
CHAPTER 1

GAUSSIAN MEASURES ON

HILBERT SPACES

The aim of this chapter is to show the Minlos-Sazanov theorem and deduce
a characterization of Gaussian measures on separable Hilbert spaces by its
Fourier transform. By using the notion of the Hellinger integral we prove
the Kakutani theorem on infinite product measures. As a consequence we
obtain the Cameron-Martin theorem.

For Gaussian measures on Banach spaces and their relationship with
parabolic equations with many infinitely variables we refer to [22] and [12]
and the references therein.

1.1 BOREL MEASURES ON HILBERT SPACES

Let H be a real separable Hilbert space, B(H) the Borel σ-algebra on H.
Then B(H) is a separable σ-algebra. A measure on the measurable space
(H,B(H)) is called a Borel measure on H. Here we only investigate finite
Borel measures.

Definition 1.1.1 Let µ be a finite Borel measure on H. The Fourier trans-
form of µ is defined by

µ̂(x) :=

∫

H

ei<x,y>µ(dy), x ∈ H.

Clearly µ̂ possesses the following properties.

Proposition 1.1.2 The Fourier transform of a finite Borel measure satisfies
the following properties
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(1) µ̂(0) = µ(H).

(2) µ̂ is continuous on H.

(3) µ̂ is positive definite in the sense that

n∑

l,k=1

µ̂(xl − xk)αlαk ≥ 0. (1.1)

for any n ≥ 1, x1, x2, · · · , xn ∈ H, and α1, α2, · · · , αn ∈ C.

Proof: We have only to prove the third assertion. For n ≥ 1, x1, x2, . . . , xn ∈
H, and α1, α2, . . . , αn ∈ C we have

n∑

l,k=1

µ̂(xl − xk)αlαk =
n∑

l,k=1

∫

H

ei<xl,y>e−i<xk,y>αlαkµ(dy)

=
n∑

l,k=1

∫

H

(
ei<xl,y>αl

)
(ei<xk,y>αk)µ(dy)

= 〈
n∑

l=1

ei<xl,·>αl,
n∑

k=1

ei<xk,·>αk〉L2(H,µ)

=

∫

H

∣∣∣∣∣
n∑

k=1

ei<xk,y>αk

∣∣∣∣∣

2

µ(dy) ≥ 0.

Here L2(H,µ) denotes the space of all measurable functions f : H → R
satisfying ∫

H

|f(x)|2 µ(dx) <∞.

2

A natural question arises. Is any positive definite continuous functional
on H the Fourier transform of some finite Borel measure?
The answer is affirmative if dimH <∞. This is exactly the classical Bochner
theorem (see Theorem A.1.3). But in the infinite dimensional case the an-
swer is negative. Take, for example,

φ(x) := exp

(
−1

2
|x|2
)
, x ∈ H.

Then it is easy to see that φ is a positive definite functional on H. But φ is
not the Fourier transform of any finite Borel measure on H as we will see
later (see Proposition 1.2.11).
To this end let us prove some auxiliary results.

Lemma 1.1.3 Let φ be a positive definite functional on H. Then, for any
x, y ∈ H,
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(1) |φ(x)| ≤ φ(0), φ(x) = φ(−x).

(2) |φ(x)− φ(y)| ≤ 2
√
φ(0)

√
φ(0)− φ(x− y).

(3) |φ(0)− φ(x)| ≤
√

2φ(0)(φ(0)− <(φ)(x)).

Proof: For x, y ∈ H, set

A :=

(
φ(0) φ(x)
φ(−x) φ(0)

)

B :=




φ(0) φ(x) φ(y)
φ(−x) φ(0) φ(y − x)
φ(−y) φ(x− y) φ(0)




Since φ is positive definite, one can see that both A and B are positive
definite matrices. In particular A

t
= A. Hence, φ(x) = φ(−x) for all x ∈ H.

From det(A) ≥ 0, it follows that |φ(x)| ≤ φ(0).
On the other hand, we have

detB = φ(0)3 − φ(0)|φ(x− y)|2 − φ(x)[φ(0)φ(x)− φ(x− y)φ(y)] +

φ(y)[φ(x)φ(x− y)− φ(0)φ(y)]

= φ(0)3 − φ(0)|φ(x− y)|2 − φ(0)|φ(x)− φ(y)|2 +

2<[φ(y)φ(x)(φ(x− y)− φ(0))].

Using the inequality a3 − ab2 ≤ 2a2|a− b| for |b| < a, we find

φ(0)3 − φ(0)|φ(x− y)|2 ≤ 2φ(0)2|φ(0)− φ(x− y)|.

Therefore,

0 ≤ detB ≤ 4φ(0)2|φ(0)− φ(x− y)| − φ(0)|φ(x)− φ(y)|2

This proves (2).
Finally (3) follows from

|φ(0)− φ(x)|2 = (φ(0)− φ(x))
(
φ(0)− φ(x)

)

= φ(0)2 − 2<(φ(0)φ(x)) + |φ(x)|2
≤ 2φ(0)2 − 2φ(0)<(φ)(x).

2

The following lemma will be useful for the proof of the Minlos-Sazanov
theorem.

Lemma 1.1.4 Let µ be a finite Borel measure on H. Then the following as-
sertions are equivalent.
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(i)
∫
H
|x|2µ(dx) <∞.

(ii) There exists a positive, symmetric, trace class operator Q such that for
x, y ∈ H

〈Qx, y〉 =

∫

H

〈x, z〉〈y, z〉µ(dz). (1.2)

If (ii) holds, then TrQ =
∫
H
|x|2µ(dx).

Proof: Suppose that (ii) holds. Let (en)n∈N be an orthonormal basis of H.
Then
∫

H

|x|2µ(dx) =
∞∑

n=1

∫

H

|〈x, en〉|2µ(dx) =
∞∑

n=1

〈Qen, en〉 = TrQ <∞. (1.3)

Conversely, assume that (i) is satisfied. Thus,
∫

H

|〈x, z〉〈y, z〉|µ(dz) ≤ |x||y|
∫

H

|z|2µ(dz).

