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PREFACE

The aim of these Iecture notes is to present some basic facts and ideas of
the theory of Gaussian measures on infinite dimensional Hilbert spaces and
to show to the reader how this theory can be applied to solve the infinite
dimensional heat equation and, more generally, its perturbations by a linear
drift term.

In particular, the Cameron-Martin theorem will be useful to obtain regular-
ity properties of the semigroup generated by the Gross-Laplacian and the
Ornstein-Ublenbeck semigroup.

These notes originated from a course given by the second author at the
University of Lecce in May 2002 and at the University of Halle-Wittenberg
in May 2003.

We have organized these notes as follows.

In Chapter [ we present a self consistent and relatively complete intra-
duction to the theory of Gaussian measures on separable Hilbert spaces.

Gaussian measures and the Cameron-Martin theorem are used, in Chap-
ter II, to study the infinite dimensional heat equation. Regularity results
and the spectrum of the solution semigroup are also obtained.

Chapter III is concemed with the Ornstein-Uhlenbeck semigroup, first on
the space of bounded continuous functions, and second on LP-spaces with
invariant measure. Regularity results and characterization of the domain of
the generator are also obtained.

In the appendix we recall in the first part the classical Bochner theorem
in RY including, for the sake of completeness, a proof. In the second part
we recall some basic and useful results of the theory of Co-semigroups on
Banach spaces.

Acknowledgments. The second author wants to express his gratitude to
G. Metafune, D. Pallara and the Dipartimento di Matematica "E. De Giorgt”,



iv Preface

Universita di Lecce, whose interest and friendly support were very impor-
tanto The third chapter is based on lectures given at the University of Halle-
Wittenberg. The second author thanks J. Priiss and R. Schnaubelt for their
warm hospitality and the Alexander von Humboldt foundation for the fi-
nancial supporto

Stefania Maniglia
Abdelaziz Rhandi

Lecce and Tiibingen, July 2003
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CHAPTER 1

GAUSSIAN MEASURES ON
HILBERT SPACES

The aim of this chapter is to show the Minlos-Sazanov theorem and deduce
a characterization of Gaussian measures on separable Hilbert spaces by its
Fourier transform. By using the notion of the Hellinger integral we prove
the Kakutani theorem on infinite product measures. As a consequence we
obtain the Cameron-Martin theorem.

For Gaussian measures on Banach spaces and their relationship with
parabolic equations with many infinitely variables we refer to [22] and [12]
and the references therein.

1.1 BOREL MEASURES ON HILBERT SPACES

Let H be a real separable Hilbert space, B(H) the Borel o-algebra on H.
Then B(H) is a separable o-algebra. A measure on the measurable space
(H,B(H)) is called a Borel measure on H. Here we only investigate finite
Borel measures.

Definition 1.1.1 Let u be a finite Borel measure on H. The Fourier trans-
form of p is defined by

fi(z) ¢=/ STV p(dy),  we H.
H

Clearly 1 possesses the following properties.

Proposition 1.1.2 The Fourier transform of a finite Borel measure satisfies
the following properties
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(1) u(0) = p(H).
(2) 1 is continuous on H.

(3) [ is positive definite in the sense that

n
Z q:l — .I'k CklOék > 0. (11)
1k=1
foranyn > 1, 1,22, -+ ,x, € H,and oy, s, -+ ,a,, € C.
Proof: We have only to prove the third assertion. Forn > 1, z1,z9,...,2, €
H, and a1, as, ..., a, € C we have
n
Z (e — xp)ogog, = Z / ISTLYZ e TISTRY> o i (dy)
1k=1 1,k=1
L S [ o
1,k=1
n
= <Z eI an, Y e o) L )

u(dy) =0

n 2
— / 2 :ez<xk,y>ak
H |p=1

Here L?(H, ;1) denotes the space of all measurable functions f : H — R

satisfying
[ 1@ n(da) < .

A natural question arises. Is any positive definite continuous functional
on H the Fourier transform of some finite Borel measure?
The answer is affirmative if dim H < oo. This is exactly the classical Bochner
theorem (see Theorem A.1.3). But in the infinite dimensional case the an-
swer is negative. Take, for example,

O

o(x) :=exp (—%|x|2) , x € H.

Then it is easy to see that ¢ is a positive definite functional on H. But ¢ is
not the Fourier transform of any finite Borel measure on H as we will see
later (see Proposition 1.2.11).

To this end let us prove some auxiliary results.

Lemma 1.1.3 Let ¢ be a positive definite functional on H. Then, for any
z,y € H,
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(D |o(x)| < ¢(0), ¢(x) = p(—x).
@) [p(x) — ¢(y)] < 21/¢(0)1/¢(0) — d(x — y).
(3 [¢(0) — ¢(z)| < 1/2¢(0)(4(0) — R(¢)()).

Proof: For xz,y € H, set
—( 00) o)
A’<¢P@ wm)

$(0) ¢(x) o(y)
B:=| ¢(-z) ¢(0) oy—=z)
o(—y) d(x—y)  #(0)

Since ¢ is positive definite, one can see that both A and B are positive

definite matrices. In particular A’ = A. Hence, ¢(x) = ¢p(—x) forall z € H.
From det(A) > 0, it follows that |¢(x)| < ¢(0).
On the other hand, we have

detB = $(0)° = ¢(0)[¢(x — y)I* = (x)[$(0)¢(2) — ¢z — y)o(y)] +
¢(W)[o(w)p(x —y) — 6(0)d(y)]
= 6(0)° = ¢(0)lg(z — y)I* = 6(0)|¢(x) — S(y)|* +
0

|
2R[p(y)d(x) (d(x — y) — ¢(0))].

Using the inequality a® — ab? < 2a?|a — b| for |b| < a, we find

$(0)> — ¢(0)|p(z — y)|* < 26(0)%6(0) — d(x — y)|.

Therefore,

0 < detB < 4¢(0)*[¢(0) — d(z — y)| — ¢(0)[d(z) — ¢(y)I”

This proves (2).
Finally (3) follows from

9(0) - $(a)” (2)) (#(0) - ()
¢<> —2%( (0)6(x)) + |6(x)
26(0)2 — 26(0)R(6)(2).

IA

O

The following lemma will be useful for the proof of the Minlos-Sazanov
theorem.

Lemma 1.1.4 Let u be a finite Borel measure on H. Then the following as-
sertions are equivalent.
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@ [y lz)Pu(dz) < oo.

(ii) There exists a positive, symmetric, trace class operator () such that for
r,y € H

Q.1 = [ (w2) o Duld). (1.2)

If (ii) holds, then TrQ = [, |x|*p(dz).

Proof: Suppose that (ii) holds. Let (e, ),cn be an orthonormal basis of H.
Then

2 e 2 e _
/H |z|*u(dz) = ;/H (x, en) | pu(dr) = ;(Qen,en> =Tr@Q < oco. (1.3)

Conversely, assume that (i) is satisfied. Thus,

/H (2, 2)(w, 2)(dz) < el /H 2 u(dz).

By the Riesz representation theorem there exists ) € £L(H) such that (1.2)
is satisfied. Obviously, ) is positive and symmetric. Furthermore, by (1.3),

TrQ = /H |z|?p(dz) < oo.

Hence () is of trace class. O
Let show now the Minlos-Sazanov theorem.

Theorem 1.1.5 Let ¢ be a positive definite functional on a separable real
Hilbert space H. Then the following assertions are equivalent.

(1) ¢ is the Fourier transform of a finite Borel measure on H.

(2) For every € > 0 there is a symmetric positive operator of trace class Q.
such that

(Qez,x) <1 = R(4(0) — ¢(z)) < e.

(3) There exists a positive symmetric operator of trace class () on H such
that ¢ is continuous (or, equivalently, continuous at x = 0) with respect
to the semi-norm | - |, where

1z = /(Qx,z) = |Q%z|, z¢c H.

Proof: (1) = (2): Let ¢ = jui. By applying the inequality

2(1 — cos ) < 92, vV eR,
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we obtain, for any v > 0,
%wwww>=/ﬁ—mxw<m
1
3 2 ) 2z > ).

<

Set p1(A) == p(An{|z| <~}) for A € B(H), and apply Lemma 1.1.4 to x.
Thus there is a positive symmetric operator of trace class B, such that

<Bwh@>=A¥K%@h@@m@uwa.

On the other hand, for every ¢ > 0 there is v > 0 such that u({z : |z| >
7}) < €. Put Q. := 1B,, then

R (6(0) - $(a) < 5 (Qr.) +

wlm

(2) = (1): Assume that (2) holds. Then R(¢)(x) is continuous at x = 0.
So, by Lemma 1.1.3-(2), ¢ is continuous on H.
Now, take any orthonormal basis (e,,),en of H and for n > 1 put

fig i (W1, s wn) t d(wier + -+ - +wpey), wj €R, 1<j<n.

Then f;, ... ;, is a positive definite function on R™. By the classical Bochner
theorem (see Theorem A.1.3) there exists a finite Borel measure ;, ... ;, on
R™ such that

~
lef"ﬂn - /’Llla‘“ﬂ/n

The family {y, ... ;, } satisfies the consistency conditions of Kolmogorov’s ex-
tension theorem for measures (cf. [30], p.144). Hence there is a unique
finite Borel measure v on (R>°, B(R*°)) such that

Py, iy =0 (Xiy, o, X))
where yo (X;,, -, X;, )" ! is defined by
vo (Xiy, o, Xi, ) THA) = (X, -+, Xi,)TH(A)) for A € B(H),
and X (w) = wj, w = (w1, -+ ,wp, --) € R®, jeN.

Claim: > 2, X7 < oo ~-a.e..
Let ,, be the standard Gaussian measure on R". Then

/ ei(a1y1+‘..+anyn)[p>n(dy) = exp —% Z CL?

=1
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By assumption, we know that for every ¢ > 0 there is a positive symmetric
operator (). of trace class such that

(Qex, ) < 1= R(40) — p(x)) < €.

Hence, by Lemma 1.1.3-(1),

#(0) = R(@)(z) <e+4+2¢(0)(Qcx,z) forx e H.

By Fubini’s theorem we obtain
60) - [ e (; jznjlx,aj) 1(do)
= o)~ [ e /exp(zijkﬂ) (@)
= o0~ [ Pty /exp(zijkﬂ) )
= 00~ [ Puldy)o (Zlyk+)

— /n[¢(0) — §R(¢)(Z Yjer+j)|P

e+ 2¢(0 (Qe Z Y5kt Z yiex+1)P

IN

Mz%

= e+ 2¢(0) <Q6€k+ja€l+j>/Rn Yyl (dy)

1

<Qa€k+j7 ek—i—j> / yjzpn(dy)
—_——

-
S
Il

.M3

I
-

= = 120(0)

n

J
=1

= £+ 2¢(0 Z (Qclrijs i)
7j=1

Hence,

o

¢(0)—/ exp( ZX,W) (dw) < e+26(0) > (Qeejre).

Jj=k+1
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Now, let K — o0, and ¢ — 0, so we get

lim exp [ == Z X7 | v(dw) = ¢(0) (= ¥(R™) # 0).

k—>+OO Roo J k;—|—1

This means that the function exp(—1 Z;’O k1 X7) converges in L'(R>, )

to the constant function 1. Thus there is a subsequence of

1 oo
exp(—§ Z XJZ)

j=k+1

converging to 1 y—a.e., which implies that

o
E:XJ2 < o0y — ae.,
j=1

and the claim is proved.
Finally, let

oo

w) = ZXj(w)ej, w e R™.

Then X is defined on R* ~-a.e., and X is an H-valued measurable function.
Put

pi=vyoX L
Then 4 is a finite Borel measure on H and since p;, .., = 7 ©
(X’i17 e 7Xin)71 we Obtaln
Z T, ej)e = fr..n({(ze1), -, (x,en))

n
= E xej

By letting n — oo we obtain ;i = ¢ and the equivalence (1)<=(2) is
proved.

(2) => (3): Assume that (2) holds. In (2) take e = } for k € Nand A, > 0
such that 3777 | AyTrQ1 < oo. Set @ := 3777 | Ay Q. It is obvious that Q is
a positive symmetric operator of trace class on H. Moreover () satisfies

(Qz,z) < Ay = <Q%x,a¢> <1

= R ($(0) - ¢(z)) <

=
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So, by Lemma 1.1.3, ¢ is continuous on H with respect to || - || and hence
(3) is proved.
(3) = (2): Conversely, suppose (3) is satisfied. So for every ¢ > 0 there is
9 > 0 such that

2l < 8 = R (6(0) — 6()) < e.

Set Q. := 6 'Q. Then,
(Qez,2) <1 = R(4(0) — d(x)) <e

and (. satisfies (2). O

1.2 GAUSSIAN MEASURES ON HILBERT SPACES

We will study a special class of Borel probability measures on H. We first in-
troduce the notions of mean vectors and covariance operators for general
Borel probability measures.

Definition 1.2.1 Let u be a Borel probability measure on H. If for any x € H
the function z — (x,z) is integrable with respect to u, and there exists an
element m € H such that

(m, ) :/H<x,z> u(dz), x € H,

then m is called the mean vector of u. If furthermore there is a positive
symmetric linear operator B on H such that

<Bzc,y>:/H<z—m,:c><z—m,y>u(dz), x,y € H,

then B is called the covariance operator of L.

Mean vectors and covariance operators do not necessarily exist in
general. But if [, |z|u(dz) < oo, then by Riesz’ representation theorem,
the mean vector m exists, and |m| < [, |z|u(dx). If furthermore,
[3 |z|?p(dz) < oo, then by Lemma 1.1.4, there is a positive symmetric
trace class operator () such that

Qe = [ @ utdz) wyed

Set Bxr = Qx — (m,x)m, « € H. Then it is easy to verify that B is the
covariance operator of i. Note that B is also a positive symmetric trace
class operator.

We introduce now Gaussian measures.
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Definition 1.2.2 Let y be a Borel probability measure on H. If for any x €
H the random variable (z,-) has a Gaussian distribution, then p is called a
Gaussian measure.

Remark 1.2.3 The scalar function (x,-) has a Gaussian distribution means
that there exists a real number m, and a positive number o, such that

. 1
@) = [ i) = exp ( m, ) vel
I 2

In the sequel we will characterize Gaussian measures by means of Fourier
transform.

=)

Lemma 1.2.4 Let (o;)jen C Rsuch that 3777, aF = oo. Then there exists a
sequence of real numbers (3;) such that

a;fB; > 0forall j > 1, Zﬁf < oo and Zajﬁj =00
j=1 =1

Proof: Set ny = 0 and define n; inductively as follows

l
= inf{/ : Z 04?21}, k>1.

Jj=ng_1+1
Then, n; " co. Put
_1
o Nkt1 2
=g | 2 ef] o mel<i<megn k=01
j=nr+1

Then, for all j > 1, o;3; > 0, and

Nk41

252 Z Z 522 k:+ < o0,

k=0j=nr+1 k= 0

doaB = Y Y b
j=1 =0

k_OJan—i—l
1
o) 1 Nk41 2
_ 2
o E+1 Z &
k=0 j=nr+1
=1
> SE—
= kz_o k1 o

O

The following result gives a characterization of Gaussian measures on
separable Hilbert spaces.
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Theorem 1.2.5 A Borel probability measure p on H is a Gaussian measure if
and only if its Fourier transform is given by

1
i(z) = exp <i<m,x> ~5 < Bx,x >),

where m € H, B is a positive symmetric trace class operator on H. In this
case, m and B are the mean vector and covariance operator of y respectively.
Moreover;

/ |z|?p(dz) = TrB + |m|>.
H

Proof: Let u be a Gaussian measure on H.

Claim: [, |z|?u(dz) < oc.

