CAPITOLO 20

Flock ovali e gruppi 2-transitivi

In questo capitolo consideriamo i flock di un cono che possono essere costruiti a partire da un'ovale in PG(3, q).

DEFINIZIONE 20.1. (1) Sia O un'ovale in PG(2,K),K campo, e sia P un punto che non \acute{e} in O. Si consideri il cono C avente per generatrici le rette PQ, dove Q \acute{e} un punto di O. Chiameremo il punto P il vertice di C. Un'ovale di traslazione \acute{e} un'ovale O per cui esiste un gruppo di traslazioni T del piano che contiene O che fissa il punto $(\infty) = C \cap (l$ 'asse di traslazione) e agisce transitivamente su $C - (\infty)$.

(2) Un flock ovale é un insieme di piani $\{\pi_{\alpha} \mid \alpha \in \lambda\}$ dove $\cup \pi_{\alpha} = C - P$ e i $\pi_{\alpha} \cap C$ hanno due a due intersezione identica.

Naturalmente, per K=GF(q) e q dispari, un'ovale in un piano Desarguesiano é una conica (il risultato é di Segre).

Per q pari tutte gli ovali di traslazione in un piano Desarguesiano possono essere rappresentate nella forma $\{(1, t, t^{\sigma}), (0, 0, 1) \mid t \in GF(q = 2^r)\}$ dove per $\sigma = 2^s$ allora (s, r) = 1 (il risultato é di Payne).

Jha e Johnson hanno trovato una classe di flock ovali di traslazione in cui l'ovale non é una conica. Cioé, l'ovale in questione é un'ovale di traslazione. Questo flock ammette un gruppo di automorfismi che agisce due transitivamente sui piani del flock. Recentemente, é stato notato che tali flock coincidono con quelli trovati da D. Fisher e J.A. Thas (si veda D. Fisher e J.A. Thas, Flocks in PG(3,q). Math. Zeit. 169 (1979) 1-11).

TEOREMA 20.2. (Fisher e Thas, si veda anche Jha-Johnson [56]).

Sia q pari, q $\equiv -1 \mod 3$, e sia σ un automorfismo di GF(q). Rappresentiamo un'ovale di traslazione nella forma $\{(1,t,t^{\sigma}),(0,0,1)\mid t\in GF(q)\}$. Siano coordinate omogenee per $PG(3,q),(x_o,x_1,x_2,x_3)$ con $x_i\in GF(q)$ per i=0,1,2,3.

Si consideri l'ovale nel piano $x_3 = 0$ e prenda il cono di traslazione usando (0,0,0,1) come vertice.

Allora, il seguente insieme di piani é un flock ovale.

$$\pi_s$$
: $s^{\sigma+1}\mathbf{x}_o + s^{\sigma}\mathbf{x}_1 + s\mathbf{x}_2 + \mathbf{x}_3 = 0$ al variare di $s \in GF(q)$.

Inoltre, questo flock ammette un gruppo di automorfismi che agisce due transitivamente sui piani del flock. Il gruppo é ST, dove

$$S = \left\langle \begin{bmatrix} 1 & s & s^{\sigma} & s^{\sigma+1} \\ 0 & 1 & 0 & s^{\sigma} \\ 0 & 0 & 1 & s \\ 0 & 0 & 0 & 1 \end{bmatrix} \mid s \in GF(q) \right\rangle$$

$$T = \left\langle \begin{bmatrix} t^{\sigma+1} & 0 & 0 & 0 \\ 0 & t^{\sigma-1} & 0 & 0 \\ 0 & 0 & t^{1-\sigma} & 0 \\ 0 & 0 & 0 & t^{-1-\sigma} \end{bmatrix} \mid \ t \ \in \ GF(q) \right\rangle.$$

Dim: Supponiamo che il siffatto insieme di piani ammetta il gruppo ST. Allora, abbiamo un flock se e soltanto se l'intersezione $\pi_1 \cap \pi_o \cap (\text{il cono})$ é banale. Questo equivale a mostrare che $x_1+x_2+x_3=0$ non é possibile per i punti (x_1,x_2,x_3) del cono. Le rette del cono sono

$$L_{\infty} = \langle (0, 0, 1, 0), (0, 0, 0, 1) \rangle, L_t = \langle (1, t, t^{\sigma}, 0), (0, 0, 0, 1) \rangle.$$

Nel primo caso, un'intersezione con L_{∞} darebbe $x_1=x_2=0$ e quindi $x_3=0$.

Nel secondo caso, un'intersezione con L_t implicherebbe $\beta(1+t+t^{\sigma})=0$ per ogni $\beta \in GF(q)$. Quindi, la traccia $(1+t+t^{\sigma})=0=$ traccia(1). Ma quando $q\equiv -1$ mod 3 questo non é possibile.

Definizione 20.3. Un flock come quello dato in (20.2) si chiama un flock ovale di traslazione di Thas.