By the Riesz representation theorem there exists Q ∈ L(H) such that (1.2)
is satisfied. Obviously, Q is positive and symmetric. Furthermore, by (1.3),

TrQ =

∫

H

|x|2µ(dx) <∞.

Hence Q is of trace class. 2

Let show now the Minlos-Sazanov theorem.

Theorem 1.1.5 Let φ be a positive definite functional on a separable real
Hilbert space H. Then the following assertions are equivalent.

(1) φ is the Fourier transform of a finite Borel measure on H.

(2) For every ε > 0 there is a symmetric positive operator of trace class Qε

such that
〈Qεx, x〉 < 1 =⇒ <(φ(0)− φ(x)) < ε.

(3) There exists a positive symmetric operator of trace class Q on H such
that φ is continuous (or, equivalently, continuous at x = 0) with respect
to the semi-norm | · |Q, where

|x|Q :=
√
〈Qx, x〉 = |Q1/2x|, x ∈ H.

Proof: (1) =⇒ (2): Let φ = µ̂. By applying the inequality

2(1− cosϑ) ≤ ϑ2, ∀ ϑ ∈ R,
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we obtain, for any γ > 0,

<(φ(0)− φ(x)) =

∫

H

(1− cos〈x, z〉) µ(dz)

≤ 1

2

∫

{|z|≤γ}
〈x, z〉2 µ(dz) + 2µ ({z : |z| > γ}) .

Set µ1(A) := µ(A∩ {|z| ≤ γ}) for A ∈ B(H), and apply Lemma 1.1.4 to µ1.
Thus there is a positive symmetric operator of trace class Bγ such that

〈Bγz1, z2〉 =

∫

{|z|≤γ}
〈z1, z〉〈z2, z〉 µ(dz).

On the other hand, for every ε > 0 there is γ > 0 such that µ({z : |z| >
γ}) ≤ ε

4 . Put Qε := 1
εBγ , then

< (φ(0)− φ(x)) ≤ ε

2
〈Qεx, x〉+

ε

2
.

(2) =⇒ (1): Assume that (2) holds. Then <(φ)(x) is continuous at x = 0.
So, by Lemma 1.1.3-(2), φ is continuous on H.
Now, take any orthonormal basis (en)n∈N of H and for n ≥ 1 put

fi1,··· ,in(ω1, · · · , ωn) : φ(ω1e1 + · · ·+ ωnen), ωj ∈ R, 1 ≤ j ≤ n.

Then fi1,··· ,in is a positive definite function on Rn. By the classical Bochner
theorem (see Theorem A.1.3) there exists a finite Borel measure µi1,··· ,in on
Rn such that

fi1,··· ,in = µ̂i1,··· ,in .

The family {µi1,··· ,in} satisfies the consistency conditions of Kolmogorov’s ex-
tension theorem for measures (cf. [30], p. 144). Hence there is a unique
finite Borel measure γ on (R∞,B(R∞)) such that

µi1,··· ,in = γ ◦ (Xi1 , · · · , Xin)−1,

where γ ◦ (Xi1 , · · · , Xin)−1 is defined by

γ ◦ (Xi1 , · · · , Xin)−1(A) = γ((Xi1 , · · · , Xin)−1(A)) for A ∈ B(H),

and Xj(ω) = ωj , ω = (ω1, · · · , ωn, · · · ) ∈ R∞, j ∈ N.
Claim:

∑∞
k=1 X

2
k <∞ γ-a.e..

Let Pn be the standard Gaussian measure on Rn. Then

∫

Rn
ei(a1y1+···+anyn)Pn(dy) = exp


−1

2

n∑

j=1

a2
j


 .
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By assumption, we know that for every ε > 0 there is a positive symmetric
operator Qε of trace class such that

〈Qεx, x〉 < 1⇒ < (φ(0)− φ(x)) < ε.

Hence, by Lemma 1.1.3-(1),

φ(0)−<(φ)(x) ≤ ε+ 2φ(0)〈Qεx, x〉 for x ∈ H.

By Fubini’s theorem we obtain

φ(0)−
∫

R∞
exp


−1

2

n∑

j=1

X2
k+j


 γ(dω)

= φ(0)−
∫

R∞
γ(dω)

∫

Rn
exp


i

n∑

j=1

yjXk+j


Pn(dy)

= φ(0)−
∫

Rn
Pn(dy)

∫

R∞
exp


i

n∑

j=1

yjXk+j


 γ(dω)

= φ(0)−
∫

Rn
Pn(dy)φ




n∑

j=1

yjek+j




=

∫

Rn
[φ(0)− <(φ)(

n∑

j=1

yjek+j)]Pn(dy)

≤ ε+ 2φ(0)

∫

Rn
〈Qε

n∑

j=1

yjek+j ,
n∑

l=1

ylek+l〉Pn(dy)

= ε+ 2φ(0)
n∑

l,j=1

〈Qεek+j , el+j〉
∫

Rn
yjylPn(dy)

= ε+ 2φ(0)
n∑

j=1

〈Qεek+j , ek+j〉
∫

Rn
y2
jPn(dy)

︸ ︷︷ ︸
=1

= ε+ 2φ(0)

n∑

j=1

〈Qεek+j , ek+j〉.

Hence,

φ(0)−
∫

R∞
exp


−1

2

n∑

j=1

X2
k+j


 γ(dω) ≤ ε+ 2φ(0)

∞∑

j=k+1

〈Qεej , ej〉.
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Now, let k −→∞, and ε −→ 0, so we get

lim
k→+∞

∫

R∞
exp


−1

2

∞∑

j=k+1

X2
j


 γ(dω) = φ(0) (= γ(R∞) 6= 0).