By assumption, for any = € H, (z,-) has a Gaussian distribution. Thus there
are m, € R, and o, > 0 such that

, 1
pu(x) = / e" <27 1(dz) = exp (imx - 50926) : (1.4)
H

Let (e;) be an orthonormal basis of H. Since fR(f —m)2N (m, o2)(d€) = o>
and
Jg €N (m, 02%)(d€) = m, we have

| laPutas) 2 | (e.6)?utde)

Let (3;) C R such that 8;m.; > 0 and Z;’;l ﬁjz < oo. Set

§@) =3 Biles,m)
j=1
By Schwarz’inequality, the above series converges absolutely and
@) <O pHzlal, ze M.
j=1

Moreover, ¢ is linear. So by Riesz’representation theorem there is z € H
such that {(z) = (z,z), € H. By assumption { = (z,-) is a Gaussian
variable with a finite mean, i.e., Zj’;l Bijme,; < co. Now, by Lemma 1.2.4,
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Py m2 < oo. Thus, in order to prove [, [z[*u(dz) < oo, it suffices to

check Z C,07 < oo
By Theorem 1 1.5, there is a positive, symmetric, trace class operator ()
such that

(Qr,x) <1=1-Ru(x) <

| =

Hence,
1 1
1 —exp <—§a) <1-Ru(x )<2(Q:1:,$)+6, VaeH. (1.5)

Without loss of generality we may assume that the kernel of @) is {0}.

Forx e H \ {O}, set Y = \/ﬁx. Then
1
oy = g@@;—5§0§, and (Qy,y) = 5

Replacing = by y in (1.5), we obtain

1—e @ V<2,
—_— X —_— J—
P 6(Qx,z) ) ~— 3

2 < (6log6)(Qx,z), =€ H.

|

This implies that

Thus,

Z < (6log 6)Tr@Q < oo.

Hence, [}, |z|*p(dz) < oo and the claim is proved. So by the remark follow-
ing Definition 1.2.1 the mean vector m and the covariance operator B of u
exist. The above notation gives

My = /H<J:,z>u(dz) = (m,z) and

= [ @2l - m
= [ l@.2? = .2 uaz)

= / (x,2 —m)?u(dz) = (Bx, z).
H
From (1.4) we obtain

() = exp ( (m, z) — %<B:c,sc>> L zeH
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Moreover,

which proves the first implication.
Conversely, let m € H and B be a positive, symmetric, trace class operator,
and consider the positive definite functional

6(x) = exp (i(m,x) - %<Bx,x>) . zeH

Set Qx := Bx + (m,z)m, x € H. Then @ is a positive, symmetric, trace
class operator on H. Define | - | on H as follows

[zl = |Q"?2] = (Qu,x)"/* = ((Bwz, ) + <m,x>2>1/2.

Then ¢(x) is continuous at x = 0 with respect to | - |¢g. So by Theorem
1.1.5, ¢ is the Fourier transform of some Borel probability measure p on
H. Clearly for any x € H, (z,-) is a Gaussian random variable with mean
(m, z) and covariance (Bz, x) under u. Thus, p is a Gaussian measure. O

A Gaussian measure with mean vector m and covariance operator B
will be denoted by A/ (m, B). We propose now to compute some Gaussian
integrals.

Proposition 1.2.6 Let N (0, B) be a Gaussian measure on H. Then there is
an orthonormal basis (e,) of H such that Be, = A\je,, A\, > 0, n € N.
Moreover, for any a < «ag := inf,, /\L, we have

N

/H e%|’3|2/\/'(0, B)(dz) = (ﬁ(l - a)\k)> = (det(I — aB))~ 7,

k=1

Proof: The first assertion follows from the fact that B is symmetric and
positive. Since TrB = Y-, A, < o0, it follows that
0 # H(l —a)\k)_% < oo fora < ap.

Furthermore,

/ e51<er> Ar(0, B)(dz) = / e5EAF(0, Ay ) (d)
H R
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In similar way we have

N

/ ef Tiarl<ne>l (0, B) (da) = (ﬁ“ ““’”)
H

k=1
and the result follows from the monotone convergence theorem. O

Before proving a more general result we propose first to study the trans-
formation of a Gaussian measure by an affine mapping.

Lemma 1.2.7 Let H and H be two separable Hilbert spaces. Consider the
affine transformation F' : H — H defined by F(x) = Qx + z, where Q €
L(H,H)and z € H. If we set pup := N (m, B) o F~1, the measure defined by
pp(A) = N(m, B)(F~1(A)), A € B(H), then

pr = N(Qm+z,QBQ").

Proof: Let compute the Fourier transform of pr. From Theorem 1.2.5 we
obtain

() = /ﬁ“x’mw(d@)
H

_ /ez‘<x,Qy+z>M(dy)
H

= 6%’(56,2)/ N7 TY) 1y (dy)
H

¢i(2,Qm+2) .~ $(QBQ"z,2)

= N(@Qm+ 2z QBQ)(x)

for x € H. So the lemma follows from Theorem 1.2.5. O

From the above lemma follows the following result.

Proposition 1.2.8 Let ag := inf}, ,\_1,€ Then, for any a < o,

/H 3 N (m, B)(dr) = (det(T — aB)) " exp (S (T~ aB)'m,m))
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Proof: From Lemma 1.2.7 we have

/ 17 A/ (m, B)(dz) = / e%letml® Ar(0, B)(dw)

H
o0 2
_ % |m|? 1 / 22 fampt,— 350
= e2 e? e 2kd
]:J;‘[ vV 27T)\k R 5

l1—alXp

—  e3Im? 2 1 / —[T52—amk5]d
¢ ]]:‘[1 \/27‘(‘)\k Re ’ g

)\kQQm% _(l—akk)(g_ Apamy )2
62(1704)\,6) e 20 1—aXg df’
R

siml? TT L
e —
kl;[l \/27T)\k

— 1 e%mie;&f;m:) / e_£2d§ 22 ’
1 vV 27T>\k; R 1-— Oé)\k;

cwn2

(1—ary) 2e?Tor0

8

I
3

|
A

det(I — aB))"2 e3(U—aB)'mm),

|
— ol

Example 1.2.9 Let compute the integrals

(a)
/ 2PN (0, B)(dz), m €N,
H

(b)
/ |My|? N(0, B)(dy), where M € L(H).
H

(a) For the integral in (a) we consider the function

N

for a < «yp.

fla) = /H ¢312° \F(0, B)(dz) = (det(I — aB))”

Now, it is easy to see that (—oo, ay) > a — det(I — aB) is C* and

d
d—det(] —aB) =Tre(B(I — aB) Ydet(I — aB), o< ay.
a

Furthermore we can differentiate under the integral sign. Hence,

m

[ 1PN, B) ) = 272 (den(7 - o))

da™ |a=0 "
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This implies that
/ |z|> (0, B)(dz) = TrB
H

and
/ |z|*N(0, B)(dz) = 2TrB? + (TrB)?.
H

(b) It follows from Lemma 1.2.7 that
| MyEN©.B) ) = [ PN 0.y
So by Theorem 1.2.5 we have
/H |My|2 N'(0, B)(dy) = Tr(MBM*) = Tr(M*MB). (1.6)

By a same computation as above one has

Proposition 1.2.10 For any «, m € H, we have
/ el TN (m, B)(da) = el®™ ez {Bee),
H

We end this section by proving that the positive definite functional on H

defined by p(x) = e~z1®I’ 2 € H, is not the Fourier transform of any Borel
measures provided that dim H = oo.

Proposition 1.2.11 Let Q be a positive, symmetric operator on a separable
Hilbert space H. Then the functional

¢(x) = exp (—% < Qu,x >> , x€H,

is the Fourier transform of a probability measure on H if and only if TrQ) < oc.

Proof: Suppose that Tr() < oco. Then ¢(0) = 1 and ¢ is | - |¢-continuous
positive functional on H. So by Theorem 1.1.5 there exists a probability
measure g such that zi(x) = ¢(x), = € H.

To show the converse, assume that there is a probability measure p such
that

. 1
/ e" Y= u(dy) = exp (—— <Qx,x >> )
H 2

Then by Theorem 1.1.5, for any ¢ € (0, %), there exists a positive, symmetric
operator (). of trace class such that

<Qeryx><1 = ¢(0)—Reo(z) <e
= < Qr,x><3e.
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Let now yg € H and < Q.yo,y0 >=: ¢?, with ¢ > 0. Let d > c arbitrary.
Then

<Q.Me W oo o,

Hence, < Q% % > < ¢,ie. < Qyo,yo > < ed*. Letting d — ¢, we have
< Qyo,yo >< & < Q:y0, Yo >. Since yy is arbitrary, we obtain

<Qy,y><e<Qy,y>

for all y € H. In particular, for an orthonormal basis (e, ),en of H, we
obtain

TrQ) = Z < Qep, ey > < 52 < Qeep,en >=cTrQ. < oo.
n n

As an immediate consequence we obtain that the functional

¢o(x) = exp (—%|l’|2> , x€H,

is not the Fourier transform of any probability measure on H if dim H = cc.

1.3 THE HELLINGER INTEGRAL AND THE
CAMERON-MARTIN THEOREM

The Cameron-Martin formula permits us to differentiate under the
integral sign with respect to Gaussian measures in infinite dimensional
Hilbert spaces. This allows us to obtain some regularity results for
parabolic equations with many infinitely variables.

First we need some preparations.

We denote by L] (H) the space of all positive, symmetric operators of trace
class on a separable Hilbert space H. Let B € L] (H) and consider an
orthonormal basis (e, ),en of H and a sequence (\,),en € RT such that
Be,, = A\,e,, n € N. Suppose also that ker B = {0}.

If we denote by z,, :=< z,e, >, then

0 o0
1 1
Bx = E ApZn€n, and B2x = E A2xpe,, x € H.

We set also

n n
_1 _1
B,z := g Aexrer and B, 2z = E A Zxpeg.
k=1 k=1

Let consider, for a € H and n € N, the function

ga,n( ) CL Bn iL' Z)\k TrOk.
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If o € B2 (H) then one can define the function
> _1
:Z)\kZ.Ikak, x € H.
The following proposition shows that it is always possible to define g, as an

L2(H, ju)-function even if a ¢ Bz (H).

Proposition 1.3.1 Let B € £ (H) with ker B = {0} and p := N (0, B) its
corresponding Gaussian measure on H. Then the limit

ngrf Jan =: Ja

exists in L?(H, u). Moreover,

/ 90 (2) Pu(dz) = |af?
H

for a given a € H.

p(dx)

Proof: We have
n+p
Z )‘k LA

[ Wonis®) = gon(@ta) = | y

n+p

= ) (Ah)\k:)%ahakz/ Tptpp(de)
H

h,k=n+1

n—+p

= Z Ak ak/ v pu(da)

k=n+1
n+p

- Y @

k=n+1
Hence (ga.n)nen is a Cauchy sequence in L?(H, u). Moreover,
n 1 n
[ tunPutan) Y 5-at [ atutin) 3o
k=1 k=1

and the theorem is proved by letting n — oc. O

Remark 1.3.2 Suppose that ker B = {0} and take x € H such that
<B%a,x> — 0 for all a € H. Hence, B2z = 0 and so Bx = 0, which implies
that x = 0. This proves that B2 (H) is dense in H. For the converse, let
x € H with Bz = 0. Thus, B2z = 0 and hence, (B2 x,y) = (z, B2y) = 0 for
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all y € H. Since Bz (H) = H, it follows that z = 0.
By the same arguments as in the proof of Proposition 1.3.1 one can show that
ga 1s well defined as an L*(H, pi)—function and

|9allz2(rr ) = la| -~ for a € B2 (H),
In the sequel we will use the notation
ga(x) :=(a,B"2z), x € H.

Proposition 1.3.3 Let B € £} (H) with ker B = {0} and p := N(0, B) its
corresponding Gaussian measure on H. Then the limit

lim e =: 90
n—oo

exists in L?(H, i) for a given a € H. Moreover, for any a € H,
_1
/ el®B 2D N0, B)(dx) = ezl
H
Proof: By applying Proposition 1.2.10 we obtain

/ |€ga,n _ ega,7n|2u(dx)
H
_1 _1 _1 _1
_ / (62<B" 2a,x) 9¢(Bn 2a,z)+(Bm?a,z) + eQ(Bmza,:r>) ,u(dsc)
H

1 _1
— 62 22:1 a’i _.I_ 62 ZTknzl a’i J— 2/ e((BTL 2 +Bm2 )a7w>/1/(dx)
H
2271 CL2 2zm a2 zzn a2_|_l Zm (12
= e k=1% + ¢ k=1% — 9¢ k=1%kT2 Zik=n+1 %k

n 2 2 1 2
= 82 Zk:l ay (1 _|_ 62 Z;nzn-‘rl A __ 265 Zgl:n-‘rl ak) - O (n, m — OO)

This proves that (e ) is a Cauchy sequence in L?(H, ;) and one can see
that

/ e<a’Bi%x>N(0, B)(dz) = ezl
H
is satisfied for every a € H. O

We propose now to recall the definition of the Hellinger integral.
Let i, v be two probability measures on a measurable space ({2, ). We say
that . and v are singular (notation: plv) if there is a set B € ¥ such that
w(B) =0and v(Q2\ B) = 0. It is easy to see that two probability measures
p and v are singular if and only if for any £ > 0 there is B € ¥ such that
uw(B) < e and v(Q2\ B) < e. Further, p is called v-absolutely continuous
(notation: p < v) if v(B) = 0 implies u(B) = 0 for any B € 3. So by the
theorem of Radon-Nikodym we know that if x4 is v-absolutely continuous,
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then there is a non-negative measurable function ¢ defined on 2, called the
density function of 1, such that

for any B € X.. The density ¢ is denoted by

p(w) == Z’Z( ), w el
If w < vand v < p are satisfied then p and v are called equivalent (nota—
tion: u ~ v). If 4 ~ v, then the two density functions ¢ = d“ and ¢ =
satisfy o(w)y(w) =1, a.e.w € Q. Hence, p(w) > 0 p-a.e. wEQ
Let now p and v two arbitrary probability measures on (2, Y). Let v be a
probability measure on (€2, ) such that 4 < v and v < . Such a measure
exists, we have to take for example v = £ (u + v). Thus, the following

integral is well-defined
du, . dv
= —(w)—(w) y(dw).
|\ E @ F @)

This integral will be called the Hellinger integral.

Let now consider the measurable space (R>°, B(R>)), where B(R*°) is
the Borel field of subsets B of R>. On (R, B(R)) we consider two sequences
of measures (u,,) and v,,) with

u

[y ~ Vp, Vn €N, (1.7)

Then one has

dvy,
H(pon, vn) / d:n Tn) o (dy,).

Let us consider two infinite product measures

= ﬁ,unandu:: ﬁyn
n=1 n=1

defined on (R>°, B(R*°)). The following result is du to S. Kakutani [21] and
gives a condition under which these two measures 1 and v are equivalent.

Theorem 1.3.4 Assume that (1.7) is satisfied. Then the following assertions
hold.

D 112, H(pn,vs) > 0then p ~ v and
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() IfI1,—, H(pn,vn) =0 then plv.

Moreover;

=TT Htw v). (1.8)

Proof: If we set ¢, (z) :=[]}_, d”k £ (z) for z € R and n € N, then

dv
||¢n||L2(Roo w = / H k (zx) pu(d) H/Vk; (dry) =1 and

de

R I /

1 OHE kent1 | @HE
i de
= 2(1- ] — (@) i (dzy)
R\ Ak
k=n-+1
— 2(1— 11 H(uk,uk)> (1.9)
k=n-+1

for any positive integers n and m with n < m.
D U1, H(pn,vyn) > 0 then

lim H H(pp,vi) =1.

n,m— o0

k=n+1

Hence, by (1.9), (¢,,) is a Cauchy sequence in L?(R*>°, 1) and so there is
¢ € L?(R>, p) such that limy, .o [|0n — ¥|| L2(& ) = 0.
Let prove now that v < p and Z—Z(as) = (¢Y(x))?, x € R, i.e



1.3 The Hellinger integral and the Cameron-Martin theorem 21

for any B € B(R>°). To this purpose it follows from Holder’s inequality and
(1.9) that

(/1o —vatoriaaa))
< [ Won(e) @) tde) [ () b))

oo

< 4 [ Wonla) ~ dala) P i)

= 8(1— ﬁ H(,uk,yk)>

k=n+1
for n < m. Thus,
Jm 02— ey =0

Finally let B € B(R*) and set x,(x) := xB(Pnx), x € R*, where xp5(-)
denotes the characteristic function of the measurable set B and P,z :=
(z1,...,%,,0,...). So we have

/Ooxn(:v)y(dm) = /nXB(xl,...,xn,O,...)l/l(dxl)...Vn(da:n)

- / Yo (@) (2)? pi(da).
Since ¢2 — 4% in L'(R*°, 1) and by letting n — oo we obtain
uB) = [ vl uldo)

In a similar way one can see that y < v. So we obtain p ~ v. Finally, since
i ~ v, we have

H(p,v) = Roolb(ﬂv)u(dﬂr:)

= [lim | n(z)p(dz)

n—oo

=t JT [ )5 o) )

i—1 /R dpiy

= nh—{I;O H H (g, vip).
k=1
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So we obtain (1.8).
(i) If [1;2, H(pk,vx) = 0 then for any ¢ > 0 there is n € N such that
[Th_y H(ps, vi) < €. Let B, € B(R™) with

d
By = {(x1,...,20) € R™ : by (21, .., 2n,0,.. H 7k () > 11,

Then,

(guk> B = [ (1_1@ (dx)

k=1
< V(21,5 20, 0,...) (H Mk) (dx)
B, k=1
= - dﬂ a - a
- /Bkr:[ T (@) (guk> (dz)

S HH(,U/kvyk)<€

By the same computation we obtain

(ﬁ Vk) (R™\ Bn) ﬁ H (pe; vi)
k=1 k=1

Therefore, if we set B := B,, x [],—,,,, R, then
u(B) < e and v(R*\ B) < e.

