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PREFACE

The aim of these Iecture notes is to present some basic facts and ideas of
the theory of Gaussian measures on infinite dimensionaI Hilbert spaces and
to show to the reader how this theory can be applied to solve the infinite
dimensionaI heat equation and, more generally, its perturbations by a linear
drift term.
In particular, the Cameron-Martin theorem will be useful to obtain regular-
ity properties of the semigroup generated by the Gross-Laplacian and the
Ornstein-Ublenbeck semigroup.
These notes originated from a course given by the second author at the

University of Lecce in May 2002 and at the University of Halle-Wittenberg
in May 2003.
We have organized these notes as follows.
In Chapter I we present a self consistent and relatively complete

duction to the theory of Gaussian measures on separable Hilbert spaces.
Gaussian measures and the Cameron-Martin theorem are used, in Chap-

ter II, to study the infinite dimensionaI heat equation. Regularity results
and the spectrum of the solution semigroup are also obtained.
Chapter III is concemed with the Ornstein-Uhlenbeck semigroup, first on

the space of bounded continuous functions, and second on LP-spaces with
invariant measure. Regularity results and characterization of the domain of
the generator are also obtained.
In the appendix we recall in the first part the classical Bochner theorem

in including, for the sake of completeness, a proof. In the second part
we recall some basic and useful results of the theory of Co-semigroups on
Banach spaces.

Acknowledgments. The second author wants to express his gratitude to
G. Metafune, D. Pallara and the Dipartimento di Matematica "E. De



iv Preface

Università di Lecce, whose interest and friendly support were very impor-
tanto The third chapter is based on lectures given at the University of Halle-
Wittenberg. The second author thanks J. Priiss and R. Schnaubelt for their
warm hospitality and the Alexander von Humboldt foundation for the fi-
nancial supporto

Stefania Maniglia
Abdelaziz Rhandi

Lecce and Tiibingen, July 2003
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CHAPTER 1

GAUSSIAN MEASURES ON

HILBERT SPACES

The aim of this chapter is to show the Minlos-Sazanov theorem and deduce
a characterization of Gaussian measures on separable Hilbert spaces by its
Fourier transform. By using the notion of the Hellinger integral we prove
the Kakutani theorem on infinite product measures. As a consequence we
obtain the Cameron-Martin theorem.

For Gaussian measures on Banach spaces and their relationship with
parabolic equations with many infinitely variables we refer to [22] and [12]
and the references therein.

1.1 BOREL MEASURES ON HILBERT SPACES

Let H be a real separable Hilbert space, B(H) the Borel σ-algebra on H.
Then B(H) is a separable σ-algebra. A measure on the measurable space
(H,B(H)) is called a Borel measure on H. Here we only investigate finite
Borel measures.

Definition 1.1.1 Let μ be a finite Borel measure on H. The Fourier trans-
form of μ is defined by

μ̂(x) :=

∫
H

ei<x,y>μ(dy), x ∈ H.

Clearly μ̂ possesses the following properties.

Proposition 1.1.2 The Fourier transform of a finite Borel measure satisfies
the following properties
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(1) μ̂(0) = μ(H).

(2) μ̂ is continuous on H.

(3) μ̂ is positive definite in the sense that

n∑
l,k=1

μ̂(xl − xk)αlαk ≥ 0. (1.1)

for any n ≥ 1, x1, x2, · · · , xn ∈ H, and α1, α2, · · · , αn ∈ C.

Proof: We have only to prove the third assertion. For n ≥ 1, x1, x2, . . . , xn ∈
H, and α1, α2, . . . , αn ∈ C we have

n∑
l,k=1

μ̂(xl − xk)αlαk =
n∑

l,k=1

∫
H

ei<xl,y>e−i<xk,y>αlαkμ(dy)

=
n∑

l,k=1

∫
H

(
ei<xl,y>αl

)
(ei<xk,y>αk)μ(dy)

= 〈
n∑

l=1

ei<xl,·>αl,

n∑
k=1

ei<xk,·>αk〉L2(H,μ)

=

∫
H

∣∣∣∣∣
n∑

k=1

ei<xk,y>αk

∣∣∣∣∣
2

μ(dy) ≥ 0.

Here L2(H,μ) denotes the space of all measurable functions f : H → R

satisfying ∫
H

|f(x)|2 μ(dx) <∞.

�

A natural question arises. Is any positive definite continuous functional
on H the Fourier transform of some finite Borel measure?
The answer is affirmative if dimH <∞. This is exactly the classical Bochner
theorem (see Theorem A.1.3). But in the infinite dimensional case the an-
swer is negative. Take, for example,

φ(x) := exp

(
−1

2
|x|2

)
, x ∈ H.

Then it is easy to see that φ is a positive definite functional on H. But φ is
not the Fourier transform of any finite Borel measure on H as we will see
later (see Proposition 1.2.11).
To this end let us prove some auxiliary results.

Lemma 1.1.3 Let φ be a positive definite functional on H. Then, for any
x, y ∈ H,
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(1) |φ(x)| ≤ φ(0), φ(x) = φ(−x).

(2) |φ(x)− φ(y)| ≤ 2
√

φ(0)
√

φ(0)− φ(x− y).

(3) |φ(0)− φ(x)| ≤√2φ(0)(φ(0)−	(φ)(x)).
Proof: For x, y ∈ H, set

A :=

(
φ(0) φ(x)
φ(−x) φ(0)

)

B :=

⎛⎝ φ(0) φ(x) φ(y)
φ(−x) φ(0) φ(y − x)
φ(−y) φ(x− y) φ(0)

⎞⎠
Since φ is positive definite, one can see that both A and B are positive
definite matrices. In particular A

t
= A. Hence, φ(x) = φ(−x) for all x ∈ H.

From det(A) ≥ 0, it follows that |φ(x)| ≤ φ(0).
On the other hand, we have

detB = φ(0)3 − φ(0)|φ(x− y)|2 − φ(x)[φ(0)φ(x)− φ(x− y)φ(y)] +

φ(y)[φ(x)φ(x− y)− φ(0)φ(y)]

= φ(0)3 − φ(0)|φ(x− y)|2 − φ(0)|φ(x)− φ(y)|2 +
2	[φ(y)φ(x)(φ(x− y)− φ(0))].

Using the inequality a3 − ab2 ≤ 2a2|a− b| for |b| < a, we find

φ(0)3 − φ(0)|φ(x− y)|2 ≤ 2φ(0)2|φ(0)− φ(x− y)|.
Therefore,

0 ≤ detB ≤ 4φ(0)2|φ(0)− φ(x− y)| − φ(0)|φ(x)− φ(y)|2

This proves (2).
Finally (3) follows from

|φ(0)− φ(x)|2 = (φ(0)− φ(x))
(
φ(0)− φ(x)

)
= φ(0)2 − 2	(φ(0)φ(x)) + |φ(x)|2
≤ 2φ(0)2 − 2φ(0)	(φ)(x).

�

The following lemma will be useful for the proof of the Minlos-Sazanov
theorem.

Lemma 1.1.4 Let μ be a finite Borel measure on H. Then the following as-
sertions are equivalent.
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(i)
∫
H
|x|2μ(dx) <∞.

(ii) There exists a positive, symmetric, trace class operator Q such that for
x, y ∈ H

〈Qx, y〉 =
∫
H

〈x, z〉〈y, z〉μ(dz). (1.2)

If (ii) holds, then TrQ =
∫
H
|x|2μ(dx).

Proof: Suppose that (ii) holds. Let (en)n∈N be an orthonormal basis of H.
Then∫

H

|x|2μ(dx) =
∞∑
n=1

∫
H

|〈x, en〉|2μ(dx) =
∞∑
n=1

〈Qen, en〉 = TrQ <∞. (1.3)

Conversely, assume that (i) is satisfied. Thus,∫
H

|〈x, z〉〈y, z〉|μ(dz) ≤ |x||y|
∫
H

|z|2μ(dz).

By the Riesz representation theorem there exists Q ∈ L(H) such that (1.2)
is satisfied. Obviously, Q is positive and symmetric. Furthermore, by (1.3),

TrQ =

∫
H

|x|2μ(dx) <∞.

Hence Q is of trace class. �

Let show now the Minlos-Sazanov theorem.

Theorem 1.1.5 Let φ be a positive definite functional on a separable real
Hilbert space H. Then the following assertions are equivalent.

(1) φ is the Fourier transform of a finite Borel measure on H.

(2) For every ε > 0 there is a symmetric positive operator of trace class Qε

such that
〈Qεx, x〉 < 1 =⇒ 	(φ(0)− φ(x)) < ε.

(3) There exists a positive symmetric operator of trace class Q on H such
that φ is continuous (or, equivalently, continuous at x = 0) with respect
to the semi-norm | · |Q, where

|x|Q :=
√
〈Qx, x〉 = |Q1/2x|, x ∈ H.

Proof: (1) =⇒ (2): Let φ = μ̂. By applying the inequality

2(1− cosϑ) ≤ ϑ2, ∀ ϑ ∈ R,
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we obtain, for any γ > 0,

	(φ(0)− φ(x)) =

∫
H

(1− cos〈x, z〉) μ(dz)

≤ 1

2

∫
{|z|≤γ}

〈x, z〉2 μ(dz) + 2μ ({z : |z| > γ}) .

Set μ1(A) := μ(A∩ {|z| ≤ γ}) for A ∈ B(H), and apply Lemma 1.1.4 to μ1.
Thus there is a positive symmetric operator of trace class Bγ such that

〈Bγz1, z2〉 =
∫
{|z|≤γ}

〈z1, z〉〈z2, z〉 μ(dz).

On the other hand, for every ε > 0 there is γ > 0 such that μ({z : |z| >
γ}) ≤ ε

4 . Put Qε :=
1
εBγ , then

	 (φ(0)− φ(x)) ≤ ε

2
〈Qεx, x〉+ ε

2
.

(2) =⇒ (1): Assume that (2) holds. Then 	(φ)(x) is continuous at x = 0.
So, by Lemma 1.1.3-(2), φ is continuous on H.
Now, take any orthonormal basis (en)n∈N of H and for n ≥ 1 put

fi1,··· ,in(ω1, · · · , ωn) : φ(ω1e1 + · · ·+ ωnen), ωj ∈ R, 1 ≤ j ≤ n.

Then fi1,··· ,in is a positive definite function on Rn. By the classical Bochner
theorem (see Theorem A.1.3) there exists a finite Borel measure μi1,··· ,in on
Rn such that

fi1,··· ,in = μ̂i1,··· ,in .

The family {μi1,··· ,in} satisfies the consistency conditions of Kolmogorov’s ex-
tension theorem for measures (cf. [30], p. 144). Hence there is a unique
finite Borel measure γ on (R∞,B(R∞)) such that

μi1,··· ,in = γ ◦ (Xi1 , · · · , Xin)
−1,

where γ ◦ (Xi1 , · · · , Xin)
−1 is defined by

γ ◦ (Xi1 , · · · , Xin)
−1(A) = γ((Xi1 , · · · , Xin)

−1(A)) for A ∈ B(H),

and Xj(ω) = ωj , ω = (ω1, · · · , ωn, · · · ) ∈ R∞, j ∈ N.
Claim:

∑∞
k=1 X2

k <∞ γ-a.e..
Let Pn be the standard Gaussian measure on Rn. Then

∫
Rn

ei(a1y1+···+anyn)Pn(dy) = exp

⎛⎝−1

2

n∑
j=1

a2
j

⎞⎠ .
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By assumption, we know that for every ε > 0 there is a positive symmetric
operator Qε of trace class such that

〈Qεx, x〉 < 1⇒ 	 (φ(0)− φ(x)) < ε.

Hence, by Lemma 1.1.3-(1),

φ(0)−	(φ)(x) ≤ ε+ 2φ(0)〈Qεx, x〉 for x ∈ H.

By Fubini’s theorem we obtain

φ(0)−
∫

R∞
exp

⎛⎝−1

2

n∑
j=1

X2
k+j

⎞⎠ γ(dω)

= φ(0)−
∫

R∞
γ(dω)

∫
Rn

exp

⎛⎝i

n∑
j=1

yjXk+j

⎞⎠Pn(dy)

= φ(0)−
∫

Rn

Pn(dy)

∫
R∞

exp

⎛⎝i

n∑
j=1

yjXk+j

⎞⎠ γ(dω)

= φ(0)−
∫

Rn

Pn(dy)φ

⎛⎝ n∑
j=1

yjek+j

⎞⎠
=

∫
Rn

[φ(0)−	(φ)(
n∑

j=1

yjek+j)]Pn(dy)

≤ ε+ 2φ(0)

∫
Rn

〈Qε

n∑
j=1

yjek+j ,
n∑

l=1

ylek+l〉Pn(dy)

= ε+ 2φ(0)
n∑

l,j=1

〈Qεek+j , el+j〉
∫

Rn

yjylPn(dy)

= ε+ 2φ(0)
n∑

j=1

〈Qεek+j , ek+j〉
∫

Rn

y2
jPn(dy)︸ ︷︷ ︸
=1

= ε+ 2φ(0)

n∑
j=1

〈Qεek+j , ek+j〉.

Hence,

φ(0)−
∫

R∞
exp

⎛⎝−1

2

n∑
j=1

X2
k+j

⎞⎠ γ(dω) ≤ ε+ 2φ(0)
∞∑

j=k+1

〈Qεej , ej〉.
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Now, let k −→∞, and ε −→ 0, so we get

lim
k→+∞

∫
R∞

exp

⎛⎝−1

2

∞∑
j=k+1

X2
j

⎞⎠ γ(dω) = φ(0) (= γ(R∞) �= 0).

This means that the function exp(− 1
2

∑∞
j=k+1 X2

j ) converges in L1(R∞, γ)
to the constant function 1. Thus there is a subsequence of

exp(−1

2

∞∑
j=k+1

X2
j )

converging to 1 γ–a.e., which implies that

∞∑
j=1

X2
j <∞ γ − a.e.,

and the claim is proved.
Finally, let

X(ω) :=

∞∑
j=1

Xj(ω)ej , ω ∈ R∞.

ThenX is defined on R∞ γ-a.e., andX is anH-valued measurable function.
Put

μ := γ ◦X−1.

Then μ is a finite Borel measure on H and since μi1,··· ,in = γ ◦
(Xi1 , · · · , Xin)

−1 we obtain

μ̂

⎛⎝ n∑
j=1

〈x, ej〉ej
⎞⎠ = f1,··· ,n (〈x, e1〉, · · · , 〈x, en〉)

= φ

⎛⎝ n∑
j=1

〈x, ej〉ej
⎞⎠ .

By letting n −→ ∞ we obtain μ̂ = φ and the equivalence (1)⇐⇒(2) is
proved.
(2) =⇒ (3): Assume that (2) holds. In (2) take ε = 1

k for k ∈ N and λk > 0
such that

∑∞
k=1 λkTrQ 1

k
<∞. Set Q :=

∑∞
k=1 λkQ 1

k
. It is obvious that Q is

a positive symmetric operator of trace class on H. Moreover Q satisfies

〈Qx, x〉 < λk ⇒ 〈Q 1
k
x, x〉 < 1

⇒ 	 (φ(0)− φ(x)) <
1

k
.
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So, by Lemma 1.1.3, φ is continuous on H with respect to ‖ · ‖Q and hence
(3) is proved.
(3) =⇒ (2): Conversely, suppose (3) is satisfied. So for every ε > 0 there is
δ > 0 such that

|x|Q < δ ⇒ 	 (φ(0)− φ(x)) < ε.

Set Qε := δ−1Q. Then,

〈Qεx, x〉 < 1⇒ 	 (φ(0)− φ(x)) < ε

and Qε satisfies (2). �

1.2 GAUSSIAN MEASURES ON HILBERT SPACES

We will study a special class of Borel probability measures onH. We first in-
troduce the notions of mean vectors and covariance operators for general
Borel probability measures.

Definition 1.2.1 Let μ be a Borel probability measure onH. If for any x ∈ H
the function z �→ 〈x, z〉 is integrable with respect to μ, and there exists an
element m ∈ H such that

〈m,x〉 =
∫
H

〈x, z〉μ(dz), x ∈ H,

then m is called the mean vector of μ. If furthermore there is a positive
symmetric linear operator B on H such that

〈Bx, y〉 =
∫
H

〈z −m,x〉〈z −m, y〉μ(dz), x, y ∈ H,

then B is called the covariance operator of μ.

Mean vectors and covariance operators do not necessarily exist in
general. But if

∫
H
|x|μ(dx) < ∞ , then by Riesz’ representation theorem,

the mean vector m exists, and |m| ≤ ∫
H
|x|μ(dx). If furthermore,∫

H
|x|2μ(dx) < ∞, then by Lemma 1.1.4, there is a positive symmetric

trace class operator Q such that

〈Qx, y〉 =
∫
H

〈x, z〉〈y, z〉μ(dz) x, y ∈ H.

Set Bx = Qx − 〈m,x〉m, x ∈ H. Then it is easy to verify that B is the
covariance operator of μ. Note that B is also a positive symmetric trace
class operator.

We introduce now Gaussian measures.
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Definition 1.2.2 Let μ be a Borel probability measure on H. If for any x ∈
H the random variable 〈x, ·〉 has a Gaussian distribution, then μ is called a
Gaussian measure.

Remark 1.2.3 The scalar function 〈x, ·〉 has a Gaussian distribution means
that there exists a real number mx and a positive number σx such that

μ̂(x) =

∫
H

ei〈x,z〉μ(dz) = exp

(
imx − 1

2
σ2
x

)
, x ∈ H.

In the sequel we will characterize Gaussian measures by means of Fourier
transform.

Lemma 1.2.4 Let (αj)j∈N ⊆ R such that
∑∞

j=1 α2
j = ∞. Then there exists a

sequence of real numbers (βj) such that

αjβj ≥ 0 for all j ≥ 1,

∞∑
j=1

β2
j <∞ and

∞∑
j=1

αjβj =∞.

Proof: Set n0 = 0 and define nk inductively as follows

nk := inf{l :
l∑

j=nk−1+1

α2
j ≥ 1}, k ≥ 1.

Then, nk ↗∞. Put

βj :=
αj

k + 1

⎛⎝ nk+1∑
j=nk+1

α2
j

⎞⎠− 1
2

, nk + 1 ≤ j ≤ nk+1, k = 0, 1, . . . .

Then, for all j ≥ 1, αjβj ≥ 0, and

∞∑
j=1

β2
j =

∞∑
k=0

nk+1∑
j=nk+1

β2
j

∞∑
k=0

1

(k + 1)2
<∞,

∞∑
j=1

αjβj =

∞∑
k=0

nk+1∑
j=nk+1

αjβj

=
∞∑
k=0

1

k + 1

⎛⎝ nk+1∑
j=nk+1

α2
j

⎞⎠ 1
2

≥
∞∑
k=0

1

k + 1
=∞.

�

The following result gives a characterization of Gaussian measures on
separable Hilbert spaces.
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Theorem 1.2.5 A Borel probability measure μ on H is a Gaussian measure if
and only if its Fourier transform is given by

μ̂(x) = exp

(
i < m, x > −1

2
< Bx, x >

)
,

where m ∈ H, B is a positive symmetric trace class operator on H. In this
case, m and B are the mean vector and covariance operator of μ respectively.
Moreover, ∫

H

|x|2μ(dx) = TrB + |m|2.

Proof: Let μ be a Gaussian measure on H.
Claim:

∫
H
|x|2μ(dx) <∞.

By assumption, for any x ∈ H, 〈x, ·〉 has a Gaussian distribution. Thus there
are mx ∈ R, and σx > 0 such that

μ̂(x) =

∫
H

ei<x,z>μ(dz) = exp

(
imx − 1

2
σ2
x

)
. (1.4)

Let (ej) be an orthonormal basis of H. Since
∫

R
(ξ −m)2N (m,σ2)(dξ) = σ2

and∫
R
ξN (m,σ2)(dξ) = m, we have∫

H

|x|2μ(dx) =
∞∑
j=1

∫
H

〈x, ej〉2μ(dx)

=

∞∑
j=1

∫
R

x2
jμ(dxj)

=
∞∑
j=1

(σ2
ej +m2

ej ).

Let (βj) ⊆ R such that βjmej ≥ 0 and
∑∞

j=1 β2
j <∞. Set

ξ(x) :=

∞∑
j=1

βj〈ej , x〉

By Schwarz’inequality, the above series converges absolutely and

|ξ(x)| ≤ (
∞∑
j=1

β2
j )

1
2 |x|, x ∈ H.

Moreover, ξ is linear. So by Riesz’representation theorem there is z ∈ H
such that ξ(x) = 〈z, x〉, x ∈ H. By assumption ξ = 〈z, ·〉 is a Gaussian
variable with a finite mean, i.e.,

∑∞
j=1 βjmej < ∞. Now, by Lemma 1.2.4,
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∑∞
j=1 m2

ej < ∞. Thus, in order to prove
∫
H
|x|2μ(dx) < ∞, it suffices to

check
∑∞

j=1 σ2
j <∞.

By Theorem 1.1.5, there is a positive, symmetric, trace class operator Q
such that

〈Qx, x〉 < 1⇒ 1−	μ̂(x) < 1

6
.

Hence,

1− exp

(
−1

2
σ2
x

)
≤ 1−	μ̂(x) ≤ 2〈Qx, x〉+ 1

6
, ∀ x ∈ H. (1.5)

Without loss of generality we may assume that the kernel of Q is {0}.
For x ∈ H \ {0}, set y := 1√

3<Qx,x>
x. Then

σ2
y =

1

3〈Qx, x〉σ
2
x, and 〈Qy, y〉 = 1

3
.