This means that the function exp(− 1
2

∑∞
j=k+1X

2
j ) converges in L1(R∞, γ)

to the constant function 1. Thus there is a subsequence of

exp(−1

2

∞∑

j=k+1

X2
j )

converging to 1 γ–a.e., which implies that

∞∑

j=1

X2
j <∞ γ − a.e.,

and the claim is proved.
Finally, let

X(ω) :=

∞∑

j=1

Xj(ω)ej , ω ∈ R∞.

ThenX is defined on R∞ γ-a.e., andX is anH-valued measurable function.
Put

µ := γ ◦X−1.

Then µ is a finite Borel measure on H and since µi1,··· ,in = γ ◦
(Xi1 , · · · , Xin)−1 we obtain

µ̂




n∑

j=1

〈x, ej〉ej


 = f1,··· ,n (〈x, e1〉, · · · , 〈x, en〉)

= φ




n∑

j=1

〈x, ej〉ej


 .

By letting n −→ ∞ we obtain µ̂ = φ and the equivalence (1)⇐⇒(2) is
proved.
(2) =⇒ (3): Assume that (2) holds. In (2) take ε = 1

k for k ∈ N and λk > 0
such that

∑∞
k=1 λkTrQ 1

k
<∞. Set Q :=

∑∞
k=1 λkQ 1

k
. It is obvious that Q is

a positive symmetric operator of trace class on H. Moreover Q satisfies

〈Qx, x〉 < λk ⇒ 〈Q 1
k
x, x〉 < 1

⇒ < (φ(0)− φ(x)) <
1

k
.
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So, by Lemma 1.1.3, φ is continuous on H with respect to ‖ · ‖Q and hence
(3) is proved.
(3) =⇒ (2): Conversely, suppose (3) is satisfied. So for every ε > 0 there is
δ > 0 such that

|x|Q < δ ⇒ < (φ(0)− φ(x)) < ε.

Set Qε := δ−1Q. Then,

〈Qεx, x〉 < 1⇒ < (φ(0)− φ(x)) < ε

and Qε satisfies (2). 2

1.2 GAUSSIAN MEASURES ON HILBERT SPACES

We will study a special class of Borel probability measures on H. We first in-
troduce the notions of mean vectors and covariance operators for general
Borel probability measures.

Definition 1.2.1 Let µ be a Borel probability measure on H. If for any x ∈ H
the function z 7→ 〈x, z〉 is integrable with respect to µ, and there exists an
element m ∈ H such that

〈m,x〉 =

∫

H

〈x, z〉µ(dz), x ∈ H,

then m is called the mean vector of µ. If furthermore there is a positive
symmetric linear operator B on H such that

〈Bx, y〉 =

∫

H

〈z −m,x〉〈z −m, y〉µ(dz), x, y ∈ H,

then B is called the covariance operator of µ.

Mean vectors and covariance operators do not necessarily exist in
general. But if

∫
H
|x|µ(dx) < ∞ , then by Riesz’ representation theorem,

the mean vector m exists, and |m| ≤
∫
H
|x|µ(dx). If furthermore,∫

H
|x|2µ(dx) < ∞, then by Lemma 1.1.4, there is a positive symmetric

trace class operator Q such that

〈Qx, y〉 =

∫

H

〈x, z〉〈y, z〉µ(dz) x, y ∈ H.

Set Bx = Qx − 〈m,x〉m, x ∈ H. Then it is easy to verify that B is the
covariance operator of µ. Note that B is also a positive symmetric trace
class operator.

We introduce now Gaussian measures.
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Definition 1.2.2 Let µ be a Borel probability measure on H. If for any x ∈
H the random variable 〈x, ·〉 has a Gaussian distribution, then µ is called a
Gaussian measure.

Remark 1.2.3 The scalar function 〈x, ·〉 has a Gaussian distribution means
that there exists a real number mx and a positive number σx such that

µ̂(x) =

∫

H

ei〈x,z〉µ(dz) = exp

(
imx −

1

2
σ2
x

)
, x ∈ H.

In the sequel we will characterize Gaussian measures by means of Fourier
transform.

Lemma 1.2.4 Let (αj)j∈N ⊆ R such that
∑∞
j=1 α

2
j = ∞. Then there exists a

sequence of real numbers (βj) such that

αjβj ≥ 0 for all j ≥ 1,

∞∑

j=1

β2
j <∞ and

∞∑

j=1

αjβj =∞.

Proof: Set n0 = 0 and define nk inductively as follows

nk := inf{l :
l∑

j=nk−1+1

α2
j ≥ 1}, k ≥ 1.

Then, nk ↗∞. Put

βj :=
αj
k + 1




nk+1∑

j=nk+1

α2
j



− 1

2

, nk + 1 ≤ j ≤ nk+1, k = 0, 1, . . . .

Then, for all j ≥ 1, αjβj ≥ 0, and

∞∑

j=1

β2
j =

∞∑

k=0

nk+1∑

j=nk+1

β2
j

∞∑

k=0

1

(k + 1)2
<∞,

∞∑

j=1

αjβj =

∞∑

k=0

nk+1∑

j=nk+1

αjβj

=
∞∑

k=0

1

k + 1




nk+1∑

j=nk+1

α2
j




1
2

≥
∞∑

k=0

1

k + 1
=∞.

2

The following result gives a characterization of Gaussian measures on
separable Hilbert spaces.
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Theorem 1.2.5 A Borel probability measure µ on H is a Gaussian measure if
and only if its Fourier transform is given by

µ̂(x) = exp

(
i < m, x > −1

2
< Bx, x >

)
,

where m ∈ H, B is a positive symmetric trace class operator on H. In this
case, m and B are the mean vector and covariance operator of µ respectively.
Moreover, ∫

H

|x|2µ(dx) = TrB + |m|2.

Proof: Let µ be a Gaussian measure on H.
Claim:

∫
H
|x|2µ(dx) <∞.