This proves that L v. Suppose now that p L v. Then there exists B € B(R>)
such that u(B) = 0 and v(R*° \ B) = 0. So by Holder’s inequality, it follows
that

H(p,v) = —
(1) B\ dy “dy ree\B | 4y " dy
Leran) (f )
< —(x)v(dx —(x)v(dzx +
([ L) ([
du ? / dv 2
dx — () v(dx
(/Rw\m(”( >> (Rm\Bdw(W >>
= w(B)?v(B)? + p(R*\ B)>v(R*\ B)? = 0.
Therefore, (1.8) holds. This end the proof of the theorem. O

Let prove now the Cameron-Martin formula. We note here that the
measure space (H, B(H)) can be identified with (R>°, 5(R>)).
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Corollary 1.3.5 Let B € £ (H) such that ker B = {0} and ; := N(0, B)
and v := N (m, B) be two Gaussian measures on (H,B(H)). Then the follow-
ing assertions hold.

(i) The Gaussian measures p and v are equivalent if and only if m €
Bz (H). Moreover the Radon-Nikodym derivative is given by

(ii) The measures p and v are singular if and only if m ¢ B> (H).

Proof: We will apply Theorem 1.3.4 to the Gaussian measures p and v.
To this purpose let compute the associated Hellinger integral using (1.8). It
follows from Proposition 1.2.10 that

dv
H(pg,vp) = / —E (1) pox (dy)

— e /en;*z N(0, \g)(dzy)
R

= e B,

So by (1.8) we obtain

k=1
This implies that
e 2
m
H >0 < —£ <
(1,v) ; N <

= meBi(H).

Moreover, in this case, it follows from Theorem 1.3.4 that

1
= exp <—§|B_%m|2 + <B_%a§,B_%m>> ,

where x = Y7 xre), with x, := (z,e;) for an orthonormal basis (e,,) of

H such that Be,, = \,e,, for n € N. Here we used Proposition 1.3.3.

Finally it is clear that the measures i and v are singular if and only if m ¢
1

B2 (H). O
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Exercise 1.3.6 (The Feldman-Hajek theorem)

Let consider two linear operators By, By € ET(H ) with ker By = ker By =
{0} and an orthonormal basis (e,,) of H such that Bie, = A\pe,, n € N,
where \,, > 0 for alln € N. On (H, B(H)) we consider the Gaussian measures
M1 = N(O, Bl) and Mo 1= N(O, Bg)

1. The commutative case: Suppose that B1 B> = By Bj. By using Theo-
rem 1.3.4 show that

a. len 1 % < 00, then py ~ ps. In this case

b. if Y07, % = oo, then puq L jo.
Here o, > 0, n € N, are such that Bse,, = aye,, n € N.
2. The General case:

(a) Assume that there is S € L3 (H) such that
B, = B (Id — S)B:.
Show that py ~ ps.

(b) Assume that S € L] (H) and ||S|| < 1. Show that

dpiz 1 1 B B
d—m(x):[det(I—S)] 2exp(—§<S(I S 'Bix,B?z)),x € H.

Here L3 (H) is the set of positive Hilbert-Schmidt bounded linear opera-
tors on H. Thatis, B € L5 (H) ifand only if B € L(H), B positive and
>0 |Ben|? < oo



CHAPTER 2

HEAT EQUATIONS IN HILBERT
SPACES

In this chapter, H is a separable Hilbert space and (e, )¢ is an orthonormal
basis of H.

For ¢ € Cy(H), the space of continuous and bounded functions ¢ : H — R,
we say that ¢ is differentiable in the direction ey, k € N, if the limit

|
Drp(z) == }11_)1% 7 (p(x + her) — p(x)) , reH

exists in Cy(H). The operator D), will be considered as the linear operator
in Cy(H) defined by

D(Dy) = {go € Cp(H): }ll:mO % (p(- + her) — ¢(+)) exists in Cb(H)}

and

1
Dyp(x) = lim 7 (p(z + hex) —o(z)), ©€D(Dy), v € H, heR

—

We start by showing that Dy, is a closed operator on Cy,(H ), for every k € N.
In fact, let (¢, )nen € D(Dy), and ¢, € Cy,(H) such that

on — ¢ and Dyp, — ¢ in Cy(H).
We consider ¢,,, ¢ € C(C[—1,1],Cy(H)) defined by
o(h)(x) :==p(x+ hex) and ¢ (h)(x) = @n(x + hey),

x€ H, he[-1,1]andn € N.
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Then ¢,, is differentiable, as a function of the variable h, and

d

%%(h)(l‘) = Dyon(x + hey).

So we have

h
6ul) = 60(0) = [ ()5

0
and by the assumption we obtain

h
o(h) — 6(0) = / B+ sex) ds,

which implies that ¢ € D(Dy) and Dy = 9.

In a similar way we can define partial derivatives of any order.

Now, we fix a sequence (\,,)nen, A\ > 0 for n € N. In this chapter we are
interested to solve the heat equation

(HE) %u(t,x) = %Zzozl A D?u(t,z), t>0, € H,
u(0,z) = p(z), x e H, p€Cy(H)

and to study the regularity of the solution u of (H F) in the case dim H = oc.
For this purpose, let consider its finite dimensional approximation

(HE) grult,x) = 3 35 A Dju(t,z), t>0, v € H,
" w0, 2) = ¢(x), € H, ¢ cCyH).

It is easy to see that, for all ¢ € Cy(H), (HE), has a unique classical

solution given by

n 1 — n i n
un(t7 .I‘) = (27Tt)_§(>\1 ce )\’n)_g f]Rn € 2k 2%k 90(1. - Zk:l Skek) dgv
ift>0
un(0,2) = ¢(x), =€ H.

If we denote by

T =< x,ep >, xe€H
and
MO - 0

0 - A,

un(t,x):/ng[)(y—i— Z xkek> N(z,tB,)(dy), € H, t > 0.
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In the sequel we denote by
P () = un(t, 2)
fort > 0, x € H n € N, and ¢ € Cy(H). By an easy computation one

has, forall n € N, (Pt(n))tzo is a semigroup on Cy(H ). Moreover, on Cy,(H ),

(Pt(")) is not strongly continuous at 0. In order to have strong continuity at
0 we have to work, for example, in BUC(H), the space of all bounded and
uniformly continuous functions from H into R. Now, it is well-known that

(P{™) is an analytic semigroup on BUC(H) and
1P ¢llso < l@lloe

foro € BUC(H), t > 0,and n € N.
Now, one asks under which conditions the limit

lim w,(t,z) existsin BUC(H)

n—oo

forall p € BUC(H)?
A necessary condition for the existence of the above limit is

o
Z Ap < 00.
n=1

In fact, let ¢(x) :=exp(—31||z||?). By applying Proposition 1.2.8 with

oa=—1, m =z,and B = tB,, one has
1
n(t,x) = 1L+ M\pt)" 2 —= ko~ 2.
)= T+ exp( > 22)

If lim,, o0 uy, (¢, ) exists, then [, (1 + t)\k)_% exists for ¢ > 0. Hence,

log [T(1+tAe) =D log(1L+tAe), >0
k=1 k=1

exists. In particular, limy o Ay, = 0. Set M := sup,, \,,. Then we have
mii, < log(l + t)\k) <th, t>0, ke N,

where m := inf{1 log(1 4+ a), 0 < a < M}. Therefore,

o
Z)\k < 0
k=1

and

oo 22
lm w,(t, ) = u(t,x) = H(l + )\kt)_%e_% 2= 1+tk)‘k7 t>0, z€H.

n— 00
k=1
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If Y72 | A = oo, then

lim u,(t,z) =
n—oo

0 ifx=0,t#0
1 ifz=0,t=0.

Hence, u,, does not converge to a continuous function.

Now, in the sequel we assume that )~ )\, < oc. Set
Bx ==Y 72 Mxk, z € H. Then B € L (H), ker B = {0}, and Equation
(HE) can be written as follows:

p) | At o) = STBD u(t o)), >0, v € H,
u(0,2) = p(w), z € H,

where ¢ € BUC(H).
Many results of this chapter can be found in the monographs [12] and
[13].

2.1 CONSTRUCTION OF THE HEAT SEMIGROUP

In this section we are concerned with the construction of the solution of
Equation (H E). To this purpose we suppose without loss of generality that

Mg > 0 forall k € Nand > 7, Ay < co. The semigroup (Pt(”)) can be
written as

P =[] Tkt)e. t=0, € BUCH),
k=1

where

Tk (t)p(z) == (27tAR) T2 [pe P p(z — sey) ds %ft >0
Sp(x)7 lf t — 0

for v € H and ¢ € BUC(H). Note that T)(-) is a Cp-semigroup of con-
tractions on BUC(H) for k € N. Before proving the strong convergence of
P*,t >0, on BUC(H), we recall some definitions and fix some notations.

We denote by BUC'(H) the subspace of BUC(H) of all functions ¢ :
H — R which are Fréchet differentiable on H and the Fréchet derivative
Dy : H — H is uniformly continuous and bounded. For ¢ € BUC'(H) we
set

lell1 = ll¢llec + sup | De(2)]-
x€EH

In the sequel we need the subspace BUCY!(H) of BUC'(H) consisting of
all functions ¢ € BUC(H) such that Dy : H — H is Lipschitz continuous
and, for o € BUCY1(H), we set

Dep(x) — D
Il =gl +  sup 1222 = Dol
x,yeH,x#y HIL’ — y”
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Theorem 2.1.1 For all ¢ € BUC(H), the limit
Py := lim Py
exists in BUC(H ), uniformly in t on bounded subsets of R™. Moreover (P,) is
a Cy-semigroup on BUC(H) and
[1Pplloc < llplloo
fort >0and ¢ € BUC(H).

Proof: Let compute first
n n—
Plo—P' 1ty = H Ti(t)p — H Ty (t)p

= HTk thp —p),

and hence,
1P — P olloe < I Th(t)e — ¢llos, t>0, ¢ € BUC(H), n€N.

So, for ¢ € BUCY1(H), we have

2

(Ta()p— @) (x) = (2mAnt)"2 /Re”int (p(z = sen) — o(x)) ds

=

= (2wA,t) 5/6 %n/ (x —s(1—7)e,)dyds
= —(2mA,t) %/e 2o / <Dy (x—s(l—7)en),

sepn > dyds.

Since,
/Re_%it < Dy(z),se, > ds =< Dp(x), e, > /Re_#itsds =0,
it follows that
T (00 9te) = ~rant) ™ [ 5 [ < Dota—s(1-)en)-Dito)

sepn > dyds.
Thus,

Vﬂwﬂ@—wmﬂS@MJPWMgéffﬁ?%ZAJWMm
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Hence,
[T (1) — elloc < Antllell1

fort >0, p € BUCY'(H), and n € N. Therefore,

||Ptn+p90 - Ptn@”oo
n4+p n+p—1 n+1 n+1

< [[7e@®e— TI Te@®eloo+ -+ 1 T e — ] Tet)ell
k=1 k=1 k=1 k=1
< NTatp(®)e — @lloo + -+ + [ Tos1 (D) — ¢l
n+p
< tllellia Z Ak, n,p €N
k=n+1

Since Y ° A\, < oo, it follows that (P/*¢), is a Cauchy sequence in
BUC(H), uniformly for ¢ in bounded subsets of R . Thus, the limit exists
in BUC(H) for all ¢ € BUCY'(H). Since BUCY!(H) is dense in BUC(H)
(see [28] or [23]) and ||P}*|| < 1 for all » € N and ¢ > 0, the limit exists for
all ¢ € BUC(H) and will be denoted by

Pip:= lim P, t>0, o€ BUC(H).

The family (P;);>¢ satisfies P49 = PP, Pyp = ¢ for all t,s > 0. This
follows from the estimates || P/*|| < 1 and the fact that (P;") is a semigroup
on BUC(H). The strong continuity of (F;);>o follows from the uniform
convergence of P;* on bounded subsets of R, and the strong continuity of
(P}")i>0 for every n € N. O

Remark 2.1.2 An other proof of Theorem 2.1.1, using the Mittag-Leffler the-
orem, can be found in [2]. In this work the authors find conditions implying
the convergence of the infinite product of commuting C-semigroups.

Let show now that the semigroup (P, ),>¢ is given by a Gaussian measure.

Theorem 2.1.3 If we denote by y := N (x,tB) the Gaussian measure with
means x € H and covariance operator tB, then

(Pip)() = / ()N (z, tB)(dy)

H

for p € BUC(H), and t > 0, where B = diag(A1,..., An,...).

Proof: Forn € N, ¢ € BUC(H),t > 0, and # € Bz (H), it follows from
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the Cameron-Martin formula (see Corollary 1.3.5) that

/ (Zykek—I— Z xkek> (x,tB)(dy)

k=n—+1
= / (Z Yk€r + Z xk@c) )
" k=n+1
1 ~_1 9 1 % -3
exp _2_t|B 27| +Z<Bn2yaBn2x> N(()?tBn)(dy)
= / % (Z Yr€k + Z Jfkek)
™ k=1 k=n+1
1 1 —3
exp (=g (1874 = 1B Yal2) ) N 0B, )

1 1 _1 n
— oxp (g 1B Rl = B, ) ) (P ).
So it follows from Theorem 2.1.1 that

i (P7) (@)exp (-~ 5154l = By o) ) = (Peg) ().

n—oo

So by the dominated convergence theorem and Lemma 1.2.7 we obtain

(Pip) (z) = /H ()N (2, tB)(dy)

_ /H oy +2)N(0,tB)(dy), < BY(H).

Since Bz (H) = H (see Remark 1.3.2), it follows that

(Pig)(x) = /H oy +2)N(0,tB)(dy), =€ H,

and the theorem follows now from Lemma 1.2.7. O

2.2 REGULARITY OF THE HEAT SEMIGROUP

Let prove first the differentiability of P,y in any direction e, k € N, for
t>0and ¢ € BUC(H).

Proposition 2.2.1 Let ¢ € BUC(H) and t > 0. Then Pyp € D(Dy) for all
k € N and

DyPp(a) = — / yep(e + YN(O,tB)(dy),  z € H.

)\kt
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Proof: By the Cameron-Martin formula (see Corollary 1.3.5) we know that

1 1 1 1 1
Pup(ar) = / o (y)exp (—%|B—2x|2+; <B—zy,B—2x>) N0, ¢B)(dy)
H

fort >0, x € H and ¢ € BUC(H).
It is now easy to see that P,y is differentiable in the direction e; and by
Lemma 1.2.7 we obtain

1

DiPrip(z) = o H(yk—wk)sO(y)N(x,tB)(dy)
= o [ wele + 9N, B)dy).
kJH

O

By applying the Cameron-Martin formula to the derivatives Dy P;p ob-
tained in Proposition 2.2.1 one obtains by similar arguments the following
result.