Replacing x by y in (1.5), we obtain

1− exp

(
− σ2

x

6〈Qx, x〉
)
≤ 2

3
+

1

6
.

This implies that
σ2
x ≤ (6 log 6)〈Qx, x〉, x ∈ H.

Thus,
∞∑
j=1

σ2
ej ≤ (6 log 6)TrQ <∞.

Hence,
∫
H
|x|2μ(dx) <∞ and the claim is proved. So by the remark follow-

ing Definition 1.2.1 the mean vector m and the covariance operator B of μ
exist. The above notation gives

mx =

∫
H

〈x, z〉μ(dz) = 〈m,x〉 and

σ2
x =

∫
H

〈x, z〉2μ(dz)−m2
x

=

∫
H

[〈x, z〉2 − 〈m,x〉2]μ(dz)

=

∫
H

〈x, z −m〉2μ(dz) = 〈Bx, x〉.

From (1.4) we obtain

μ̂(x) = exp

(
i〈m,x〉 − 1

2
〈Bx, x〉

)
, x ∈ H.
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Moreover, ∫
H

|x|2μ(dx) =
∞∑
j=1

(σ2
ej +m2

ej ) = TrB + |m|2

which proves the first implication.
Conversely, let m ∈ H and B be a positive, symmetric, trace class operator,
and consider the positive definite functional

φ(x) = exp

(
i〈m,x〉 − 1

2
〈Bx, x〉

)
, x ∈ H.

Set Qx := Bx + 〈m,x〉m, x ∈ H. Then Q is a positive, symmetric, trace
class operator on H. Define | · |Q on H as follows

|x|Q = |Q1/2x| = 〈Qx, x〉1/2 =
(〈Bx, x〉+ 〈m,x〉2)1/2 .

Then φ(x) is continuous at x = 0 with respect to | · |Q. So by Theorem
1.1.5, φ is the Fourier transform of some Borel probability measure μ on
H. Clearly for any x ∈ H, 〈x, ·〉 is a Gaussian random variable with mean
〈m,x〉 and covariance 〈Bx, x〉 under μ. Thus, μ is a Gaussian measure. �

A Gaussian measure with mean vector m and covariance operator B
will be denoted by N (m,B). We propose now to compute some Gaussian
integrals.

Proposition 1.2.6 Let N (0, B) be a Gaussian measure on H. Then there is
an orthonormal basis (en) of H such that Ben = λnen, λn ≥ 0, n ∈ N.
Moreover, for any α < α0 := infn

1
λn
, we have

∫
H

e
α
2 |x|2N (0, B)(dx) =

( ∞∏
k=1

(1− αλk)

)− 1
2

= (det(I − αB))
− 1

2 .

Proof: The first assertion follows from the fact that B is symmetric and
positive. Since TrB =

∑∞
k=1 λk <∞, it follows that

0 �=
∞∏
k=1

(1− αλk)
− 1

2 <∞ for α < α0.

Furthermore,∫
H

e
α
2 |<x,e1>|2N (0, B)(dx) =

∫
R

e
α
2 ξ

2N (0, λ1)(dξ)

=
1√
2πλ1

∫
R

e
α
2 ξ

2

e−
ξ2

2λ1 dξ

= (1− αλ1)
− 1

2 .
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In similar way we have

∫
H

e
α
2

Pn
k=1 |<x,ek>|2N (0, B)(dx) =

(
n∏

k=1

(1− αλk)

)− 1
2

and the result follows from the monotone convergence theorem. �

Before proving a more general result we propose first to study the trans-
formation of a Gaussian measure by an affine mapping.

Lemma 1.2.7 Let H and H̃ be two separable Hilbert spaces. Consider the
affine transformation F : H → H̃ defined by F (x) = Qx + z, where Q ∈
L(H, H̃) and z ∈ H̃. If we set μF := N (m,B) ◦ F−1, the measure defined by
μF (A) = N (m,B)(F−1(A)), A ∈ B(H̃), then

μF = N (Qm+ z,QBQ∗).

Proof: Let compute the Fourier transform of μF . From Theorem 1.2.5 we
obtain

μ̂F (x) =

∫
eH
ei〈x,ey〉μF (dỹ)

=

∫
H

ei〈x,Qy+z〉μ(dy)

= ei〈x,z〉
∫
H

ei〈Q
∗x,y〉μ(dy)

= ei〈x,Qm+z〉e−
1
2 〈QBQ∗x,x〉

= ̂N (Qm+ z,QBQ∗)(x)

for x ∈ H. So the lemma follows from Theorem 1.2.5. �

From the above lemma follows the following result.

Proposition 1.2.8 Let α0 := infk
1
λk
. Then, for any α < α0,

∫
H

e
α
2 |x|2N (m,B)(dx) = (det(I − αB))

− 1
2 exp

(α
2
〈(I − αB)−1m,m〉

)
.
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Proof: From Lemma 1.2.7 we have∫
H

e
α
2 |x|2N (m,B)(dx) =

∫
H

e
α
2 |x+m|2N (0, B)(dx)

= e
α
2 |m|2

∞∏
k=1

1√
2πλk

∫
R

e
α
2 ξ

2+αmkξe
− ξ2

2λk dξ

= e
α
2 |m|2

∞∏
k=1

1√
2πλk

∫
R

e
−

h
1−αλk

2λk
ξ2−αmkξ

i
dξ

= e
α
2 |m|2

∞∏
k=1

1√
2πλk

e
λkα

2m2
k

2(1−αλk)

∫
R

e
− (1−αλk)

2λk
(ξ−λkαmk

1−αλk
)2
dξ

=

∞∏
k=1

1√
2πλk

e
α
2 m

2
ke

λkα
2m2

k
2(1−αλk)

(∫
R

e−ξ
2

dξ

)(
2λk

1− αλk

) 1
2

=
∞∏
k=1

(1− αλk)
− 1

2 e
αm2

k
2(1−αλk)

= (det(I − αB))
− 1

2 e
α
2 〈(I−αB)−1m,m〉.

�

Example 1.2.9 Let compute the integrals

(a) ∫
H

|x|2mN (0, B)(dx), m ∈ N,

(b) ∫
H

|My|2N (0, B)(dy), where M ∈ L(H).

(a) For the integral in (a) we consider the function

f(α) :=

∫
H

e
α
2 |x|2N (0, B)(dx) = (det(I − αB))

− 1
2 for α < α0.

Now, it is easy to see that (−∞, α0) � α �→ det(I − αB) is C∞ and

d

dα
det(I − αB) = Tr(B(I − αB)−1)det(I − αB), α < α0.

Furthermore we can differentiate under the integral sign. Hence,∫
H

|x|2mN (0, B)(dx) = 2m
dm

dαm
(det(I − αB))

− 1
2

|α=0 .
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This implies that ∫
H

|x|2N (0, B)(dx) = TrB

and ∫
H

|x|4N (0, B)(dx) = 2TrB2 + (TrB)2.

(b) It follows from Lemma 1.2.7 that∫
H

|My|2N (0, B)(dy) =

∫
H

|y|2N (0,MBM∗)(dy).

So by Theorem 1.2.5 we have∫
H

|My|2N (0, B)(dy) = Tr(MBM∗) = Tr(M∗MB). (1.6)

By a same computation as above one has

Proposition 1.2.10 For any α, m ∈ H, we have∫
H

e〈α,x〉N (m,B)(dx) = e〈α,m〉e
1
2 〈Bα,α〉.

We end this section by proving that the positive definite functional on H

defined by ϕ(x) = e−
1
2 |x|2 , x ∈ H, is not the Fourier transform of any Borel

measures provided that dimH =∞.

Proposition 1.2.11 Let Q be a positive, symmetric operator on a separable
Hilbert space H. Then the functional

φ(x) = exp

(
−1

2
< Qx, x >

)
, x ∈ H,

is the Fourier transform of a probability measure onH if and only if TrQ <∞.

Proof: Suppose that TrQ < ∞. Then φ(0) = 1 and φ is | · |Q-continuous
positive functional on H. So by Theorem 1.1.5 there exists a probability
measure μ such that μ̂(x) = φ(x), x ∈ H.
To show the converse, assume that there is a probability measure μ such
that ∫

H

ei<x,y>μ(dy) = exp

(
−1

2
< Qx, x >

)
.

Then by Theorem 1.1.5, for any ε ∈ (0, 1
3 ), there exists a positive, symmetric

operator Qε of trace class such that

< Qεx, x > < 1 ⇒ φ(0)−Reφ(x) < ε

⇒ < Qx, x > < 3ε.
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Let now y0 ∈ H and < Qεy0, y0 >=: c2, with c > 0. Let d > c arbitrary.
Then
< Qε

y0

d , y0

d >= c2

d2 < 1.
Hence, < Q y0

d , y0

d > < ε, i.e. < Qy0, y0 > < εd2. Letting d → c, we have
< Qy0, y0 >≤ ε < Qεy0, y0 >. Since y0 is arbitrary, we obtain

< Qy, y > ≤ ε < Qεy, y >

for all y ∈ H. In particular, for an orthonormal basis (en)n∈N of H, we
obtain

TrQ =
∑
n

< Qen, en > ≤ ε
∑
n

< Qεen, en >= εTrQε <∞.

�

As an immediate consequence we obtain that the functional

φ(x) = exp

(
−1

2
|x|2

)
, x ∈ H,

is not the Fourier transform of any probability measure on H if dimH =∞.

1.3 THE HELLINGER INTEGRAL AND THE

CAMERON-MARTIN THEOREM

The Cameron-Martin formula permits us to differentiate under the
integral sign with respect to Gaussian measures in infinite dimensional
Hilbert spaces. This allows us to obtain some regularity results for
parabolic equations with many infinitely variables.
First we need some preparations.
We denote by L+

1 (H) the space of all positive, symmetric operators of trace
class on a separable Hilbert space H. Let B ∈ L+

1 (H) and consider an
orthonormal basis (en)n∈N of H and a sequence (λn)n∈N ⊆ R+ such that
Ben = λnen, n ∈ N. Suppose also that kerB = {0}.
If we denote by xn :=< x, en >, then

Bx =

∞∑
n=1

λnxnen and B
1
2 x =

∞∑
n=1

λ
1
2 xnen, x ∈ H.

We set also

Bnx :=
n∑

k=1

λkxkek and B
− 1

2
n x :=

n∑
k=1

λ
− 1

2

k xkek.

Let consider, for a ∈ H and n ∈ N, the function

ga,n(x) := 〈a,B−
1
2

n x〉 =
n∑

k=1

λ
− 1

2

k xkak.
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If a ∈ B
1
2 (H) then one can define the function

ga(x) :=
∞∑
k=1

λ
− 1

2

k xkak, x ∈ H.

The following proposition shows that it is always possible to define ga as an
L2(H,μ)-function even if a �∈ B

1
2 (H).

Proposition 1.3.1 Let B ∈ L+
1 (H) with kerB = {0} and μ := N (0, B) its

corresponding Gaussian measure on H. Then the limit

lim
n→+∞ ga,n =: ga

exists in L2(H,μ). Moreover,∫
H

|ga(x)|2μ(dx) = |a|2

for a given a ∈ H.

Proof: We have∫
H

|ga,n+p(x)− ga,n(x)|2μ(dx) =

∫
H

∣∣∣∣∣
n+p∑

k=n+1

λ
− 1

2

k xkak

∣∣∣∣∣
2

μ(dx)

=

n+p∑
h,k=n+1

(λhλk)
− 1

2 ahak

∫
H

xhxkμ(dx)

=

n+p∑
k=n+1

λ−1
k a2

k

∫
H

x2
kμ(dx)

=

n+p∑
k=n+1

a2
k.

Hence (ga,n)n∈N is a Cauchy sequence in L2(H,μ). Moreover,∫
H

|ga,n|2μ(dx)
n∑

k=1

1

λk
a2
k

∫
H

x2
kμ(dx)

n∑
k=1

a2
k

and the theorem is proved by letting n→∞. �

Remark 1.3.2 Suppose that kerB = {0} and take x ∈ H such that
〈B 1

2 a, x〉 = 0 for all a ∈ H. Hence, B
1
2 x = 0 and so Bx = 0, which implies

that x = 0. This proves that B
1
2 (H) is dense in H. For the converse, let

x ∈ H with Bx = 0. Thus, B
1
2 x = 0 and hence, 〈B 1

2 x, y〉 = 〈x,B 1
2 y〉 = 0 for
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all y ∈ H. Since B
1
2 (H) = H, it follows that x = 0.

By the same arguments as in the proof of Proposition 1.3.1 one can show that
ga is well defined as an L2(H,μ)–function and

‖ga‖L2(H,μ) = |a| for a ∈ B
1
2 (H).

In the sequel we will use the notation

ga(x) := 〈a,B− 1
2 x〉, x ∈ H.

Proposition 1.3.3 Let B ∈ L+
1 (H) with kerB = {0} and μ := N (0, B) its

corresponding Gaussian measure on H. Then the limit

lim
n→∞ ega,n =: ega

exists in L2(H,μ) for a given a ∈ H. Moreover, for any a ∈ H,∫
H

e〈a,B
− 1

2 x〉N (0, B)(dx) = e
1
2 |a|2 .

Proof: By applying Proposition 1.2.10 we obtain∫
H

|ega,n − ega,m |2μ(dx)

=

∫
H

(
e2〈B− 1

2
n a,x〉 − 2e〈B

− 1
2

n a,x〉+〈B− 1
2

m a,x〉 + e2〈B− 1
2

m a,x〉
)

μ(dx)

= e2
Pn

k=1 a
2
k + e2

Pm
k=1 a

2
k − 2

∫
H

e〈(B
− 1

2
n +B

− 1
2

m )a,x〉μ(dx)

= e2
Pn

k=1 a
2
k + e2

Pm
k=1 a

2
k − 2e2

Pn
k=1 a

2
k+ 1

2

Pm
k=n+1 a

2
k

= e2
Pn

k=1 a
2
k

(
1 + e2

Pm
k=n+1 a

2
k − 2e

1
2

Pm
k=n+1 a

2
k

)
−→ 0 (n,m→∞).

This proves that (ega,n) is a Cauchy sequence in L2(H,μ) and one can see
that ∫

H

e〈a,B
− 1

2 x〉N (0, B)(dx) = e
1
2 |a|2

is satisfied for every a ∈ H. �

We propose now to recall the definition of the Hellinger integral.
Let μ, ν be two probability measures on a measurable space (Ω,Σ). We say
that μ and ν are singular (notation: μ⊥ν) if there is a set B ∈ Σ such that
μ(B) = 0 and ν(Ω \ B) = 0. It is easy to see that two probability measures
μ and ν are singular if and only if for any ε > 0 there is B ∈ Σ such that
μ(B) < ε and ν(Ω \ B) < ε. Further, μ is called ν-absolutely continuous
(notation: μ ≺ ν) if ν(B) = 0 implies μ(B) = 0 for any B ∈ Σ. So by the
theorem of Radon-Nikodym we know that if μ is ν-absolutely continuous,
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then there is a non-negative measurable function ϕ defined on Ω, called the
density function of μ, such that

μ(B) =

∫
B

ϕ(ω)ν(dω)

for any B ∈ Σ. The density ϕ is denoted by

ϕ(ω) :=
dμ

dν
(ω), ω ∈ Ω.

If μ ≺ ν and ν ≺ μ are satisfied then μ and ν are called equivalent (nota-
tion: μ ∼ ν). If μ ∼ ν, then the two density functions ϕ = dμ

dν and ψ = dν
dμ

satisfy ϕ(ω)ψ(ω) = 1, a.e. ω ∈ Ω. Hence, ϕ(ω) > 0 μ-a.e. ω ∈ Ω.
Let now μ and ν two arbitrary probability measures on (Ω,Σ). Let γ be a

probability measure on (Ω,Σ) such that μ ≺ γ and ν ≺ γ. Such a measure
exists, we have to take for example γ = 1

2 (μ + ν). Thus, the following
integral is well-defined

H(μ, ν) :=

∫
Ω

√
dμ

dγ
(ω)

dν

dγ
(ω) γ(dω).

This integral will be called the Hellinger integral.
Let now consider the measurable space (R∞,B(R∞)), where B(R∞) is

the Borel field of subsets B of R∞. On (R,B(R)) we consider two sequences
of measures (μn) and νn) with

μn ∼ νn, ∀n ∈ N. (1.7)

Then one has

H(μn, νn) =

∫
R

√
dνn
dμn

(xn)μn(dxn).

Let us consider two infinite product measures

μ :=
∞∏
n=1

μn and ν :=
∞∏
n=1

νn

defined on (R∞,B(R∞)). The following result is du to S. Kakutani [21] and
gives a condition under which these two measures μ and ν are equivalent.

Theorem 1.3.4 Assume that (1.7) is satisfied. Then the following assertions
hold.

(i) If
∏∞

n=1 H(μn, νn) > 0 then μ ∼ ν and

dν

dμ
(x) =

∞∏
k=1

dνk
dμk

(x), a.e. x ∈ R∞.
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(ii) If
∏∞

n=1 H(μn, νn) = 0 then μ⊥ν.

Moreover,

H(μ, ν) =

∞∏
n=1

H(μn, νn). (1.8)

Proof: If we set ψn(x) :=
∏n

k=1

√
dνk
dμk

(xk) for x ∈ R∞ and n ∈ N, then

‖ψn‖2L2(R∞,μ) =

∫
R∞

n∏
k=1

dνk
dμk

(xk)μ(dx) =

n∏
k=1

∫
R

νk(dxk) = 1 and

‖ψn − ψm‖2L2(R∞,μ) =

∫
R∞

(
n∏

k=1

√
dνk
dμk

(xk)−
m∏
k=1

√
dνk
dμk

(xk)

)2

μ(dx)

=

∫
R∞

n∏
k=1

dνk
dμk

(xk)

(
1−

m∏
k=n+1

√
dνk
dμk

(xk)

)2

μ(dx)

= 2

(
1−

m∏
k=n+1

∫
R

√
dνk
dμk

(xk)μk(dxk)

)

= 2

(
1−

m∏
k=n+1

H(μk, νk)

)
(1.9)

for any positive integers n and m with n < m.
(i) If

∏∞
n=1 H(μn, νn) > 0 then

lim
n,m→∞

m∏
k=n+1

H(μk, νk) = 1.

Hence, by (1.9), (ψn) is a Cauchy sequence in L2(R∞, μ) and so there is
ψ ∈ L2(R∞, μ) such that limn→∞ ‖ψn − ψ‖L2(R∞,μ) = 0.
Let prove now that ν ≺ μ and dν

dμ (x) = (ψ(x))2, x ∈ R∞, i.e.

ν(B) =

∫
B

(ψ(x))2 μ(dx)
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for any B ∈ B(R∞). To this purpose it follows from Hölder’s inequality and
(1.9) that (∫

R∞
|ψm(x)2 − ψn(x)

2|μ(dx)
)2

≤
∫

R∞
|ψm(x) + ψn(x)|2 μ(dx)

∫
R∞
|ψm(x)− ψn(x)|2 μ(dx)

≤ 4

∫
R∞
|ψm(x)− ψn(x)|2 μ(dx)

= 8

(
1−

m∏
k=n+1

H(μk, νk)

)

for n < m. Thus,
lim
n→∞ ‖ψ

2
n − ψ2‖L1(R∞,μ) = 0.

Finally let B ∈ B(R∞) and set χn(x) := χB(Pnx), x ∈ R∞, where χB(·)
denotes the characteristic function of the measurable set B and Pnx :=
(x1, . . . , xn, 0, . . .). So we have∫

R∞
χn(x) ν(dx) =

∫
Rn

χB(x1, . . . , xn, 0, . . .) ν1(dx1) . . . νn(dxn)

=

∫
Rn

χn(x)
n∏

k=1

dνk
dμk

(xk)
n∏

k=1

μk(dxk)

=

∫
R∞

χn(x)ψn(x)
2 μ(dx).

Since ψ2
n → ψ2 in L1(R∞, μ) and by letting n→∞ we obtain

ν(B) =

∫
R∞

ψ(x)2 μ(dx).

In a similar way one can see that μ ≺ ν. So we obtain μ ∼ ν. Finally, since
μ ∼ ν, we have

H(μ, ν) =

∫
R∞

ψ(x)μ(dx)

= lim
n→∞

∫
R∞

ψn(x)μ(dx)

= lim
n→∞

n∏
k=1

∫
R

√
dνk
dμk

(xk)μk(dxk)

= lim
n→∞

n∏
k=1

H(μk, νk).
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So we obtain (1.8).
(ii) If

∏∞
k=1 H(μk, νk) = 0 then for any ε > 0 there is n ∈ N such that∏n

k=1 H(μk, νk) < ε. Let Bn ∈ B(Rn) with

Bn := {(x1, . . . , xn) ∈ Rn : ψn(x1, . . . , xn, 0, . . .)
2 =

n∏
k=1

dνk
dμk

(xk) > 1}.

Then, (
n∏

k=1

μk

)
(Bn) =

∫
Bn

(
n∏

k=1

μk

)
(dx)

<

∫
Bn

ψn(x1, . . . , xn, 0, . . .)

(
n∏

k=1

μk

)
(dx)

=

∫
Bn

n∏
k=1

√
dνk
dμk

(xk)

(
n∏

k=1

μk

)
(dx)

≤
n∏

k=1

H(μk, νk) < ε.