By assumption, for any x ∈ H, 〈x, ·〉 has a Gaussian distribution. Thus there
are mx ∈ R, and σx > 0 such that

µ̂(x) =

∫

H

ei<x,z>µ(dz) = exp

(
imx −

1

2
σ2
x

)
. (1.4)

Let (ej) be an orthonormal basis of H. Since
∫
R(ξ −m)2N (m,σ2)(dξ) = σ2

and∫
R ξN (m,σ2)(dξ) = m, we have

∫

H

|x|2µ(dx) =
∞∑

j=1

∫

H

〈x, ej〉2µ(dx)

=

∞∑

j=1

∫

R
x2
jµ(dxj)

=
∞∑

j=1

(σ2
ej +m2

ej ).

Let (βj) ⊆ R such that βjmej ≥ 0 and
∑∞
j=1 β

2
j <∞. Set

ξ(x) :=

∞∑

j=1

βj〈ej , x〉

By Schwarz’inequality, the above series converges absolutely and

|ξ(x)| ≤ (
∞∑

j=1

β2
j )

1
2 |x|, x ∈ H.

Moreover, ξ is linear. So by Riesz’representation theorem there is z ∈ H
such that ξ(x) = 〈z, x〉, x ∈ H. By assumption ξ = 〈z, ·〉 is a Gaussian
variable with a finite mean, i.e.,

∑∞
j=1 βjmej < ∞. Now, by Lemma 1.2.4,
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∑∞
j=1 m

2
ej < ∞. Thus, in order to prove

∫
H
|x|2µ(dx) < ∞, it suffices to

check
∑∞
j=1 σ

2
j <∞.

By Theorem 1.1.5, there is a positive, symmetric, trace class operator Q
such that

〈Qx, x〉 < 1⇒ 1− <µ̂(x) <
1

6
.

Hence,

1− exp

(
−1

2
σ2
x

)
≤ 1− <µ̂(x) ≤ 2〈Qx, x〉+

1

6
, ∀ x ∈ H. (1.5)

Without loss of generality we may assume that the kernel of Q is {0}.
For x ∈ H \ {0}, set y := 1√

3<Qx,x>
x. Then

σ2
y =

1

3〈Qx, x〉σ
2
x, and 〈Qy, y〉 =

1

3
.

Replacing x by y in (1.5), we obtain

1− exp

(
− σ2

x

6〈Qx, x〉

)
≤ 2

3
+

1

6
.

This implies that
σ2
x ≤ (6 log 6)〈Qx, x〉, x ∈ H.

Thus,
∞∑

j=1

σ2
ej ≤ (6 log 6)TrQ <∞.

Hence,
∫
H
|x|2µ(dx) <∞ and the claim is proved. So by the remark follow-

ing Definition 1.2.1 the mean vector m and the covariance operator B of µ
exist. The above notation gives

mx =

∫

H

〈x, z〉µ(dz) = 〈m,x〉 and

σ2
x =

∫

H

〈x, z〉2µ(dz)−m2
x

=

∫

H

[〈x, z〉2 − 〈m,x〉2]µ(dz)

=

∫

H

〈x, z −m〉2µ(dz) = 〈Bx, x〉.

From (1.4) we obtain

µ̂(x) = exp

(
i〈m,x〉 − 1

2
〈Bx, x〉

)
, x ∈ H.
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Moreover, ∫

H

|x|2µ(dx) =
∞∑

j=1

(σ2
ej +m2

ej ) = TrB + |m|2

which proves the first implication.
Conversely, let m ∈ H and B be a positive, symmetric, trace class operator,
and consider the positive definite functional

φ(x) = exp

(
i〈m,x〉 − 1

2
〈Bx, x〉

)
, x ∈ H.

Set Qx := Bx + 〈m,x〉m, x ∈ H. Then Q is a positive, symmetric, trace
class operator on H. Define | · |Q on H as follows

|x|Q = |Q1/2x| = 〈Qx, x〉1/2 =
(
〈Bx, x〉+ 〈m,x〉2

)1/2
.

Then φ(x) is continuous at x = 0 with respect to | · |Q. So by Theorem
1.1.5, φ is the Fourier transform of some Borel probability measure µ on
H. Clearly for any x ∈ H, 〈x, ·〉 is a Gaussian random variable with mean
〈m,x〉 and covariance 〈Bx, x〉 under µ. Thus, µ is a Gaussian measure. 2

A Gaussian measure with mean vector m and covariance operator B
will be denoted by N (m,B). We propose now to compute some Gaussian
integrals.

Proposition 1.2.6 Let N (0, B) be a Gaussian measure on H. Then there is
an orthonormal basis (en) of H such that Ben = λnen, λn ≥ 0, n ∈ N.
Moreover, for any α < α0 := infn

1
λn

, we have

∫

H

e
α
2 |x|2N (0, B)(dx) =

( ∞∏

k=1

(1− αλk)

)− 1
2

= (det(I − αB))
− 1

2 .

Proof: The first assertion follows from the fact that B is symmetric and
positive. Since TrB =

∑∞
k=1 λk <∞, it follows that

0 6=
∞∏

k=1

(1− αλk)−
1
2 <∞ for α < α0.

Furthermore,
∫

H

e
α
2 |<x,e1>|2N (0, B)(dx) =

∫

R
e
α
2 ξ

2N (0, λ1)(dξ)

=
1√

2πλ1

∫

R
e
α
2 ξ

2

e−
ξ2

2λ1 dξ

= (1− αλ1)−
1
2 .
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In similar way we have

∫

H

e
α
2

Pn
k=1 |<x,ek>|2N (0, B)(dx) =

(
n∏

k=1

(1− αλk)

)− 1
2

and the result follows from the monotone convergence theorem. 2

Before proving a more general result we propose first to study the trans-
formation of a Gaussian measure by an affine mapping.

