k P_t \varphi(x)|^2 \le \frac{\|\varphi\|_{\infty}^2}{t}, \quad \forall n \in \mathbb{N}.$$

It remains to prove that the mapping

$$D_B P_t \varphi : x \mapsto \sum_{k=1}^{\infty} \sqrt{\lambda_k} D_k P_t \varphi(x) e_k$$

is uniformly continuous. First, we note that, by the last estimate, the series

$$D_B P_t \varphi(x) = \sum_{k=1}^{\infty} \sqrt{\lambda_k} D_k P_t \varphi(x) e_k$$

converges and we have

$$\langle D_B P_t \varphi(x), z \rangle = \frac{1}{t} \int_H \langle z, B^{-\frac{1}{2}} y \rangle \varphi(x+y) \mathcal{N}(0, tB)(dy), \quad z \in H.$$

Now, we introduce the uniform continuity modulus of $\varphi \in BUC(H)$,

$$\omega_{\varphi}(t) := \sup\{|\varphi(x) - \varphi(y)| : x, y \in H, |x - y| \le t\}, \quad t \ge 0.$$

Since φ is uniformly continuous, it is easy to see that ω_{φ} is continuous in $[0,\infty)$. Let $x,y \in H$. By Hölder's inequality and Proposition 1.3.1, we

obtain

$$\begin{aligned} &|\langle D_B P_t \varphi(x) - D_B P_t \varphi(y), z \rangle|^2 \\ &= \left| \frac{1}{t} \int_H \langle z, B^{-\frac{1}{2}} \alpha \rangle (\varphi(x+\alpha) - \varphi(y+\alpha)) \mathcal{N}(0, tB)(d\alpha) \right|^2 \\ &\leq \frac{\omega_{\varphi}(|x-y|)^2}{t^2} \int_H |\langle z, B^{-\frac{1}{2}} \alpha \rangle|^2 \mathcal{N}(0, tB)(d\alpha) \\ &= \frac{\omega_{\varphi}(|x-y|)^2}{t} |z|^2. \end{aligned}$$

Hence,

$$\|D_B P_t \varphi(x) - D_B P_t \varphi(y)\| \le \frac{1}{\sqrt{t}} \omega_{\varphi}(|x-y|).$$

Then, $P_t\varphi \in BUC_B^1(H)$ for all $\varphi \in BUC(H)$ and t > 0. Moreover, by the same computation as above, we obtain

$$||D_B P_t \varphi(x)|| \le \frac{1}{\sqrt{t}} ||\varphi||_{\infty}$$

for all $\varphi \in BUC(H), t > 0$, and $x \in H$.

More global regularity is given by the following theorem.

Theorem 2.2.8 For $\varphi \in BUC(H)$ and t > 0, we have $P_t \varphi \in BUC_B^2(H)$ and

$$\begin{split} \langle D_B^2 P_t \varphi(x) z_1, z_2 \rangle &= \frac{1}{t^2} \int_H \langle z_1, B^{-\frac{1}{2}} y \rangle \langle z_2, B^{-\frac{1}{2}} y \rangle \varphi(x+y) \mathcal{N}(0, tB)(dy) \\ &- \frac{1}{t} \langle z_1, z_2 \rangle P_t \varphi(x) \end{split}$$

for $z_1, z_2, x \in H$. If in addition $\varphi \in BUC_B^1(H)$, then

$$\langle D_B^2 P_t \varphi(x) z_1, z_2 \rangle = \frac{1}{t} \int_H \langle D_B \varphi(x+y), z_2 \rangle \langle z_1, B^{-\frac{1}{2}} y \rangle \mathcal{N}(0, tB)(dy)$$

for $x, z_1, z_2 \in H$. Moreover, for all $x \in H$,

$$\begin{aligned} \|D_B^2 P_t \varphi(x)\|_{\mathcal{L}(H)} &\leq \frac{\sqrt{2}}{t} \|\varphi\|_{\infty} \quad \text{for } \varphi \in BUC(H), \end{aligned} \tag{2.1} \\ \|D_B^2 P_t \varphi(x)\|_{\mathcal{L}(H)} &\leq \frac{1}{\sqrt{t}} \|D_B \varphi\|_{BUC(H,H)} \quad \text{for } \varphi \in BUC_B^1(H). \end{aligned}$$