By the same computation we obtain(
n∏

k=1

νk

)
(Rn \Bn) ≤

n∏
k=1

H(μk, νk) < ε.

Therefore, if we set B := Bn ×
∏∞

k=n+1 R, then

μ(B) < ε and ν(R∞ \B) < ε.

This proves that μ⊥ν. Suppose now that μ⊥ν. Then there existsB ∈ B(R∞)
such that μ(B) = 0 and ν(R∞ \B) = 0. So by Hölder’s inequality, it follows
that

H(μ, ν) =

∫
B

√
dμ

dγ
(x)

dν

dγ
(x) γ(dx) +

∫
R∞\B

√
dμ

dγ
(x)

dν

dγ
(x) γ(dx)

≤
(∫

B

dμ

dγ
(x) γ(dx)

) 1
2
(∫

B

dν

dγ
(x) γ(dx)

) 1
2

+(∫
R∞\B

dμ

dγ
(x) γ(dx)

) 1
2
(∫

R∞\B

dν

dγ
(x) γ(dx)

) 1
2

= μ(B)
1
2 ν(B)

1
2 + μ(R∞ \B)

1
2 ν(R∞ \B)

1
2 = 0.

Therefore, (1.8) holds. This end the proof of the theorem. �

Let prove now the Cameron-Martin formula. We note here that the
measure space (H,B(H)) can be identified with (R∞,B(R∞)).
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Corollary 1.3.5 Let B ∈ L+
1 (H) such that kerB = {0} and μ := N (0, B)

and ν := N (m,B) be two Gaussian measures on (H,B(H)). Then the follow-
ing assertions hold.

(i) The Gaussian measures μ and ν are equivalent if and only if m ∈
B

1
2 (H). Moreover the Radon-Nikodym derivative is given by

dν

dμ
(x) = exp

(
−1

2
|B− 1

2 m|2+ < B−
1
2 x,B−

1
2 m >

)
.

(ii) The measures μ and ν are singular if and only if m �∈ B
1
2 (H).

Proof: We will apply Theorem 1.3.4 to the Gaussian measures μ and ν.
To this purpose let compute the associated Hellinger integral using (1.8). It
follows from Proposition 1.2.10 that

H(μk, νk) =

∫
R

√
dνk
dμk

(xk)μk(dxk)

= e
− m2

k
4λk

∫
R

e
mkxk
2λk N (0, λk)(dxk)

= e
− m2

k
8λk .

So by (1.8) we obtain

H(μ, ν) =
∞∏
k=1

e
− m2

k
8λk .

This implies that

H(μ, ν) > 0 ⇐⇒
∞∑
k=1

m2
k

λk
<∞

⇐⇒ m ∈ B
1
2 (H).

Moreover, in this case, it follows from Theorem 1.3.4 that

dν

dμ
(x) =

∞∏
k=1

dνk
dμk

(x)

=
∞∏
k=1

e
− m2

k
2λk e

xkmk
λk

= exp

(
−1

2
|B− 1

2 m|2 + 〈B− 1
2 x,B−

1
2 m〉

)
,

where x =
∑∞

k=1 xkek with xk := 〈x, ek〉 for an orthonormal basis (en) of
H such that Ben = λnen for n ∈ N. Here we used Proposition 1.3.3.
Finally it is clear that the measures μ and ν are singular if and only if m �∈
B

1
2 (H). �
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Exercise 1.3.6 (The Feldman-Hajek theorem)
Let consider two linear operators B1, B2 ∈ L+

1 (H) with kerB1 = kerB2 =
{0} and an orthonormal basis (en) of H such that B1en = λnen, n ∈ N,
where λn > 0 for all n ∈ N. On (H,B(H)) we consider the Gaussian measures
μ1 := N (0, B1) and μ2 := N (0, B2).

1. The commutative case: Suppose that B1B2 = B2B1. By using Theo-
rem 1.3.4 show that

a. if
∑∞

n=1
(λn−αn)2

(λn+αn)2 <∞, then μ1 ∼ μ2. In this case

dμ2

dμ1
(x) =

∞∏
n=1

exp

(
− (λn − αn)

2λnαn
〈x, en〉2

)
,

b. if
∑∞

n=1
(λn−αn)2

(λn+αn)2 =∞, then μ1⊥μ2.

Here αn > 0, n ∈ N, are such that B2en = αnen, n ∈ N.

2. The General case:

(a) Assume that there is S ∈ L+
2 (H) such that

B2 = B
1
2
1 (Id− S)B

1
2
1 .

Show that μ1 ∼ μ2.

(b) Assume that S ∈ L+
1 (H) and ‖S‖ < 1. Show that

dμ2

dμ1
(x) = [det(I−S)]−

1
2 exp(−1

2
〈S(I−S)−1B

1
2
1 x,B

1
2
1 x〉), x ∈ H.

Here L+
2 (H) is the set of positive Hilbert-Schmidt bounded linear opera-

tors on H. That is, B ∈ L+
2 (H) if and only if B ∈ L(H), B positive and∑∞

n=1 |Ben|2 <∞.



CHAPTER 2

HEAT EQUATIONS IN HILBERT

SPACES

In this chapter,H is a separable Hilbert space and (en)n∈N is an orthonormal
basis of H.
For ϕ ∈ Cb(H), the space of continuous and bounded functions ϕ : H → R,
we say that ϕ is differentiable in the direction ek, k ∈ N, if the limit

Dkϕ(x) := lim
h→0

1

h
(ϕ(x+ hek)− ϕ(x)) , x ∈ H

exists in Cb(H). The operator Dk will be considered as the linear operator
in Cb(H) defined by

D(Dk) :=

{
ϕ ∈ Cb(H) : lim

h→0

1

h
(ϕ(·+ hek)− ϕ(·)) exists in Cb(H)

}
and

Dkϕ(x) = lim
h→0

1

h
(ϕ(x+ hek)− ϕ(x)) , ϕ ∈ D(Dk), x ∈ H, h ∈ R.

We start by showing that Dk is a closed operator on Cb(H), for every k ∈ N.
In fact, let (ϕn)n∈N ⊆ D(Dk), and ϕ, ψ ∈ Cb(H) such that

ϕn −→ ϕ and Dkϕn −→ ψ in Cb(H).

We consider φn, φ ∈ C(C[−1, 1], Cb(H)) defined by

φ(h)(x) := ϕ(x+ hek) and φn(h)(x) := ϕn(x+ hek),

x ∈ H, h ∈ [−1, 1] and n ∈ N.
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Then φn is differentiable, as a function of the variable h, and

d

dh
φn(h)(x) = Dkϕn(x+ hek).

So we have

φn(h)− φn(0) =

∫ h

0

dφn

dh
(s) ds

and by the assumption we obtain

φ(h)− φ(0) =

∫ h

0

ψ(·+ sek) ds,

which implies that ϕ ∈ D(Dk) and Dkϕ = ψ.
In a similar way we can define partial derivatives of any order.
Now, we fix a sequence (λn)n∈N, λn > 0 for n ∈ N. In this chapter we are
interested to solve the heat equation

(HE)

{
∂
∂tu(t, x) =

1
2

∑∞
n=1 λnD

2
nu(t, x), t > 0, x ∈ H,

u(0, x) = ϕ(x), x ∈ H, ϕ ∈ Cb(H)

and to study the regularity of the solution u of (HE) in the case dimH =∞.
For this purpose, let consider its finite dimensional approximation

(HE)n

{
∂
∂tu(t, x) =

1
2

∑n
k=1 λkD

2
ku(t, x), t > 0, x ∈ H,

u(0, x) = ϕ(x), x ∈ H, ϕ ∈ Cb(H).

It is easy to see that, for all ϕ ∈ Cb(H), (HE)n has a unique classical
solution given by⎧⎪⎨⎪⎩ un(t, x) = (2πt)−

n
2 (λ1 . . . λn)

− 1
2

∫
Rn e

−Pn
k=1

ξ2k
2tλk ϕ(x−∑n

k=1 ξkek) dξ,
if t > 0

un(0, x) = ϕ(x), x ∈ H.

If we denote by
xk :=< x, ek >, x ∈ H

and

Bn :=

⎛⎜⎝ λ1 0 · · · 0
...

. . .
...

0 · · · λn

⎞⎟⎠
then

un(t, x) =

∫
Rn

ϕ

(
y +

∞∑
k=n+1

xkek

)
N (x, tBn)(dy), x ∈ H, t > 0.
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In the sequel we denote by

P
(n)
t ϕ(x) := un(t, x)

for t ≥ 0, x ∈ H, n ∈ N, and ϕ ∈ Cb(H). By an easy computation one
has, for all n ∈ N, (P (n)

t )t≥0 is a semigroup on Cb(H). Moreover, on Cb(H),
(P

(n)
t ) is not strongly continuous at 0. In order to have strong continuity at

0 we have to work, for example, in BUC(H), the space of all bounded and
uniformly continuous functions from H into R. Now, it is well-known that
(P

(n)
t ) is an analytic semigroup on BUC(H) and

‖P (n)
t ϕ‖∞ ≤ ‖ϕ‖∞

for ϕ ∈ BUC(H), t ≥ 0, and n ∈ N.
Now, one asks under which conditions the limit

lim
n→∞un(t, x) exists in BUC(H)

for all ϕ ∈ BUC(H)?
A necessary condition for the existence of the above limit is

∞∑
n=1

λn <∞.

In fact, let ϕ(x) :=exp
(−1

2‖x‖2
)
. By applying Proposition 1.2.8 with

α = −1, m = x, and B = tBn one has

un(t, x) =

n∏
k=1

(1 + λkt)
− 1

2 exp

(
−1

2

n∑
k=1

x2
k

1 + λkt
− 1

2

∞∑
k=n+1

x2
k

)
.

If limn→∞ un(t, x) exists, then
∏∞

k=1(1 + tλk)
− 1

2 exists for t > 0. Hence,

log
∞∏
k=1

(1 + tλk) =
∞∑
k=1

log(1 + tλk), t > 0

exists. In particular, limk→∞ λk = 0. Set M := supn λn. Then we have

mtλk ≤ log(1 + tλk) ≤ tλk, t > 0, k ∈ N,

where m := inf{ 1
α log(1 + α), 0 < α ≤M}. Therefore,

∞∑
k=1

λk <∞

and

lim
n→∞un(t, x) = u(t, x) =

∞∏
k=1

(1 + λkt)
− 1

2 e
− 1

2

P∞
k=1

x2
k

1+tλk , t > 0, x ∈ H.
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If
∑∞

k=1 λk =∞, then

lim
n→∞un(t, x) =

{
0 if x = 0, t �= 0
1 if x = 0, t = 0.

Hence, un does not converge to a continuous function.
Now, in the sequel we assume that

∑∞
k=1 λk < ∞. Set

Bx :=
∑∞

k=1 λkxk, x ∈ H. Then B ∈ L+
1 (H), kerB = {0}, and Equation

(HE) can be written as follows:

(HE)

{
∂
∂tu(t, x) =

1
2Tr[BD2u(t, x)], t > 0, x ∈ H,

u(0, x) = ϕ(x), x ∈ H,

where ϕ ∈ BUC(H).
Many results of this chapter can be found in the monographs [12] and

[13].

2.1 CONSTRUCTION OF THE HEAT SEMIGROUP

In this section we are concerned with the construction of the solution of
Equation (HE). To this purpose we suppose without loss of generality that
λk > 0 for all k ∈ N and

∑∞
k=1 λk < ∞. The semigroup (P

(n)
t ) can be

written as

P
(n)
t ϕ =

n∏
k=1

Tk(t)ϕ, t ≥ 0, ϕ ∈ BUC(H),

where

Tk(t)ϕ(x) :=

{
(2πtλk)

− 1
2

∫
R
e
− s2

2tλk ϕ(x− sek) ds if t > 0
ϕ(x), if t = 0

for x ∈ H and ϕ ∈ BUC(H). Note that Tk(·) is a C0-semigroup of con-
tractions on BUC(H) for k ∈ N. Before proving the strong convergence of
Pn
t , t ≥ 0, on BUC(H), we recall some definitions and fix some notations.
We denote by BUC1(H) the subspace of BUC(H) of all functions ϕ :

H → R which are Fréchet differentiable on H and the Fréchet derivative
Dϕ : H → H is uniformly continuous and bounded. For ϕ ∈ BUC1(H) we
set

‖ϕ‖1 := ‖ϕ‖∞ + sup
x∈H

‖Dϕ(x)‖.

In the sequel we need the subspace BUC1,1(H) of BUC1(H) consisting of
all functions ϕ ∈ BUC1(H) such that Dϕ : H → H is Lipschitz continuous
and, for ϕ ∈ BUC1,1(H), we set

‖ϕ‖1,1 := ‖ϕ‖1 + sup
x,y∈H,x�=y

‖Dϕ(x)−Dϕ(y)‖
‖x− y‖ .
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Theorem 2.1.1 For all ϕ ∈ BUC(H), the limit

Ptϕ := lim
n→∞Pn

t ϕ

exists in BUC(H), uniformly in t on bounded subsets of R+. Moreover (Pt) is
a C0-semigroup on BUC(H) and

‖Ptϕ‖∞ ≤ ‖ϕ‖∞
for t ≥ 0 and ϕ ∈ BUC(H).

Proof: Let compute first

Pn
t ϕ− Pn−1

t ϕ =
n∏

k=1

Tk(t)ϕ−
n−1∏
k=1

Tk(t)ϕ

=

n−1∏
k=1

Tk(t)(Tn(t)ϕ− ϕ),

and hence,

‖Pn
t ϕ− Pn−1

t ϕ‖∞ ≤ ‖Tn(t)ϕ− ϕ‖∞, t ≥ 0, ϕ ∈ BUC(H), n ∈ N.

So, for ϕ ∈ BUC1,1(H), we have

(Tn(t)ϕ− ϕ) (x) = (2πλnt)
− 1

2

∫
R

e−
s2

2λnt (ϕ(x− sen)− ϕ(x)) ds

= (2πλnt)
− 1

2

∫
R

e−
s2

2λnt

∫ 1

0

− ∂

∂γ
ϕ (x− s(1− γ)en) dγ ds

= −(2πλnt)
− 1

2

∫
R

e−
s2

2λnt

∫ 1

0

< Dϕ (x− s(1− γ)en) ,

sen > dγ ds.

Since,∫
R

e−
s2

2λnt < Dϕ(x), sen > ds =< Dϕ(x), en >

∫
R

e−
s2

2λnt s ds = 0,

it follows that

Tn(t)ϕ(x)−ϕ(x) = −(2πλnt)
− 1

2

∫
R

e−
s2

2λnt

∫ 1

0

< Dϕ(x−s(1−γ)en)−Dϕ(x),

sen > dγ ds.
Thus,

|Tn(t)ϕ(x)− ϕ(x)| ≤ (2πλnt)
1
2 ‖ϕ‖1,1

∫
R

s2e−
s2

2λnt ds = λnt‖ϕ‖1,1.
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Hence,

‖Tn(t)ϕ− ϕ‖∞ ≤ λnt‖ϕ‖1,1
for t ≥ 0, ϕ ∈ BUC1,1(H), and n ∈ N. Therefore,

‖Pn+p
t ϕ− Pn

t ϕ‖∞

≤ ‖
n+p∏
k=1

Tk(t)ϕ−
n+p−1∏
k=1

Tk(t)ϕ‖∞ + · · ·+ ‖
n+1∏
k=1

Tk(t)ϕ−
n+1∏
k=1

Tk(t)ϕ‖∞

≤ ‖Tn+p(t)ϕ− ϕ‖∞ + · · ·+ ‖Tn+1(t)ϕ− ϕ‖∞

≤ t‖ϕ‖1,1
n+p∑

k=n+1

λk, n, p ∈ N.

Since
∑∞

n=1 λn < ∞, it follows that (P n
t ϕ)n is a Cauchy sequence in

BUC(H), uniformly for t in bounded subsets of R+. Thus, the limit exists
in BUC(H) for all ϕ ∈ BUC1,1(H). Since BUC1,1(H) is dense in BUC(H)
(see [28] or [23]) and ‖Pn

t ‖ ≤ 1 for all n ∈ N and t ≥ 0, the limit exists for
all ϕ ∈ BUC(H) and will be denoted by

Ptϕ := lim
n→∞Pn

t ϕ, t ≥ 0, ϕ ∈ BUC(H).

The family (Pt)t≥0 satisfies Pt+sϕ = PtPsϕ, P0ϕ = ϕ for all t, s ≥ 0. This
follows from the estimates ‖P n

t ‖ ≤ 1 and the fact that (P n
t ) is a semigroup

on BUC(H). The strong continuity of (Pt)t≥0 follows from the uniform
convergence of Pn

t on bounded subsets of R+, and the strong continuity of
(Pn

t )t≥0 for every n ∈ N. �

Remark 2.1.2 An other proof of Theorem 2.1.1, using the Mittag-Leffler the-
orem, can be found in [2]. In this work the authors find conditions implying
the convergence of the infinite product of commuting C0-semigroups.

Let show now that the semigroup (Pt)t≥0 is given by a Gaussian measure.

Theorem 2.1.3 If we denote by μ := N (x, tB) the Gaussian measure with
means x ∈ H and covariance operator tB, then

(Ptϕ)(x) =

∫
H

ϕ(y)N (x, tB)(dy)

for ϕ ∈ BUC(H), and t > 0, where B = diag(λ1, . . . , λn, . . .).

Proof: For n ∈ N, ϕ ∈ BUC(H), t > 0, and x ∈ B
1
2 (H), it follows from
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the Cameron-Martin formula (see Corollary 1.3.5) that∫
H

ϕ

(
n∑

k=1

ykek +

∞∑
k=n+1

xkek

)
N (x, tB)(dy)

=

∫
Rn

ϕ

(
n∑

k=1

ykek +
∞∑

k=n+1

xkek

)
·

exp

(
− 1

2t
|B− 1

2 x|2 + 1

t
〈B− 1

2
n y,B

− 1
2

n x〉
)
N (0, tBn)(dy)

=

∫
Rn

ϕ

(
n∑

k=1

ykek +
∞∑

k=n+1

xkek

)

exp

(
− 1

2t

(
|B− 1

2 x|2 − |B− 1
2

n x|2
))
N (x, tBn)(dy)

= exp

(
− 1

2t
(|B− 1

2 x|2 − |B− 1
2

n x|2)
)
(Pn

t ϕ) (x).

So it follows from Theorem 2.1.1 that

lim
n→∞ (Pn

t ϕ) (x)exp

(
−1

2
(|B− 1

2 x|2 − |B− 1
2

n x|2)
)

= (Ptϕ) (x).

So by the dominated convergence theorem and Lemma 1.2.7 we obtain

(Ptϕ) (x) =

∫
H

ϕ(y)N (x, tB)(dy)

=

∫
H

ϕ(y + x)N (0, tB)(dy), x ∈ B
1
2 (H).

Since B
1
2 (H) = H (see Remark 1.3.2), it follows that

(Ptϕ)(x) =

∫
H

ϕ(y + x)N (0, tB)(dy), x ∈ H,

and the theorem follows now from Lemma 1.2.7. �

2.2 REGULARITY OF THE HEAT SEMIGROUP

Let prove first the differentiability of Ptϕ in any direction ek, k ∈ N, for
t > 0 and ϕ ∈ BUC(H).

Proposition 2.2.1 Let ϕ ∈ BUC(H) and t > 0. Then Ptϕ ∈ D(Dk) for all
k ∈ N and

DkPtϕ(x) =
1

λkt

∫
H

ykϕ(x+ y)N (0, tB)(dy), x ∈ H.
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Proof: By the Cameron-Martin formula (see Corollary 1.3.5) we know that

Ptϕ(x) =

∫
H

ϕ(y)exp

(
− 1

2t
|B− 1

2 x|2 + 1

t
< B−

1
2 y,B−

1
2 x >

)
N (0, tB)(dy)

for t > 0, x ∈ H and ϕ ∈ BUC(H).
It is now easy to see that Ptϕ is differentiable in the direction ek and by
Lemma 1.2.7 we obtain

DkPtϕ(x) =
1

tλk

∫
H

(yk − xk)ϕ(y)N (x, tB)(dy)

=
1

tλk

∫
H

ykϕ(x+ y)N (0, tB)(dy).

�

By applying the Cameron-Martin formula to the derivatives DkPtϕ ob-
tained in Proposition 2.2.1 one obtains by similar arguments the following
result.

Proposition 2.2.2 For ϕ ∈ BUC(H) and t > 0 we have Ptϕ ∈ D(DlDk) for
all l, k ∈ N, and

DlDkPtϕ(x) =
1

λlλkt2

∫
H

ylykϕ(x+ y)N (0, tB)(dy)− δl,k
λlt

Ptϕ(x), x ∈ H,

where δl,k :=

{
1 if l = k,
0 if l �= k.

Now, we are interested in global regularity properties of the semigroup (Pt)
on BUC(H). To this purpose we define two subspaces BUC1

B(H) and
BUC2

B(H) of BUC(H).

Definition 2.2.3 We said that a function ϕ ∈ BUC(H) is in BUC1
B(H) if

(i) ϕ ∈ ⋂∞k=1 D(Dk);

(ii) supx∈H
∑∞

k=1 λk|Dkϕ(x)|2 <∞;

(iii) the mapping DBϕ : H → H; x �→ ∑∞
k=1

√
λkDkϕ(x)ek is uniformly

continuous.