Lemma 1.2.7 Let H and H̃ be two separable Hilbert spaces. Consider the
affine transformation F : H → H̃ defined by F (x) = Qx + z, where Q ∈
L(H, H̃) and z ∈ H̃. If we set µF := N (m,B) ◦ F−1, the measure defined by
µF (A) = N (m,B)(F−1(A)), A ∈ B(H̃), then

µF = N (Qm+ z,QBQ∗).

Proof: Let compute the Fourier transform of µF . From Theorem 1.2.5 we
obtain

µ̂F (x) =

∫

eH
ei〈x,ey〉µF (dỹ)

=

∫

H

ei〈x,Qy+z〉µ(dy)

= ei〈x,z〉
∫

H

ei〈Q
∗x,y〉µ(dy)

= ei〈x,Qm+z〉e−
1
2 〈QBQ∗x,x〉

= ̂N (Qm+ z,QBQ∗)(x)

for x ∈ H. So the lemma follows from Theorem 1.2.5. 2

From the above lemma follows the following result.

Proposition 1.2.8 Let α0 := infk
1
λk

. Then, for any α < α0,

∫

H

e
α
2 |x|2N (m,B)(dx) = (det(I − αB))

− 1
2 exp

(α
2
〈(I − αB)−1m,m〉

)
.
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Proof: From Lemma 1.2.7 we have
∫

H

e
α
2 |x|2N (m,B)(dx) =

∫

H

e
α
2 |x+m|2N (0, B)(dx)

= e
α
2 |m|2

∞∏

k=1

1√
2πλk

∫

R
e
α
2 ξ

2+αmkξe
− ξ2

2λk dξ

= e
α
2 |m|2

∞∏

k=1

1√
2πλk

∫

R
e
−
h

1−αλk
2λk

ξ2−αmkξ
i
dξ

= e
α
2 |m|2

∞∏

k=1

1√
2πλk

e
λkα

2m2
k

2(1−αλk)

∫

R
e
− (1−αλk)

2λk
(ξ−λkαmk1−αλk

)2

dξ

=

∞∏

k=1

1√
2πλk

e
α
2m

2
ke

λkα
2m2

k
2(1−αλk)

(∫

R
e−ξ

2

dξ

)(
2λk

1− αλk

) 1
2

=
∞∏

k=1

(1− αλk)−
1
2 e

αm2
k

2(1−αλk)

= (det(I − αB))
− 1

2 e
α
2 〈(I−αB)−1m,m〉.

2

Example 1.2.9 Let compute the integrals

(a) ∫

H

|x|2mN (0, B)(dx), m ∈ N,

(b) ∫

H

|My|2N (0, B)(dy), where M ∈ L(H).

(a) For the integral in (a) we consider the function

f(α) :=

∫

H

e
α
2 |x|2N (0, B)(dx) = (det(I − αB))

− 1
2 for α < α0.

Now, it is easy to see that (−∞, α0) 3 α 7→ det(I − αB) is C∞ and

d

dα
det(I − αB) = Tr(B(I − αB)−1)det(I − αB), α < α0.

Furthermore we can differentiate under the integral sign. Hence,
∫

H

|x|2mN (0, B)(dx) = 2m
dm

dαm
(det(I − αB))

− 1
2

|α=0 .
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This implies that ∫

H

|x|2N (0, B)(dx) = TrB

and ∫

H

|x|4N (0, B)(dx) = 2TrB2 + (TrB)2.

(b) It follows from Lemma 1.2.7 that
∫

H

|My|2N (0, B)(dy) =

∫

H

|y|2N (0,MBM∗)(dy).

So by Theorem 1.2.5 we have
∫

H

|My|2N (0, B)(dy) = Tr(MBM∗) = Tr(M∗MB). (1.6)

By a same computation as above one has

Proposition 1.2.10 For any α, m ∈ H, we have
∫

H

e〈α,x〉N (m,B)(dx) = e〈α,m〉e
1
2 〈Bα,α〉.

We end this section by proving that the positive definite functional on H

defined by ϕ(x) = e−
1
2 |x|2 , x ∈ H, is not the Fourier transform of any Borel

measures provided that dimH =∞.

Proposition 1.2.11 Let Q be a positive, symmetric operator on a separable
Hilbert space H. Then the functional

φ(x) = exp

(
−1

2
< Qx, x >

)
, x ∈ H,

is the Fourier transform of a probability measure on H if and only if TrQ <∞.

Proof: Suppose that TrQ < ∞. Then φ(0) = 1 and φ is | · |Q-continuous
positive functional on H. So by Theorem 1.1.5 there exists a probability
measure µ such that µ̂(x) = φ(x), x ∈ H.
To show the converse, assume that there is a probability measure µ such
that ∫

H

ei<x,y>µ(dy) = exp

(
−1

2
< Qx, x >

)
.

Then by Theorem 1.1.5, for any ε ∈ (0, 1
3 ), there exists a positive, symmetric

operator Qε of trace class such that

< Qεx, x > < 1 ⇒ φ(0)− Reφ(x) < ε

⇒ < Qx, x > < 3ε.
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Let now y0 ∈ H and < Qεy0, y0 >=: c2, with c > 0. Let d > c arbitrary.
Then
< Qε

y0

d ,
y0

d >= c2

d2 < 1.
Hence, < Q y0

d ,
y0

d > < ε, i.e. < Qy0, y0 > < εd2. Letting d → c, we have
< Qy0, y0 >≤ ε < Qεy0, y0 >. Since y0 is arbitrary, we obtain

< Qy, y > ≤ ε < Qεy, y >

for all y ∈ H. In particular, for an orthonormal basis (en)n∈N of H, we
obtain

TrQ =
∑

n

< Qen, en > ≤ ε
∑

n

< Qεen, en >= εTrQε <∞.

2

As an immediate consequence we obtain that the functional

φ(x) = exp

(
−1

2
|x|2
)
, x ∈ H,

is not the Fourier transform of any probability measure on H if dimH =∞.