Proof: From Proposition 2.2.2 it follows that

$$\langle D_{B_n}^2 P_t \varphi(x) z_1, z_2 \rangle = \frac{1}{t^2} \int_H \langle z_1, B_n^{-\frac{1}{2}} y \rangle \langle z_2, B_n^{-\frac{1}{2}} y \rangle \varphi(x+y) \mathcal{N}(0, tB)(dy) - \frac{1}{t} \langle z_1, z_2 \rangle P_t \varphi(x), \quad z_1, z_2, x \in H.$$

It is easy to see that all the assumptions of Lemma 2.2.6 are satisfied. Thus, $P_t \varphi \in BUC_B^2(H)$ and

$$\begin{aligned} \langle D_B^2 P_t \varphi(x) z_1, z_2 \rangle &= \frac{1}{t^2} \int_H \langle z_1, B^{-\frac{1}{2}} y \rangle \langle z_2, B^{-\frac{1}{2}} y \rangle \varphi(x+y) \mathcal{N}(0, tB)(dy) \\ &- \frac{1}{t} \langle z_1, z_2 \rangle P_t \varphi(x), \quad z_1, z_2, x \in H. \end{aligned}$$

Hence, by Hölder's inequality and Theorem 2.1.3, we obtain

$$\begin{split} |\langle D_B^2 P_t \varphi(x) z, z \rangle|^2 &= \\ &= \left| \frac{1}{t^2} \int_H |\langle z, B^{-\frac{1}{2}} y \rangle|^2 \varphi(x+y) \mathcal{N}(0,tB)(dy) - \frac{1}{t} |z|^2 P_t \varphi(x) \right|^2 \\ &= \left| \frac{1}{t^4} \int_H \left(|\langle z, B^{-\frac{1}{2}} y \rangle|^2 - t |z|^2 \right) \varphi(x+y) \mathcal{N}(0,tB)(dy) \right|^2 \\ &\leq \left| \frac{\|\varphi\|_{\infty}^2}{t^4} \int_H \left(|\langle z, B^{-\frac{1}{2}} y \rangle|^2 - t |z|^2 \right)^2 \mathcal{N}(0,tB)(dy). \end{split}$$

Since

$$\begin{split} &\int_{H} |\langle z,B^{-\frac{1}{2}}y\rangle|^{4}\mathcal{N}(0,tB)(dy) &= 3t^{2}|z|^{4} \ \text{and} \\ &\int_{H} |\langle z,B^{-\frac{1}{2}}y\rangle|^{2}\mathcal{N}(0,tB)(dy) &= t|z|^{2} \ \text{ (see Proposition 1.3.1),} \end{split}$$

it follows that

$$|\langle D_B^2 P_t \varphi(x) z, z \rangle|^2 \le \frac{2}{t^2} |z|^4 ||\varphi||_{\infty}^2$$

for all $x, z \in H$. Consequently,

$$\|D_B^2 P_t \varphi(x)\|_{\mathcal{L}(H)} \le \frac{\sqrt{2}}{t} \|\varphi\|_{\infty}, \quad \forall x \in H.$$

The second equality can be obtained similarly, by using Theorem 2.2.7 and the last estimate is a consequence of Proposition 1.3.1. $\hfill\square$

We propose now to prove an additional regularity result, which will be needed to solve (HE).

We start by the following auxiliary result, where the proof can be founded in [15, Lemma XI.9.14 (a), p. 1098].

Lemma 2.2.9 Let $B \in \mathcal{L}(H)$ and suppose that there is a constant c > 0 such that, for all finite rank linear operator N in $\mathcal{L}(H)$, $|\text{Tr}(NB)| \leq c ||N||$. Then B is a trace class operator on H and

$$\operatorname{Tr} B \leq c$$
.

The following result was proved first by L. Gross [19] by using probabilistic methods.

Theorem 2.2.10 For $\varphi \in BUC^1(H)$ and t > 0, we have $D_B^2 P_t \varphi(x)$ is a trace class operator on H for all $x \in H$, and

$$\operatorname{Tr} \left(D_B^2 P_t \varphi(x)\right) = \frac{1}{t} \int_H \langle D\varphi(x+y), y \rangle \mathcal{N}(0, tB)(dy) , \qquad x \in H.$$

Moreover, $\operatorname{Tr} D_B^2 P_t \varphi(\cdot) \in BUC(H)$ and

$$|\mathrm{Tr} D_B^2 P_t \varphi(x)| \le \frac{1}{\sqrt{t}} \|\varphi\|_1 (\mathrm{Tr} B)^{\frac{1}{2}}.$$