It is clear that BUC1(H) ⊆ BUC1
B(H) andDBϕ(x) = B

1
2 Dϕ(x) for x ∈ H,

and ϕ ∈ BUC1(H).

Definition 2.2.4 A function ϕ ∈ BUC(H) is in BUC2
B(H) if

(i) ϕ ∈ ⋂∞l,k=1 D(DlDk);

(ii) supx∈H
∑∞

l=1

(∑∞
k=1

√
λlλkDlDkϕ(x)yk

)2 ≤ C2|y|2 for all y ∈ H and
some constant C > 0;
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(iii) the mapping D2
Bϕ defined by D2

Bϕ(x) : H → L(H); x �→ D2
Bϕ(x),

where

〈D2
Bϕ(x)y, z〉 :=

∞∑
l,k=1

√
λlλkDlDkϕ(x)ylzk, y, z ∈ H,

is uniformly continuous.

We propose now to show some auxiliary results.

Lemma 2.2.5 The linear operator

DB : BUC1
B(H)→ BUC(H,H)

is closed.

Proof: Let (ϕn) ⊂ BUC1
B(H), ϕ ∈ BUC(H), and F ∈ BUC(H,H) are

such that

lim
n→∞ ‖ϕn − ϕ‖∞ = 0, and lim

n→∞ ‖DBϕ− F‖BUC(H,H) = 0.

For any k ∈ N, we have

lim
n→∞ sup

x∈H
|〈DBϕn(x)− F (x), ek〉| =

= lim
n→∞ sup

x∈H

∣∣∣√λkDkϕn(x)− 〈F (x), ek〉
∣∣∣ = 0.

Thus,

lim
n→∞ sup

x∈H

∣∣∣∣Dkϕ(x)− 1√
λk

〈F (x), ek〉
∣∣∣∣ = 0.

Since Dk is closed in BUC(H), it follows that ϕ ∈ D(Dk) and

Dkϕ(x) =
1√
λk

〈F (x), ek〉, k ∈ N.

Hence,

∞∑
k=1

λk|Dkϕ(x)|2 =

∞∑
k=1

|〈F (x), ek〉|2

= |F (x)|2 ≤ ‖F‖2∞.

Moreover,
∞∑
k=1

√
λkDkϕ(x)ek =

∞∑
k=1

〈F (x), ek〉ek = F (x)

is uniformly continuous. Therefore, ϕ ∈ BUC1
B(H) and DBϕ = F . �
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Lemma 2.2.6 For ϕ ∈ ⋂∞l,k=1 D(DlDk) and x ∈ H, we define D2
Bn

ϕ(x) by

〈D2
Bn

ϕ(x)y, z〉 =
n∑

l,k=1

√
λlλkDlDkϕ(x)ylzk, y, z ∈ H.

Assume that

(i) there is a constant c > 0 such that∣∣〈D2
Bn

ϕ(x)y, z〉∣∣ ≤ c|y||z|, ∀x, y, z ∈ H, n ∈ N;

(ii) for all y, z ∈ H, the limit

lim
n→∞〈D

2
Bn

ϕ(x)y, z〉 exists uniformly in x ∈ H.

Then, ϕ ∈ BUC2
B(H) and

lim
n→∞ sup

x∈H

∣∣〈D2
Bn

ϕ(x)y, z〉 − 〈D2
Bϕ(x)y, z〉∣∣ = 0, y, z ∈ H.

Proof: From the assumptions we have

(i) ϕ ∈ ⋂∞l,k=1 D(DlDk);

(ii) supx∈H
∣∣∑n

l=1

(∑n
k=1

√
λlλkDlDkϕ(x)yk

)
zl
∣∣ ≤ c|y||z| for all n ∈ N

and y, z ∈ H. Thus,

sup
x∈H

n∑
l=1

(
n∑

k=1

√
λlλkDlDkϕ(x)yk

)2

≤ c2|y|2, ∀n ∈ N.

(iii) Since the limit limn→∞〈D2
Bn

ϕ(x)y, z〉 exists uniformly in x ∈ H, for
all y, z ∈ H, it follows that the mapping

D2
Bϕ : H → L(H); x �→ D2

Bϕ(x)

is uniformly continuous.

Thus, ϕ ∈ BUC2
B(H). The last assertion follows easily from the definition

of D2
Bn

ϕ. �

We are now able to show global regularity results for the heat semigroup
(Pt).

Theorem 2.2.7 Let ϕ ∈ BUC(H) and t > 0. Then Ptϕ ∈ BUC1
B(H) and

〈DBPtϕ(x), z〉 = 1

t

∫
H

〈z,B− 1
2 y〉ϕ(x+ y)N (0, tB)(dy), x, z ∈ H.

Moreover,

‖DBPtϕ(x)‖ ≤ 1√
t
‖ϕ‖∞, ∀x ∈ H.
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Proof: By Proposition 2.2.1 we have, Ptϕ ∈ D(Dk) for all k ∈ N, and

n∑
k=1

√
λkDkPtϕ(x)zk =

n∑
k=1

1

t
√
λk

∫
H

ykzkϕ(x+ y)N (0, tB)(dy).

So by the Hölder inequality we obtain∣∣∣∣∣
n∑

k=1

√
λkDkPtϕ(x)zk

∣∣∣∣∣
2

≤ ‖ϕ‖2∞
t2

∫
H

(
n∑

k=1

ykzk√
λk

)2

N (0, tB)(dy)

=
‖ϕ‖2∞
t2

n∑
l,k=1

zlzk√
λlλk

∫
H

ylykN (0, tB)(dy)

=
‖ϕ‖2∞
t2

n∑
k=1

z2
k

λk

∫
H

y2
kN (0, tB)(dy)

=
‖ϕ‖2∞
t2

n∑
k=1

z2
k

λk

∫
R

y2
kN (0, tλk)(dyk)

=
‖ϕ‖2∞

t

n∑
k=1

z2
k.

Hence,
n∑

k=1

λk|DkPtϕ(x)|2 ≤ ‖ϕ‖
2
∞

t
, ∀n ∈ N.

It remains to prove that the mapping

DBPtϕ : x �→
∞∑
k=1

√
λkDkPtϕ(x)ek

is uniformly continuous. First, we note that, by the last estimate, the series

DBPtϕ(x) =
∞∑
k=1

√
λkDkPtϕ(x)ek

converges and we have

〈DBPtϕ(x), z〉 = 1

t

∫
H

〈z,B− 1
2 y〉ϕ(x+ y)N (0, tB)(dy), z ∈ H.

Now, we introduce the uniform continuity modulus of ϕ ∈ BUC(H),

ωϕ(t) := sup{|ϕ(x)− ϕ(y)| : x, y ∈ H, |x− y| ≤ t}, t ≥ 0.

Since ϕ is uniformly continuous, it is easy to see that ωϕ is continuous in
[0,∞). Let x, y ∈ H. By Hölder’s inequality and Proposition 1.3.1, we
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obtain

|〈DBPtϕ(x)−DBPtϕ(y), z〉|2

=

∣∣∣∣1t
∫
H

〈z,B− 1
2 α〉(ϕ(x+ α)− ϕ(y + α))N (0, tB)(dα)

∣∣∣∣2
≤ ωϕ(|x− y|)2

t2

∫
H

|〈z,B− 1
2 α〉|2N (0, tB)(dα)

=
ωϕ(|x− y|)2

t
|z|2.

Hence,

‖DBPtϕ(x)−DBPtϕ(y)‖ ≤ 1√
t
ωϕ(|x− y|).

Then, Ptϕ ∈ BUC1
B(H) for all ϕ ∈ BUC(H) and t > 0. Moreover, by the

same computation as above, we obtain

‖DBPtϕ(x)‖ ≤ 1√
t
‖ϕ‖∞

for all ϕ ∈ BUC(H), t > 0, and x ∈ H. �

More global regularity is given by the following theorem.

Theorem 2.2.8 For ϕ ∈ BUC(H) and t > 0, we have Ptϕ ∈ BUC2
B(H) and

〈D2
BPtϕ(x)z1, z2〉 =

1

t2

∫
H

〈z1, B
− 1

2 y〉〈z2, B
− 1

2 y〉ϕ(x+ y)N (0, tB)(dy)

−1

t
〈z1, z2〉Ptϕ(x)

for z1, z2, x ∈ H. If in addition ϕ ∈ BUC1
B(H), then

〈D2
BPtϕ(x)z1, z2〉 = 1

t

∫
H

〈DBϕ(x+ y), z2〉〈z1, B
− 1

2 y〉N (0, tB)(dy)

for x, z1, z2 ∈ H. Moreover, for all x ∈ H,

‖D2
BPtϕ(x)‖L(H) ≤

√
2

t
‖ϕ‖∞ for ϕ ∈ BUC(H), (2.1)

‖D2
BPtϕ(x)‖L(H) ≤ 1√

t
‖DBϕ‖BUC(H,H) for ϕ ∈ BUC1

B(H).

Proof: From Proposition 2.2.2 it follows that

〈D2
Bn

Ptϕ(x)z1, z2〉 =
1

t2

∫
H

〈z1, B
− 1

2
n y〉〈z2, B

− 1
2

n y〉ϕ(x+ y)N (0, tB)(dy)

−1

t
〈z1, z2〉Ptϕ(x), z1, z2, x ∈ H.
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It is easy to see that all the assumptions of Lemma 2.2.6 are satisfied. Thus,
Ptϕ ∈ BUC2

B(H) and

〈D2
BPtϕ(x)z1, z2〉 =

1

t2

∫
H

〈z1, B
− 1

2 y〉〈z2, B
− 1

2 y〉ϕ(x+ y)N (0, tB)(dy)

−1

t
〈z1, z2〉Ptϕ(x), z1, z2, x ∈ H.

Hence, by Hölder’s inequality and Theorem 2.1.3, we obtain

|〈D2
BPtϕ(x)z, z〉|2 =

=

∣∣∣∣ 1t2
∫
H

|〈z,B− 1
2 y〉|2ϕ(x+ y)N (0, tB)(dy)− 1

t
|z|2Ptϕ(x)

∣∣∣∣2
=

1

t4

∣∣∣∣∫
H

(
|〈z,B− 1

2 y〉|2 − t|z|2
)
ϕ(x+ y)N (0, tB)(dy)

∣∣∣∣2
≤ ‖ϕ‖2∞

t4

∫
H

(
|〈z,B− 1

2 y〉|2 − t|z|2
)2

N (0, tB)(dy).

Since∫
H

|〈z,B− 1
2 y〉|4N (0, tB)(dy) = 3t2|z|4 and∫

H

|〈z,B− 1
2 y〉|2N (0, tB)(dy) = t|z|2 (see Proposition 1.3.1),

it follows that
|〈D2

BPtϕ(x)z, z〉|2 ≤ 2

t2
|z|4‖ϕ‖2∞

for all x, z ∈ H. Consequently,

‖D2
BPtϕ(x)‖L(H) ≤

√
2

t
‖ϕ‖∞, ∀x ∈ H.

The second equality can be obtained similarly, by using Theorem 2.2.7 and
the last estimate is a consequence of Proposition 1.3.1. �

We propose now to prove an additional regularity result, which will be
needed to solve (HE).
We start by the following auxiliary result, where the proof can be founded
in [15, Lemma XI.9.14 (a), p. 1098].

Lemma 2.2.9 Let B ∈ L(H) and suppose that there is a constant c > 0 such
that, for all finite rank linear operator N in L(H), |Tr(NB)| ≤ c‖N‖. Then
B is a trace class operator on H and

Tr B ≤ c .
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The following result was proved first by L. Gross [19] by using proba-
bilistic methods.

Theorem 2.2.10 For ϕ ∈ BUC1(H) and t > 0, we haveD2
BPtϕ(x) is a trace

class operator on H for all x ∈ H, and

Tr (D2
BPtϕ(x)) =

1

t

∫
H

< Dϕ(x+ y), y > N (0, tB)(dy) , x ∈ H.

Moreover, TrD2
BPtϕ(·) ∈ BUC(H) and

|TrD2
BPtϕ(x)| ≤ 1√

t
‖ϕ‖1(TrB)

1
2 .

Proof: Since ϕ ∈ BUC1(H), it follows that, for z1 ∈ H,

< DPtϕ(x), B
1
2 z1 > =

∫
H

< Dϕ(x+ y), B
1
2 z1 > N (0, tB)(dy)

= Ptψ(x),

where ψ(x) :=< Dϕ(x), B
1
2 z1 >, x ∈ H. From Theorem 2.2.7 we have

< DBPtψ(x), z2 > =
1

t

∫
H

< z2, B
− 1

2 y > ψ(x+ y)N (0, tB)(dy)

=
1

t

∫
H

< z2, B
− 1

2 y >< Dϕ(x+ y), B
1
2 z1 (2.2)

> N (0, tB)(dy)

for z2 ∈ H. On the other hand, by an easy computation, one can see,

< DBPtψ(x), z2 >=< D2
BPtϕ(x)z1, z2 > .

Hence,

< D2
BPtϕ(x)z1, z2 > =

= 1
t

∫
H

< Dϕ(x+ y), B
1
2 z1 >< z2, B

− 1
2 y > N (0, tB)(dy).

Now, take N ∈ L(H) a finite rank operator. We obtain

< ND2
BPtϕ(x)z1, z2 > =

= 1
t

∫
H

< Dϕ(x+ y), B
1
2 z1 >< N∗z2, B

− 1
2 y > N (0, tB)(dy).

Hence,

Tr(ND2
BPtϕ(x)) =

1

t

∫
H

< Dϕ(x+ y), B
1
2 NB−

1
2 y > N (0, tB)(dy),
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and by Hölder’s inequality, we obtain

|Tr(ND2
BPtϕ(x))|2 ≤ ‖ϕ‖21

t2

∫
H

|B 1
2 NB−

1
2 y|2N (0, tB)(dy)

=
‖ϕ‖21
t2

t Tr(B
1
2 NN∗B

1
2 ) (see Example 1.2.9.(b))

=
‖ϕ‖21
t

Tr(NN∗B).

Thus,

|Tr(ND2
BPtϕ(x))| ≤ 1√

t
‖ϕ‖1‖N‖(TrB)

1
2 , x ∈ H.

So, by Lemma 2.2.9, Tr(D2
BPtϕ(x)) <∞ for all x ∈ H. Moreover,

Tr(D2
BPtϕ(x)) =

1

t

∫
H

< Dϕ(x+ y), y > N (0, tB)(dy), x ∈ H,

and

|Tr(D2
BPtϕ(x))| ≤ 1√

t
‖ϕ‖1(TrB)

1
2 , x ∈ H.

The uniform continuity of Tr(D2
BPtϕ(·)) follows from the fact that ϕ ∈

BUC1(H). �

2.3 SOLUTIONS OF (HE) AND CHARACTERIZATION

OF THE GENERATOR OF (Pt)

We denote by (G,D(G)) the generator of (Pt) on BUC(H).
First, we propose to compare G with the following operator
D(G0) :={
ϕ ∈ BUC2

B(H), D2
Bϕ(x) ∈ L1(H), ∀ x ∈ H and Tr(D2

Bϕ(·)) ∈ BUC(H)
}
,

G0ϕ =
1

2
Tr(D2

Bϕ),

where L1(H) denotes the set of S ∈ L(H) with TrS <∞.

Proposition 2.3.1 The following hold:

(a) D(G0) = BUC(H);

(b) G0 = G.
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Proof: (a) Let ϕ ∈ BUC(H). Since BUC1(H) is dense in BUC(H), it
follows that, for any ε > 0 there is ϕε ∈ BUC1(H) such that ‖ϕ−ϕε‖∞ < ε

2 .
On the other hand, from the strong continuity of (Pt)we have, for any ε > 0
there exists δ > 0 with

0 < t < δ =⇒ ‖ϕε − Ptϕε‖∞ <
ε

2
.

Thus, for 0 < t < δ,
‖ϕ− Ptϕε‖ < ε.

Now, (a) follows from Theorem 2.2.10.
(b) Let ϕ ∈ D(G0) and take g(t) := Ptϕ and gn(t) : P

n
t ϕ.

It follows from Theorem 2.1.1 that

gn −→ g in C ([0, 1];BUC(H)) .

Moreover,

dgn
dt

(t) =
1

2

n∑
k=1

λkD
2
kgn(t) =

1

2

n∑
k=1

λkD
2
kP

n
t ϕ = Pn

t

(
1

2

n∑
k=1

λkD
2
kϕ

)
.

Hence,
dgn
dt

(t) −→ Pt(G0ϕ) in C ([0, 1], BUC(H)) .

Consequently,
dg

dt
(t) = Pt(G0ϕ) and by taking t = 0 we have ϕ ∈ D(G) and

Gϕ = G0ϕ, i.e., G0 ⊆ G. In particular G0 is closable. Now, take ϕ ∈ D(G),
λ > 0 and set ψ := λϕ − Gϕ. We know that there is (ψn)n∈N ⊆ BUC1(H)
such that ψn → ψ in BUC(H). Since (Pt) is a semigroup of contractions
on BUC(H), we can define ϕn := R(λ,G)ψn. It is clear that ϕn → ϕ in

BUC(H). Since ϕn =

∫ ∞
0

e−λtPtψndt, it follows from Theorem 2.2.10 that

ϕn ∈ D(G0) and ‖G0ϕn‖∞ ≤
(∫ ∞

0

e−λt
1√
t
dt

)
(TrB)

1
2 ‖ψn‖1 .

Moreover, since
G0ϕn = Gϕn = λR(λ,G)ψn − ψn,

it follows that

lim
n→∞G0ϕn = λR(λ,G)ψ − ψ = GR(λ,G)ψ = Gϕ.

This proves that G0 = G. �

We solve now the heat equation. Let ϕ ∈ BUC1(H) and set

u(t, x) = Ptϕ(x), t ≥ 0, x ∈ H.
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From Theorem 2.2.10 we know that Ptϕ ∈ D(G0) for t > 0. Since G0 ⊆ G
we obtain

d

dt
Ptϕ = GPtϕ = G0Ptϕ, t > 0.

Thus, we have the following result.

Theorem 2.3.2 Let ϕ ∈ BUC1(H). Then the function

u(t, x) = Ptϕ(x), t > 0,

is a classical solution of (HE) with u(0, x) = ϕ(x), x ∈ H.

An other characterization of the generator (G,D(G)) of the heat semi-
group (Pt) on BUC(H), which will play an important role in Section 2.4, is
given by the following proposition.

Proposition 2.3.3 The set

D0(G) := {ϕ ∈ BUC1,1(H) : DkDlϕ ∈ BUC(H),

for all k, l ∈ N, sup
k,l∈N

‖DkDlϕ‖∞ <∞}

is a Pt-invariant core for G. Moreover,

Gϕ =

∞∑
k=1

λkD
2
kϕ for ϕ ∈ D0(G).

Proof: Let show first that, for ϕ ∈ BUC1,1(H),

sup
l,k∈N

‖DlDkPtϕ‖∞ ≤ ‖ϕ‖1,1, t > 0. (2.3)

Let ϕ ∈ BUC1,1(H) and k ∈ N. Since Dk is closed and DkP
n
t ϕ = Pn

t Dkϕ
for t ≥ 0 and n ∈ N, it follows from Theorem 2.1.1 that

DkPtϕ = PtDkϕ

for all t ≥ 0. So by Proposition 2.2.1 we have

DkPtϕ ∈ D(Dl) for all t > 0, and l ∈ N.

Thus, by Theorem 2.1.3, we deduce that

|DlDkPtϕ(x)| =
= |DlPtDkϕ(x)|
=

∣∣∣∣ limh→0

1

h
(PtDkϕ(x+ hel)− PtDkϕ(x)

∣∣∣∣
=

∣∣∣∣ limh→0

∫
H

1

h
(Dkϕ(x+ y + hel)−Dkϕ(x+ y)N (0, tB)(dy)

∣∣∣∣
≤ ‖ϕ‖1,1
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for all l, k ∈ N, and x ∈ H. This proves (2.3). So we obtain

PtD0(G) ⊆ D0(G), ∀t ≥ 0.

From Proposition A.2.5, it suffices now to prove that D0(G) is dense in
BUC(H). This can be seen by using (2.3) and exactly the same proof as in
Proposition 2.3.1.(a). �

We end this section by the following remark.

Remark 2.3.4 If we compare the result of Theorem 2.2.8 and Theorem A.2.7
then the following question arise:

Is the semigroup (Pt) analytic or at least differentiable onBUC(H)?

The answer is negative (see [27]) and will be given in the following section
(see Corollary 2.4.2).

2.4 THE SPECTRUM OF THE INFINITE

DIMENSIONAL LAPLACIAN

LetH be a separable, infinite dimensional, real Hilbert space and let (ek) be
an orthonormal basis. We shall regard BUC(Rn) as a subspace of BUC(H)
via the isometric embedding

Jn : BUC(Rn)→ BUC(H), (Jnϕ)(x) := ϕ(x1, . . . , xn),

for ϕ ∈ BUC(Rn), x ∈ H, and xk := 〈x, ek〉. Let λk > 0 with
∑∞

k=1 λk <∞
be given. We know from Theorem 2.1.1 that the infinite dimensional heat
equation (HE) on BUC(H) is solved by the C0-semigroup of contractions

Ptϕ = lim
n→∞Pn

t ϕ, ϕ ∈ BUC(H),

where the above limit exists in BUC(H) uniformly in t on bounded subsets
of [0,∞). We recall that for ϕ ∈ BUC(H), x ∈ H and t > 0,

Pn
t ϕ(x) := (2πt)−

n
2 (λ1 · · ·λn)

− 1
2

∫
Rn

e
−Pn

k=1

y2
k

2tλk ϕ
(
x−

n∑
k=1

ykek

)
dy.