Questo flock corrisponde a un (q+1)-arco in PG(3,q). Allora, si puó prendere $C(\sigma) = \{(1,t,t^{\sigma},t^{\sigma+1}),(0,0,0,1) \mid t \in GF(q)\}$ per $\sigma = 2^s$, $q = 2^r$ dove (r,s) = 1 come un (q+1)-arco. Il piano in PG(3,q) che é tangente a

 $(1, t, t^{\sigma}, t^{\sigma+1})$ é $t^{\sigma+1}\mathbf{x}_o + t^{\sigma}\mathbf{x}_1 + t\mathbf{x}_2 + \mathbf{x}_3 = 0$ (per esempio, si veda Lüneburg [112](44.3)). Il piano tangente a (0,0,0,1) é ($\mathbf{x}_o = 0$).

Teorema 20.4. (Jha-Johnson [**56**]).

Sia C un (q+1)-arco in PG(3,q), per q pari e q \equiv -1 mod 3. Allora, esiste esattamente una polarità simplettica β tale che per un punto fissato di C, Q_o, i piani { $P^{\beta} \mid \mathbf{P} \in C - \{Q_o\}$ } formano un flock ovale di traslazione di Thas.

Dim: Si noti che nelle rappresentazione date sopra, la polarità può essere definita dalle funzione g tale che g(x₀,x₁,x₂,x₃,y_o,y₁,y₂,y₃) = x₀y₃+ x₃y₀+x₁y₂+x₂y₁. Inoltre, SL(2,q) agisce sul (q+1)-arco come un prodotto tensoriale $G=SL(2,q)\otimes SL(2,q)^{\sigma}$, dove la notazione indica la rappresentazione normale e la rappresentazione sghemba usando l'automorfismo σ . Il gruppo che agisce sul flock ovale di traslazione é un sottogruppo di ordine q(q-1) di G.

Con (20.4), é possibile determinare tutti i flock isomorfi.

Teorema 20.5. (Jha-Johnson [**56**]).

In PG(3,2^r),r dispari, ci sono esattamente $\phi(\mathbf{r})/2$ flock ovali di traslazione di Thas non sono isomorfi dove ϕ é la funzione di Eulero.

Inoltre, per tali flock vale che non esistono quattro piani del flock aventi un punto in comune.

Recentemente, Thas ha dimostrato il seguente teorema:

TEOREMA 20.6. (Thas [139]).

Sia F un flock conico in PG(3,q) per $q \ge 4$. Se (a) q é pari o (b) q é dispari, con q > 83 o q < 17 o q = 27 o q = 81, allora, F é il flock di Fisher-Thas-Walker se e soltanto se non ci sono quattro piani del flock che hanno un punto in comune.

La dimostrazione di Thas usa la teoria della cubica sghemba. É possibile, quindi, provare il seguente teorema.

Teorema 20.7. (Jha - Johnson [56]).

Sia F un flock ovale in $PG(3,2^r)$ tale che non ci sono quattro piani di F che hanno un punto in comune. Allora, F é un flock ovale di traslazione di Thas.

Quando l'ovale é una conica, questi flock si chiamano **flock di Betten** perché questi flock corrispondono ai piani di traslazione di Betten [11]. Questi flock ammettono un gruppo di automorfismi che agisce in modo 2-transitivo sui piani del flock. Allora poniamo la seguente domanda:

Quali sono i flock ovali che ammettono un gruppo 2-transitivo?

Per esempio, il flock di Kantor-Knuth ammettono un gruppo 2-transitivo.

Ricordiamo che il piano di traslazione corrispondente a questo flock può essere rappresentato nella seguente forma:

La fibrazione in PG(3,q) consiste degli spazi vettoriali $x=0,\,y=x\begin{bmatrix} u & \alpha t^\sigma \\ t & u \end{bmatrix}$ tale che $u,t\in GF(q),\,q$ dispari, α fissato in $GF(q),\,\sigma$ un automorfismo per ogni elemento t in GF(q). Questa fibrazione é un fibrazione su un semicorpo e quindi esiste un gruppo transitivo. Ma anche il seguente gruppo agisce sul piano:

$$\langle \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & t^{(\sigma-1)/2} & 0 & 0 \\ 0 & 0 & t^{(\sigma+1)/2} & 0 \\ 0 & 0 & 0 & t^{\sigma} \end{bmatrix} \mid t \in GF(q) - \{0\} \rangle$$

Questo gruppo induce un gruppo di automorfismi sul flock che agisce 2-transitivamente.

Jha e Johnson hanno determinato completamente tale classe:

Teorema 20.8. (Jha-Johnson [57], [58]).

Sia F un flock ovale in PG(3,q) che ammette un gruppo in PGL(4,q) 2-transitivo sui piani del flock. Allora si ha uno dei seguenti casi:

- (1) F é lineare
- (2) L'ovale é un ovale di traslazione
- (a) Se q é dispari allora il flock é un flock di Kantor-Knuth o un flock di Fisher-Thas-Walker.
- (b) Se ${\bf q}$ é pari e l'ovale é una conica allora il flock é un flock di Betten.
- (c) Se q é pari e l'ovale non é una conica allora il flock é un flock ovale di traslazione di Thas.