Proposition 2.2.2 For ¢ € BUC(H) and t > 0 we have Pyp € D(D;Dy,) for
all I,k € N, and

1 5

DiDkPip(w) = 55 /H yiyre(z +y)N(0,tB)(dy) — ;l’; Pio(z), « € H,
1 if 1=k,

where §; i, 1= { 0 ;f I £k,

Now, we are interested in global regularity properties of the semigroup (P;)
on BUC(H). To this purpose we define two subspaces BUCL(H) and
BUC%(H) of BUC(H).

Definition 2.2.3 We said that a function ¢ € BUC(H) is in BUCL(H) if
D ¢ € Mgy D(D);
(D) sup,epr D=y Akl Drep()]* < 005

(iii) the mapping Dy : H — H; x — Y 1o v/ Dip(x)ey is uniformly
continuous.

It is clear that BUC'(H) C BUCL(H) and Dpyp(z) = B2 Dy(z) for z € H,
and p € BUC'(H).

Definition 2.2.4 A function ¢ € BUC(H) is in BUC%(H) if
@) ¢ € g1 D(D1Dy);

.o o (o) 2
(D) supyem Yoo (Crey VAAD Dyo(x)yr)” < C?ly|* forall y € H and
some constant C' > 0;
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(iii) the mapping D% defined by D%¢(z) : H — L(H); x — D%p(x),
where

(Dyp(a Z VAADI Dyo(z)yize, Y,z € H,
1k=1
is uniformly continuous.
We propose now to show some auxiliary results.

Lemma 2.2.5 The linear operator
Dp: BUCL(H) — BUC(H, H)
is closed.

Proof: Let (p,) C BUCL(H), ¢ € BUC(H), and F € BUC(H, H) are
such that

lim [¢n = ¢llec =0, and lim [|Dpe — Fllpuces,m = 0.
For any k£ € N, we have

lim sup [(Dpyn(x) — F(x),ex)| =

n—oo mEH

= lim sup ’\/ MeDipn () — <F(93)>€k>‘ = 0.
Thus,

1
lim sup |[Drpp(r) — —(F(z),e
i sup | Dup(e) — = (Pl )

Since Dy, is closed in BUC(H), it follows that ¢ € D(Dy) and

= 0.

Dyepl) = JLA_IC<F(J;), er), keN.
Hence,
Y MlDip(@)P = Y [(F(a
k=1 k=1
= |[F@)P < |F|l%.
Moreover,

Z\/_Dkgo Z ), ex)er = F(x)

k=1

is uniformly continuous. Therefore, ¢ € BUCL(H) and Dy = F. O
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Lemma 2.2.6 For ¢ € (5, D(D;Dy) and = € H, we define D} _o(x) by

(D}, o(x Z VANAMD Dyo(x)yize,  y,2 € H.
Lk=1

Assume that

(i) there is a constant ¢ > 0 such that

(D%, o(x)y,2)| < clyllz], Va,y,2 € HyneN;

(i) for all y,z € H, the limit

lim (D% ¢(z)y, 2) exists uniformly in z € H.

Then, ¢ € BUC%(H) and

lim sup [(DF, (z)y, z) — (Dgp(x)y,2)| =0, y,2€ H.

n—aoo reEH

Proof: From the assumptions we have
@D ¢ € Nyg=1 D(D1Dy);

(D) sup,ey |21 (s VANADIDyo(x)yr) 21| < clyl|z| for all n € N
and y, z € H. Thus,

2
sup Z (Z VNN Dy Dyp(z) ) < y|?, VneN.
=1 k=1

xeH

(iii) Since the limit lim,, .o (D% @ (x)y, z) exists uniformly in = € H, for
all y, z € H, it follows that the mapping

Dy¢: H — L(H); x — Dgp(x)
is uniformly continuous.
Thus, p € BUC%(H). The last assertion follows easily from the definition
of D} ¢. O
We are now able to show global regularity results for the heat semigroup
(P%).
Theorem 2.2.7 Let p € BUC(H) and t > 0. Then P,y € BUCL(H) and

(DsPiple),2) = 7 /H (2, B Yy)p(x + y)N(0,tB)(dy), =,z € H.

Moreover,
1
IDs o)l < —l@lloo, Vo € H.
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Proof: By Proposition 2.2.1 we have, P;p € D(Dy,) for all £ € N, and

v Ak

So by the Holder inequality we obtain

< “i!m (Z%) N(0,¢B)(dy)

> VADPipla)e =Y e [ manela + )N, tB)dy).
k=1 k=1 H

> VD Pip(x)z
k=1

ZIR
= L > 2 [ o m)ay
k=1 17k JH
lelse 5~ 22
_ Pl yns / YN (0,¢B)(dy)
1 kJH
% N~ A
_ el gnsi / YN (0, 1) (dyr)
1 k JR
el <
= Yy
k=1

Hence,

Z)\k|Dthg0(x)|2 < ”90”00, Vn € N.
k=1

It remains to prove that the mapping

DpPip: x — Z V AkDi Pro(x)ey
k=1

is uniformly continuous. First, we note that, by the last estimate, the series

oo

DpPip(x) = > v/ MuDiPrip(x)es
k=1
converges and we have
1 1
(DuPipla).2) = ¢ [ (B oo+ YN (O.EB)dy), 2 € H.
H

Now, we introduce the uniform continuity modulus of ¢ € BUC(H),

wy(t) == sup{|p(z) — p()| : z,y € H, |z —y| <t}, t>0.

Since ¢ is uniformly continuous, it is easy to see that w,, is continuous in
[0,00). Let z,y € H. By Holder’s inequality and Proposition 1.3.1, we
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obtain
(D5 Pig(a) — DePip(y), )
= |7 [ Bl @) - oty + )N (0.8 o)
H
< el 20" [ 1 B a)ar(o.t5)da)
_ wellz—oD®, o
t
Hence,

1
|DpPip(x) — DpPip(y)| < —we(|z —y).

Vi
Then, P, € BUC}(H) for all ¢ € BUC(H) and ¢ > 0. Moreover, by the
same computation as above, we obtain

1
|DpPrp(x)| < WHSOHoo

forall p € BUC(H),t>0,and z € H. O

More global regularity is given by the following theorem.
Theorem 2.2.8 For ¢ € BUC(H) and t > 0, we have P, € BUC%(H) and

1

o) H<2’17 B~ 2y)(z2, B 2y)p(x + y)N(0,B)(dy)

(DR Pip(a)z1,22) =
— 321, 2) Piol)

for 21, 22,2 € H. If in addition ¢ € BUCK(H), then

(Dh Py, = ¢ [ (Dipla+ ). 22) (21 B HyA(0.tB) )

for x,z1, 29 € H. Moreover, for all x € H,

V2
t
1

IDEPeo()| oy < %HDBSOHBUC(H,H) for o € BUCE(H).

Proof: From Proposition 2.2.2 it follows that

IDEPrp(@)|l ey < lellee  for ¢ € BUC(H), 2.1)

1 1 _1
(D% Pip(x)z1,22) = 3 H<z1, Br 2y)(z2, Bn *y)p(z + y)N(0,tB)(dy)

1
—;<21,22>Pt90(x), 21,%20,4 € H.
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It is easy to see that all the assumptions of Lemma 2.2.6 are satisfied. Thus,
P,p € BUC%(H) and

1

7 | B~ 2y) (2, B~ y)p(x + y)N(0,B)(dy)

<D129Pt¢(53)21, 22)
1
_¥<21722>Pt90(x)7 z1, %2, € H.

Hence, by Holder’s inequality and Theorem 2.1.3, we obtain
[(DEPrp(n)z, 2)|* =

7 [ 1B Pole+ N, tB)dy) = 71:Pipta)

2

2

1 1
- 4 / (Itz: B=H9)I2 — 11212 ol + 5N (0, £3) ()
H
2 ) 2
< V= [ (122 - 122) N 0.03) a0
H
Since
/ (2. B Hy)[*N(0,tB)(dy) = 3t*|2|* and
H
/|(z,B_%y>|2N(O,tB)(dy) = tz|*> (see Proposition 1.3.1),
H

it follows that 5
(D3 Prp(x)z, 2)] < t—2|2|4||90||§o

for all z, z € H. Consequently,

V2
|’D]253Pt90($)||£(H) < THSOHOO, Ve € H.

The second equality can be obtained similarly, by using Theorem 2.2.7 and
the last estimate is a consequence of Proposition 1.3.1. O

We propose now to prove an additional regularity result, which will be
needed to solve (HE).
We start by the following auxiliary result, where the proof can be founded
in [15, Lemma XI1.9.14 (a), p. 1098].

Lemma 2.2.9 Let B € L(H) and suppose that there is a constant ¢ > 0 such
that, for all finite rank linear operator N in L(H), |Tr(NB)| < ¢||N||. Then
B is a trace class operator on H and

TrB<c.
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The following result was proved first by L. Gross [19] by using proba-
bilistic methods.

Theorem 2.2.10 For ¢ € BUC'(H) and t > 0, we have D% P,p(x) is a trace
class operator on H for all x € H, and

1
Tr (D} Pp(a) = / < Dole +y),y > N(0,tB)(dy), € H.
H
Moreover, TrD% Pyp(-) € BUC(H) and
1 1
D} Pep(o)] < [l (TrB) .

Proof: Since ¢ € BUCY(H), it follows that, for z; € H,

< DPyp(2),B?2 > = / < Dy(z +y), B2z > N(0,tB)(dy)
H
- th(x)a
where () :=< Dy(z), B2z, >, = € H. From Theorem 2.2.7 we have
1 1
< DpPip(x),z0 > = ;/ < z9,B72y > ¢(x + y)N(0,tB)(dy)
H
1

= 3 /H < zg,B_%y >< Dgo(x—l—y),B%zl (2.2)
> N(0,tB)(dy)
for zo € H. On the other hand, by an easy computation, one can see,
< DpPyp(x), 2 >=< DEP,p(x)21, 20 > .
Hence,

< D%Ptgp(x)zl,zg > =
= L[, <Dy(z+y), Btz >< 2, B3y > N(0,tB)(dy).

Now, take N € £(H) a finite rank operator. We obtain

< NDQBPtcp(x)zl,zz > =
= L[ < Dp(x+y),Brz >< N*z, B 2y > N(0,tB)(dy).

Hence,

1 1 1
T(ND}Pip(a)) = ; | < Dl + ), BENB by > N(0,5)(dy).
H



2.3 Solutions of (HE) and characterization of the generator of (P;) 39

and by Holder’s inequality, we obtain

2
Te(ND} Pp(a))? < Ml /H BYNB 2N (0,B)(dy)

t2
2
Hﬁ;Hl " Tr(B%NN*B%> (see Example 1.2.9.(b))

2
Thus,
1
Vit

So, by Lemma 2.2.9, Tr(D% Pyo(z)) < oo for all x € H. Moreover,

1
Te(ND}Pap(a))| < ol INI(TeB)?, @ € H.

TH (D Prpl)) = / < Do(z +y).y > N(0,tB)(dy), =€ H,

H
and
1 1
Te(DEPrp(2)) < —=llelh (TrB)Z , x € H.
Vit
The uniform continuity of Tr(D%P;p(-)) follows from the fact that ¢ €
BUCY(H). O

2.3 SOLUTIONS OF (HE) AND CHARACTERIZATION
OF THE GENERATOR OF (F,)

We denote by (G, D(G)) the generator of (P;) on BUC(H).
First, we propose to compare G with the following operator
D(Go) =

{v € BUC}(H), Dyp(x) € L1(H), ¥V x € H and Tr(D3¢(+)) € BUC(H)},

1
GOSO - §TI'(DQBQO>,
where £;(H ) denotes the set of S € L(H) with Tr S < 0.

Proposition 2.3.1 The following hold:

(@) D(Go) = BUC(H);

(b) Go=G.
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Proof: (a) Let ¢ € BUC(H). Since BUC'(H) is dense in BUC(H), it
follows that, for any e > 0 there is . € BUC' (H) such that [|¢o—¢.[|o < 5.
On the other hand, from the strong continuity of (P;) we have, for anye > 0
there exists § > 0 with

0<t<d= |lpec — Prpe|loo <

Thus, for 0 < t < 4,
I — Prpell < e.

Now, (a) follows from Theorem 2.2.10.
(b) Let ¢ € D(Gy) and take ¢(t) := Pip and g,,(¢t) : P*¢.
It follows from Theorem 2.1.1 that

gn — g inC([0,1; BUC(H)).

Moreover,
d n 1 n n 1 -
g Z)\kagn =3 )\kaP p=P <§ZAkD,§gp> .
k=1 k=1
Hence,
dgn .
=L (t) — Pi(Gog) in C(0,1], BUC(H)).

d
Consequently, d_i(t) = P;(Goyp) and by taking ¢t = 0 we have ¢ € D(G) and

Gy = Goy, i.e., Gy C G. In particular G| is closable. Now, take o € D(G),
A > 0 and set ¢ := A\p — Gp. We know that there is (¢, )neny € BUC(H)
such that v,, — ¢ in BUC(H). Since (P;) is a semigroup of contractions
on BUC(H), we can define ¢,, := R(\, G)¢,. It is clear that ¢, — ¢ in

BUC(H). Since ¢,, = / e M Py, dt, it follows from Theorem 2.2.10 that
0

o0 1 1
on € D(Gy) and || Gownllos < (/ e‘“—dt) (TeB)3 [l -
0 Vit

Moreover, since
Goﬁﬂn — GQOn — )\R()\v G)¢n - ¢n>
it follows that

lim Gown = AR\, G)Y — 1 = GR(\, Gy = Gep.

This proves that Gy = G. O
We solve now the heat equation. Let ¢ € BUC!(H) and set

u(t,x) = Pyp(x), t>0, z¢€ H.
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From Theorem 2.2.10 we know that P,p € D(Gy) for t > 0. Since Gy C G

we obtain

d
%PtQOZGPt(p:GOPtSD, t > 0.

Thus, we have the following result.

Theorem 2.3.2 Let o € BUC!(H). Then the function
u(t,x) = Prp(x), t>0,

is a classical solution of (HE) with u(0,z) = ¢(z), © € H.

An other characterization of the generator (G, D(G)) of the heat semi-
group (P;) on BUC(H), which will play an important role in Section 2.4, is
given by the following proposition.

Proposition 2.3.3 The set

Do(G) := {pe€ BUCY“(H): DyDyp € BUC(H),
forallk,l € N, sup ||DpDip|le < o0}
k,leN

is a P;-invariant core for G. Moreover,

Go =Y MDip forp e Dy(G).
k=1

Proof: Let show first that, for ¢ € BUCY(H),

sup [|[DiDpPiolloo < |lll1,1, t>0. (2.3)
l,keN

Let ¢ € BUCYY(H) and k € N. Since Dy, is closed and Dy P*¢ = P Dy
fort > 0 and n € N, it follows from Theorem 2.1.1 that

Dy Pyp = P Dy
for all ¢ > 0. So by Proposition 2.2.1 we have
DyPip € D(D;) forallt >0, and! € N.
Thus, by Theorem 2.1.3, we deduce that

|Di Dy Prp(z)| =
= |DyP,Dyp(z)|

1
%ir% E(PtDkgp(a: + he;) — PiDpp(x)

lim / l(Dkgo(ac +y+ he;) — Dip(x + y)N(0,tB)(dy)
h—0 Jg h

<

1,1
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foralll,k € N, and z € H. This proves (2.3). So we obtain
P.Dy(G) C Do(G), Vt>0.

From Proposition A.2.5, it suffices now to prove that D(G) is dense in
BUC(H). This can be seen by using (2.3) and exactly the same proof as in
Proposition 2.3.1.(a). O

We end this section by the following remark.

Remark 2.3.4 If we compare the result of Theorem 2.2.8 and Theorem A.2.7
then the following question arise:

Is the semigroup (P;) analytic or at least differentiable on BUC(H)?

The answer is negative (see [27]) and will be given in the following section
(see Corollary 2.4.2).