(2.4)
Let compute the spectrum of the generator (G,D(G) of the semigroup (Pt)
on BUC(H).

Theorem 2.4.1 The spectrum of G is the left half plane {λ ∈ C : Re λ ≤ 0}
and σ(Pt) = {λ ∈ C : |λ| ≤ 1}. Moreover, every λ ∈ σ(G) is an approximate
eigenvalue.
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Proof: Note that the restriction of Pt to BUC(Rn) coincides with the semi-
group generated by Gn :=

∑n
k=1 λk D2

k. In particular, Gn is the part of G in
BUC(Rn) and, hence, R(λ,Gn) = R(λ,G)|BUC(Rn) for λ ∈ ρ(G) ∩ ρ(Gn).
Therefore, for these values of λ, the sequence ‖R(λ,Gn)‖ is bounded.
Let V : BUC(Rn)→ BUC(Rn) be the isometry defined by

(V ϕ)(x) := ϕ(

√
λ1

2
x1, . . . ,

√
λn

2
xn), ϕ ∈ BUC(Rn), x ∈ Rn.

A simple change of variables in (2.4) shows that etGn = V −1etΔnV for
t ≥ 0, n ∈ N, where Δn denotes the Laplacian on Rn. This implies that

R(λ,Gn) = V −1R(λ,Δn)V for λ ∈ Σπ := {0 �= λ ∈ C : | arg λ| < π},
so that ‖R(λ,Gn)‖ = ‖R(λ,Δn)‖ for λ ∈ Σπ and n ∈ N.

Fix λ ∈ Σπ with Re λ < 0. For n ∈ N, the function gλ,n(x) := e
λ
2n |x|2 , x ∈

Rn, belongs to BUC(Rn) and ‖gλ,n‖∞ = 1. Setting

fλ,n(x) := (λ−Δn)gλ,n(x)− λ2

n2
|x|2e λ

2n |x|2 , x ∈ Rn,

we compute

‖fλ,n‖∞ =
2|λ|2

ne|Re λ| .

So we derive

‖R(λ,Gn)‖ = ‖R(λ,Δn)‖ ≥ ‖R(λ,Δn)fλ,n‖∞
‖fλ,n‖∞ =

ne|Re λ|
2|λ|2 .

Since the sequence ‖R(λ,Gn)‖ is unbounded, λ must belong to the spec-
trum of G. From standard spectral theory of C0-semigroups,
cf. [16, Chap. IV], now follows the first and second assertion.

To prove the last assertion, we observe that iR is contained in the ap-
proximate point spectrum of G. Let λ = −a2 + ib for a > 0 and b ∈ R. The
first part of the proof applies to the operator G̃ on BUC(H) correspond-
ing to the sequence (λ2, λ3, · · · ). Thus there exist gn ∈ D0(G̃) such that
‖gn‖∞ = 1 and ‖G̃gn − ibgn‖∞ → 0 as n→∞. We now define

fn(x) : exp(iaλ
− 1

2
1 x1) gn(x2, x3, · · · ), x ∈ H.

Clearly, fn ∈ D0(G), ‖fn‖∞ = 1, and

Gfn(x) =

∞∑
k=1

λk D2
k fn(x) = −a2fn(x) + exp(iaλ

− 1
2

1 x1) (G̃gn)(x2, x3, · · · ),

x ∈ H.
As a result, λ is an approximate eigenvalue of G. �

As a consequence of Theorem A.2.10 and (11) we immediately obtain
the following result from [14], see also [18], [29] and [2].
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Corollary 2.4.2 The semigroup (Pt) is not eventually norm continuous an
hence not eventually differentiable on BUC(H).



CHAPTER 3

THE ORNSTEIN-UHLENBECK

SEMIGROUP

In this chapter we are concerned with the Ornstein-Uhlenbeck semigroup,
first on Cb(H), and finally on Lp–spaces with invariant measure. The
Ornstein-Uhlenbeck semigroup is related to the solution of the following
linear stochastic differential equation

(SDE)

{
dX(t, x) = AX(t, x)dt+Q

1
2 dW (t), t ≥ 0

X(0, x) = x ∈ H,

where Q ∈ L(H) is selfadjoint and nonnegative and A generates a
C0–semigroup (etA)t≥0 on H. The process W is a standard cylindrical
Wiener process on H. Under appropriate assumptions (see [12]) the
solution to (SDE) is a Gaussian and Markov process in H, called the
Ornstein-Uhlenbeck process. The associated Ornstein-Uhlenbeck semigroup
on Bb(H), the space of bounded and Borel functions fromH into R, is given
by

Rtϕ(x) := E (ϕ(X(t, x))) , t ≥ 0, x ∈ H, ϕ ∈ Bb(H).

This is the semigroup solution of the associated Kolmogorov equation

(KE)

{
∂
∂tu(t, x) =

1
2Tr(QD2u(t, x) + 〈x,A∗Du(t, x)〉, t > 0, x ∈ H,

u(0, x) = ϕ(x), x ∈ H.

The basic assumption in this chapter is

(H1) Qt :=

∫ t

0

esAQesA
∗
ds ∈ L+

1 (H), t > 0.

Under (H1) and by the change of variables

v(t, etAx) := u(t, x), t ≥ 0, x ∈ H,
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one can see (cf. [8], [4]) that v is the unique solution of the parabolic
equation

(PE)

{
∂
∂tv(t, x) =

1
2Tr

(
etAQetA

∗
D2v(t, x)

)
, t > 0, x ∈ H,

v(0, x) = ϕ(x), x ∈ H,

and is given by

v(t, x) =

∫
H

ϕ(x+ y)N (0, Qt)(dy), x ∈ H, t ≥ 0,

where ϕ ∈ BUC2(H). Therefore, if we suppose (H1) then the Ornstein-
Uhlenbeck semigroup is given by

Rtϕ(x) =

∫
H

ϕ(etAx+ y)N (0, Qt)(dy), x ∈ H, t ≥ 0,

for ϕ ∈ Bb(H). Now, by Lemma 1.2.7, we have, for ϕ ∈ Bb(H),

Rtϕ(x) =

∫
H

ϕ(y)N (etAx,Qt)(dy), x ∈ H, t ≥ 0.

3.1 THE ORNSTEIN-UHLENBECK SEMIGROUP ON

Cb(H)

The aim of this section is to study the global regularity of the Ornstein-
Uhlenbeck semigroup (Rt)t≥0 on Cb(H). Existence and uniqueness of a
classical solution for (KE) will be also considered.

In this section we assume the controllability condition (see [31])

(H2) etA(H) ⊆ Q
1
2
t (H) for all t > 0.

If we suppose in addition that (etA)t≥0 is exponentially stable, that is, there
are constants M ≥ 1 and ω > 0 such that ‖etA‖ ≤Me−tω for all t ≥ 0, then
it follows from the strong continuity of the semigroup (etA)t≥0 and Exercise

3.3.22 that, for any t > 0, the subspace Q
1
2
t (H) is dense in H and so, by

Remark 1.3.2,
kerQt = {0} for all t > 0.

This will be needed for the application of the Cameron-Martin formula.
Regularity properties of the semigroup (Rt)t≥0 are given by the following
result.

Theorem 3.1.1 Suppose that (H1) and (H2) are satisfied and kerQt = {0}
for all t > 0. Then, for any ϕ ∈ Bb(H) and t > 0, we have Rtϕ ∈ BUC∞(H)
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and in particular, for x, y, z ∈ H,

〈DRtϕ(x), y〉 =

∫
H

〈Λty,Q
− 1

2
t h〉ϕ(etAx+ h)N (0, Qt)(dh),

〈D2Rtϕ(x)y, z〉 =

∫
H

[
〈Λty,Q

− 1
2

t v〉〈Λtz,Q
− 1

2
t v〉 − 〈Λty,Λtz〉

]
·

ϕ(etAx+ v)N (0, Qt)(dv),

where Λt := Q
− 1

2
t etA, t > 0. Moreover,

|DRtϕ(x)| ≤ ‖Λt‖‖ϕ‖∞,

‖D2Rtϕ(x)‖ ≤
√
2‖Λt‖2‖ϕ‖∞.

Furthermore, if for any t > 0, RtBb(H) ⊂ Cb(H), then (H2) holds.

Proof: Let t > 0, ϕ ∈ Bb(H) and x ∈ H. Since, by (H2), etAx ∈ Q
1
2
t (H),

it follows from the Cameron-Martin formula (see Corollary 1.3.5) that
N (etAx,Qt) ∼ N (0, Qt) and

dN (etAx,Qt)

dN (0, Qt)
(y) = exp

(
−1

2
|Λtx|2 + 〈Λtx,Q

− 1
2

t y〉
)

.

Thus,

Rtϕ(x) =

∫
H

ϕ(y) exp

(
−1

2
|Λtx|2 + 〈Λtx,Q

− 1
2

t y〉
)
N (0, Qt)(dy).

Therefore, by a change of variables (see Lemma 1.2.7), we obtain

〈DRtϕ(x), y〉 =

∫
H

〈Λty,Q
− 1

2
t (h− etAx)〉ϕ(h)N (etAx,Qt)(dh)

=

∫
H

〈Λty,Q
− 1

2
t h〉ϕ(etAx+ h)N (0, Qt)(dh).

So by Proposition 1.3.1 we have

|〈DRtϕ(x), y〉|2 ≤ ‖ϕ‖∞
∫
H

|〈Λty,Q
1
2
t h〉|2N (0, Qt)(dh)

= ‖ϕ‖∞|Λty|2

for all y ∈ H. Similarly one obtains the second derivative of Rtϕ and the
estimate follows by a simple computation. Let now prove the last assertion.
Suppose that for any ϕ ∈ Bb(H), the function Rtϕ(·) is continuous and
there is x0 ∈ H such that etAx0 �∈ Q

1
2
t (H). It follows from the Cameron-

Martin formula (Corollary 1.3.5) that, for any n ∈ N, N ( 1
ne

tAx0, Qt) ⊥
N (0, Qt). This means that , for any n ∈ N, there is Γn ∈ B(H) with

N
(
1

n
etAx0, Qt

)
(Γn) = 0 and N (0, Qt)(Γn) = 1.
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If we set Γ := ∩n∈NΓn, then

N
(
1

n
etAx0, Qt

)
(Γ) = 0 and N (0, Qt)(Γ) = 1.

Now, we consider the characteristic function ϕ := χΓ. Then, for any n ∈ N,
we have

Rtϕ
(x0

n

)
= N

(
1

n
etAx0, Qt

)
(Γ) = 0 and

Rtϕ(0) = N (0, Qt)(Γ) = 1.

Hence, the function Rtϕ(·) is not continuous at zero. This end the proof of
the theorem. �

We show now that the Ornstein-Uhlenbeck semigroup (Rt)t≥0 solves the
Kolmogorov equation (KE) in the following sense.
We say that a function u(t, x), t ≥ 0, x ∈ H, is a classical solution of (KE) if

(a) u : [0,∞)×H → R is continuous and u(0, ·) = ϕ,

(b) u(t, ·) ∈ BUC2(H) for all t > 0, and QD2u(t, x) is a trace class oper-
ator on H for all x ∈ H and t > 0,

(c) Du(t, x) ∈ D(A∗) for all x ∈ H and t > 0,

(d) for any x ∈ H, u(·, x) is continuously differentiable on (0,∞) and
fulfills (KE)

Under appropriate conditions we show now the existence and the unique-
ness of a classical solution for (KE) (cf. [13, Theorem 6.2.4]).

Theorem 3.1.2 Suppose(H1), (H2) and kerQt = {0} for all t > 0. If ΛtA

has a continuous extension ΛtA onH and ΛtQ
1
2 is a Hilbert-Schmidt operator

on H for every t > 0, then (KE) has a unique classical solution.

Proof: For ϕ ∈ Bb(H) we know, from Theorem 3.1.1, that, for any t >
0, Rtϕ ∈ BUC∞(H) and

〈DRtϕ(x), Ay〉 =
∫
H

〈ΛtAy,Q
− 1

2
t h〉ϕ(etAx+ h)N (0, Qt)(dh)

for y ∈ D(A), t > 0 and x ∈ H. So by Proposition 1.3.1, we obtain

|〈DRtϕ(x), Ay〉| ≤ ‖ϕ‖∞‖ΛtA‖|y|, ∀y ∈ D(A),

for t > 0 and x ∈ H. Hence, DRtϕ(x) ∈ D(A∗) for all x ∈ H and t > 0.
Again from Theorem 3.1.1 we deduce that

〈D2Rtϕ(x)Q
1
2 ej , Q

1
2 ej〉 =

=
∫
H

(
〈ΛtQ

1
2 ej , Q

− 1
2

t y〉2 − |ΛtQ
1
2 ej |2

)
ϕ(etAx+ y)N (0, Qt)(dy)
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for x ∈ H, t > 0 and j ∈ N. It follows from Proposition 1.3.1 that∣∣∣〈D2Rtϕ(x)Q
1
2 ej , Q

1
2 ej〉

∣∣∣ ≤ 2|ΛtQ
1
2 ej |2‖ϕ‖∞

for x ∈ H and t > 0. This implies that QD2Rtϕ(x) is a trace class operator
on H for all x ∈ H and t > 0.
For any x ∈ H, the function t �→ Rtϕ(x) fulfills (KE) follows from a straight-
forward computation and is left to the reader. The uniqueness follows
from the fact that Equation (PE) has a unique solution for an initial data
ϕ ∈ BUC2(H). �

If the semigroup (etA)t≥0 is exponentially stable then the assumption
“ΛtQ

1
2 is a Hilbert-Schmidt operator on H” is automatically satisfied as the

following corollary shows.

Corollary 3.1.3 Assume (H1) and (H2). If ΛtA has a continuous extension
ΛtA on H for every t > 0 and (etA)t≥0 is exponentially stable then (KE) has
a unique classical solution.

Proof: It suffices to prove that the assumptions of Theorem 3.1.2 are
satisfied. Since

Λt = Q
− 1

2
t etA = (Q

− 1
2

t Q
1
2∞)(Q

− 1
2∞ e

t
2A)e

t
2A, t > 0,

it follows from Exercise 3.3.22 that Λt is a trace class operator and hence
ΛtQ

1
2 is a Hilbert-Schmidt operator on H for every t > 0. �

3.2 SOBOLEV SPACES WITH RESPECT TO

GAUSSIAN MEASURES ON H

In this section we propose to define and study the Sobolev spaces
W 1,2(H,μ), W 1,2

B (H,μ) and W 2,2(H,μ), where μ := N (0, B) and B ∈
L+

1 (H). Without loss of generality we suppose that kerB = {0} and con-
sider an orthonormal system (ek) and positive numbers λk with Bek = λkek
for k ∈ N.
Define the subspaces E(H) and EA(H) of BUC(H) by

E(H) := Span{ei〈x,h〉;h ∈ H}
EA(H) := Span{ei〈x,h〉;h ∈ D(A∗)}.

In the sequel the following lemma will play a crucial role.

Lemma 3.2.1 For any ϕ ∈ BUC(H), there is a sequence (ϕn,k)n,k∈N ⊂ E(H)
with
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(a) limk→∞ limn→∞ ϕn,k(x) = ϕ(x), ∀x ∈ H,

(b) ‖ϕn,k‖∞ ≤ ‖ϕ‖∞, ∀n, k ∈ N.

Thus, E(H) (resp. EA(H)) is dense in L2(H,μ).

Proof: Since D(A∗) is dense in H and BUC(H) is dense in L2(H,μ), and
by the dominated convergence theorem, it suffices to show the existence of
such a sequence.
To this purpose we assume first that dimH := d < ∞ and consider the
function ϕn satisfying

(i) ϕn is periodic with period n in all coordinate xk, k = 1, . . . , d,

(ii) ϕn(x) = ϕ(x), ∀x ∈ [−n− 1
2 , n− 1

2 ]
d,

(iii) ‖ϕn‖∞ ≤ ‖ϕ‖∞.

Hence,
lim
n→∞ϕn(x) = ϕ(x), ∀x ∈ H.

On the other hand, any function ϕn, n ∈ N, can be approximate, by using
Fourier series, by functions in E(H). This proves the lemma for finite di-
mensional Hilbert spaces.
In the general case, let ϕ ∈ BUC(H). Take

ψk(x) := ϕ(x1, x2, . . . , xk, 0, . . .), x ∈ H, k ∈ N.

Then it follows from the first step that there is (ϕn,k)n,k∈N ⊂ E(H) with

lim
n→∞ϕn,k(x) = ψk(x), ∀x ∈ H,

‖ϕn,k‖∞ ≤ ‖ψk‖∞ ≤ ‖ϕ‖∞.

Therefore, for any x ∈ H,

lim
k→∞

lim
n→∞ϕn,k(x) = ϕ(x), ∀x ∈ H.

�

For any k ∈ N we define the partial derivative in the direction ek by

Dkϕ(x) := lim
t→0

1

t
(ϕ(x+ tek)− ϕ(x)), x ∈ H

for ϕ ∈ EA(H) (or ϕ ∈ E(H)). We note that for ϕ(x) := ei〈x,h〉, we have
Dkϕ(x) = ihei〈x,h〉 for x, h ∈ H.
The following proposition gives an integration by part formula.

Proposition 3.2.2 For ϕ, ϕ̃ ∈ E(H) and k ∈ N the following holds∫
H

Dkϕ(x)ϕ̃(x)μ(dx) = −
∫
H

ϕ(x)Dhϕ̃(x)μ(dx)+
1

λk

∫
H

xkϕ(x)ϕ̃(x)μ(dx).
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Proof: For ϕ, ϕ̃ ∈ E(H) we have∫
H

Dkϕ(x)ϕ̃(x)μ(dx) =

∫
H

ihke
i〈x,h〉ei〈x,h̃〉μ(dx)

= ihk

∫
H

ei〈x,h+h̃〉μ(dx)

= ihke
− 1

2 〈B(h+h̃),h+h̃〉 and∫
H

ϕ(x)Dkϕ̃(x)μ(dx) = ih̃ke
− 1

2 〈B(h+h̃),h+h̃〉.

On the other hand, we obtain

1

λk

∫
H

xkϕ(x)ϕ̃(x)μ(dx) =

=
1

λk

∫
H

xke
i〈x,h+h̃〉μ(dx)

=
1

iλk

d

dt

(∫
H

eit〈x,ek〉ei〈x,h+h̃〉μ(dx)
)
|t=0

=
1

iλk

d

dt

(∫
H

ei〈x,tek+h+h̃〉μ(dx)
)
|t=0

=
1

iλk

d

dt

[
exp

(
−1

2
〈B(tek + h+ h̃), tek + h+ h̃〉

)]
|t=0

=
1

iλk

[
−λk(hk + h̃k)e

− 1
2 〈B(h+h̃),h+h̃〉

]
= i(hk + h̃k)e

− 1
2 〈B(h+h̃),h+h̃〉.

This proves the integration by part formula. �

The following proposition permits us to define the first Sobolev space
with respect to the Gaussian measure μ.

Proposition 3.2.3 For any k ∈ N, the operator Dk with domain E(H) is
closable on L2(H,μ).

Proof: Let (ϕn) ⊂ E(H) be such that limn→∞ ϕn = 0 and limn→∞Dkϕn =
ψ in L2(H,μ). By Proposition 3.2.2 we have∫
H

Dkϕn(x)ϕ(x)μ(dx)+

∫
H

ϕn(x)Dkϕ(x)μ(dx) =
1

λk

∫
H

xkϕn(x)ϕ(x)μ(dx).

By Hölder’s inequality, one can estimate the right hand side of the above
equation and obtains

lim
n→∞

∣∣∣∣∫
H

xkϕn(x)ϕ(x)μ(dx)

∣∣∣∣2 ≤
≤ lim

n→∞

(∫
H

ϕn(x)
2μ(dx) ·

∫
H

x2
kϕ(x)

2μ(dx)

)
= 0
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for ϕ ∈ E(H). Hence,∫
H

ψ(x)ϕ(x)μ(dx) = 0, ∀ϕ ∈ E(H).

Since E(H) is dense in L2(H,μ), it follows that ψ ≡ 0. �

In the sequel we use the notation Dk := Dk for k ∈ N.

Definition 3.2.4 The first order Sobolev space W 1,2(H,μ) is defined by

W 1,2(H,μ) :=

{ϕ ∈ L2(H,μ) : ϕ ∈ D(Dk), ∀k ∈ N, and
∞∑
k=1

∫
H

|Dkϕ(x)|2μ(dx) <∞}.

For ϕ ∈W 1,2(H,μ), we denote by

Dϕ(x) :=
∞∑
k=1

Dkϕ(x)ek, x ∈ H,

the gradient of ϕ at x, which exists as a L2(H,μ)–function and hence for
almost every x ∈ H. It is clear that W 1,2(H,μ) endowed with the inner
product

〈ϕ, ψ〉W 1,2(H,μ) :=

〈ϕ, ψ〉L2(H,μ) +

∫
H

〈Dϕ(x), Dψ(x)〉μ(dx), ϕ, ψ ∈W 1,2(H,μ),

is a Hilbert space.
Now, we show that Proposition 3.2.2 remains valid in W 1,2(H,μ). To

this purpose we need the following lemma.