Proof: Since $\varphi \in BUC^1(H)$, it follows that, for $z_1 \in H$,

$$< DP_t \varphi(x), B^{\frac{1}{2}} z_1 > = \int_H < D\varphi(x+y), B^{\frac{1}{2}} z_1 > \mathcal{N}(0, tB)(dy)$$
$$= P_t \psi(x),$$

where $\psi(x) := < D\varphi(x), B^{\frac{1}{2}}z_1 >, \ x \in H.$ From Theorem 2.2.7 we have

$$< D_B P_t \psi(x), z_2 > = \frac{1}{t} \int_H < z_2, B^{-\frac{1}{2}} y > \psi(x+y) \mathcal{N}(0, tB)(dy)$$

= $\frac{1}{t} \int_H < z_2, B^{-\frac{1}{2}} y > < D\varphi(x+y), B^{\frac{1}{2}} z_1$ (2.2)
> $\mathcal{N}(0, tB)(dy)$

for $z_2 \in H$. On the other hand, by an easy computation, one can see,

$$< D_B P_t \psi(x), z_2 > = < D_B^2 P_t \varphi(x) z_1, z_2 > .$$

Hence,

Now, take $N\in \mathcal{L}(H)$ a finite rank operator. We obtain

$$< ND_B^2 P_t \varphi(x) z_1, z_2 > =$$

= $\frac{1}{t} \int_H < D\varphi(x+y), B^{\frac{1}{2}} z_1 > < N^* z_2, B^{-\frac{1}{2}} y > \mathcal{N}(0, tB)(dy).$

Hence,

$$\operatorname{Tr}(ND_{B}^{2}P_{t}\varphi(x)) = \frac{1}{t} \int_{H} \langle D\varphi(x+y), B^{\frac{1}{2}}NB^{-\frac{1}{2}}y \rangle \mathcal{N}(0,tB)(dy),$$

39

and by Hölder's inequality, we obtain

$$\begin{aligned} |\mathrm{Tr}(ND_B^2 P_t \varphi(x))|^2 &\leq \quad \frac{\|\varphi\|_1^2}{t^2} \int_H |B^{\frac{1}{2}} N B^{-\frac{1}{2}} y|^2 \mathcal{N}(0, tB)(dy) \\ &= \quad \frac{\|\varphi\|_1^2}{t^2} t \, \mathrm{Tr}(B^{\frac{1}{2}} N N^* B^{\frac{1}{2}}) \quad (\text{see Example 1.2.9.(b)}) \\ &= \quad \frac{\|\varphi\|_1^2}{t} \mathrm{Tr}(NN^* B). \end{aligned}$$

Thus,

$$|\operatorname{Tr}(ND_B^2 P_t \varphi(x))| \le \frac{1}{\sqrt{t}} \|\varphi\|_1 \|N\| (\operatorname{Tr} B)^{\frac{1}{2}}, x \in H.$$

So, by Lemma 2.2.9, $\operatorname{Tr}(D_B^2 P_t \varphi(x)) < \infty$ for all $x \in H$. Moreover,

$$\operatorname{Tr}(D_B^2 P_t \varphi(x)) = \frac{1}{t} \int_H \langle D\varphi(x+y), y \rangle \mathcal{N}(0, tB)(dy), \quad x \in H,$$

and

$$|\operatorname{Tr}(D_B^2 P_t \varphi(x))| \le \frac{1}{\sqrt{t}} \|\varphi\|_1 (\operatorname{Tr} B)^{\frac{1}{2}}, \quad x \in H.$$

The uniform continuity of $\operatorname{Tr}(D_B^2 P_t \varphi(\cdot))$ follows from the fact that $\varphi \in BUC^1(H)$. \Box

2.3 Solutions of (HE) and characterization of the generator of (P_t)

We denote by (G, D(G)) the generator of (P_t) on BUC(H). First, we propose to compare G with the following operator $D(G_0) :=$

$$\left\{\varphi \in BUC_B^2(H), \ D_B^2\varphi(x) \in \mathcal{L}_1(H), \ \forall \ x \in H \text{ and } \operatorname{Tr}(D_B^2\varphi(\cdot)) \in BUC(H)\right\},$$

$$G_0\varphi = \frac{1}{2}\mathrm{Tr}(D_B^2\varphi),$$

where $\mathcal{L}_1(H)$ denotes the set of $S \in \mathcal{L}(H)$ with $\operatorname{Tr} S < \infty$.

Proposition 2.3.1 *The following hold:*

(a) $\overline{D(G_0)} = BUC(H);$

(b)
$$\overline{G_0} = G$$
.