2.4 THE SPECTRUM OF THE INFINITE
DIMENSIONAL LAPLACIAN
Let H be a separable, infinite dimensional, real Hilbert space and let (e;) be

an orthonormal basis. We shall regard BUC(R™) as a subspace of BUC(H)
via the isometric embedding

Jn: BUC(R") — BUC(H), (Jpop)(z):=@(x1,...,2,),

for p € BUC(R"), z € H, and zj, := (z,e). Let A, > 0 with > "7 | Ay < 00
be given. We know from Theorem 2.1.1 that the infinite dimensional heat
equation (HE) on BUC(H) is solved by the C-semigroup of contractions

Pyp = lim Py, ¢ € BUC(H),

where the above limit exists in BUC(H) uniformly in ¢ on bounded subsets
of [0, 00). We recall that for ¢ € BUC(H), x € H and t > 0,

Plo(z) == (2nt) "2 (Mg - - )\n)_% / e~ Xh-1 Ty go(x — Z ykek)dy.
" k=1

(2.4)
Let compute the spectrum of the generator (G, D(G) of the semigroup (P;)
on BUC(H).

Theorem 2.4.1 The spectrum of G is the left half plane {\ € C : Re A < 0}
and o(P;) = {\ € C: |\| < 1}. Moreover, every \ € o(G) is an approximate
eigenvalue.
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Proof: Note that the restriction of P; to BUC(R"™) coincides with the semi-
group generated by G,, :== Y ;_, A\x Di. In particular, G,, is the part of G in
BUC(R™) and, hence, R(\,G,) = R(\, G)pucmn) for X € p(G) N p(Gy).
Therefore, for these values of \, the sequence | R(\, G,,)|| is bounded.

Let V : BUC(R™) — BUC(R™) be the isometry defined by

(Vo) (z) := @(\/gxl, e \/A;”xn), ¢ € BUC(R™), z € R".

A simple change of variables in (2.4) shows that ¢/“» = V~le!2»V for
t > 0,n € N, where A,, denotes the Laplacian on R". This implies that

R\ G,) =V IR\A)V forAe X, :={0#XeC:|arg A\ < 7},

so that |R(\, G,)|| = |R(A, Ay)| for A € ¥ and n € N.
Fix A € ¥, with Re A < 0. For n € N, the function g, ,,(x) := ezilel® g e
R™, belongs to BUC(R™) and ||gx n|lcc = 1. Setting

A2 2
fan(@) = (A= An)gan(r) — ﬁ\xl%ﬁ'w' . zER",

we compute
2|\
”f)\;nHOO - ?’L€|R€ )\|

So we derive
”R()‘?An)f)\,n”oo _ n€|R€ >\|
[ Fxnlloo 2| A2

Since the sequence ||R(\, G,)| is unbounded, A must belong to the spec-
trum of (. From standard spectral theory of Cy-semigroups,
cf. [16, Chap. IV], now follows the first and second assertion.

To prove the last assertion, we observe that iR is contained in the ap-
proximate point spectrum of G. Let A = —a? + ib for a > 0 and b € R. The
first part of the proof applies to the operator G on BUC(H) correspond-
ing to the sequence (\z, As,---). Thus there exist g, € Dy(G) such that
lgnlloo = 1 and ||Gg, — ibgn|lec — 0 as n — oc. We now define

[ROX, Gl = [[R(X, Al =

fn(z): exp(ia)\l_% x1) gn(x2,23,-+), x € H.
Cleaﬂy’ fn € DO(G)7 an”oo =1, and

Gfu(x) =) M. D falw) = —a® fu(z) + exp(iad; * a1) (Ggn)(wa, x5, ),
k=1

x e H.
As a result, A is an approximate eigenvalue of G. O

As a consequence of Theorem A.2.10 and (11) we immediately obtain
the following result from [14], see also [18], [29] and [2].
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Corollary 2.4.2 The semigroup (P;) is not eventually norm continuous an
hence not eventually differentiable on BUC(H).



CHAPTER 3

THE ORNSTEIN-UHLENBECK
SEMIGROUP

In this chapter we are concerned with the Ornstein-Uhlenbeck semigroup,
first on C,(H), and finally on LP-spaces with invariant measure. The
Ornstein-Uhlenbeck semigroup is related to the solution of the following
linear stochastic differential equation

dX (t,z) = AX(t,z)dt + Q=dW (t), >0
(SDE) { X(0,2) =z € H,

where @) € L(H) is selfadjoint and nonnegative and A generates a
Co-semigroup (e‘4);>o on H. The process W is a standard cylindrical
Wiener process on H. Under appropriate assumptions (see [12]) the
solution to (SDE) is a Gaussian and Markov process in H, called the
Ornstein-Uhlenbeck process. The associated Ornstein-Uhlenbeck semigroup
on By(H), the space of bounded and Borel functions from H into R, is given
by
Ripla) = E(p(X(t.2))), 20,2 € H, ¢ € By(H).

This is the semigroup solution of the associated Kolmogorov equation

KE D u(t,x) = $Tr(QD%u(t, ) + (x, A*Du(t,z)), t>0,z € H,
(KE) u(0,z) = p(z), x€ H.

The basic assumption in this chapter is
t
(H1) Q= / eAQesA ds e LT (H), t>0.
0

Under (H1) and by the change of variables

v(t,etz) == u(t,z), t>0,z¢€H,
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one can see (cf. [8], [4]) that v is the unique solution of the parabolic
equation

(PE) %’U(t,$) - %TI' <€tAQ€tA*D2U(t,I)) s t> O7 T € H,
v(0,x) = ¢(x), =€ H,

and is given by
olt, z) = / oz +yN(0,Q)(dy), =€ H, t>0,
H

where ¢ € BUC?(H). Therefore, if we suppose (H1) then the Ornstein-
Uhlenbeck semigroup is given by

Rup(z) = /H oz + yIN(0,Qo)(dy), z € H, 120,

for ¢ € By(H). Now, by Lemma 1.2.7, we have, for ¢ € By(H),

Rip(x) = /H o(yN(e?x, Q) (dy), x e H,t>0.

3.1 THE ORNSTEIN-UHLENBECK SEMIGROUP ON
Cy(H)

The aim of this section is to study the global regularity of the Ornstein-
Uhlenbeck semigroup (R;):>0 on Cy(H). Existence and uniqueness of a
classical solution for (KE) will be also considered.

In this section we assume the controllability condition (see [31])

(H2) A (H) C Q2 (H) forallt > 0.

If we suppose in addition that (e!);> is exponentially stable, that is, there
are constants M > 1 and w > 0 such that ||e'4|| < Me~* for all ¢ > 0, then
it follows from the strong continuity of the semigroup (e*4);>o and Exercise

3.3.22 that, for any ¢t > 0, the subspace Qt% (H) is dense in H and so, by
Remark 1.3.2,
ker@Q; = {0} forallt > 0.

This will be needed for the application of the Cameron-Martin formula.
Regularity properties of the semigroup (R;);>o are given by the following
result.

Theorem 3.1.1 Suppose that (H1) and (H2) are satisfied and ker Q; = {0}
forallt > 0. Then, for any ¢ € By(H) and t > 0, we have Ry € BUC™(H)
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and in particular, for x,y,z € H,

(DRigp(z),y) = /H (A, Q1 h)p(et i + hIN(0, Qo) (dh),

<D2Rt<)0(x)y7 Z> = /[—I |:<Atya Q;§U><Atza Qt_gv> - <Atya Atz>] '
ez + v)N(0, Q1) (dv),
where A; := Qt_%e“‘, t > 0. Moreover,

[DRip(z)] < [[Adllllplloo,
ID*Rep(@)| < V2] Aol

Furthermore, if for any t > 0, Ry By(H) C Cy(H), then (H2) holds.

Proof: Lett >0, ¢ € By(H) and = € H. Since, by (H2), ¢!z € Q? (H),
it follows from the Cameron-Martin formula (see Corollary 1.3.5) that

N(@tA.I', Qt) ~ N(O, Qt) and

dN(etAxv Qt)

1 _1
dN(0,Qy) (y) = exp <—§!Atx|2 + (A, Q, 2y>> .

Thus,
Rip(o) = [ ln)esp (~5hial? + (e, @ H0) ) W0, ).
Therefore, by a change of variables (see Lemma 1.2.7), we obtain
(DRipla)) = [ (A.Q) =) eV (e, Qo) an

= [ (@ (e + N, Qi) (ah)
H
So by Proposition 1.3.1 we have

(DRip(@) ) < [ollso /H [(Avy, Q2 R 2N(0, Q) (dh)

= JelloclAeyl?

for all y € H. Similarly one obtains the second derivative of R;p and the

estimate follows by a simple computation. Let now prove the last assertion.

Suppose that for any ¢ € B,(H), the function R;p(-) is continuous and
1

there is zg € H such that e'z¢ ¢ Q7 (H). It follows from the Cameron-
Martin formula (Corollary 1.3.5) that, for any n € N, N (Letdzg, Q) L
N(0,Q;). This means that , for any n € N, there is I',, € B(H) with

N (%etA.I'(), Qt) (Fn> =0and N(O, Qt)(Fn) =1.
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If we set I" := N,,enI’y, then
1
N (ﬁetASL’(), Qt) (F) =0 and N(O, Qt)(F) =1.

Now, we consider the characteristic function ¢ := xr. Then, for any n € N,
we have

Ry (%) = N (%emxo,@t) (I') = 0 and

Rip(0) = N(0,Q)(T) =1.

Hence, the function R;p(+) is not continuous at zero. This end the proof of
the theorem. O

We show now that the Ornstein-Uhlenbeck semigroup (R;):>¢ solves the
Kolmogorov equation (KE) in the following sense.
We say that a function u(t,z), t > 0,z € H, is a classical solution of (KE) if

(@) u:[0,00) x H— R is continuous and u(0, -) = ¢,

(b) wu(t,-) € BUC?(H) for all t > 0, and QD?u(t, ) is a trace class oper-
atoron H forallx € H and ¢t > 0,

() Du(t,x) € D(A*) forallx € H and ¢t > 0,

(d) for any = € H, u(-,z) is continuously differentiable on (0,00) and
fulfills (KE)

Under appropriate conditions we show now the existence and the unique-
ness of a classical solution for (KE) (cf. [13, Theorem 6.2.4]).

Theorem 3.1.2 Suppose(H1), (H2) and ker Q; = {0} for all t > 0. If AL A

has a continuous extension A; A on H and AtQ% is a Hilbert-Schmidt operator
on H for every t > 0, then (KE) has a unique classical solution.

Proof: For ¢ € B,(H) we know, from Theorem 3.1.1, that, for any ¢ >
0, Ryp € BUC®(H) and

(DRyg(x), Ay) = / (A Ay, Q7 FRyp(ez + B0, Qo)(dh)

H

fory € D(A),t > 0and = € H. So by Proposition 1.3.1, we obtain
[(DRip(2), Ay)| < llellollAcAlllyl, vy € D(A),

fort > 0and x € H. Hence, DR,p(z) € D(A*) forallz € H and t > 0.
Again from Theorem 3.1.1 we deduce that

(D*Rip(x)Q%¢;, Q% e;) =
= [ ((0QFe;, Q1 2 9)? = INQE€;2) le A + )N (0, Q1) (dy)
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forx € H, t > 0 and j € N. It follows from Proposition 1.3.1 that
(D*Rup(0)Q%ej, Q% e;)| < 2/MQ% el

for x € H and t > 0. This implies that Q D?R;p(z) is a trace class operator
on H forallz € H and t > 0.

For any x € H, the function ¢t — R;p(x) fulfills (KE) follows from a straight-
forward computation and is left to the reader. The uniqueness follows
from the fact that Equation (PE) has a unique solution for an initial data
¢ € BUC?*(H). O

If the semigroup (e'4);>o is exponentially stable then the assumption
“A;Q? is a Hilbert-Schmidt operator on H” is automatically satisfied as the
following corollary shows.

Corollary 3.1.3 Assume (H1) and (H2). If A;A has a continuous extension
A;A on H for every t > 0 and (e'4);>¢ is exponentially stable then (KE) has
a unique classical solution.

Proof: It suffices to prove that the assumptions of Theorem 3.1.2 are
satisfied. Since

Ar=Q % = (Q2QL) Q7 b N)e A 1> 0,

it follows from Exercise 3.3.22 that A; is a trace class operator and hence
A;Qz is a Hilbert-Schmidt operator on H for every ¢ > 0. O

3.2 SOBOLEV SPACES WITH RESPECT TO
GAUSSIAN MEASURES ON H

In this section we propose to define and study the Sobolev spaces
WY2(H, p), Wg*(H, ) and W22(H, ), where p := N(0,B) and B €
LT (H). Without loss of generality we suppose that ker B = {0} and con-
sider an orthonormal system (e ) and positive numbers \; with Bey, = Axex
for k € N.

Define the subspaces £(H) and £4(H) of BUC(H) by

E(H) := Span{e!®":he H}
EA(H) := Span{e!®M.h e D(A*)}).

In the sequel the following lemma will play a crucial role.

Lemma 3.2.1 Forany ¢ € BUC(H), thereis a sequence (¢, k)n.ken C E(H)
with
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(@) limp—oo limy, o0 @n k(x) = @(z), Vo€ H,
Thus, £(H) (resp. £4(H)) is dense in L?(H, ).

Proof: Since D(A*) is dense in H and BUC(H) is dense in L?(H, i), and
by the dominated convergence theorem, it suffices to show the existence of
such a sequence.

To this purpose we assume first that dim H := d < oo and consider the
function ¢,, satisfying

(i) ¢, is periodic with period n in all coordinate x;, k =1, ...,d,

(i) pule) = pla), Vo€ l-n—4n— 4

b

(i) [lenlloc < 1@l

Hence,
lim ¢,(z) =p(z), Vre H.

n—oo

On the other hand, any function ¢,,, n € N, can be approximate, by using
Fourier series, by functions in £(H). This proves the lemma for finite di-
mensional Hilbert spaces.

In the general case, let ¢ € BUC(H). Take

Yr(x) == o(x1,22,...,2,0,...), x € H, keN.
Then it follows from the first step that there is (¢, i )n.ken C E(H) with
lim ¢, r(z) = vYr(r), VoeH,

n— 00
[enklle < ¥klloc < [llloo-

Therefore, for any « € H,

lim lim ¢, k(z) =p(z), Vre H.

k—o0o0 n—o00

For any k € N we define the partial derivative in the direction e by
1
Diple) i= lim = (p(a + teg) = p(2)), € H
for ¢ € E4(H) (or ¢ € £(H)). We note that for ¢(z) := ¢**", we have

Dyp(z) = ihe*®M for x,h € H.
The following proposition gives an integration by part formula.

Proposition 3.2.2 For p,p € E(H) and k € N the following holds

/H Digp()@(x)uldz) = — /H w(z)Dhsa(x)u(dmA—i /H 21 (2) @) ().
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Proof: For p,p € E(H) we have

/Dkgp Ju(dz) = /zhke i,h) iz,h) pu(dz)
H
= th/ €i<x’h+ﬁ>,u(dx)
H
—  ihye—3(BUFh)htR) ang
/ o(2)Dpp(z)p(de) = ihye 3 (BOFRIER),
H

On the other hand, we obtain

L / 2hp(2) P2l d) =

- $k€l<m h+h> (dSL’)

L d it (ek) i(w,ht )
- - = it{x,er) ,i(x, d
i di (/He ¢ u(dz) —

1 d , 7
- i{x,ter+h+h) d
i di (/H ¢ a x)> -

= lexp (_%<B(t€k hth), e+ ht ﬁ>)]

|t:0

_ L(B(h+h),h+h)
a5 [t e |

— Z(hk; +i]/k)e_%<B(h+B)vh+fL>
This proves the integration by part formula. O

The following proposition permits us to define the first Sobolev space
with respect to the Gaussian measure .

Proposition 3.2.3 For any k € N, the operator Dy with domain £(H) is
closable on L?(H, ).

Proof: Let (¢,) C £(H) be such that lim,_,~ ¢, = 0 and lim,, o, Dy, =
¢ in L2(H, u). By Proposition 3.2.2 we have

/ Dion(@)p(x)p(d)+ / o) Dupla)u(do) = 5 / Thpn(@)p(@)u(de).