Lemma 3.2.5 If ϕ ∈W 1,2(H,μ), then, for any k ∈ N, xkϕ ∈ L2(H,μ).

Proof: It is easy to see that Proposition 3.2.2 holds for all ϕ ∈ W 1,2(H,μ)
and ϕ̃ ∈ E(H). So if we apply Proposition 3.2.2 with ϕ = xkg and ϕ̃ = g for
k ∈ N and g ∈ E(H), then∫

H

x2
kg(x)

2μ(dx) =

= λk

∫
H

(g(x) + xkDkg(x))g(x)μ(dx) + λk

∫
H

xkg(x)Dkg(x)μ(dx)

= λk

∫
H

g(x)2μ(dx) + 2λk

∫
H

xkg(x)Dkg(x)μ(dx).

So by Young’s inequality we obtain∫
H

x2
kg(x)

2μ(dx) ≤

≤ λk

∫
H

g(x)2μ(dx) +
1

2

∫
H

x2
kg(x)

2μ(dx) + 2λ2
k

∫
H

Dkg(x)
2μ(dx).
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Thus,∫
H

x2
kg(x)

2μ(dx) ≤ 2λk

∫
H

g(x)2μ(dx) + 4λ2
k

∫
H

Dkg(x)
2μ(dx).

This end the proof of the lemma. �

From the above lemma we obtain the following corollaries.

Corollary 3.2.6 If ϕ ∈ W 1,2(H,μ), then |x|ϕ ∈ L2(H,μ) and the following
holds∫

H

|x|2ϕ(x)2μ(dx) ≤ 2TrB

∫
H

ϕ(x)2μ(dx) + 4‖B‖2
∫
H

|Dϕ(x)|2μ(dx).

Corollary 3.2.7 For ϕ, ψ ∈W 1,2(H,μ) the following holds∫
H

Dkϕ(x)ψ(x)μ(dx) +

∫
H

ϕ(x)Dkψ(x)μ(dx) =
1

λk

∫
H

xkϕ(x)ψ(x)μ(dx).

By the same proof as for the first derivative one can see that, for any h, k ∈ N

the operatorDhDk : E(H)→ L2(H,μ) is closable on L2(H,μ) and as before
we use the notation DhDk := DhDk.

Definition 3.2.8 The second order Sobolev space W 2,2(H,μ) is defined by

W 2,2(H,μ) :=

{ϕ ∈ L2(H,μ) : ϕ ∈
⋂

h,k∈N

D(DhDk) and
∞∑

h,k=1

∫
H

|DhDkϕ(x)|2μ(dx) <∞}.

If ϕ ∈ W 2,2(H,μ), then, for a.e. x ∈ H one can define a Hilbert-Schmidt
operator D2ϕ(x) (since

∑
h,k∈N

|DhDkϕ(x)|2 <∞ for a.e. x ∈ H) by

〈D2ϕ(x)y, z〉 :=
∞∑

h,k=1

DhDkϕ(x)yhzk, y, z ∈ H, a.e. x ∈ H.

It is easy to see that W 2,2(H,μ) endowed with the inner product

〈ϕ, ψ〉W 2,2(H,μ) := 〈ϕ, ψ〉W 1,2(H,μ) +
∞∑

h,k=1

∫
H

〈DhDkϕ(x), DhDkψ(x)〉μ(dx)

is a Hilbert space.
In a similar way one can obtain the following useful result.
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Proposition 3.2.9 If ϕ ∈ W 2,2(H,μ), then |x|ϕ ∈ W 1,2(H,μ), |x|2ϕ ∈
L2(H,μ) and the following estimates hold∫

H

|x|2|Dϕ(x)|2μ(dx) ≤ 2

∫
H

ϕ(x)2μ(dx) + 4TrB

∫
H

|Dϕ(x)|2μ(x) +

8‖B‖2
∫
H

Tr(D2ϕ(x))2μ(dx),∫
H

|x|4ϕ(x)2μ(dx) ≤ c

(∫
H

ϕ(x)2μ(dx) +

∫
H

|Dϕ(x)|2μ(dx)+∫
H

Tr(D2ϕ(x))2μ(dx)

)
.

For the characterization of the generator of the Ornstein-Uhlenbeck semi-
group on L2(H,μ) we need the notion of Malliavin derivatives.

We consider the operator DB : E(H)→ L2(H,μ;H) defined by

DBϕ := B
1
2 Dϕ for ϕ ∈ E(H).

Here L2(H,μ;H) denotes the space of all strongly measurable functions
Φ : H → H satisfying

∫
H
|Φ(x)|2μ(dx) <∞.

Proposition 3.2.10 The operator DB with domain E(H) is closable in
L2(H,μ;H).

Proof: Let (ϕn) ⊂ E(H) and F ∈ L2(H,μ;H) are such that limn→∞ ϕn = 0
in L2(H,μ) and limn→∞DBϕn = F in L2(H,μ;H). This means that

lim
n→∞

∫
H

|DBϕn(x)− F (x)|2μ(dx) =

= lim
n→∞

∫
H

∞∑
k=1

|
√

λkDkϕn(x)− Fk(x)|2μ(dx) = 0.

Since we have supposed that kerB = {0}, it follows that, for any k ∈ N,

lim
n→∞Dkϕn =

1√
λk

Fk in L2(H,μ).

So by Proposition 3.2.3 we have, for any k ∈ N, Fk ≡ 0, which proves the
claim. �

As before we use the notation DB := DB and this will be called the
Malliavin derivative. In a similar way we define the following spaces

W 1,2
B (H,μ) := {ϕ ∈ L2(H,μ) : DBϕ ∈ L2(H,μ;H)},

W 2,2
B (H,μ) := {ϕ ∈ L2(H,μ) : ϕ ∈

⋂
h,k∈N

D(DhDk) and

∞∑
h,k=1

∫
H

λhλk|DhDkϕ(x)|2μ(dx) <∞}.
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3.3 THE ORNSTEIN-UHLENBECK SEMIGROUP ON

Lp-SPACES WITH INVARIANT MEASURE

The aim of this section is to study the Ornstein-Uhlenbeck semigroup on
Lp–spaces with respect to an invariant measure.
Under appropriate assumptions we prove the existence and uniqueness of
an invariant measure μ for the Ornstein-Uhlenbeck semigroup (Rt). This al-
lows us to extend (Rt) to a C0–semigroup on Lp(H,μ), 1 ≤ p <∞. We find
sufficient conditions for the existence and uniqueness of a classical solution
for (KE) on Lp(H,μ), 1 < p <∞ and finally we characterize the domain of
the generator of the symmetric Ornstein-Uhlenbeck semigroup on L2(H,μ).

In order to have an invariant measure for the Ornstein-Uhlenbeck semi-
group we suppose in this section the following assumptions

(H3) A : D(A)→ H generates a C0 − semigoup (etA)t≥0 satisfying

‖etA‖ ≤Me−ωt for some constants M ≥ 1, ω > 0.

(H4) Q ∈ L(H) is a symmetric and positive operator and

Qt :=

∫ t

0

esAQesA
∗
ds ∈ L+

1 (H), t ≥ 0.

If we set Q∞x :=
∫∞
0

esAQesA
∗
ds, x ∈ H, then

Q∞x =
∞∑
n=0

∫ n+1

n

esAQesA
∗
ds =

∞∑
n=0

enAQ1e
nA∗

x, x ∈ H.

Hence,

TrQ∞ ≤M2TrQ1

∞∑
n=0

e−2ωn <∞,

which implies that Q∞ ∈ L+
1 (H).

The following result shows the existence and uniqueness of invariant mea-
sure for the Ornstein-Uhlenbeck semigroup.

Proposition 3.3.1 Assume that (H3) and (H4) hold. Then the Gaussian
measure μ := N (0, Q∞) is the unique invariant measure for the Ornstein-
Uhlenbeck semigroup (Rt)t≥0. This means that, for all ϕ ∈ BUC(H),∫

H

Rtϕ(x)μ(dx) =

∫
H

ϕ(x)μ(dx).

Moreover, for all ϕ ∈ BUC(H) and x ∈ H,

lim
t→∞Rtϕ(x) =

∫
H

ϕ(x)μ(dx).
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Proof: It follows from Lemma 3.2.1 that it suffices to show the proposition
for ϕ ∈ EA(H). For ϕh(x) := ei〈h,x〉, x, h ∈ H, we have∫

H

Rtϕh(x)μ(dx) =

∫
H

∫
H

ei〈h,e
tAx+y〉N (0, Qt)(dy)μ(dx)

=

∫
H

ei〈e
tAx,h〉− 1

2 〈Qth,h〉μ(dx)

= e−
1
2 〈Qth,h〉− 1

2 〈Q∞etA
∗
h,etA

∗
h〉

= e−
1
2 〈(Qt+etAQ∞etA

∗
)h,h〉

=

∫
H

ϕh(x)μ(dx),

where the last equality follows from the equation

Qt + etAQ∞etA
∗
= Q∞, t ≥ 0. (3.1)

On the other hand, we obtain

lim
t→∞Rtϕh(x) = lim

t→∞ ei〈e
tAh,x〉− 1

2 〈Qth,h〉

= e−
1
2 〈Q∞h,h〉

=

∫
H

ϕh(x)μ(dx).

For the uniqueness, we suppose that there is an invariant measure ν for
(Rt). In particular ν satisfies∫

H

Rtϕh(x)ν(dx) =

∫
H

ϕh(x)ν(dx)

for ϕh(x) := ei〈h,x〉, x, h ∈ H. This implies that

e−
1
2 〈Qth,h〉ν̂(etA

∗
h) = ν̂(h).

So by letting t→∞ we obtain

ν̂(h) = e−
1
2 〈Q∞h,h〉 = μ̂(h)

and the uniqueness follows now from the characterization of Gaussian mea-
sures (see Theorem 1.2.5). �

Now, one can extend the semigroup (Rt)t≥0 to a C0–semigroup on
Lp(H,μ),
1 ≤ p <∞.

Theorem 3.3.2 Assume that (H3) and (H4) are satisfied. Then, for all t ≥ 0,
Rt can be extended to a bounded linear operator on Lp(H,μ) and (Rt)t≥0

defines a C0–semigroup of contractions on Lp(H,μ) for 1 ≤ p <∞.
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Proof: Let t ≥ 0 and ϕ ∈ BUC(H). By Hölder’s inequality we have

|Rtϕ(x)|p ≤ (Rt|ϕ|p)(x), x ∈ H.

Hence, ∫
H

|Rtϕ(x)|pμ(dx) ≤
∫
H

Rt|ϕ|p(x)μ(dx)

=

∫
H

|ϕ(x)|pμ(dx).

So, the first assertion follows from the density of BUC(H) in Lp(H,μ) for
1 ≤ p <∞ and we have

‖Rtϕ‖Lp(H,μ) ≤ ‖ϕ‖Lp(H,μ), t ≥ 0, ϕ ∈ Lp(H,μ).

Finally, the strong continuity follows from the dominated convergence the-
orem. �

As in Section 3.1 we show that u(t, x) := (Rtϕ)(x), t ≥ 0, x ∈ H, and
ϕ ∈ Lp(H,μ) is the unique classical solution of (KE), which means that

(a) u is continuous on [0,∞)×H, u(t, ·) ∈ C2(H) for all t > 0,

(b) QD2u(t, x) is a trace class operator on H and Du(t, x) ∈ D(A∗) for
every t > 0 and x ∈ H,

(c) A∗Du and Tr(QD2u) are two continuous functions on (0,∞)×H and
u satisfies (KE) for all t > 0 and x ∈ D(A).

This result can be found in [6, Theorem 5].
To this purpose we need the following lemmas (see [6, Proposition 2] and
[5, Proposition 1] or [13, Theorem 10.3.5]).

Lemma 3.3.3 Suppose (H2), (H3) and (H4). Then the following hold.

(i) The family S0(t) := Q
− 1

2∞ etAQ
1
2∞, t ≥ 0, defines a C0–semigroup of

contractions on H.

(ii) The operators S0(t)S
∗
0 (t), t > 0, satisfy

‖S0(t)S
∗
0(t)‖ < 1 and

ΛtΛ
∗
t (Q

− 1
2∞ etA)∗(I − S0(t)S

∗
0 (t))

−1(Q
− 1

2∞ etA).

(iii) For 0 < t0 < t1, the function [t0, t1] � t �→ Λt ∈ L(H) is bounded.
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Lemma 3.3.4 Assume (H2), (H3) and (H4) and let ϕ ∈ Lp(H,μ), 1 < p <
∞. Then, for any t > 0, (Rtϕ)(·) ∈ C∞(H) and

|DnRtϕ(x)| ≤ c(t, n, p, ϕ) <∞
uniformly on bounded subsets of H for n = 0, 1, . . . and some constant
c(t, n, p, ϕ) > 0.

Proof of Lemma 3.3.3: (i) It follows from (H2) and Exercise 3.3.22 that
S0(t), t ≥ 0, are bounded linear operators on H and

S∗0 (t) = Q
1
2∞etA∗Q

− 1
2∞ , t ≥ 0,

which can be defined on H, since kerQ∞ = {0} and hence, Q
1
2∞(H) = H

by Remark 1.3.2. Now, from (3.1), we obtain

0 ≤ 〈Qtx, x〉 = 〈(I − S0(t)S
∗
0(t))Q

1
2∞x,Q

1
2∞x〉, t ≥ 0, x ∈ H.

Hence, ‖S∗0 (t)Q
1
2∞x‖ ≤ ‖Q 1

2∞x‖, t ≥ 0, x ∈ H. Since Q
1
2∞(H) = H, we

deduce that
‖S0(t)‖ ≤ 1, t ≥ 0. (3.2)

The semigroup property can be easily verified. It suffices now to show that
S0(·) is weakly continuous at zero. Let x, y ∈ H. Then,

lim
t→0+

〈S0(t)x,Q
1
2∞y〉 = 〈x,Q 1

2∞y〉,

and the weak continuity follows from (3.2) and the density of Q
1
2∞(H) inH.

(ii) From (3.1) and Exercise 3.3.22 it follows that

I − S0(t)S
∗
0 (t) = (Q

− 1
2∞ Q

1
2
t )(Q

1
2
t Q

− 1
2∞ ), t > 0.

By Exercise 3.3.22 we have that Q−
1
2∞ Q

1
2
t has a bounded inverse and so does

I − S0(t)S
∗
0(t) for t > 0. Since I − S0(t)S

∗
0 (t) is selfadjoint and positive, we

deduce that
‖S0(t)S

∗
0 (t)‖ < 1 for all t > 0.

On the other hand, by Exercise 3.3.22, we have

Λ∗tΛt = (Q
− 1

2
t etA)∗(Q−

1
2

t etA)

= (Q
− 1

2∞ etA)∗(Q−
1
2

t Q
1
2∞)∗(Q−

1
2

t Q
1
2∞)(Q

− 1
2∞ etA)

= (Q
− 1

2∞ etA)∗(I − S0(t)S
∗
0 (t))

−1(Q
− 1

2∞ etA)

for every t > 0.
(iii) Take a > 0 such that

‖S0(t0)S
∗
0(t0)‖ < a < 1.
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Then,

‖S0(t)S
∗
0(t)‖ = ‖S0(t− t0)S0(t0)S

∗
0 (t0)S

∗
0(t− t0)‖

≤ ‖S0(t0)S
∗
0 (t0)‖ < a

for t ∈ [t0, t1]. Now, (iii) follows from the identity

Q
− 1

2∞ etA = (Q
− 1

2∞ et0A)e(t−t0)A

for t ∈ [t0, t1]. �

Proof of Lemma 3.3.4: We fix t > 0 and ϕ ∈ Lp(H,μ). Suppose without
loss of generality that∫

H

|ϕ(etAx+ y)|pN (0, Qt)(dy) <∞ for x = 0. (3.3)

Let consider a sequence (ϕn) ⊂ Bb(H) with |ϕn(x)| ≤ |ϕ(x)| and
limn→∞ ϕn(x) = ϕ(x) for μ–a.a. x and hence, by Exercise 3.3.20, for
N (0, Qt)–a.a. x. So, by (3.3), ϕn converges also to ϕ in Lp(H,N (0, Qt)).
On the other hand, we know from Theorem 3.1.1 that Rtϕn ∈ BUC∞(H).
So, by the Cameron-Martin formula and Hölder’s inequality, we obtain

|Rtϕ(x)−Rtϕn(x)|
≤

∫
H

|ϕ(etAx+ y)− ϕn(e
tAx+ y)|N (0, Qt)(dy)

=

∫
H

exp

(
−1

2
|Λtx|2 + 〈Λtx,Q

− 1
2

t y〉
)
|ϕ(y)− ϕn(y)|N (0, Qt)(dy)

≤
(∫

H

exp

(
−1

2
|Λtx|2 + 〈Λtx,Q

− 1
2

t y〉
)q

N (0, Qt)(dy)

) 1
q

(∫
H

|ϕ(y)− ϕn(y)|pN (0, Qt)(dy)

) 1
p

for 1
p + 1

q = 1. Thus, it follows from Proposition 1.3.3 that

sup
‖x‖≤K

|Rtϕ(x)−Rtϕn(x)| ≤ sup
‖x‖≤K

exp

(
q − 1

2
|Λtx|2

)
‖ϕ−ϕn‖Lp(H,N (0,Qt))

for t > 0 and any constant K > 0. This implies that Rtϕ ∈ C(H).
On the other hand, from Exercise 3.3.21 and the Cameron-Martin formula,
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we have

|〈DRtϕn(x)−DRtϕm(x), y〉|
≤

∫
H

|〈Λty,Q
− 1

2
t h〉(ϕn(e

tAx+ h)− ϕm(etAx+ h))|N (0, Qt)(dh)

≤
(∫

H

|〈Λty,Q
− 1

2
t h〉|r′N (0, Qt)(dh)

) 1
r′

(∫
H

|ϕn(e
tAx+ h)− ϕm(etAx+ h)|rN (0, Qt)(dh)

) 1
r

= cr|Λty|
( ∫

H

exp

(
−1

2
|Λtx|2 + 〈Λtx,Q

− 1
2

t h〉
)

|ϕn(h)− ϕm(h)|rN (0, Qt)(dh)
) 1
r

≤ cr|Λty|
(∫

H

exp

(
− b

2
|Λtx|2 + b〈Λtx,Q

− 1
2

t h〉
)
N (0, Qt)(dh)

) 1
rb

(∫
H

|ϕn(h)− ϕm(h)|pN (0, Qt)(dh)

) 1
p

,

where 1
r +

1
r′ = 1, r > 1, and 1

b +
r
p = 1. So, by Proposition 1.3.3, it follows

that

|DRtϕn(x)−DRtϕm(x)| ≤ c(t, p) exp

(
b− 1

2r
|Λtx|2

)
‖ϕn−ϕm‖Lp(H,N (0,Qt))

for x ∈ H. Thus, DRtϕn converges uniformly on bounded subsets of H to a
continuous function. Using Theorem 3.1.1 and by the same argument one
can show the result for arbitrary n. �

The following result shows the existence and uniqueness of the classical
solution for (KE), for any ϕ ∈ Lp(H,μ), 1 < p <∞.

Theorem 3.3.5 Let (H2), (H3) and (H4) hold. If the operator ΛtA has a
continuous extension ΛtA on H then the function (t, x) �→ (Rtϕ)(x) is the
unique classical solution for (KE) for any ϕ ∈ Lp(H,μ), 1 < p <∞.

Proof: As in Theorem 3.1.2 we prove first that, for every ϕ ∈ Lp(H,μ),
and x ∈ H,

DRtϕ(x) ∈ D(A∗) for all t > 0.

Let t > 0 and ϕ ∈ Lp(H,μ) be fixed. We know from Theorem 3.1.1 and
Lemma 3.3.4 that, for y ∈ D(A),

〈DRtϕ(x), Ay〉 =
∫
H

〈ΛtAy,Q
− 1

2
t h〉ϕ(etAx+ h)N (0, Qt)(dh).



3.3 The Ornstein-Uhlenbeck semigroup on Lp-spaces with invariant
measure 61

Thus, by Hölder’s inequality and Exercise 3.3.21, we obtain

|〈DRtϕ(x), Ay〉| ≤
(∫

H

|〈ΛtAy,Q
− 1

2
t h〉|r′N (0, Qt)(dh)

) 1
r′

(∫
H

|ϕ(etAx+ h)|rN (0, Qt)(dh)

) 1
r

≤ cr|ΛtAy| (Rt|ϕ|r(x))
1
r (3.4)

≤ cr‖ΛtA‖|y| (Rt|ϕ|r(x))
1
r

for x ∈ H, 1
r′ +

1
r = 1, 1 < r < p, and all y ∈ D(A). Since |ϕ|r ∈ L

p
r (H,μ),

it follows from Lemma 3.3.4 that

c(r, ϕ, x) := cr (Rt|ϕ|r(x))
1
r <∞.

Hence, DRtϕ(x) ∈ D(A∗) for t > 0 and x ∈ H.
On the other hand, by Theorem 3.1.1 and Lemma 3.3.4, we haveD2Rtϕ(x)
exists for all x ∈ H and

〈D2Rtϕ(x)ej , ej〉 =
∫
H

[
|〈Λtej , Q

− 1
2

t y〉|2 − |Λtej |2
]
ϕ(etAx+y)N (0, Qt)(dy).