Proof: (a) Let $\varphi \in BUC(H)$. Since $BUC^1(H)$ is dense in BUC(H), it follows that, for any $\varepsilon > 0$ there is $\varphi_{\varepsilon} \in BUC^1(H)$ such that $\|\varphi - \varphi_{\varepsilon}\|_{\infty} < \frac{\varepsilon}{2}$. On the other hand, from the strong continuity of (P_t) we have, for any $\varepsilon > 0$ there exists $\delta > 0$ with

$$0 < t < \delta \Longrightarrow \|\varphi_{\varepsilon} - P_t \varphi_{\varepsilon}\|_{\infty} < \frac{\varepsilon}{2}.$$

Thus, for $0 < t < \delta$,

$$\|\varphi - P_t \varphi_{\varepsilon}\| < \varepsilon.$$

Now, (a) follows from Theorem 2.2.10. (b) Let $\varphi \in D(G_0)$ and take $g(t) := P_t \varphi$ and $g_n(t) : P_t^n \varphi$. It follows from Theorem 2.1.1 that

$$g_n \longrightarrow g \quad \text{in } C\left([0,1]; BUC(H)\right).$$

Moreover,

$$\frac{dg_n}{dt}(t) = \frac{1}{2} \sum_{k=1}^n \lambda_k D_k^2 g_n(t) = \frac{1}{2} \sum_{k=1}^n \lambda_k D_k^2 P_t^n \varphi = P_t^n \left(\frac{1}{2} \sum_{k=1}^n \lambda_k D_k^2 \varphi\right).$$

Hence,

$$\frac{dg_n}{dt}(t) \longrightarrow P_t(G_0\varphi) \quad \text{in } C\left([0,1], BUC(H)\right).$$

Consequently, $\frac{dg}{dt}(t) = P_t(G_0\varphi)$ and by taking t = 0 we have $\varphi \in D(G)$ and $G\varphi = G_0\varphi$, i.e., $G_0 \subseteq G$. In particular G_0 is closable. Now, take $\varphi \in D(G)$, $\lambda > 0$ and set $\psi := \lambda \varphi - G\varphi$. We know that there is $(\psi_n)_{n \in \mathbb{N}} \subseteq BUC^1(H)$ such that $\psi_n \to \psi$ in BUC(H). Since (P_t) is a semigroup of contractions on BUC(H), we can define $\varphi_n := R(\lambda, G)\psi_n$. It is clear that $\varphi_n \to \varphi$ in BUC(H). Since $\varphi_n = \int_0^\infty e^{-\lambda t} P_t \psi_n dt$, it follows from Theorem 2.2.10 that

$$\varphi_n \in D(G_0)$$
 and $\|G_0\varphi_n\|_{\infty} \le \left(\int_0^\infty e^{-\lambda t} \frac{1}{\sqrt{t}} dt\right) (\operatorname{Tr} B)^{\frac{1}{2}} \|\psi_n\|_1$.

Moreover, since

$$G_0\varphi_n = G\varphi_n = \lambda R(\lambda, G)\psi_n - \psi_n$$

it follows that

$$\lim_{n \to \infty} G_0 \varphi_n = \lambda R(\lambda, G) \psi - \psi = GR(\lambda, G) \psi = G\varphi$$

This proves that $\overline{G_0} = G$.

We solve now the heat equation. Let $\varphi \in BUC^1(H)$ and set

$$u(t,x) = P_t \varphi(x), \quad t \ge 0, \ x \in H.$$

From Theorem 2.2.10 we know that $P_t \varphi \in D(G_0)$ for t > 0. Since $G_0 \subseteq G$ we obtain

$$\frac{d}{dt}P_t\varphi = GP_t\varphi = G_0P_t\varphi, \ t > 0.$$

Thus, we have the following result.

Theorem 2.3.2 Let $\varphi \in BUC^1(H)$. Then the function

$$u(t,x) = P_t \varphi(x), \quad t > 0,$$

is a classical solution of (HE) with $u(0, x) = \varphi(x), x \in H$.

An other characterization of the generator (G, D(G)) of the heat semigroup (P_t) on BUC(H), which will play an important role in Section 2.4, is given by the following proposition.