1.3 THE HELLINGER INTEGRAL AND THE

CAMERON-MARTIN THEOREM

The Cameron-Martin formula permits us to differentiate under the
integral sign with respect to Gaussian measures in infinite dimensional
Hilbert spaces. This allows us to obtain some regularity results for
parabolic equations with many infinitely variables.
First we need some preparations.
We denote by L+

1 (H) the space of all positive, symmetric operators of trace
class on a separable Hilbert space H. Let B ∈ L+

1 (H) and consider an
orthonormal basis (en)n∈N of H and a sequence (λn)n∈N ⊆ R+ such that
Ben = λnen, n ∈ N. Suppose also that kerB = {0}.
If we denote by xn :=< x, en >, then

Bx =

∞∑

n=1

λnxnen and B
1
2x =

∞∑

n=1

λ
1
2xnen, x ∈ H.

We set also

Bnx :=
n∑

k=1

λkxkek and B
− 1

2
n x :=

n∑

k=1

λ
− 1

2

k xkek.

Let consider, for a ∈ H and n ∈ N, the function

ga,n(x) := 〈a,B−
1
2

n x〉 =
n∑

k=1

λ
− 1

2

k xkak.
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If a ∈ B 1
2 (H) then one can define the function

ga(x) :=
∞∑

k=1

λ
− 1

2

k xkak, x ∈ H.

The following proposition shows that it is always possible to define ga as an
L2(H,µ)-function even if a 6∈ B 1

2 (H).

Proposition 1.3.1 Let B ∈ L+
1 (H) with kerB = {0} and µ := N (0, B) its

corresponding Gaussian measure on H. Then the limit

lim
n→+∞

ga,n =: ga

exists in L2(H,µ). Moreover,
∫

H

|ga(x)|2µ(dx) = |a|2

for a given a ∈ H.

Proof: We have

∫

H

|ga,n+p(x)− ga,n(x)|2µ(dx) =

∫

H

∣∣∣∣∣

n+p∑

k=n+1

λ
− 1

2

k xkak

∣∣∣∣∣

2

µ(dx)

=

n+p∑

h,k=n+1

(λhλk)−
1
2 ahak

∫

H

xhxkµ(dx)

=

n+p∑

k=n+1

λ−1
k a2

k

∫

H

x2
kµ(dx)

=

n+p∑

k=n+1

a2
k.

Hence (ga,n)n∈N is a Cauchy sequence in L2(H,µ). Moreover,

∫

H

|ga,n|2µ(dx)
n∑

k=1

1

λk
a2
k

∫

H

x2
kµ(dx)

n∑

k=1

a2
k

and the theorem is proved by letting n→∞. 2

Remark 1.3.2 Suppose that kerB = {0} and take x ∈ H such that
〈B 1

2 a, x〉 = 0 for all a ∈ H. Hence, B
1
2x = 0 and so Bx = 0, which implies

that x = 0. This proves that B
1
2 (H) is dense in H. For the converse, let

x ∈ H with Bx = 0. Thus, B
1
2x = 0 and hence, 〈B 1

2x, y〉 = 〈x,B 1
2 y〉 = 0 for
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all y ∈ H. Since B
1
2 (H) = H, it follows that x = 0.

By the same arguments as in the proof of Proposition 1.3.1 one can show that
ga is well defined as an L2(H,µ)–function and

‖ga‖L2(H,µ) = |a| for a ∈ B 1
2 (H).

In the sequel we will use the notation

ga(x) := 〈a,B− 1
2x〉, x ∈ H.

Proposition 1.3.3 Let B ∈ L+
1 (H) with kerB = {0} and µ := N (0, B) its

corresponding Gaussian measure on H. Then the limit

lim
n→∞

ega,n =: ega

exists in L2(H,µ) for a given a ∈ H. Moreover, for any a ∈ H,
∫

H

e〈a,B
− 1

2 x〉N (0, B)(dx) = e
1
2 |a|2 .

Proof: By applying Proposition 1.2.10 we obtain
∫

H

|ega,n − ega,m |2µ(dx)

=

∫

H

(
e2〈B−

1
2

n a,x〉 − 2e〈B
− 1

2
n a,x〉+〈B−

1
2

m a,x〉 + e2〈B−
1
2

m a,x〉
)
µ(dx)

= e2
Pn
k=1 a

2
k + e2

Pm
k=1 a

2
k − 2

∫

H

e〈(B
− 1

2
n +B

− 1
2

m )a,x〉µ(dx)

= e2
Pn
k=1 a

2
k + e2

Pm
k=1 a

2
k − 2e2

Pn
k=1 a

2
k+ 1

2

Pm
k=n+1 a

2
k

= e2
Pn
k=1 a

2
k

(
1 + e2

Pm
k=n+1 a

2
k − 2e

1
2

Pm
k=n+1 a

2
k

)
−→ 0 (n,m→∞).

This proves that (ega,n) is a Cauchy sequence in L2(H,µ) and one can see
that ∫

H

e〈a,B
− 1

2 x〉N (0, B)(dx) = e
1
2 |a|2

is satisfied for every a ∈ H. 2

We propose now to recall the definition of the Hellinger integral.
Let µ, ν be two probability measures on a measurable space (Ω,Σ). We say
that µ and ν are singular (notation: µ⊥ν) if there is a set B ∈ Σ such that
µ(B) = 0 and ν(Ω \ B) = 0. It is easy to see that two probability measures
µ and ν are singular if and only if for any ε > 0 there is B ∈ Σ such that
µ(B) < ε and ν(Ω \ B) < ε. Further, µ is called ν-absolutely continuous
(notation: µ ≺ ν) if ν(B) = 0 implies µ(B) = 0 for any B ∈ Σ. So by the
theorem of Radon-Nikodym we know that if µ is ν-absolutely continuous,
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then there is a non-negative measurable function ϕ defined on Ω, called the
density function of µ, such that

µ(B) =

∫

B

ϕ(ω)ν(dω)

for any B ∈ Σ. The density ϕ is denoted by

ϕ(ω) :=
dµ

dν
(ω), ω ∈ Ω.