Take 1 < r < p. Then, it follows from Hölder’s inequality and Exercise
3.3.21 that

|〈D2Rtϕ(x)ej , ej〉| ≤
(∫

H

[
|〈Λtej , Q

− 1
2

t y〉|2 − |Λtej |2
]r′
N (0, Qt)(dy)

) 1
r′

(∫
H

|ϕ(etAx+ y)|rN (0, Qt)(dy)

) 1
r

≤ cr|Λtej |2 (Rt|ϕ|r(x))
1
r (3.5)

for x ∈ H, and 1
r′ +

1
r = 1, 1 < r < p. By the same argument as above and

Corollary 3.1.3 we have c(r, ϕ, x) := cr (Rt|ϕ|r(x))
1
r <∞ and

∞∑
j=1

|〈D2Rtϕ(x)ej , ej〉| ≤ c(r, ϕ, x)
∞∑
j=1

|Λjej |2 <∞.

This shows that D2Rtϕ(x) is a trace class operator on H for x ∈ H, t > 0
and ϕ ∈ Lp(H,μ). From Corollary 3.1.3 we know that (KE) has a unique
classical solution u(t, x) := Rtϕ(x) for ϕ ∈ Bb(H). Now, for ϕ ∈ Lp(H,μ),
there is a sequence (ϕn) ⊂ Bb(H)with |ϕn(x)| ≤ |ϕ(x)| and limn→∞ ϕn(x) =
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ϕ(x) for μ–a.a. x ∈ H. It follows from Exercise 3.3.23 that

|Rtϕn(x)−Rtϕ(x)| ≤

≤
(∫

H

k(t, x, y)qμ(dy)

) 1
q

‖ϕn − ϕ‖Lp(H,μ)

= det(I − S0(t)S
∗
0 (t))

1−q
2q det(I + (q − 1)S0(t)S

∗
0(t))

− 1
2q

exp

(
q − 1

2
〈(I + (q − 1)S0(t)S

∗
0(t))

−1Q
− 1

2∞ etAx,Q
− 1

2∞ etAx〉
)

for t > 0, x ∈ H and 1
q+

1
p = 1. So, by Lemma 3.3.3(iii), Rtϕn(x)→ Rtϕ(x)

uniformly in (t, x) ∈ [t0, t1] × {x ∈ H : |x| ≤ K} for 0 < t0 < t1 and any
constant K > 0. Again by Exercise 3.3.23, we obtain

Rt|ϕ|r(x) ≤

≤
(∫

H

k(t, x, y)
p
r μ(dy)

) r
p

‖ϕ‖rLp(H,μ)

= det(I − S0(t)S
∗
0(t))

r−p
2p det(I + (

p

r
− 1)S0(t)S

∗
0(t))

− r
2p

exp

(
p− r

2r
〈(I + (

p

r
− 1)S0(t)S

∗
0(t))

−1Q
− 1

2∞ etAx,Q
− 1

2∞ etAx〉
)

for t > 0, x ∈ H and 1 < r < p. So, by Lemma 3.3.3(iii), (3.4) and (3.5),
it follows that ∂

∂tRtϕn(x) converges uniformly in (t, x) ∈ [t0, t1]× {x ∈ H :
|x| ≤ K}. Hence the function (t, x) �→ Rtϕ(x) is a classical solution for
(KE). The uniqueness follows from Theorem 3.1.2. �

We propose now to characterize symmetric Ornstein-Uhlenbeck semi-
groups on L2(H,μ). To this purpose we need the following lemma.

Lemma 3.3.6 Assume that (H3) and (H4) hold. Then the operator Q∞ is the
only positive and symmetric solution of the following Lyapunov equation

〈Q∞x,A∗y〉+ 〈Q∞A∗x, y〉 = −〈Qx, y〉, x, y ∈ D(A∗). (3.6)

Proof: For x, y ∈ D(A∗), by using integration by part, we have

〈Q∞x,A∗y〉 =

∫ ∞
0

〈esAQesA
∗
x,A∗y〉 ds

=

∫ ∞
0

〈QesA
∗
x,

d

ds
esA

∗
y〉 ds

= −〈Qx, y〉 − 〈Q∞A∗x, y〉.
Suppose now that there is a positive and symmetric opertor R ∈ L(H)
solution of the Lyapunov equation (3.6). Then we obtain

d

dt
〈RetA

∗
x, etA

∗
x〉 = −〈QetA

∗
x, etA

∗
x〉, x ∈ D(A∗).
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So by integrating between 0 and t we obtain

〈RetA
∗
x, etA

∗
x〉 − 〈Rx, x〉 = −〈Qtx, x〉, x ∈ D(A∗).

Now, by letting t→∞ we get

〈Rx, x〉 = 〈Q∞x, x〉 for all x ∈ D(A∗).

This implies that R = Q∞. �

Symmetric Ornstein-Uhlenbeck semigroups on L2(H,μ) are character-
ized by the following result.

Proposition 3.3.7 Suppose (H3) and (H4) hold. Then the following assertion
are equivalent

(i) (Rt)t≥0 is symmetric in L2(H,μ).

(ii) Q∞etA
∗
= etAQ∞ for all t ≥ 0.

(iii) QetA
∗
= etAQ for all t ≥ 0.

If (Rt)t≥0 is symmetric then Q∞ = −1
2A
−1Q.

Proof: For ϕ(x) := ei〈x,h〉 and ϕ̃(x) := ei〈x,h̃〉, x, h ∈ H, we have

Rtϕ(x) = ei〈e
tAx,h〉− 1

2 〈Qth,h〉 and

Rtϕ̃(x) = ei〈e
tAx,h̃〉− 1

2 〈Qth̃,h̃〉.

Thus,∫
H

Rtϕ(x)ϕ̃(x)μ(dx) = e−
1
2 〈Qth,h〉

∫
H

ei〈x,h̃+etA
∗
h〉μ(dx)

= e−
1
2 〈Qth,h〉ei〈Q∞(h̃+etA

∗
h),h̃+etA

∗
h〉

= e−
1
2 〈(Qt+etAQ∞etA

∗
)h,h〉e−

1
2 〈Q∞h̃,h̃〉e−〈Q∞etA

∗
h,h̃〉.

So by (3.1) we obtain∫
H

Rtϕ(x)ϕ̃(x)μ(dx)e
− 1

2 〈Q∞h,h〉− 1
2 〈Q∞h̃,h̃〉−〈Q∞etA

∗
h,h̃〉.

By the same computation we have∫
H

Rtϕ̃(x)ϕ(x)μ(dx)e
− 1

2 〈Q∞h,h〉− 1
2 〈Q∞h̃,h̃〉−〈Q∞etA

∗
h̃,h〉.

Therefore,∫
H

Rtϕ(x)ϕ̃(x)μ(dx) =

∫
H

Rtϕ̃(x)ϕ(x)μ(dx) if and only if

e−〈Q∞etA
∗
h,h̃〉 = e−〈Q∞etA

∗
h̃,h〉 if and only if

Q∞etA
∗

= etAQ∞.
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Hence the equivalence (i) ⇔ (ii) follows from the density of EA(H) in
L2(H,μ) (see Lemma 3.2.1).
The implication (iii)⇒ (ii) is trivial. It remains to prove (ii)⇒ (iii). To this
purpose we consider x ∈ D(A∗). It follows from (ii) that Q∞x ∈ D(A) and

Q∞A∗x = AQ∞x.

So by Lemma 3.3.6 it follows that 2AQ∞ = −Q and hence

Q∞ = −1

2
A−1Q,

which proves the last assertion of the theorem. Again by Lemma 3.3.6 we
have

〈QetA
∗
x, y〉 = −〈Q∞etA

∗
x,A∗y〉 − 〈Q∞A∗etA

∗
x, y〉

= −〈Q∞x,A∗etA
∗
y〉 − 〈Q∞A∗x, etA

∗
y〉.

On the other hand, it follows from Lemma 3.3.6 that

〈etAQx, y〉 = 〈Qx, etA
∗
y〉

= −〈Q∞x,A∗etA
∗
y〉 − 〈Q∞A∗x, etA

∗
y〉.

This implies that

〈QetA
∗
x, y〉 = 〈etAQx, y〉, x, y ∈ D(A∗), t ≥ 0,

which is equivalent to QetA
∗
= etAQ for all t ≥ 0. �

In the particular case where A is selfadjoint we have the following result.

Corollary 3.3.8 If the following assumptions are satisfied

1. A : D(A) → H is selfadjoint and there is ω > 0 such that 〈Ax, x〉 ≤
−ω|x|2 for all x ∈ D(A),

2. QetA = etAQ for all t ≥ 0,

3. QA−1 ∈ L(H) is a trace class operator,

then (Rt)t≥0 is symmetric on L2(H,μ).

Proof: In this particular case we have

Qt = Q

∫ t

0

e2sA ds =
1

2
QA−1(e2tA − I), t ≥ 0.

From the third assumption we have TrQ < ∞ and the second assumption
is exactly the third assertion in Proposition 3.3.7. This end the proof of the
corollary. �

In the special case Q = I we obtain
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Corollary 3.3.9 Assume that A : D(A) → H is selfadjoint, there is ω > 0
such that 〈Ax, x〉 ≤ −ω|x|2 for all x ∈ D(A), A−1 is a trace class operator
and Q = I. Then (Rt)t≥0 is symmetric on L2(H,μ).

We propose now to describe the generator Lp of the Ornstein-Uhlenbeck
semigroup (Rt)t≥0 on Lp(H,μ) 1 ≤ p <∞.
We set

L0ϕ(x) :=
1

2
Tr(QD2ϕ(x)) + 〈x,A∗Dϕ(x)〉, x ∈ H, ϕ ∈ EA(H).

Proposition 3.3.10 If the assumptions (H3) and (H4) are satisfied, then
EA(H) is a core for Lp.

Proof: For ϕ(x) := ei〈h,x〉, h ∈ D(A∗), x ∈ H, we have

Rtϕ(x) =

∫
H

ei〈h,e
tAx+y〉N (0, Qt)(dy)

= ei〈e
tA∗

h,x〉− 1
2 〈Qth,h〉 ∈ EA(H).

Hence,
RtEA(H) ⊆ EA(H), ∀t ≥ 0.

On the other hand we know that

lim
t→0+

1

t
(Rtϕ− ϕ)(x) = ei〈h,x〉

(
i〈A∗h, x〉 − 1

2
〈Qh, h〉

)
= L0ϕ(x), x ∈ H.

So by the dominated convergence theorem we obtain

lim
t→0+

∥∥∥∥1t (Rtϕ− ϕ)− L0ϕ

∥∥∥∥
Lp(H,μ)

= 0.

Thus, EA(H) ⊂ D(Lp) and the assertion follows from the density of EA(H)
in Lp(H,μ) (see Lemma 3.2.1) and Proposition A.2.5. �

In the remaining part of this section we propose to describe exactly the
domain D(L2) of the generator of the symmetric Ornstein-Uhlenbeck semi-
group on L2(H,μ). To this purpose we need some auxiliary results. The
following result was proved independently in [3] and [17].

Proposition 3.3.11 Assume (H3) and (H4). Then the following hold∫
H

L0ϕ(x)ϕ̃(x)μ(dx) =

∫
H

〈Q∞Dϕ̃(x), A∗Dϕ(x)〉μ(dx)∫
H

L0ϕ(x)ϕ(x)μ(dx) = −1

2

∫
H

〈Q 1
2 Dϕ(x), Q

1
2 Dϕ(x)〉μ(dx)

for ϕ, ϕ̃ ∈ EA(H).
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Proof: For ϕ(x) := ei〈h,x〉, ϕ̃(x) := ei〈h̃,x〉, h, h̃ ∈ D(A∗), x ∈ H, we have∫
H

L0ϕ(x)ϕ̃(x)μ(dx)

=

∫
H

ei〈h,x〉
(
i〈A∗h, x〉 − 1

2
〈Qh, h〉

)
ei〈h̃,x〉μ(dx)

= i

∫
H

〈A∗h, x〉ei〈h+h̃,x〉μ(dx)− 1

2
〈Qh, h〉e− 1

2 〈Q∞(h+h̃),h+h̃〉

=
d

dt

(∫
H

ei〈tA
∗h+h+h̃,x〉μ(dx)

)
|t=0

− 1

2
〈Qh, h〉e− 1

2 〈Q∞(h+h̃),h+h̃〉

= −
(
〈Q∞A∗h, h+ h̃〉+ 1

2
〈Qh, h〉

)
e−

1
2 〈Q∞(h+h̃),h+h̃〉.

Hence, it follows from Proposition 3.3.6 that∫
H

〈Q∞Dϕ̃(x), A∗Dϕ(x)〉μ(dx) = −〈A∗h,Q∞h̃〉e− 1
2 〈Q∞(h+h̃),h+h̃〉

=

∫
H

L0ϕ(x)ϕ̃(x)μ(dx).

In particular, and again by Proposition 3.3.6, we obtain∫
H

L0ϕ(x)ϕ(x)μ(dx) =

∫
H

〈Q∞Dϕ(x), A∗Dϕ(x)〉μ(dx)

= −1

2

∫
H

〈QDϕ(x), Dϕ(x)〉μ(dx).

This end the proof of the proposition. �

Remark 3.3.12 If the Ornstein Uhlenbeck semigroup is symmetric, then it
follows from Proposition 3.3.7 that∫

H

L0ϕ(x)ϕ̃(x)μ(dx) = −1

2

∫
H

〈QDϕ(x), Dϕ̃(x)〉μ(dx) (3.7)

for ϕ, ϕ̃ ∈ EA(H).

For the proof of the next proposition we need the following lemma.

Lemma 3.3.13 Assume that kerQ = {0} and Q
1
2∞(H) ⊂ Q

1
2 (H). Then the

operator

DQ : EA(H) ⊂ L2(H,μ)→ L2(H,μ;H); ϕ �→ Q
1
2 Dϕ

is closable.
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Proof: From the closed graph theorem we have K := Q−
1
2 Q

1
2∞ is a

bounded linear operator on H. Its adjoint is given by K∗ = Q
1
2∞Q−

1
2 .

Let (ϕn) ⊂ EA(H) and F ∈ L2(H,μ;H) with limn→∞ ‖ϕn‖L2(H,μ) = 0 and
limn→∞ ‖DQϕn − F‖L2(H,μ;H) = 0. Hence,

Q
1
2∞Dϕn = K∗Q

1
2 Dϕn → K∗F

in L2(H,μ;H) as n → ∞. Now, it follows from Proposition 3.2.10 that
K∗F ≡ 0 and therefore F ≡ 0. This can be obtain by considering the
orthonormal basis of eigenfunctions en, n ∈ N, of Q∞ and the fact that
kerQ∞ = {0}. �

As in Section 2 we define The spaces

W 1,2
Q (H,μ) := D(DQ) and

W 2,2
Q (H,μ) :=

:= {ϕ ∈W 1,2
Q (H,μ) : ϕ ∈

⋂
h,k∈N

D(DhDk),

∫
H

Tr(QD2ϕ(x))2μ(dx) <∞}.

In the following result we obtain that D((−L2)
1
2 ) = W 1,2

Q (H,μ) for sym-
metric Ornstein-Uhlenbeck semigroups on L2(H,μ).

Proposition 3.3.14 Suppose (H3), (H4), kerQ = {0}, andQ
1
2∞(H) ⊆ Q

1
2 (H).

Then,
D(L2) ⊂W 1,2

Q (H,μ).

Moreover, for any ϕ ∈ D(L2),∫
H

L2ϕ(x)ϕ(x)μ(dx)− 1

2

∫
H

〈QDϕ(x), Dϕ(x)〉μ(dx).

In the case where (Rt)t≥0 is symmetric, one has

D((−L2)
1
2 ) = W 1,2

Q (H,μ).

Proof: Let ϕ ∈ D(L2). It follows from Proposition 3.3.10 that there is
(ϕn) ⊂ EA(H) with

lim
n→∞ ‖ϕn − ϕ‖L2(H,μ) = 0 and lim

n→∞ ‖L0ϕn − L2ϕ‖L2(H,μ) = 0.

By Proposition 3.3.11, we have∫
H

〈Q 1
2 D(ϕn − ϕm)(x), Q

1
2 D(ϕn − ϕm)(x)〉μ(dx)

= −2
∫
H

L0(ϕn − ϕm)(x)(ϕn − ϕm)(x)μ(dx).
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Now, one can apply Lemma 3.3.13 and hence ϕ ∈W 1,2
Q (H,μ) and∫

H

L2ϕ(x)ϕ(x)μ(dx)− 1

2

∫
H

〈QDϕ(x), Dϕ(x)〉μ(dx).

On the other hand the last assertion follows from∫
H

|(−L2)
1
2 ϕ(x)|2μ(dx) =

∫
H

|Q 1
2 Dϕ(x)|2μ(dx).

�

Remark 3.3.15 The bilinear form

a(ϕ, ϕ̃) :=

∫
H

〈Q∞Dϕ̃(x), A∗Dϕ(x)〉μ(dx), ϕ, ϕ̃ ∈ EA(H)

is not always continuous on W 1,2
Q (H,μ) × W 1,2

Q (H,μ) and therefore not in
general a Dirichlet form. The continuity of the bilinear form a can be proved
under some additional conditions (see [3] or [17]). In [9] it is proved that a
is a Dirichlet form provided that Q = I, which implies that AQ∞ ∈ L(H).

Suppose now that the assumptions of Corollary 3.3.9 are satisfied. Then
Q∞ = −1

2A
−1. Let consider an orthonormal system (en) ⊂ H and (αn) ⊂

(0,∞) such that
Aen = −αnen, n ∈ N.

The following proposition is the main tool used for the characterization of
the domain of L2.

Proposition 3.3.16 Suppose that the assumptions of Corollary 3.3.9 are sat-
isfied. Then,

1

2

∫
H

Tr
(
(D2ϕ(x))2

)
μ(dx)+

∫
H

|(−A)
1
2 Dϕ(x)|2μ(dx) = 2

∫
H

(L2ϕ(x))
2μ(dx)

for ϕ ∈ EA(H).

Proof: For ϕ ∈ EA(H) we have Dj(L2ϕ) = L2Djϕ − αjDjϕ. Hence, by
Proposition 3.3.14,∫

H

Djϕ(x)Dj(L2ϕ)(x)μ(dx)

=

∫
H

Djϕ(x)L2(Djϕ)(x)μ(dx)− αj

∫
H

|Djϕ(x)|2μ(dx)

= −1

2

∫
H

〈DDjϕ(x), DDjϕ(x)〉μ(dx)− αj

∫
H

|Djϕ(x)|2μ(dx).
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Now, if we take the sum over j ∈ N, we obtain

1

2

∫
H

Tr
(
(D2ϕ(x))2

)
μ(dx) +

∫
H

|(−A)
1
2 Dϕ(x)|2μ(dx)

= −
∫
H

〈Dϕ(x), D(L2ϕ)(x)〉μ(dx).

Since L2ϕ ∈W 1,2(H,μ), it follows from Remark 3.3.12 that∫
H

〈Dϕ(x), D(L2ϕ)(x)〉μ(dx) = −2
∫
H

|L2ϕ(x)|2μ(dx).

Thus,

1

2

∫
H

Tr
(
(D2ϕ(x))2

)
μ(dx)+

∫
H

|(−A)
1
2 Dϕ(x)|2μ(dx) = 2

∫
H

|L2ϕ(x)|2μ(dx).

�

For the characterization of the domain of L2 we need the following space

W 1,2
(−A)(H,μ) := {ϕ ∈W 1,2(H,μ) :

∫
H

|(−A)
1
2 Dϕ(x)|2μ(dx) =∑

k∈N

∫
H

αk|Dkϕ(x)|2μ(dx) <∞}.

Endowed with the inner product

〈ϕ, ψ〉W 1,2
(−A)

(H,μ) := ϕ, ψ〉L2(H,μ) +

∫
H

〈(−A)
1
2 Dϕ(x), (−A)

1
2 Dψ(x)〉μ(dx),

W 1,2
(−A)(H,μ) is Hilbert space.

Theorem 3.3.17 Assume that the assumptions of Corollary 3.3.9 hold. Then,

D(L2) = W 2,2(H,μ) ∩W 1,2
(−A)(H,μ).

Proof: Let ϕ ∈ D(L2). By Proposition 3.3.10 there is (ϕn) ⊂ EA(H) with
ϕn → ϕ and L2ϕn → L2ϕ in L2(H,μ). For n,m ∈ N, it follows from
Proposition 3.3.16 that

2

∫
H

|L2(ϕn − ϕm)(x)|2μ(dx) =
1

2

∫
H

Tr
(
(D2(ϕn − ϕm)(x))2

)
μ(dx) +∫

H

|(−A)
1
2 D(ϕn − ϕm)(x)|2μ(dx).

Therefore (ϕn) is a Cauchy sequence in both spaces W 2,2(H,μ) and
W 1,2

(−A)(H,μ). This implies that

D(L2) ⊆W 2,2(H,μ) ∩W 1,2
(−A)(H,μ).
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Now, if ϕ ∈ W 2,2(H,μ) ∩ W 1,2
(−A)(H,μ) then one can find a sequence

(ϕn) ⊂ EA(H) such that ϕn converges to ϕ in both spaces W 2,2(H,μ) and
W 1,2

(−A)(H,μ). The other inclusion follows now from Proposition 3.3.16. �

In the more general assumptions given in Corollary 3.3.8 one has to
prove the formula

1

2

∫
H

Tr
(
(QD2ϕ(x))2

)
μ(dx) +

∫
H

〈(−AQ)Dϕ(x), Dϕ(x)〉μ(dx) =

= 2

∫
H

(L2ϕ(x))
2μ(dx). (3.8)

The proof of (3.8) is similar to that of Proposition 3.3.16. As in the proof of
Theorem 3.3.17, (3.8) implies the following general result.