Proposition 2.3.3 The set

$$D_0(G) := \{ \varphi \in BUC^{1,1}(H) : D_k D_l \varphi \in BUC(H),$$

for all $k, l \in \mathbb{N}, \sup_{k,l \in \mathbb{N}} \|D_k D_l \varphi\|_{\infty} < \infty \}$

is a P_t -invariant core for G. Moreover,

$$G\varphi = \sum_{k=1}^{\infty} \lambda_k D_k^2 \varphi \quad \text{for } \varphi \in D_0(G).$$

Proof: Let show first that, for $\varphi \in BUC^{1,1}(H)$,

$$\sup_{l,k\in\mathbb{N}} \|D_l D_k P_t \varphi\|_{\infty} \le \|\varphi\|_{1,1}, \quad t > 0.$$
(2.3)

Let $\varphi \in BUC^{1,1}(H)$ and $k \in \mathbb{N}$. Since D_k is closed and $D_k P_t^n \varphi = P_t^n D_k \varphi$ for $t \ge 0$ and $n \in \mathbb{N}$, it follows from Theorem 2.1.1 that

$$D_k P_t \varphi = P_t D_k \varphi$$

for all $t \ge 0$. So by Proposition 2.2.1 we have

$$D_k P_t \varphi \in D(D_l)$$
 for all $t > 0$, and $l \in \mathbb{N}$.

Thus, by Theorem 2.1.3, we deduce that

$$\begin{aligned} |D_l D_k P_t \varphi(x)| &= \\ &= |D_l P_t D_k \varphi(x)| \\ &= \left| \lim_{h \to 0} \frac{1}{h} (P_t D_k \varphi(x + he_l) - P_t D_k \varphi(x)) \right| \\ &= \left| \lim_{h \to 0} \int_H \frac{1}{h} (D_k \varphi(x + y + he_l) - D_k \varphi(x + y) \mathcal{N}(0, tB)(dy)) \right| \\ &\leq \|\varphi\|_{1,1} \end{aligned}$$

for all $l, k \in \mathbb{N}$, and $x \in H$. This proves (2.3). So we obtain

$$P_t D_0(G) \subseteq D_0(G), \quad \forall t \ge 0.$$

From Proposition A.2.5, it suffices now to prove that $D_0(G)$ is dense in BUC(H). This can be seen by using (2.3) and exactly the same proof as in Proposition 2.3.1.(a).

We end this section by the following remark.

Remark 2.3.4 If we compare the result of Theorem 2.2.8 and Theorem A.2.7 then the following question arise:

Is the semigroup (P_t) analytic or at least differentiable on BUC(H)?

The answer is negative (see [27]) and will be given in the following section (see Corollary 2.4.2).

2.4 THE SPECTRUM OF THE INFINITE DIMENSIONAL LAPLACIAN

Let *H* be a separable, infinite dimensional, real Hilbert space and let (e_k) be an orthonormal basis. We shall regard $BUC(\mathbb{R}^n)$ as a subspace of BUC(H)via the isometric embedding

$$J_n : BUC(\mathbb{R}^n) \to BUC(H), \quad (J_n\varphi)(x) := \varphi(x_1, \dots, x_n),$$

for $\varphi \in BUC(\mathbb{R}^n)$, $x \in H$, and $x_k := \langle x, e_k \rangle$. Let $\lambda_k > 0$ with $\sum_{k=1}^{\infty} \lambda_k < \infty$ be given. We know from Theorem 2.1.1 that the infinite dimensional heat equation (HE) on BUC(H) is solved by the C_0 -semigroup of contractions

$$P_t\varphi = \lim_{n \to \infty} P_t^n \varphi, \quad \varphi \in BUC(H),$$

where the above limit exists in BUC(H) uniformly in t on bounded subsets of $[0, \infty)$. We recall that for $\varphi \in BUC(H)$, $x \in H$ and t > 0,

$$P_{t}^{n}\varphi(x) := (2\pi t)^{-\frac{n}{2}} (\lambda_{1}\cdots\lambda_{n})^{-\frac{1}{2}} \int_{\mathbb{R}^{n}} e^{-\sum_{k=1}^{n} \frac{y_{k}^{2}}{2t\lambda_{k}}} \varphi\Big(x - \sum_{k=1}^{n} y_{k}e_{k}\Big) dy.$$
(2.4)

Let compute the spectrum of the generator (G, D(G)) of the semigroup (P_t) on BUC(H).