If µ ≺ ν and ν ≺ µ are satisfied then µ and ν are called equivalent (nota-
tion: µ ∼ ν). If µ ∼ ν, then the two density functions ϕ = dµ

dν and ψ = dν
dµ

satisfy ϕ(ω)ψ(ω) = 1, a.e. ω ∈ Ω. Hence, ϕ(ω) > 0 µ-a.e. ω ∈ Ω.
Let now µ and ν two arbitrary probability measures on (Ω,Σ). Let γ be a

probability measure on (Ω,Σ) such that µ ≺ γ and ν ≺ γ. Such a measure
exists, we have to take for example γ = 1

2 (µ + ν). Thus, the following
integral is well-defined

H(µ, ν) :=

∫

Ω

√
dµ

dγ
(ω)

dν

dγ
(ω) γ(dω).

This integral will be called the Hellinger integral.
Let now consider the measurable space (R∞,B(R∞)), where B(R∞) is

the Borel field of subsets B of R∞. On (R,B(R)) we consider two sequences
of measures (µn) and νn) with

µn ∼ νn, ∀n ∈ N. (1.7)

Then one has

H(µn, νn) =

∫

R

√
dνn
dµn

(xn)µn(dxn).

Let us consider two infinite product measures

µ :=
∞∏

n=1

µn and ν :=
∞∏

n=1

νn

defined on (R∞,B(R∞)). The following result is du to S. Kakutani [21] and
gives a condition under which these two measures µ and ν are equivalent.

Theorem 1.3.4 Assume that (1.7) is satisfied. Then the following assertions
hold.

(i) If
∏∞
n=1H(µn, νn) > 0 then µ ∼ ν and

dν

dµ
(x) =

∞∏

k=1

dνk
dµk

(x), a.e. x ∈ R∞.
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(ii) If
∏∞
n=1H(µn, νn) = 0 then µ⊥ν.

Moreover,

H(µ, ν) =

∞∏

n=1

H(µn, νn). (1.8)

Proof: If we set ψn(x) :=
∏n
k=1

√
dνk
dµk

(xk) for x ∈ R∞ and n ∈ N, then

‖ψn‖2L2(R∞,µ) =

∫

R∞

n∏

k=1

dνk
dµk

(xk)µ(dx) =

n∏

k=1

∫

R
νk(dxk) = 1 and

‖ψn − ψm‖2L2(R∞,µ) =

∫

R∞

(
n∏

k=1

√
dνk
dµk

(xk)−
m∏

k=1

√
dνk
dµk

(xk)

)2

µ(dx)

=

∫

R∞

n∏

k=1

dνk
dµk

(xk)

(
1−

m∏

k=n+1

√
dνk
dµk

(xk)

)2

µ(dx)

= 2

(
1−

m∏

k=n+1

∫

R

√
dνk
dµk

(xk)µk(dxk)

)

= 2

(
1−

m∏

k=n+1

H(µk, νk)

)
(1.9)

for any positive integers n and m with n < m.
(i) If

∏∞
n=1H(µn, νn) > 0 then

lim
n,m→∞

m∏

k=n+1

H(µk, νk) = 1.

Hence, by (1.9), (ψn) is a Cauchy sequence in L2(R∞, µ) and so there is
ψ ∈ L2(R∞, µ) such that limn→∞ ‖ψn − ψ‖L2(R∞,µ) = 0.
Let prove now that ν ≺ µ and dν

dµ (x) = (ψ(x))2, x ∈ R∞, i.e.

ν(B) =

∫

B

(ψ(x))2 µ(dx)
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for any B ∈ B(R∞). To this purpose it follows from Hölder’s inequality and
(1.9) that

(∫

R∞
|ψm(x)2 − ψn(x)2|µ(dx)

)2

≤
∫

R∞
|ψm(x) + ψn(x)|2 µ(dx)

∫

R∞
|ψm(x)− ψn(x)|2 µ(dx)

≤ 4

∫

R∞
|ψm(x)− ψn(x)|2 µ(dx)

= 8

(
1−

m∏

k=n+1

H(µk, νk)

)

for n < m. Thus,
lim
n→∞

‖ψ2
n − ψ2‖L1(R∞,µ) = 0.

Finally let B ∈ B(R∞) and set χn(x) := χB(Pnx), x ∈ R∞, where χB(·)
denotes the characteristic function of the measurable set B and Pnx :=
(x1, . . . , xn, 0, . . .). So we have

∫

R∞
χn(x) ν(dx) =

∫

Rn
χB(x1, . . . , xn, 0, . . .) ν1(dx1) . . . νn(dxn)

=

∫

Rn
χn(x)

n∏

k=1

dνk
dµk

(xk)
n∏

k=1

µk(dxk)

=

∫

R∞
χn(x)ψn(x)2 µ(dx).

Since ψ2
n → ψ2 in L1(R∞, µ) and by letting n→∞ we obtain

ν(B) =

∫

R∞
ψ(x)2 µ(dx).

In a similar way one can see that µ ≺ ν. So we obtain µ ∼ ν. Finally, since
µ ∼ ν, we have

H(µ, ν) =

∫

R∞
ψ(x)µ(dx)

= lim
n→∞

∫

R∞
ψn(x)µ(dx)

= lim
n→∞

n∏

k=1

∫

R

√
dνk
dµk

(xk)µk(dxk)

= lim
n→∞

n∏

k=1

H(µk, νk).