By Holder’s inequality, one can estimate the right hand side of the above
equation and obtains

2
<

lim ‘ | oven@)et@nts)

n—oo

< i ([ ealePuta) [ atetaru() <o
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for ¢ € £(H). Hence,

| va@etanta) 0. v e £(m).
Since £(H) is dense in L?(H, ), it follows that 1) = 0. O
In the sequel we use the notation Dy, := Dy, for k € N.

Definition 3.2.4 The first order Sobolev space W12(H, 1) is defined by
W2 (H, ) ==

{0 € L(H, ) : o € D(Dy), Vk € N, and Z/ | Dyoo(@)2u(dz) < oo}
k=17H
For o € W12(H, 11), we denote by
DSD(‘T> = ZDkgp(x)ek7 WS H7
k=1

the gradient of ¢ at z, which exists as a L?(H, u)-function and hence for
almost every z € H. It is clear that W'2(H, u) endowed with the inner
product

(O, V) wz(m ) =
<907¢>L2(H,u) + /H<D<,0(.T),D’¢(£U)>,u(d$>, 907'¢ S Wl’Q(H7 M)a

is a Hilbert space.
Now, we show that Proposition 3.2.2 remains valid in W12(H, u). To
this purpose we need the following lemma.

Lemma 3.2.5 If o € WY2(H, u), then, for any k € N, x0 € L?(H, p1).

Proof: It is easy to see that Proposition 3.2.2 holds for all ¢ € W12(H, 1)
and ¢ € £(H). So if we apply Proposition 3.2.2 with ¢ = zg and ¢ = ¢ for
k€ Nand g € £(H), then

| atat@utis) -

= [ (9(a) + 2 Drg@)g()uldn) + M [ mug(o)Duglohula)
H H

. /H g(x)2u(dz) + 2) /H 209(2) Dig(2)p(de).

So by Young’s inequality we obtain
| shotauts) <
H

< A /H o(e)u(dr) + /H 2 g(x)2u(de) + 203 /H Dig(e)’u(dz).
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Thus,
| ata@Putdn) <2 [ g@futdo) +43t | Digla)n(da)

This end the proof of the lemma. O
From the above lemma we obtain the following corollaries.

Corollary 3.2.6 If ¢ € WY2(H, u), then |z|p € L*(H, 1) and the following
holds

/ |z [*p(x)? u(dz) < QTYB/ p(x)?p(dz) + 4HBH2/ | Do ()] p(dz).
H H H
Corollary 3.2.7 For ¢,v € WY2(H, i) the following holds

| Dst@yi@ntan + [ p@Dw@ntdn) = 1 [ st

By the same proof as for the first derivative one can see that, for any h, k € N
the operator Dy, Dy, : £(H) — L?(H, ) is closable on L?(H, ) and as before

we use the notation D, Dy, := Dy, D;..

Definition 3.2.8 The second order Sobolev space W22 (H, i) is defined by

W22(H, p) =
{(pel*(Hp):pe () DIDWDY) and Y / Dy Dio () 2u(dar) < oo}
h,kEN hk=1"H

If p € W22(H, u), then, for a.e. € H one can define a Hilbert-Schmidt
operator D*p(z) (since 3, ;o [DnDrp(2)]* < oo for a.e. x € H) by

(D*¢(x)y, 2) := Z Dy Dyo(x)ynzr, vy,z€ H,ae.x e H.
hok=1
It is easy to see that W22 (H, ;1) endowed with the inner product
(o, Vywe2(m ) = (s V)wrz(m ) + Z / (DpDyp(x), Dy Dyap(x)) pr(dx)
hk=1"H

is a Hilbert space.
In a similar way one can obtain the following useful result.
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Proposition 3.2.9 If ¢ € W?22(H, ), then |x|p € WY2(H, pn), |z|*p €
L?(H, 11) and the following estimates hold

[ laPIDp@Putds) < 2 [ pla)u(dn) +4TB [ 1Dpta)Pula) +
SIBI? | T(D¥p(a) (o)
[ lelte@Puidn) < e [ p@iudn) + [ 1Dote)uldn)+
| 1ot uto)).

For the characterization of the generator of the Ornstein-Uhlenbeck semi-
group on L?(H, ;1) we need the notion of Malliavin derivatives.
We consider the operator D : £(H) — L*(H, pu; H) defined by

Dpy:=B?*Dyp forp € E(H).

Here L?(H, u; H) denotes the space of all strongly measurable functions
® : H — H satisfying [, |®(2)|*n(dz) < oo.

Proposition 3.2.10 The operator Dp with domain E(H) is closable in
L*(H, p; H).

Proof: Let (p,) C £(H)and F € L?(H, u; H) are such that lim,, ., ¢, = 0
in L?(H, 1) and lim,, . Dgp, = F in L?(H, p; H). This means that

lim [ |Dppn(w) — F(2)pu(der) =
H

= lim /H];h/)\_kagon(x)—Fk(x)\zu(dx):O.

Since we have supposed that ker B = {0}, it follows that, for any k£ € N,

1
lim Do, = —F), in L?*(H,p).

n— 00 VA
So by Proposition 3.2.3 we have, for any k € N, F}, = 0, which proves the
claim. O
As before we use the notation Dy := Dp and this will be called the
Malliavin derivative. In a similar way we define the following spaces
Wy?(H,n) = {p€L’(Hp): Dpp e L*(H, u; H)},
W5*(H,p) = {peL?(Hpu):pc (| D(DyDy)and

h,keN

S / A Do Dip(@) Paa(de) < oo}
hk=1"H
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3.3 THE ORNSTEIN-UHLENBECK SEMIGROUP ON
LP-SPACES WITH INVARIANT MEASURE

The aim of this section is to study the Ornstein-Uhlenbeck semigroup on
LP—spaces with respect to an invariant measure.
Under appropriate assumptions we prove the existence and uniqueness of
an invariant measure y for the Ornstein-Uhlenbeck semigroup (R;). This al-
lows us to extend (R;) to a Cp—semigroup on LP(H, ), 1 < p < oo. We find
sufficient conditions for the existence and uniqueness of a classical solution
for (KE) on LP(H, ), 1 < p < oo and finally we characterize the domain of
the generator of the symmetric Ornstein-Uhlenbeck semigroup on L?(H, ).
In order to have an invariant measure for the Ornstein-Uhlenbeck semi-
group we suppose in this section the following assumptions

(H3) A: D(A) — H generates a Cy — semigoup (e'');> satisfying
|et4|| < Me~“* for some constants M > 1, w > 0.
(H4) Q € L(H) is a symmetric and positive operator and

t
Q; = / e AQe*A ds e LT(H), t>0.
0

If we set Qo1 := fooo e’AQe’ ds, x € H, then

Qoo = g / e*AQe* ds = g e" Qe x, x e H.
n=0v" n=0

Hence,

TrQo < M?TrQ, Z e < o0,
n=0

which implies that Q.. € L] (H).
The following result shows the existence and uniqueness of invariant mea-
sure for the Ornstein-Uhlenbeck semigroup.

Proposition 3.3.1 Assume that (H3) and (H4) hold. Then the Gaussian
measure u = N(0,Qs) is the unique invariant measure for the Ornstein-
Uhlenbeck semigroup (R;):>o. This means that, for all p € BUC(H),

L&mmmwzéamwu

Moreover, for all p € BUC(H) and = € H,

Jim Reg(@) = [ plaldo)
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Proof: It follows from Lemma 3.2.1 that it suffices to show the proposition
for o € E4(H). For oy, () := e*™) . h € H, we have

LMMWW>=//”““”m@wwm>
_ /e<“‘xh> L(@uhh) ()
H

e 3 Qih ) =3 (Quce et h)
o~ 3 ((Qete*Quce )h,h)

;Lmemm,

where the last equality follows from the equation

Qi + Qe = Qs, t>0. (3.1)

On the other hand, we obtain

Jim Rypp(z) = lim e’ i(e" h,@) = 1(Quh,h)
— 6_%<Qooh,h>
= / on(x)p(dr).
H

For the uniqueness, we suppose that there is an invariant measure v for
(R:). In particular v satisfies

| Reen(@mian) = [ on(opidn)
H H
for ¢y, (z) := e/"® x h € H. This implies that
e 2 (QM (A" By = H(h).
So by letting ¢ — oo we obtain
D(h) = e~ 2(@=mM = fi(h)

and the uniqueness follows now from the characterization of Gaussian mea-
sures (see Theorem 1.2.5). O

Now, one can extend the semigroup (R;);>0 to a Cp—semigroup on
LP(H, p),
1<p<oo.

Theorem 3.3.2 Assume that (H3) and (H4) are satisfied. Then, for all t > 0,
R, can be extended to a bounded linear operator on LP(H,u) and (R:)i>o0
defines a Cy—semigroup of contractions on LP(H, ) for 1 < p < .
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Proof: Lett¢ > 0and ¢ € BUC(H). By Holder’s inequality we have
|Rip(z)|P < (Relp|P)(x), x€ H.

Hence,

| Rep@Putan) < [ Rigl@nldo)
H

H
= | lp(@)Pulde).
H

So, the first assertion follows from the density of BUC(H) in LP(H, 1) for
1 < p < oo and we have

|Reoll ey < lollorm,w, t>0,¢¢e LP(H,p).

Finally, the strong continuity follows from the dominated convergence the-
orem. O

As in Section 3.1 we show that u(t,z) := (Rip)(z), t > 0,2 € H, and
¢ € LP(H, ) is the unique classical solution of (KE), which means that

(a) wu is continuous on [0, 00) x H, u(t,) € C*(H) for all t > 0,

(b) QD?u(t,x) is a trace class operator on H and Du(t,z) € D(A*) for
everyt >0and z € H,

(c) A*Duw and Tr(QD?u) are two continuous functions on (0, co) x H and
u satisfies (KE) for all ¢ > 0 and = € D(A).

This result can be found in [6, Theorem 5].
To this purpose we need the following lemmas (see [6, Proposition 2] and
[5, Proposition 1] or [13, Theorem 10.3.5]).

Lemma 3.3.3 Suppose (H2), (H3) and (H4). Then the following hold.

() The family So(t) = Qo2e!*Q3,t > 0, defines a Cy—semigroup of
contractions on H.

(ii) The operators Sy(t)S((t), t > 0, satisfy
150(t)S5(#)]] < 1 and
AN (Qoc )" (I = So(1)S5 (1))~ (Qoc” ).

(iii) For 0 < t¢ < t1, the function [to,t1] > t — Ay € L(H) is bounded.
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Lemma 3.3.4 Assume (H2), (H3) and (H4) and let p € LP(H,pu), 1 <p <
oo. Then, for any t > 0, (R:p)(-) € C*°(H) and

|ID"Ryp(z)| < c(t,n,p,p) < 00

uniformly on bounded subsets of H for n = 0,1, ... and some constant
c(t,n,p, ) > 0.

Proof of Lemma 3.3.3: (i) It follows from (H2) and Exercise 3.3.22 that
So(t), t > 0, are bounded linear operators on H and

1 _1
S5 (t) = Qaet Qo®, £ 20,

which can be defined on H, since ker @, = {0} and hence, QEO(H )=H
by Remark 1.3.2. Now, from (3.1), we obtain

0 < (Quz,x) = (I — So()S:(1)Q%z, Q2z), >0,z ¢ H.

Hence, ||S:(t)Q%z|| < [QZz|, t > 0,z € H. Since Q% (H) = H, we
deduce that
1So(t)| <1, t>0. (3.2)

The semigroup property can be easily verified. It suffices now to show that
So(+) is weakly continuous at zero. Let z,y € H. Then,

lim <So(t)x,Q§oy> = <sc,62§oy>,

t—0t

and the weak continuity follows from (3.2) and the density of Qéo (H)in H.
(ii) From (3.1) and Exercise 3.3.22 it follows that

= So(t)SE(t) = (Qx2 QF)QFQx?), t>0.

By Exercise 3.3.22 we have that Q;o% Qt% has a bounded inverse and so does
I —So(t)Sg(t) for t > 0. Since I — Sy(t)Sg(t) is selfadjoint and positive, we
deduce that

1S0(t)S5(t)]] <1 forallt > 0.

On the other hand, by Exercise 3.3.22, we have
ANy = (Q 2 (Qy 2et)
= (Qx"e")"(Q; Q%) (Q; Q%) (Qx" ™)
= (Qae"™) (I = So(t)S5(1) " Q)

for every ¢t > 0.
(iii) Take a > 0 such that

1S0(t0) Sy (to)|| < a < 1.
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Then,

1S0(@)So @) = 1So(t — t0)So(to)Sg (t0) S5 (¢ — to) |
< [1S0(t0)So (to)ll < @

for ¢ € [tg,t1]. Now, (iii) follows from the identity

ng% 6tA — (ng% etoA)e(t—to)A
fort e [to, 251]. O

Proof of Lemma3.3.4: We fixt > 0 and ¢ € LP(H, ). Suppose without
loss of generality that

/ (e Ar 4+ y)|PN(0,Q4)(dy) < oo for x = 0. (3.3)

Let consider a sequence (yp,) C By(H) with |p,(x)] < |p(x)| and
lim, o on(x) = ¢(x) for p—a.a. z and hence, by Exercise 3.3.20, for
N(0,Q;)-a.a. x. So, by (3.3), ¢,, converges also to ¢ in L?(H, N (0,Q,)).
On the other hand, we know from Theorem 3.1.1 that R;p,, € BUC*>(H).
So, by the Cameron-Martin formula and Holder’s inequality, we obtain

< / Isoe Tty) - son<e%+y>w<o,@t><dy>

= [ e (=3l + (4@ ) ) lolo) — enINT0.Q0) )
H

< ([ ew (——|At.r| (A @ >)qN<o,@t><dy>)é

([ 16 = eatwrPn @t><dy>)l

for - + ¢ = 1. Thus, it follows from Proposition 1.3.3 that

q
sup | Rep(x)—Regn(x)| < sup exp (—|Atxr2> lo—nllirrno.00)
|z|| <K |z <K

for ¢ > 0 and any constant K > 0. This implies that R;p € C'(H).
On the other hand, from Exercise 3.3.21 and the Cameron-Martin formula,
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we have

’<DRt90n(x) - DRtQOm(x)7 y>|
/H (A, Q1 FR) (o2 + ) — o (4 + 1)) IN(0, Q1) (dR)

IN

_/

( [ 107 i Ao Qt>(dh)) T

IN

1
p

( /H | 0n (e + ) — @ (ea + h)["N (0, Qt)(dh)>
— Cr|Aty|(/HeXp <—%|Atx|2 n <At$,Qt_%h>>
lon(h) = @m(h)["N(0, Qt)(dh))%

colonl [ exp (=Gl + bl @ 21 ) V0.Q(a) )

IN

P

([ 1eat) = emtmao.Qutan )",

where 2 + L =1, r>1 and } +
that

= 1. So, by Proposition 1.3.3, it follows

r
p

b—1
|DRypn(2)—DRypm(x)| < c(t,p) exp <7|Atl’|2> lon—0mll Ly (7N (0,0:))

for x € H. Thus, DR;p,, converges uniformly on bounded subsets of H to a
continuous function. Using Theorem 3.1.1 and by the same argument one
can show the result for arbitrary n. O

The following result shows the existence and uniqueness of the classical
solution for (KE), for any ¢ € LP(H, i), 1 < p < oc.

Theorem 3.3.5 Let (H2), (H3) and (H4) hold. If the operator A;A has a
continuous extension Ay A on H then the function (t,z) — (R:p)(x) is the
unique classical solution for (KE) for any ¢ € LP(H,pu), 1 < p < oc.

Proof: As in Theorem 3.1.2 we prove first that, for every ¢ € LP(H, pu),
and x € H,

DR,p(x) € D(A*) forallt > 0.

Lett > 0 and ¢ € LP(H, u) be fixed. We know from Theorem 3.1.1 and
Lemma 3.3.4 that, for y € D(A),

(DRyp(x), Ay) = /H (A Ay, Q7 Ry + N0, Q)(dh).
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Thus, by Holder’s inequality and Exercise 3.3.21, we obtain

U=

(DRyo(2), Ay)| < (/ (A Ay, Q5 i) Ao, Qt)(dh)>

(/H p(e"a + h)["N(0, Qt)(dh)>

er | AvAy| (|| ()" (3.4)
< e | NAyl (Relgl ()7

IA

forze H, L +1=11<r<p,andall y € D(A). Since |p|" € L~ (H, p),
it follows from Lemma 3.3.4 that

or . m) i= ¢, (Rl (x)) " < oc.