Theorem 2.4.1 The spectrum of G is the left half plane $\{\lambda \in \mathbb{C} : Re \ \lambda \leq 0\}$ and $\sigma(P_t) = \{\lambda \in \mathbb{C} : |\lambda| \leq 1\}$. Moreover, every $\lambda \in \sigma(G)$ is an approximate eigenvalue. **Proof:** Note that the restriction of P_t to $BUC(\mathbb{R}^n)$ coincides with the semigroup generated by $G_n := \sum_{k=1}^n \lambda_k D_k^2$. In particular, G_n is the part of G in $BUC(\mathbb{R}^n)$ and, hence, $R(\lambda, G_n) = R(\lambda, G)_{|BUC(\mathbb{R}^n)}$ for $\lambda \in \rho(G) \cap \rho(G_n)$. Therefore, for these values of λ , the sequence $||R(\lambda, G_n)||$ is bounded. Let $V : BUC(\mathbb{R}^n) \to BUC(\mathbb{R}^n)$ be the isometry defined by

$$(V\varphi)(x) := \varphi(\sqrt{\frac{\lambda_1}{2}}x_1, \dots, \sqrt{\frac{\lambda_n}{2}}x_n), \qquad \varphi \in BUC(\mathbb{R}^n), \ x \in \mathbb{R}^n.$$

A simple change of variables in (2.4) shows that $e^{tG_n} = V^{-1}e^{t\Delta_n}V$ for $t \ge 0, n \in \mathbb{N}$, where Δ_n denotes the Laplacian on \mathbb{R}^n . This implies that

$$R(\lambda, G_n) = V^{-1}R(\lambda, \Delta_n)V \quad \text{for } \lambda \in \Sigma_\pi := \{ 0 \neq \lambda \in \mathbb{C} : |\arg \lambda| < \pi \},\$$

so that $||R(\lambda, G_n)|| = ||R(\lambda, \Delta_n)||$ for $\lambda \in \Sigma_{\pi}$ and $n \in \mathbb{N}$.

Fix $\lambda \in \Sigma_{\pi}$ with $Re \ \lambda < 0$. For $n \in \mathbb{N}$, the function $g_{\lambda,n}(x) := e^{\frac{\lambda}{2n}|x|^2}$, $x \in \mathbb{R}^n$, belongs to $BUC(\mathbb{R}^n)$ and $\|g_{\lambda,n}\|_{\infty} = 1$. Setting

$$f_{\lambda,n}(x) := (\lambda - \Delta_n) g_{\lambda,n}(x) - \frac{\lambda^2}{n^2} |x|^2 e^{\frac{\lambda}{2n}|x|^2}, \quad x \in \mathbb{R}^n,$$

we compute

$$\|f_{\lambda,n}\|_{\infty} = \frac{2|\lambda|^2}{ne|Re\ \lambda|}.$$

So we derive

$$\|R(\lambda,G_n)\| = \|R(\lambda,\Delta_n)\| \ge \frac{\|R(\lambda,\Delta_n)f_{\lambda,n}\|_{\infty}}{\|f_{\lambda,n}\|_{\infty}} = \frac{ne|Re\,\lambda|}{2|\lambda|^2}$$

Since the sequence $||R(\lambda, G_n)||$ is unbounded, λ must belong to the spectrum of G. From standard spectral theory of C_0 -semigroups, cf. [16, Chap. IV], now follows the first and second assertion.

To prove the last assertion, we observe that $i\mathbb{R}$ is contained in the approximate point spectrum of G. Let $\lambda = -a^2 + ib$ for a > 0 and $b \in \mathbb{R}$. The first part of the proof applies to the operator \tilde{G} on BUC(H) corresponding to the sequence $(\lambda_2, \lambda_3, \cdots)$. Thus there exist $g_n \in D_0(\tilde{G})$ such that $\|g_n\|_{\infty} = 1$ and $\|\tilde{G}g_n - ibg_n\|_{\infty} \to 0$ as $n \to \infty$. We now define

$$f_n(x) : \exp(ia\lambda_1^{-\frac{1}{2}} x_1) g_n(x_2, x_3, \cdots), \quad x \in H.$$

Clearly, $f_n \in D_0(G)$, $||f_n||_{\infty} = 1$, and

$$Gf_n(x) = \sum_{k=1}^{\infty} \lambda_k D_k^2 f_n(x) = -a^2 f_n(x) + \exp(ia\lambda_1^{-\frac{1}{2}} x_1) (\tilde{G}g_n)(x_2, x_3, \cdots),$$

$$x \in H.$$

As a result, λ is an approximate eigenvalue of G.

As a consequence of Theorem A.2.10 and (11) we immediately obtain the following result from [14], see also [18], [29] and [2].

Corollary 2.4.2 The semigroup (P_t) is not eventually norm continuous an hence not eventually differentiable on BUC(H).