22 Gaussian measures on Hilbert spaces

So we obtain (1.8).
(ii) If

∏∞
k=1H(µk, νk) = 0 then for any ε > 0 there is n ∈ N such that∏n

k=1H(µk, νk) < ε. Let Bn ∈ B(Rn) with

Bn := {(x1, . . . , xn) ∈ Rn : ψn(x1, . . . , xn, 0, . . .)
2 =

n∏

k=1

dνk
dµk

(xk) > 1}.

Then,
(

n∏

k=1

µk

)
(Bn) =

∫

Bn

(
n∏

k=1

µk

)
(dx)

<

∫

Bn

ψn(x1, . . . , xn, 0, . . .)

(
n∏

k=1

µk

)
(dx)

=

∫

Bn

n∏

k=1

√
dνk
dµk

(xk)

(
n∏

k=1

µk

)
(dx)

≤
n∏

k=1

H(µk, νk) < ε.

By the same computation we obtain
(

n∏

k=1

νk

)
(Rn \Bn) ≤

n∏

k=1

H(µk, νk) < ε.

Therefore, if we set B := Bn ×
∏∞
k=n+1 R, then

µ(B) < ε and ν(R∞ \B) < ε.

This proves that µ⊥ν. Suppose now that µ⊥ν. Then there existsB ∈ B(R∞)
such that µ(B) = 0 and ν(R∞ \B) = 0. So by Hölder’s inequality, it follows
that

H(µ, ν) =

∫

B

√
dµ

dγ
(x)

dν

dγ
(x) γ(dx) +

∫

R∞\B

√
dµ

dγ
(x)

dν

dγ
(x) γ(dx)

≤
(∫

B

dµ

dγ
(x) γ(dx)

) 1
2
(∫

B

dν

dγ
(x) γ(dx)

) 1
2

+

(∫

R∞\B

dµ

dγ
(x) γ(dx)

) 1
2
(∫

R∞\B

dν

dγ
(x) γ(dx)

) 1
2

= µ(B)
1
2 ν(B)

1
2 + µ(R∞ \B)

1
2 ν(R∞ \B)

1
2 = 0.

Therefore, (1.8) holds. This end the proof of the theorem. 2

Let prove now the Cameron-Martin formula. We note here that the
measure space (H,B(H)) can be identified with (R∞,B(R∞)).



1.3 The Hellinger integral and the Cameron-Martin theorem 23

Corollary 1.3.5 Let B ∈ L+
1 (H) such that kerB = {0} and µ := N (0, B)

and ν := N (m,B) be two Gaussian measures on (H,B(H)). Then the follow-
ing assertions hold.

(i) The Gaussian measures µ and ν are equivalent if and only if m ∈
B

1
2 (H). Moreover the Radon-Nikodym derivative is given by

dν

dµ
(x) = exp

(
−1

2
|B− 1

2m|2+ < B−
1
2x,B−

1
2m >

)
.

(ii) The measures µ and ν are singular if and only if m 6∈ B 1
2 (H).

Proof: We will apply Theorem 1.3.4 to the Gaussian measures µ and ν.
To this purpose let compute the associated Hellinger integral using (1.8). It
follows from Proposition 1.2.10 that

H(µk, νk) =

∫

R

√
dνk
dµk

(xk)µk(dxk)

= e
− m2

k
4λk

∫

R
e
mkxk
2λk N (0, λk)(dxk)

= e
− m2

k
8λk .

So by (1.8) we obtain

H(µ, ν) =
∞∏

k=1

e
− m2

k
8λk .

This implies that

H(µ, ν) > 0 ⇐⇒
∞∑

k=1

m2
k

λk
<∞

⇐⇒ m ∈ B 1
2 (H).

Moreover, in this case, it follows from Theorem 1.3.4 that

dν

dµ
(x) =

∞∏

k=1

dνk
dµk

(x)

=
∞∏

k=1

e
− m2

k
2λk e

xkmk
λk

= exp

(
−1

2
|B− 1

2m|2 + 〈B− 1
2x,B−

1
2m〉

)
,

where x =
∑∞
k=1 xkek with xk := 〈x, ek〉 for an orthonormal basis (en) of

H such that Ben = λnen for n ∈ N. Here we used Proposition 1.3.3.
Finally it is clear that the measures µ and ν are singular if and only if m 6∈
B

1
2 (H). 2
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Exercise 1.3.6 (The Feldman-Hajek theorem)
Let consider two linear operators B1, B2 ∈ L+

1 (H) with kerB1 = kerB2 =
{0} and an orthonormal basis (en) of H such that B1en = λnen, n ∈ N,
where λn > 0 for all n ∈ N. On (H,B(H)) we consider the Gaussian measures
µ1 := N (0, B1) and µ2 := N (0, B2).

1. The commutative case: Suppose that B1B2 = B2B1. By using Theo-
rem 1.3.4 show that

a. if
∑∞
n=1

(λn−αn)2

(λn+αn)2 <∞, then µ1 ∼ µ2. In this case

dµ2

dµ1
(x) =

∞∏

n=1

exp

(
− (λn − αn)

2λnαn
〈x, en〉2

)
,

b. if
∑∞
n=1

(λn−αn)2

(λn+αn)2 =∞, then µ1⊥µ2.

Here αn > 0, n ∈ N, are such that B2en = αnen, n ∈ N.

2. The General case:

(a) Assume that there is S ∈ L+
2 (H) such that

B2 = B
1
2
1 (Id− S)B

1
2
1 .

Show that µ1 ∼ µ2.

(b) Assume that S ∈ L+
1 (H) and ‖S‖ < 1. Show that

dµ2

dµ1
(x) = [det(I−S)]−

1
2 exp(−1

2
〈S(I−S)−1B

1
2
1 x,B

1
2
1 x〉), x ∈ H.

Here L+
2 (H) is the set of positive Hilbert-Schmidt bounded linear opera-

tors on H. That is, B ∈ L+
2 (H) if and only if B ∈ L(H), B positive and∑∞

n=1 |Ben|2 <∞.