Hence, DR,p(z) € D(A*) fort >0and x € H.
On the other hand, by Theorem 3.1.1 and Lemma 3.3.4, we have D2 R;p(x)
exists for all x € H and

(D*Reptales.es) = [ [I(hes. Qi = Iave, ] (e datn)N (0,0

Take 1 < r < p. Then, it follows from Holder’s inequality and Exercise
3.3.21 that

D Ristater.en < ([ [ @7 P - ] V0. Qo))

( [ leteta + )l w0 Qt><dy>)

< erlhies? (Relgl () (3.5)

forx € H, and + = =1,1 < r < p. By the same argument as above and
Corollary 3.1.3 we have c(r,p,x) = ¢ (Re|p|" (z )) < oo and

S D Rup(w)es )] < clrp zm e < oo
7j=1

This shows that D2R;p(x) is a trace class operator on H for z € H,t > 0
and ¢ € LP(H, ). From Corollary 3.1.3 we know that (KE) has a unique
classical solution u(t,z) := R;p(x) for ¢ € By(H). Now, for ¢ € LP(H, p),
there is a sequence (p,,) C By(H) with |, ()| < |p(x)| and lim,, o @n(x) =
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o(z) for p—a.a. x € H. It follows from Exercise 3.3.23 that
|Repn(z) — Rep(z)| < 1
< ([ Kmutan) lew = plisons
= det(I — So(t)Sz(t)) = det(I + (q — 1)So(t)S; (t)) 27
exp (15 + (0= DS 5(0) Qe Qb))

fort >0, x € H and %+% = 1. So, by Lemma 3.3.3(iii), R;p,(z) — Rip(x)
uniformly in (¢,z) € [to,t1] X {x € H : |z| < K} for 0 < ty < t; and any
constant K > 0. Again by Exercise 3.3.23, we obtain

Ryle|"(z) <

< ( / k(t,x,y)mdy)); -
= det(] — So(t)Si (1)) det(I + (1—’ —1)So(1)S;(£)) "%

exp (250 + (2 = D805 (0) Qe Qe

fort >0,z € Hand 1 < r < p. So, by Lemma 3.3.3(iii), (3.4) and (3.5),
it follows that 2. 5i Rion(x) converges uniformly in (£, z) € [to, 1] x {z € H :
x| < K}. Hence the function (¢,z) — R;p(x) is a classical solution for
(KE). The uniqueness follows from Theorem 3.1.2. O

We propose now to characterize symmetric Ornstein-Uhlenbeck semi-
groups on L?(H, ;1). To this purpose we need the following lemma.

Lemma 3.3.6 Assume that (H3) and (H4) hold. Then the operator (Q , is the
only positive and symmetric solution of the following Lyapunov equation

(Qoo, A'y) + (Qoc A%, y) = —(Qx,y), x,y € D(A"). (3.6)

Proof: For z,y € D(A*), by using integration by part, we have

oo

<Qoo$,A*y> _ <68AQ65A*x7A*y> ds

oo * d *
(Qe x, d—eSA y) ds
S

= —(Qz,y) — (QuA"2,y).

Suppose now that there is a positive and symmetric opertor R € L(H)
solution of the Lyapunov equation (3.6). Then we obtain
d

%<Rem*x, e r) = —(Qet z, et z), x e D(AY).

J
J
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So by integrating between 0 and ¢ we obtain
(Re!Y z, et z) — (R, z) = —(Qux,z), =€ D(A¥).
Now, by letting t — oo we get
(Rx,z) = (Qoow,x) forallz € D(AY).
This implies that R = Q. O

Symmetric Ornstein-Uhlenbeck semigroups on L?(H, i) are character-
ized by the following result.

Proposition 3.3.7 Suppose (H3) and (H4) hold. Then the following assertion
are equivalent

(D) (Ry)i>o is symmetric in L*(H, ).
(i) Quoett = e*Qu forallt > 0.
(iii) Qe = etAQ forallt > 0.
If (Ry)¢>0 is symmetric then Qo = —1A71Q.

Proof: For o(z) := @) and @(z) := @)z h € H, we have

Rip(z) = eite t@h) =5 (Qehh) anq
Rip(z) = pile e, h) =5 (Qih,h)
Thus,
/mmwwm>=fwwvﬂmwmmw
H H

— o 3(Qehih) i Qoo (e h) te AT )

= e_%«Qt"’etAQooetA*)hvh>6_%<Qoo]:L»]~7’>6_<QooetA*hJL)_
So by (3.1) we obtain
/Rt@(:ﬂ)@(:v)u(dx)e_%<Qooh»h>—%<Qoo’3,f3>—<Qoo€tA*h”~’>.
H
By the same computation we have
/Rt¢($)¢($)ﬂ(d$)€_%<Q°°h’h>_%<Qooﬁjb>_<Q°°6tA*fL’h>.
H
Therefore,
| Rep@s@ntds) = [ Repa)pl@p(ds) it and only it
H H

e~ (Que hh) Qe Rh) if ang only if

QooetA = etAQoo-
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Hence the equivalence (i) < (ii) follows from the density of £4(H) in
L?(H, ) (see Lemma 3.2.1).

The implication (iii) = (ii) is trivial. It remains to prove (ii) = (iii). To this
purpose we consider z € D(A*). It follows from (ii) that Q..z € D(A) and

Qoo A" = AQ .
So by Lemma 3.3.6 it follows that 24Q ., = —@Q and hence

— 1 -1
Qe = —3A7'Q,

which proves the last assertion of the theorem. Again by Lemma 3.3.6 we
have

<QetA*$7 y> - _<QOO€tA*:Ca A*y> - <QOOA*etA*$7 y>
= —(Quoz, A% y) — (QuoA*x, ™ y).

On the other hand, it follows from Lemma 3.3.6 that
(€Qu,y) = (Qu,ey)
= —(Quow, AT y) — (Quo A"z, e y).
This implies that
Qe x,y) = (MQu,y), =y D(AY),t>0,
which is equivalent to Qet4” = et4Q for all ¢ > 0. O

In the particular case where A is selfadjoint we have the following result.
Corollary 3.3.8 If the following assumptions are satisfied

1. A: D(A) — H is selfadjoint and there is w > 0 such that (Azx,x) <
—w|z|? for all x € D(A),

2. QetA = etAQ forallt > 0,
3. QA~' € L(H) is a trace class operator,
then (R¢)¢>o is symmetric on L*(H, p).

Proof: In this particular case we have

t
1
Q: = Q/ e254 ds = 5QA—l(eQ'fA —1), t>0.
0

From the third assumption we have Tr@) < oo and the second assumption
is exactly the third assertion in Proposition 3.3.7. This end the proof of the
corollary. O

In the special case () = I we obtain
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Corollary 3.3.9 Assume that A : D(A) — H is selfadjoint, there is w > 0
such that (Az,z) < —wl|z|? for all z € D(A), A=! is a trace class operator
and Q = I. Then (R;)¢>¢ is symmetric on L*(H, p).

We propose now to describe the generator L, of the Ornstein-Uhlenbeck
semigroup (R;);>0 on LP(H,pu)1 < p < oo.
We set

Log(x) = 5TH(QD%o(x)) + {x, A Dplw), € H, p € EaH).

Proposition 3.3.10 If the assumptions (H3) and (H4) are satisfied, then
Ea(H) is a core for L,,.

Proof: For ¢(x) := "% h c D(A*), x € H, we have
Rip() = [ e w0 (0,Q0)(dy)
H
_ 6i<etA*h7$>_%<ch7h> c EA(H)

Hence,
RtgA(H) - EA(H), vt > 0.

On the other hand we know that
1 . 1
li - . — i(h,xy [ - A* .
lim (R =) = ¢ (it o) - 5(Qnn))
= Lop(x), =€ H.

So by the dominated convergence theorem we obtain

= 0.
LP(H,p)

lim
t—0t

1
‘;(Rtso — @) — Loy

Thus, £4(H) C D(L,) and the assertion follows from the density of £4(H)
in LP(H, ;1) (see Lemma 3.2.1) and Proposition A.2.5. O

In the remaining part of this section we propose to describe exactly the
domain D(L5) of the generator of the symmetric Ornstein-Uhlenbeck semi-
group on L?(H,u). To this purpose we need some auxiliary results. The
following result was proved independently in [3] and [17].

Proposition 3.3.11 Assume (H3) and (H4). Then the following hold
| Loplwp@ntds) = [ (@uDo(a). A" Diola) (o)
H H
| Loslae@ntds) = =5 [ (@4Dp(). Q4 Dp(a)n(ds
H H

for v, o € Ea(H).
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Proof: For o(z) := e!m®) 3(z) := ei™@) h h € D(A*), x € H, we have
| Log(@3@ntr)
. 1 -
= / et {h-) (i(A*h, x)y — §<Qh, h)) M)y (da)
H

i (h+h 1 ! - -
= z/ <A*h,x>ez(h+h,az>u(dx)_ §<Qh, h>e_§<Qoo(h+h),h+h>
H

d . . 1 1 ) )
= o (/ et (tA h+h+h,w>,u(dm)> — i(Qh, h>e—§<Qoo(h—|—h),h+h>
H

|t=0

- 1 ) ) )
= - (<QooA*h, h+ h) + §<Qh, h)) o~ 3(Qoc (h+h),h+h)
Hence, it follows from Proposition 3.3.6 that
/ <QOOD(15(:B)7 A*D(P($)>M(dx) — _<A*h,, QOOiL>€_%<QOO(h+];)’h+E>
H

- / Lop(2)@(x)u(dz).
H

In particular, and again by Proposition 3.3.6, we obtain

/H Lop(x)p(z)u(dz) = /H (QuoDip(), A" Dip(z) i dz)

= 3 | @Del@). Detwputie).

This end the proof of the proposition. a

Remark 3.3.12 If the Ornstein Uhlenbeck semigroup is symmetric, then it
follows from Proposition 3.3.7 that

/ Lop(@)p(@n(d) = —3 [ QDo) Deta)u(ds)  37)
H

H
fOT' P 95 € gA(H)
For the proof of the next proposition we need the following lemma.

Lemma 3.3.13 Assume that ker Q = {0} and Qéo(H) C Qz(H). Then the
operator

Dg t Ea(H) € L*(H, p) — LA(H, p; H); ¢ — Q* Dy

is closable.
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1
Proof: From the closed graph theorem we have K = Q 2Q% is a

bounded linear operator on H. Its adjoint is given by K* = QéoQ_%.
Let (¢,) C Ea(H) and F € L?(H, p; H) with lim,, .o |5 £2(sr,) = 0 and
limn_wo ||DQ§0n — FHL?(H,M;H) = 0. Hence,

1
Q% Dy, = K*Q2 Dy, — K*F

in L?(H,p; H) as n — oo. Now, it follows from Proposition 3.2.10 that
K*F = 0 and therefore F' = 0. This can be obtain by considering the
orthonormal basis of eigenfunctions e,,, n € N, of ., and the fact that

ker Qs = {0}. O

As in Section 2 we define The spaces

o e WS (H m)pe D(Dth),/ Tr(QD2p(x))2 pu(dz) < oo}
h,kEN H

In the following result we obtain that D((—Ly)2) = Wé’Q(H , i) for sym-
metric Ornstein-Uhlenbeck semigroups on L?(H, u).

Proposition 3.3.14 Suppose (H3), (H4), ker @) = {0}, and Qéo(H) C Qz(H).

Then,
D(Ly) C W5*(H, ).

Moreover, for any ¢ € D(Ls),

| La@i@ntdn) — 5 [ (@Do(w). Dota)u(da),

In the case where (R;):>¢ is symmetric, one has
1
D((—L2)?) = Wg™(H, ).

Proof: Let ¢ € D(Ls). It follows from Proposition 3.3.10 that there is

Jim lon = @ll2p =0and lim [|Lopn = Logl| L2z, = 0.
By Proposition 3.3.11, we have
| (@¥D(on = om)(2). @ Din — o) @)l

- /H Lo(n — 9m)(@)(9n — o) (@)p(dz).



68 The Ornstein-Uhlenbeck semigroup

Now, one can apply Lemma 3.3.13 and hence ¢ € WéQ(H ,1t) and

/ Log(e)e(w)u(d) — 3 / (QDy(x), Dp()) ().
H H

On the other hand the last assertion follows from

[ 1Lt et Putde) = [ 16H Do) (),

Remark 3.3.15 The bilinear form
9.9)i= [ (QuDp(a). A"Dplalde), ¢, 5 € EalH)

is not always continuous on WéZ(H ) X WéZ(H , ) and therefore not in
general a Dirichlet form. The continuity of the bilinear form a can be proved
under some additional conditions (see [3] or [17]). In [9] it is proved that a
is a Dirichlet form provided that () = I, which implies that AQ ., € L(H).

Suppose now that the assumptions of Corollary 3.3.9 are satisfied. Then
Qoo = —3 A1, Let consider an orthonormal system (e,,) C H and (c,) C
(0, 00) such that

Ae, = —ape,, neN.

The following proposition is the main tool used for the characterization of
the domain of L.

Proposition 3.3.16 Suppose that the assumptions of Corollary 3.3.9 are sat-
isfied. Then,

3 | T (D202 nda)+ [ (A2 Del@)Putdn) =2 [ (Lapla) Pl

for o € EA(H).

Proof: For ¢ € £4(H) we have D;(Loyp) = LoD — ajDjp. Hence, by
Proposition 3.3.14,

[ D)y (Lap) e
— [ D LDl - a; [ Do) Putie)

= 5 | (DDyole). DDspltdr) — s [ 1Dsp(0) Pt
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Now, if we take the sum over j € N, we obtain

[ o ((0%(@))?) pde) + [ |(~4)F Dp(a)Pu(de)
), A

- - /H (Dp(x), D(Lag) (@))p(da)
Since Lo € WY2(H, ), it follows from Remark 3.3.12 that
/H<D<P(l’)7 D(Lap)(x))p(dx) = —2 /H | Lap()|? p(de).
Thus,

; /HTfW p(dar)+ / |(—A)F D ()| u(de) = 2 / | Lop(a) [2u(dr).

O

For the characterization of the domain of L, we need the following space

W Hp) = e €W'(Hp): [ (A} Do) a(de) -
> [ aulDig(@)Pu(da) < o).
keN

Endowed with the inner product
<§07 ¢>W(1_’2A)(H7N) =y, '¢>L2(H,u) + /H<(_A)%D§0($)7 (—A)%D¢($)>M(dx)a

W( A)(H ) is Hilbert space.
Theorem 3.3.17 Assume that the assumptions of Corollary 3.3.9 hold. Then,
D(Ly) = W*2(H, 1) "W 22 (H, ).

Proof: Let ¢ € D(Ls). By Proposition 3.3.10 there is (¢,,) C £4(H) with
©n — @ and Lop, — Loy in L?(H,u). For n,m € N, it follows from
Proposition 3.3.16 that

2 [ Lalpn = pn)@)Putde) = 5 [ T (DXon— pn)@)?) ulde) +
| =4D(e = on) @)t

Therefore (p,) is a Cauchy sequence in both spaces W?2?2(H,u) and

W(l_’ZA) (H, ). This implies that

D(Ly) € W*2(H,p) "W 2 (H, p).
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Now, if ¢ € W?22(H,u) N W(l_’QA)(H, ©) then one can find a sequence

(pn) C Ea(H) such that ¢, converges to ¢ in both spaces W?22(H, 1) and
W(l_’QA) (H, ). The other inclusion follows now from Proposition 3.3.16. O

In the more general assumptions given in Corollary 3.3.8 one has to
prove the formula

3 | T (@D ndn) + [ (-AQ)Do(a). De@)utar) =

=9 /H (Log(2))2pu(dz). (3.8)

The proof of (3.8) is similar to that of Proposition 3.3.16. As in the proof of
Theorem 3.3.17, (3.8) implies the following general result.