Theorem 3.3.18 Suppose that the assumptions of Corollary 3.3.8 hold.
Then,

D(L2) = {ϕ ∈W 2,2
Q (H,μ) :

∫
H

〈(−AQ)Dϕ(x), Dϕ(x)〉μ(dx) <∞}.

Remark 3.3.19 Theorem 3.3.17 and 3.3.18 are due to Da Prato [10]. In the
finite dimensional case Lunardi [24] proved first that D(L2) = W 2,2(RN , μ),
by making heavy use of interpolation theory. A simpler proof of the same result
can be found in [11]. Recently, this result was extended to p ∈ (1,∞) (see [25]
or [26]).

Exercise 3.3.20 Assume (H1) and (H2). Prove that N (0, Qt) is N (0, Q∞)–
absolutely continuous.

Exercise 3.3.21 Let 1 < p < ∞, and B ∈ L+
1 (H) with kerB = {0}. Show

that ∫
H

|〈h,B− 1
2 y〉|pN (0, B)(dy) = |h|p

∫
R

|y|pN (0, 1)(dy).

This generalizes the case p = 2 proved in Proposition 1.3.1.

Exercise 3.3.22 Assume (H1) and (H2). Show that

(i) Q
1
2
t (H) = Q

1
2∞(H).

(ii) For any t > 0, S0(t) := Q
− 1

2∞ etAQ
1
2∞ is a Hilbert-Schmidt operator on

H.

(iii) Deduce that etA is a trace class operator on H for every t > 0.

Exercise 3.3.23 Assume (H2), (H3) and (H4).
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(a) Show that
Qt = Q

1
2∞(I − S0(t)S

∗
0(t))Q

1
2∞, t ≥ 0.

(b) By using the Cameron-Martin formula and the Feldman-Hajek theorem
(see Exercise 1.3.6) show that

Rtϕ(x) =

∫
H

k(t, x, y)ϕ(y)μ(dy), μ− a.a. x ∈ H,

with

k(t, x, y) :=

exp

(
−1

2
|Λtx|2 + 〈(I − S0(t)S

∗
0 (t))

−1S0(t)Q
− 1

2∞ x,Q
− 1

2∞ y〉
)
·

·det(I − S0(t)S
∗
0(t))

− 1
2 ·

· exp
(
−1

2
〈S0(t)S

∗
0(t)(I − S0(t)S

∗
0 (t))

−1Q
− 1

2∞ y,Q
− 1

2∞ y〉
)

for t > 0, and x, y ∈ H.

(c) Show that, for any 1 < q <∞,∫
H

k(t, x, y)qμ(dy) =

det(I − S0(t)S
∗
0(t))

1−q
2 det(I + (q − 1)S0(t)S

∗
0(t))

− 1
2

exp

(
q(q − 1)

2
〈(I + (q − 1)S0(t)S

∗
0(t))

−1Q
− 1

2∞ etAx,Q
− 1

2∞ etAx〉
)

for t > 0 and x ∈ H, (see [6, Lemma 3]).

Exercise 3.3.24 Suppose (H2), (H3) and (H4). Use the formula

〈DRtϕ(x), y〉 =
∫
H

〈Λty,Q
− 1

2
t h〉ϕ(etAx+ h)N (0, Qt)(dh),

which, by Lemma 3.3.4, remains valid for t > 0 and ϕ ∈ Lp(H,μ) to prove
that

RtL
p(H,μ) ⊂W 1,p(H,μ)

for t > 0 and 1 ≤ p < ∞. Deduce from [7] that the Ornstein-Uhlenbeck
semigroup (Rt) is immediately compact in Lp(H,μ).





APPENDIX

A.1 THE CLASSICAL BOCHNER THEOREM

In this section we recall the classical theorem of Bochner and for the sake
of completeness we will give the proof.
First of all we say that a family Λ of probability measures on (E,B(E)) is
tight if for any ε > 0 there is a compact set Kε ⊂ E such that

μ(Kε) ≥ 1− ε for all μ ∈ Λ.

Here E is a separable Banach space and B(E) its Borel σ-field.
A sequence of measures (μp) on (E,B(E)) is said to be weakly convergent
to a measure μ if for every ϕ ∈ Cb(E)

lim
p→∞

∫
E

ϕ(x)μp(dx) =

∫
E

ϕ(x)μ(dx).

A family Λ of measures on (E,B(E)) is said relatively compact if for an
arbitrary sequence (μp) ⊂ Λ contains a weakly convergent subsequence
(μpk) to a measure μ on (E,B(E)).
The following result is due to Prokhorov (cf. [12, Theorem 2.3]).

Theorem A.1.1 A set Λ of probability measures on (E,B(E)) is tight if and
only if is relatively compact.

For the proof of the Bochner theorem we need the following lemma.

Lemma A.1.2 Assume that (μp) is a sequence of probability measures on
(RN ,B(RN )). If ϕp(z) := μ̂p(z) converges to ϕ(z) for all z ∈ RN and if
this convergence is uniform in {z ∈ RN : |z| ≤ a} for a small number a, then
{μp : p ∈ N} is tight.
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Proof: Since ϕp is continuous and (ϕp) converges uniformly in a neighbor-
hood of 0, it follows that ϕ is continuous at 0 and ϕ(0) = 1. Hence, for any
ε > 0 there is δ ∈ (0, a) such that

|ϕ(z)− 1| < ε for all |z| < δ.

It follows now from the uniform convergence of (ϕp) to ϕ in {z ∈ RN : |z| <
δ} that there exists M = M(ε) independent of z such that

|ϕp(z)− 1| < ε

2
, ∀p ≥M, ∀|z| < δ.

So, by Fubini’s theorem we have

1− ε

2
<

1

(2δ)N

∫ δ

−δ
. . .

∫ δ

−δ
	ϕp(z) dz

=
1

(2δ)N

∫ δ

−δ
. . .

∫ δ

−δ

∫
RN

cos〈z, x〉μp(dx) dz

=

∫
RN

(
sin δx1

δx1

)
. . .

(
sin δxN
δxN

)
μp(dx),

where the last equality can be seen by induction.
Since

∣∣∣ sin δxj
δxj

∣∣∣ is dominated by 1 on [−R,R] and by 1
δR elsewhere, we obtain

∫
RN

(
sin δx1

δx1

)
. . .

(
sin δxN
δxN

)
μp(dx) ≤ μp([−R,R]N ) +

(
1

δR

)N

.

Take now R := 1
δ

(
2
ε

) 1
N , it follows that

1− ε < μp([−R,R]N ) for all p ≥M.

This gives the proof of the lemma. �

We are now ready to show the classical Bochner theorem. The argu-
ments are taking from the proof in one dimensional case (see [20, Theorem
2.6.6]).

Theorem A.1.3 A functional ϕ : RN → C is the Fourier transform of a prob-
ability measure on RN if and only if ϕ is a continuous positive definite func-
tional satisfying ϕ(0) = 1.

Proof: It suffices to prove the sufficiency. Assume that ϕ : RN → C is a con-
tinuous positive definite functional with ϕ(0) = 1. Then, by Lemma 1.1.3,
ϕ is uniformly continuous and bounded. Take now g : RN → C integrable,
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bounded and uniformly continuous. If we set ẏ := (y2, . . . , yN ) ∈ RN−1

then we haveZ
RN

Z
RN

ϕ(ξ − η)g(ξ)g(η) dξdη

=

Z
RN−1×RN−1

„Z
R

Z
R

ϕ(ξ1 − η1, ξ̇ − η̇)g(ξ1, ξ̇)g(η1, η̇) dξ1dη1

«
dξ̇dη̇

=

Z
RN−1×RN−1

lim
p→∞

p2X
l,k=−p2

ϕ

„
l

p
− k

p
, ξ̇ − η̇

«
g

„
l

p
, ξ̇

«
g

„
k

p
, η̇

« „
1

p

«2

dξ̇dη̇

≥ 0. (9)

Put g(ξ) := N (0, p4IdRN )(ξ)e−i〈x,ξ〉, ξ, x ∈ RN . Since

N (0,
p

4
IdRN )(ξ) = N (0,

p

4
IdRN )(−ξ) and

N (0,
p

4
IdRN )(ξ) ∗ N (0,

p

4
IdRN )(ξ) = N (0,

p

2
IdRN )(ξ)

it follows that, for x ∈ RN ,∫
RN

g(ξ + η)g(η) dη = e−i〈x,ξ〉
1

(pπ)
N
2

e−
|ξ|2
p ,

where N (0, p4IdRN )(ξ) : 1

(π(p/2))
N
2
e−2

|ξ|2
p for ξ ∈ RN and IdRN denotes the

identity operator in RN . So by (9) we obtain

0 ≤
∫

RN

∫
RN

ϕ(ξ − η)g(ξ)g(η)dξdη

=

∫
RN

(∫
RN

g(ξ + η)g(η) dη

)
ϕ(ξ) dξ

=
1

(pπ)
N
2

∫
RN

ϕ(ξ)e−
|ξ|2
p e−i〈x,ξ〉 dξ.

Thus,

fp(x) :=
1

(2π)N

∫
RN

ϕ(ξ)e−
|ξ|2
p e−i〈x,ξ〉 dξ ≥ 0

for x ∈ RN . Define the measure μp(dx) := fp(x)dx. We propose to show
now that μp is a probability measure on RN . First, by applying Fubini’s
theorem, observe that

μp([−a1, a1]× . . .× [−aN , aN ])

=
1

(2π)N

∫ a1

−a1

. . .

∫ aN

−aN

∫
RN

ϕ(ξ)e−
|ξ|2
p e−iξ1x1 . . . e−iξNxN dξ dx1 . . . dxN

=
1

πN

∫
RN

ϕ(ξ)e−
|ξ|2
p

(
sin a1ξ1

ξ1

)
. . .

(
sin aNξN

ξN

)
dξ.
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On the other hand, for m ∈ N, we have

1

mN

∫ m

0

. . .

∫ m

0

μp([−a1, a1]× . . .× [−aN , aN ]) da1 . . . daN =∫ 1

0

. . .

∫ 1

0

μp([−a1m, a1m]× . . .× [−aNm, aNm]) da1 . . . daN .

Since μp([−a1m, a1m]×. . .×[−aNm, aNm]) ↑ μp(R
N ) asm→∞, it follows

from the monotone convergence theorem that

μp(RN )

= lim
m→∞

1

mN

Z m

0

. . .

Z m

0

μp([−a1, a1] × . . . × [−aN , aN ]) da

= lim
m→∞

1

(πm)N

Z m

0

. . .

Z m

0

Z
RN

ϕ(ξ)e
− |ξ|2

p

„
sin a1ξ1

ξ1

«
. . .

„
sin aNξN

ξN

«
dξ da

= lim
m→∞

1

πN

Z
RN

ϕ(ξ)e
− |ξ|2

p

„
1 − cos mξ1

mξ2
1

«
. . .

„
1 − cos mξN

mξ2
N

«
dξ

= lim
m→∞

1

πN

Z
RN

ϕ(
ξ1

m
, . . . ,

ξN

m
)e−

|ξ|2
mp

„
1 − cos ξ1

ξ2
1

«
. . .

„
1 − cos ξN

ξ2
N

«
dξ,

where a := (a1, . . . , aN ). Since ϕ(0) = 1 and

1− cos ξj
ξ2
j

≥ 0,

∫
R

1− cos ξj
ξ2
j

= π, ∀j = 1, . . . , N, (10)

it follows from the dominated convergence theorem that

μp(R
N ) = ϕ(0) = 1.

Let compute now the Fourier transform of μp. For aj ≥ 0 and m ∈ N,
observe that

∣∣∣∣ 1

(2π)N

∫ aNm

−aNm

. . .

∫ a1m

−a1m

ei〈z,x〉
∫

RN

ϕ(ξ)e−
|ξ|2
p e−i〈ξ,x〉 dξdx

∣∣∣∣
≤ 1

(2π)N

∫
RN

∫
RN

ϕ(ξ)e−
|ξ|2
p e−i〈ξ,x〉 dξdx

= μp(R
N ) = 1.
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So it follows from the dominated convergence theorem that

cμp(z)

= lim
m→∞

1

(2π)N

Z 1

0
. . .

Z 1

0

"Z aNm

−aNm
. . .

Z a1m

−a1m

Z
RN

ϕ(ξ)e
− |ξ|2

p e−i〈ξ−z,x〉 dξdx

#
da

= lim
m→∞

1

πN

Z 1

0
. . .

Z 1

0

Z
RN

ϕ(ξ)e
− |ξ|2

p

„
sin a1m(ξ1 − z1)

ξ1 − z1

«
. . .„

sin aNm(ξN − zN )

ξN − zN

«
dξda

= lim
m→∞

1

πN

Z
RN

ϕ(ξ)e
− |ξ|2

p

„
1 − cos m(ξ1 − z1)

m(ξ1 − z1)2

«
. . .

„
1 − cos m(ξN − zN )

m(ξN − zN )2

«
dξ

= lim
m→∞

1

πN

Z
RN

ϕ(z +
ξ

m
)e

− |z+ ξ
m

|2
p

„
1 − cos ξ1

ξ2
1

«
. . .

 
1 − cos ξN

ξ2
N

!
dξ.

So, again by the dominated convergence theorem and (10), we obtain

μ̂p(z) = ϕ(z)e−
|z|2
p , z ∈ RN .

Finally,
lim
p→∞ μ̂p(z) = ϕ(z)

uniformly in |z| ≤ 1. The theorem follows now from Lemma A.1.2 and
Theorem A.1.1. �

A.2 C0-SEMIGROUPS

In this section we give a general discussion of the abstract Cauchy problem
for unbounded linear operators on a Banach space and its relation to the
theory of C0-semigroups. For more details we refer to the recent books
of Engel-Nagel [16] and Arendt-Batty-Hieber-Neubrander [1]. A particular
attention will be dedicated to the class of eventually norm continuous C0-
semigroups.

We consider the abstract Cauchy problem

(ACP )

{
du
dt (t) = Au(t), t ≥ 0,
u(0) = x,

where A is a possibly unbounded linear operator with domain D(A) on a
Banach space X and x ∈ X. A classical solution of (ACP ) is a function
u ∈ C1(R+, X) such that u(t) ∈ D(A) for all t ≥ 0 and u satisfies (ACP ).

Now we introduce C0-semigroups.

Definition A.2.1 A family T (·) := (T (t))t≥0 of bounded linear operators on
X is called a C0-semigroup if
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(i) limt↓0 ‖T (t)x− x‖ = 0, ∀x ∈ X,

(ii) T (t+ s) = T (t)T (s) for all t, s ≥ 0 and T (0) = Id.

The generator of T (·) is the linear operator A defined by

D(A) = {x ∈ X : lim
t↓0

T (t)x− x

t
exists },

Ax = lim
t↓0

T (t)x− x

t
, x ∈ D(A).

One can prove that the generator is always a closed and densely defined
operator. The domain D(A) satisfies

T (t)D(A) ⊆ D(A) and AT (t)x = T (t)Ax, ∀t ≥ 0.

Moreover, for x ∈ D(A),

d

dt
T (t)x = AT (t)x, t ≥ 0.

This shows that for x ∈ D(A) the problem (ACP ) has a classical solution
u(·) := T (·)x. We say that (ACP ) is well-posed if for each initial value
x ∈ D(A) there is a unique classical solution u(·, x) satisfying

for any sequence (xn) ⊂ D(A)with limn→∞ ‖xn−x‖ = 0 for x ∈
D(A), the corresponding classical solutions u(·, xn) converges to
u(·, x) uniformly on compact subsets of R+.

The following theorem shows that wellposedness is equivalent to genera-
tion of C0-semigroups.

Theorem A.2.2 Let A be a linear operator with domain D(A) on a Banach
space X. Then the following assertion are equivalent:

(a) A is the generator of a C0-semigroup on X.

(b) The abstract Cauchy problem (ACP) associated with A is well-posed.

On the other hand, for a C0-semigroup T (·), one has
‖T (t)‖ ≤Meωt, t ≥ 0,

for some constants ω ∈ R and M ≥ 1. If we denote by

ω0(A) := inf{ω ∈ R : there is Mω ≥ 1 with ‖T (t)‖ ≤Mωe
ωt, ∀t ≥ 0}

the growth bound of the C0-semigroup T (·) with generator A, then
(ω0(A),∞) ⊂ ρ(A), the resolvent set of A, and the resolvent R(λ,A) of A is
given by

R(λ,A)x =

∫ ∞
0

e−λtT (t)x dt, x ∈ X, λ > ω0(A).

In the following proposition we collect some properties of C0-semigroups
and their generators.



A.2 C0-semigroups 79

Proposition A.2.3 Let T (·) be a C0-semigroup on a Banach space X. If
(A,D(A)) denotes its generator then the following assertions hold:

(i)
∫ t

0
T (s)x ds ∈ D(A) and A

∫ t

0
T (s)x ds = T (t)x − x for all x ∈ X and

t ≥ 0.

(ii) A
∫ t

0
T (s)x ds =

∫ t

0
T (s)Axds = T (t)x− x for all x ∈ D(A) and t ≥ 0.

(iii) limλ→∞ λR(λ,A)x = x for all x ∈ X.

(iv) R(λ,A)T (t) = T (t)R(λ,A) for all λ ∈ ρ(A) and t ≥ 0.

In many applications it is difficult to identify the domain of the generator of
a C0-semigroup. It is often the case that one can find a “large” subspace of
D(A) as defined now.

Definition A.2.4 A subspace D of D(A), the domain of a linear operator A
on a Banach space X is called a core for A if D is dense in D(A) for the graph
norm

‖x‖A := ‖x‖+ ‖Ax‖, x ∈ D(A).

A useful criterion for subspaces to be a core for the generator of a C0-
semigroup is given by the following proposition.

Proposition A.2.5 Let (A,D(A)) be the generator of a C0-semigroup
(T (t))t≥0 on a Banach space X and D be a subspace of D(A). If D is dense
in X and invariant under (T (t))t≥0, then D is a core for A.

We propose now to introduce different classes of semigroups. In the
sequel we denote the sector in C of angle δ by

Σδ := {λ ∈ C : | arg λ| < δ} \ {0}.

Definition A.2.6 A family (T (z))z∈Σθ∪{0} ⊂ L(X) on a Banach space X is
called an analytic semigroup (of angle θ ∈ (0, π

2 ]) if

(a1) T (0) = Id and T (z1 + z2) = T (z1)T (z2) for all z1, z2 ∈ Σθ.

(a2) The map z �→ T (z) is analytic in Σθ.

(a3) limΣθ′�z→0 T (z)x = x for all x ∈ X and 0 < θ′ < θ.

If, in addition

(a4) ‖T (z)‖ is bounded in Σθ′ for every 0 < θ′ < θ,

we call (T (z))z∈Σθ∪{0} a bounded analytic semigroup.

The following theorem gives useful characterization of generators of
bounded analytic semigroups.
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Theorem A.2.7 Let (A,D(A) be an operator on a Banach space X. Then the
following assertions are equivalent:

(i) A generates a bounded analytic semigroup (T (z))z∈Σθ∪{0} on X.

(ii) A generates a bounded C0-semigroup T (·) on X with rg(T (t)) ⊂ D(A)
for all t > 0, and

‖AT (t)‖ ≤ M

t

for some positive constant M .

(iii) There is δ ∈ (0, π2 ) such that e
±iδA generate bounded C0-semigroups on

X.

(iv) Σθ+π
2
⊂ ρ(A) and for each ε ∈ (0, θ) there is Mε ≥ 1 such that

‖R(λ,A)‖ ≤ Mε

|λ| for all 0 �= λ ∈ Σθ+π
2−ε.

From (ii) above we see that if T (·) is an analytic semigroup, then the maps
0 < t �→ T (t)x are differentiable for every x ∈ X. This motivate the follow-
ing definition.

Definition A.2.8 A C0-semigroup T (·) on a Banach space X is called eventu-
ally (resp. immediately) differentiable if there is t0 ≥ 0 such that the maps
(t0,∞) � t �→ T (t)x (resp. (0,∞) � t �→ T (t)x) are differentiable for every
x ∈ X.

A characterization of differentiable semigroups in terms of the spectrum
and the growth of the resolvent can be proved (cf. [16, Theorem II.4.14]).

Finally we recall the class of eventually norm continuous C0-semigroups.

Definition A.2.9 A C0-semigroup T (·) on a Banach space X is called even-
tually (resp. immediately) norm continuous if there is t0 ≥ 0 such that the
mapping (t0,∞) � t �→ T (t) ∈ L(X) (resp. (0,∞) � t �→ T (t) ∈ L(X)) is
norm continuous.

It is an easy exercise to see that the following implications between the
three classes of semigroups hold:

analytic =⇒ immediately differentiable =⇒ immediately norm continuous,

analytic =⇒ eventually differentiable =⇒ eventually norm continuous. (11)

On Hilbert spaces eventually norm C0-semigroups are completely charac-
terized (cf. [16, Theorem II.4.20]). But in general Banach spaces such a
characterization remain open. However a necessary condition can be ob-
tained as the following theorem shows.
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Theorem A.2.10 If (A,D(A)) is the generator of an eventually norm con-
tinuous C0-semigroup T (·) on a Banach space X, then, for every a ∈ R, the
set

{λ ∈ σ(A) : 	λ ≥ a}
is bounded.
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