Theorem 3.3.18 Suppose that the assumptions of Corollary 3.3.8 hold.
Then,

D(Lz) = {p € W5 (H, p) : /}q((—AQ)Dw(ﬂf),Dw(ﬂf)M(dw) < 00}

Remark 3.3.19 Theorem 3.3.17 and 3.3.18 are due to Da Prato [10]. In the
finite dimensional case Lunardi [24] proved first that D(Ly) = W22(RY, u),
by making heavy use of interpolation theory. A simpler proof of the same result
can be found in [11]. Recently, this result was extended to p € (1, 00) (see [25]
or [26]).

Exercise 3.3.20 Assume (H1) and (H2). Prove that N'(0,Q;) is N (0, Qs )-
absolutely continuous.

Exercise 3.3.21 Let 1 < p < oo, and B € L] (H) with ker B = {0}. Show
that

[ 1B PN, B) ) = 1 [ 1A 0, 1))
This generalizes the case p = 2 proved in Proposition 1.3.1.
Exercise 3.3.22 Assume (H1) and (H2). Show that
0 QF (H) = Q(H)

(ii) For any t > 0, So(t) := Q;o% etAQéo is a Hilbert-Schmidt operator on
H.

(iii) Deduce that et is a trace class operator on H for every t > 0.

Exercise 3.3.23 Assume (H2), (H3) and (H4).
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(a) Show that 1 1
Qr = Q5 (I — So(t)S5(t)Q%, t>0.

(b) By using the Cameron-Martin formula and the Feldman-Hajek theorem
(see Exercise 1.3.6) show that

Rip(a) = / k(o y)e()u(dy), 1 —aaz € H,
H
with
k(t,xz,y) :=

1 2 * -1 —% _%
exp <—§’Atf€’ + (L = So(t)S(t)) ™ So(t)Qoc” 7, Qoo y)) :
det(I — So(t)Sg ()% -
exp (3 Sa0S5O — 5055 (0) Q. Q) )

fort>0,and z,y € H.

(c) Show that, for any 1 < q < oo,
/ k(t,z,y)'u(dy) =
H

det (I — So(t)SS(t))l_quet(I +(q— 1)S0(t)56<(t))_%
exp <Q(q2— 1) ((I+(q— 1)So(t)58(t))_lQ§o%etAx, Q;o%e”‘g;)>

fort > 0and x € H, (see [6, Lemma 3]).

Exercise 3.3.24 Suppose (H2), (H3) and (H4). Use the formula

(DRipl@).9) = [ (A @7 ol + HA(0. Qu) ),
H
which, by Lemma 3.3.4, remains valid for t > 0 and ¢ € LP(H, ) to prove
that
RtLp(I_L :u) - Wl’p(Ha :u)

fort > 0and 1 < p < oo. Deduce from [7] that the Ornstein-Uhlenbeck
semigroup (R;) is immediately compact in LP(H, ).






APPENDIX

A.1 THE CLASSICAL BOCHNER THEOREM

In this section we recall the classical theorem of Bochner and for the sake
of completeness we will give the proof.

First of all we say that a family A of probability measures on (E, B(FE)) is
tight if for any ¢ > 0 there is a compact set K. C E such that

w(K.)>1—¢ forall peA.

Here F is a separable Banach space and B(F) its Borel o-field.
A sequence of measures (y,) on (E, B(F)) is said to be weakly convergent
to a measure y if for every ¢ € Cy(FE)

i [ pl@h(de) = [ plapu(ds).
p=oC JE E

A family A of measures on (E, B(F)) is said relatively compact if for an

arbitrary sequence (u,) C A contains a weakly convergent subsequence

(ip, ) to a measure p on (E, B(E)).

The following result is due to Prokhorov (cf. [12, Theorem 2.3]).

Theorem A.1.1 A set A of probability measures on (E,B(FE)) is tight if and
only if is relatively compact.

For the proof of the Bochner theorem we need the following lemma.

Lemma A.1.2 Assume that (p,) is a sequence of probability measures on
(RN, BRM)). If ¢,(2) = ji,(2) converges to ¢(z) for all z € RN and if
this convergence is uniform in {z € RY : |z| < a} for a small number a, then
{pp : p € N} is tight.
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Proof: Since ¢, is continuous and (¢, ) converges uniformly in a neighbor-
hood of 0, it follows that ¢ is continuous at 0 and ¢(0) = 1. Hence, for any
e > 0 there is § € (0, a) such that

lp(z) = 1| <e forall |z| <.

It follows now from the uniform convergence of (,) to ¢ in {z € RV : || <
0} that there exists M = M (¢) independent of z such that

ep(z) =1l <5, Vp2 M, V| <6

So, by Fubini’s theorem we have

1—% < ﬁ/_i.../_i%gpp(z)dz
5 5
= ﬁ/{”/&/ﬂw cos(z, x) iy (dx) dz

B / sin dx1 sin 0x N (d)
N RN 5.%'1 (SQZN Hp GL),

where the last equality can be seen by induction.

sin dx;

5:17j

/RN (Si§§f1> (Sigjizv) pp(da) < pp([=R, RJY) + (%)N

Take now R := 5 (2) %, it follows that

Since

is dominated by 1 on [~ R, R] and by ;- elsewhere, we obtain

1—¢ < pu([-R,RYN) forallp> M.
This gives the proof of the lemma. O

We are now ready to show the classical Bochner theorem. The argu-
ments are taking from the proof in one dimensional case (see [20, Theorem
2.6.6]).

Theorem A.1.3 A functional ¢ : RN — C is the Fourier transform of a prob-
ability measure on RY if and only if ¢ is a continuous positive definite func-
tional satisfying ¢(0) = 1.

Proof: It suffices to prove the sufficiency. Assume that ¢ : RY — Cis a con-
tinuous positive definite functional with ¢(0) = 1. Then, by Lemma 1.1.3,

¢ is uniformly continuous and bounded. Take now g : RY — C integrable,
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bounded and uniformly continuous. If we set ¢ := (ya,...,yn) € RV!
then we have

[ [ #te—na@tmasan
— /RN—l xRN -1 (/R/RSO(& —m, € - f))g(fl,é)md&dm) dé diy

p? S 2
. I k. I . E o\ (1 >
= / lim E w(———,ﬁ—n)g(—,i)g<—,n) (—) dgdn
RN —1xRN =1 P77ee, 77 p p p p p

k=

0. )

v

Put g(&) := N(0, 2Idgn ) (€)e @9 ¢,z € RV, Since
N (0, {Tdzx)(§) = N(0, TTdg)(~€) and
N0, T e} () ¥ N(0, Tdex )(§) = N (0,5 Idg)(€)

it follows that, for z € RY,

1 _le?
[ st ngdn = e e
RN (pm)=2
where N(0, 2Idgn)(§) : 172" for ¢ € RN and Idg~ denotes the

(m(p/2))
identity operator in R". So by (9) we obtain

0 = [ ] ele=na@at dsan

_ /RN (/RN g(& + n)@c@) (&) d¢

- (pwl)év /RN ple e e

Thus,

1 _lel? —i{x
fola) = e [ 9O ¥ e de >0

for z € RY. Define the measure j,(dz) := f,(z)dx. We propose to show
now that p, is a probability measure on RY. First, by applying Fubini’s
theorem, observe that

[—al,al .. aN,aN])

= / / / B T eTUNIN e dry L. dy
2m)N J_., RN

B \§|2 sinai&; sinanén
- feter ( 3 )( ) o
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On the other hand, for m € N, we have

1 m m
—N/ / pp([—a1,a1] X ... X [—an,an])day ...day =
m= Jo 0

/ / pp([—ar1m,a1m] x ... x [~anm,aym])da; ...day.
0 0

Since p,([—aim,a1m]x...x[—aym,anym]) T u,(RY) as m — oo, it follows
from the monotone convergence theorem that

1 m m
— ol / pp([—ar,a] % ... x [~an, an]) d

o smar ) (smanéy
_ 2y ‘ﬁ'z L-cosm& (1-cosmiy
- ,,;gnMN/RNwoe ( e )---( )

_ 1 & g_N Ifnlj 1 —cos& 1 —cosén

where a := (aq,...,ay). Since (0) = 1 and
1-— 1-— ;
C;)séy > 0, /%:m Vji=1,...,N, (10)
& R &

it follows from the dominated convergence theorem that

up(RY) = (0) = 1.

Let compute now the Fourier transform of p,. For a; > 0 and m € N,
observe that

‘ 1 /aNm /a1m i(2,3) / (5) _ﬁ —i(&,x) dfd
Ce e ’ e rp € ’ xr
(QW)N —anm —a1m RN 4

(Qi)N /R i /R G 55 e dedy

IA
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So it follows from the dominated convergence theorem that

fip(2)

= g [ [ o e ]
i rg@mﬁfo e <mz:“£f;1-m>---

(smaNm(§N N)) dfda

EN — 2N

o L/RN*"@)‘?# (1—cosm<sl—zl>)m(1—cosm<eN—zN>> i

m(&1 — 21)? m(En — zn)?
¢

_ . 1 13 _% 1 —cos& 1 —cosén

So, again by the dominated convergence theorem and (10), we obtain

Ip(2) = p(z)e” 7, z€RN,

Finally,
lim 7i5(2) = ¢(2)

p—00
uniformly in |z| < 1. The theorem follows now from Lemma A.1.2 and
Theorem A.1.1. O

A.2 (Cy,-SEMIGROUPS

In this section we give a general discussion of the abstract Cauchy problem
for unbounded linear operators on a Banach space and its relation to the
theory of Cy-semigroups. For more details we refer to the recent books
of Engel-Nagel [16] and Arendt-Batty-Hieber-Neubrander [1]. A particular
attention will be dedicated to the class of eventually norm continuous C)-
semigroups.

We consider the abstract Cauchy problem

(ACP) {%))_ﬁ“() t>0,

where A is a possibly unbounded linear operator with domain D(A) on a

Banach space X and x € X. A classical solution of (ACP) is a function

u € C1(R,, X) such that u(t) € D(A) for all t > 0 and v satisfies (ACP).
Now we introduce Cy-semigroups.

Definition A.2.1 A family T(-) := (T'(t))+>0 of bounded linear operators on
X is called a Cy-semigroup if
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(@) limgyo | T(t)z — || =0, VeelX,
(i) T(t+s)=T(t)T(s) forallt,s > 0and T(0) = Id.
The generator of 7'(-) is the linear operator A defined by

T(t)x —
D(4) = f{reX:lm Dz = ises 1.
T(t)x —
Ar = limw, x € D(A).
t10 t

One can prove that the generator is always a closed and densely defined
operator. The domain D(A) satisfies

T(t)D(A) C D(A) and AT (t)x = T(t)Az, Vit > 0.
Moreover, for x € D(A),

%T(t)x = AT(t)z, t>0.

This shows that for + € D(A) the problem (ACP) has a classical solution
u(-) := T(-)xz. We say that (ACP) is well-posed if for each initial value
x € D(A) there is a unique classical solution u(-, z) satisfying

for any sequence (x,,) C D(A) with lim,, ., ||z, —z| = 0forx €
D(A), the corresponding classical solutions u(-, x,,) converges to
u(+, z) uniformly on compact subsets of R .

The following theorem shows that wellposedness is equivalent to genera-
tion of Cy-semigroups.

Theorem A.2.2 Let A be a linear operator with domain D(A) on a Banach
space X. Then the following assertion are equivalent:

(a) A is the generator of a Cy-semigroup on X.
(b) The abstract Cauchy problem (ACP) associated with A is well-posed.
On the other hand, for a Cy-semigroup 7'(-), one has
IT@)] < Me*', t=0,
for some constants w € R and M > 1. If we denote by
wo(A) := inf{w € R: thereis M, > 1 with [|T(t)|| < M,e*t, Vt > 0}

the growth bound of the Cjy-semigroup 7'(-) with generator A, then
(wo(A),00) C p(A), the resolvent set of A, and the resolvent R(\, A) of A is
given by

RO\, A)x = / e MT(tzdt, ©e X, A> wo(A).
0

In the following proposition we collect some properties of Cy-semigroups
and their generators.
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Proposition A.2.3 Let T'(-) be a Cy-semigroup on a Banach space X. If
(A, D(A)) denotes its generator then the following assertions hold:

() [, T(s)zds € D(A) and A [, T(s)xds = T(t)x — a for all = € X and
t>0.

(i) Afot T(s)xds = fg T(s)Axds =T(t)x — x forall x € D(A) and t > 0.
(iii) limy—oo AR(N, A)x =z forall x € X.
(iv) RN A)T(t)=T({t)R(NA)forall A € p(A)and t > 0.

In many applications it is difficult to identify the domain of the generator of
a Cy-semigroup. It is often the case that one can find a “large” subspace of
D(A) as defined now.

Definition A.2.4 A subspace D of D(A), the domain of a linear operator A
on a Banach space X is called a core for A if D is dense in D(A) for the graph
norm

][4 = [lzll + [[Az]], =€ D(A).

A useful criterion for subspaces to be a core for the generator of a Cy-
semigroup is given by the following proposition.

Proposition A.2.5 Let (A, D(A)) be the generator of a Cy-semigroup
(T'(t))¢+>0 on a Banach space X and D be a subspace of D(A). If D is dense
in X and invariant under (1'(t)):>o, then D is a core for A.

We propose now to introduce different classes of semigroups. In the
sequel we denote the sector in C of angle § by

Ys:={A e C:|arg\| <6} \ {0}

Definition A.2.6 A family (T'(z)).ex,uf0y € £(X) on a Banach space X is
called an analytic semigroup (of angle 6 € (0, §]) if

(al) T(0) = Idand T(z1 + z2) = T'(21)T (22) for all z1, z5 € Xy.
(a2) The map z +— T(z) is analytic in Xy.

(@3) limy,,5..0T(z)z =z forallz € X and 0 < 6’ < 6.

If, in addition

(a4) || T(2)|| is bounded in Y4 for every 0 < 6’ < 6,

we call (T'(2)).ex,uf0y a bounded analytic semigroup.

The following theorem gives useful characterization of generators of
bounded analytic semigroups.
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Theorem A.2.7 Let (A, D(A) be an operator on a Banach space X. Then the
following assertions are equivalent:

(i) A generates a bounded analytic semigroup (T'(z)).ex,u{0} on X.

(ii) A generates a bounded Cy-semigroup T'(-) on X with rg(T'(t)) C D(A)
forallt >0, and

M
|AT(t)] < =

for some positive constant M.

(iii) Thereis 0 € (0, 5 ) such that e®9 A generate bounded Cy-semigroups on
X.

(iv) o1z C p(A) and for each € € (0,0) there is M. > 1 such that

M. -
IROA)| < 57 forall 03 € Toug e

From (ii) above we see that if 7'(-) is an analytic semigroup, then the maps
0 < t — T(t)z are differentiable for every z € X. This motivate the follow-
ing definition.

Definition A.2.8 A Cy-semigroup T'(-) on a Banach space X is called eventu-
ally (resp. immediately) differentiable if there is to, > 0 such that the maps
(tg,00) > t +— T(t)z (resp. (0,00) > t +— T'(t)z) are differentiable for every
r e X.

A characterization of differentiable semigroups in terms of the spectrum
and the growth of the resolvent can be proved (cf. [16, Theorem 11.4.14]).
Finally we recall the class of eventually norm continuous Cy-semigroups.

Definition A.2.9 A Cy-semigroup T'(-) on a Banach space X is called even-
tually (resp. immediately) norm continuous if there is to > 0 such that the
mapping (to,00) > t — T'(t) € L(X) (resp. (0,00) >t +— T(t) € L(X)) is
norm continuous.

It is an easy exercise to see that the following implications between the
three classes of semigroups hold:

analytic = immediately differentiable =—- immediately norm continuous,
analytic = eventually differentiable = eventually norm continuous. (11)

On Hilbert spaces eventually norm Cj-semigroups are completely charac-
terized (cf. [16, Theorem I1.4.20]). But in general Banach spaces such a
characterization remain open. However a necessary condition can be ob-
tained as the following theorem shows.
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Theorem A.2.10 If (A, D(A)) is the generator of an eventually norm con-
tinuous Cy-semigroup T'(-) on a Banach space X, then, for every a € R, the
set

{Aeo(A) : RAX>a}

is bounded.
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