
CHAPTER G

The Lagrange Four Square Theorem

Representing natural numbers as sums of squares is an important topic of
number theory. Given a general natural number n, denote by r`(n) the
number of integer solutions of Diophantine equation

n = x2
1 + x2

2 + · · ·+ x2
`

which counts the number of ways in which n can be written as sums of `
squares. In `-dimensional space, r`(n) gives also the number of points with
integer coordinates on the sphere.

When ` is odd, the problem is very difficult. However for the even case,
the problem may be treated in a fairly reasonable manner. Combining
Ramanujan’s 1ψ1-bilateral formula with the Jacobi-triple product identity,
we present solutions for the two square and four square problems. The six
and eight square problems are dealt with similarly by means of Bailey’s
bilateral 6ψ6-series identity.

G1. Representations by two square sums

When ` = 2, the result may be stated as the following q-series identity
{ +∞∑

n=−∞
qn2

}2

= 1 + 4
∞∑

k=1

qk

1 + q2k

and the corresponding formula for the numbers of representations by two
squares

r2(n) = 4
∑

(1+2c) | n

(−1)c = 4
∑

2 6 | d | n

(−1)(
d
2).

Proof. According to the Jacobi triple product identity
+∞∑

n=−∞
qn2

=
+∞∑

n=−∞
(−1)nq2(

n
2)(−q)n =

[
q2,−q,−q; q2

]
∞
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we have shifted factorial product expression

{ +∞∑

n=−∞
qn2

}2

=
[
q2,−q,−q; q2

]2

∞

which can be reformulated by means of the Euler formula as

[
q2,−q,−q; q2

]2
∞ =

[
q2, q2,−q,−q; q2

]
∞[

q, q,−q2,−q2; q2
]
∞
.

Recalling Ramanujan’s 1ψ1-bilateral series identity

1ψ1

[
a
c

∣∣∣ q; z
]

=
[
q, c/a, az, q/az
c, q/a, z, c/az

∣∣∣ q
]

∞

we have
{ +∞∑

n=−∞
qn2

}2

= 1ψ1

[
−1
−q2

∣∣∣ q2; q
]

= 1 +
∞∑

k=1

{
(−1; q2)k

(−q2; q2)k
qk +

(−1; q2)−k

(−q2; q2)−k
q−k

}
.

Noting further two relations on shifted factorial fractions:

(−1; q2)−k

(−q2; q2)−k
=

(−1; q2)k

(−q2; q2)k
q2k

(−1; q2)k

(−q2; q2)k
=

2
1 + q2k

we find the following simplified expression

{ +∞∑

n=−∞
qn2

}2

= 1 + 4
∞∑

k=1

qk

1 + q2k
.

Extracting the coefficient of qn, we establish

r2(n) = [qn]
{
1 + 4

∞∑

k=1

qk

1 + q2k

}

= [qn]
{
1 + 4

∞∑

k=1

∞∑

m=0

(−1)mqk(1+2m)
}

= 4
∑

(1+2m)|n

(−1)m.

This completes the solution of representations by two square sums. �
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G2. Representations by four square sums

The Lagrange four square theorem states that every natural number can
be expressed as sum of four square numbers. More precisely, we have the
following q-series identity

{ +∞∑

n=−∞
qn2

}4

=
{

(−q; −q)∞
(q; −q)∞

}4

= 1 +
∞∑

n=1

8nqn

1 + (−q)n

and the corresponding formula for the numbers of representations by four
squares

r4(n) = 8
∑

4 6 | d | n

d ⇒ r4(n) ≥ 1 for n = 1, 2, · · · .

Its demonstration is similar to that for the case of two squares. Based on
Ramanujan’s bilateral sum, we have the following limiting relation
{ (

q; q
)
∞(

−q; q
)
∞

}4

= lim
z→−q

2
1 + q/z

[
q, q, −z, −q/z
−q, −q, z, q/z

∣∣∣ q
]

∞

= lim
z→−q

2
1 + q/z

1ψ1

[
−1
−q

∣∣∣ q; z
]

= lim
z→−q

2
1 + q/z

{
1 +

∞∑

n=1

(−1; q)n

(−q; q)n
zn +

∞∑

n=1

(−1; q)−n

(−q; q)−n
z−n

}

= lim
z→−q

2
1 + q/z

{
1 +

∞∑

n=1

2zn

1 + qn
+

∞∑

n=1

2(q/z)n

1 + qn

}
.

Reformulating the last sum as

∞∑

n=1

2(q/z)n

1 + qn
=

∞∑

n=1

{2(q/z)n(1 + qn)
1 + qn

−
2(q2/z)n

1 + qn

}

=
2q/z

1− q/z
−

∞∑

n=1

2(q2/z)n

1 + qn

we may compute the limit explicitly as
{ (

q; q
)
∞(

−q; q
)
∞

}4

= lim
z→−q

2
1 + q/z

{
1 + q/z

1− q/z +
∞∑

n=1

2zn

1 + qn

[
1− (q/z)2n

]}

= 1 +
∞∑

n=1

8n(−q)n

1 + qn
.
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On the other hand, it is not hard to derive
+∞∑

n=−∞
(−1)nqn2

=
[
q2, q, q; q2

]
∞ =

(q; q)∞
(−q; q)∞

.

Performing the parameter replacement q → −q, we find the following ex-
pression:

{ +∞∑

n=−∞
qn2

}4

=

(
− q;−q

)4

∞(
q;−q

)4

∞

= 1 +
∞∑

n=1

8nqn

1 + (−q)n

which is equivalent to the sum for r4(n). In fact, observe that

1 + 8
∞∑

n=1

nqn

1 + (−q)n
= 1 + 8

∞∑

k=1

2kq2k

1 + q2k
+ 8

∞∑

k=1

(2k − 1)q2k−1

1− q2k−1
.

Noting that

2kq2k

1 + q2k
=

2k(q2k − q4k)
1− q4k

=
2kq2k

1− q2k
− 4kq4k

1− q4k

we have

1 + 8
∞∑

n=1

nqn

1 + (−q)n
= 1 + 8

∞∑

k=1
4 6 |k

kqk

1− qk
.

Extracting the coefficient of qn, we therefore have

r4(n) = [qn]
{
1 + 8

∞∑

k=1
4 6 |k

kqk

1− qk

}
= [qn]

{
1 + 8

∞∑

k=1
4 6 |k

∞∑

m=1

kqkm
}

= 8
∑

k|n
4 6 |k

k.

This completes the solution of representations by four square sums. �

By means of Bailey’s bilateral 6ψ6-series identity, we now investigate the
representations by six and eight squares.

G3. Representations by six square sums

There hold the following q-series identity
{ ∞∑

n=−∞
qn2

}6

=
{(−q;−q)∞

(q;−q)∞

}6

= 1 + 16
∞∑

n=1

n2qn

1 + q2n

− 4
∞∑

n=0

(−1)n (1 + 2n)2q1+2n

1− q1+2n
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and the corresponding formula for the numbers of representations by six
squares

r6(n) = 16
∑

d | n

d2χ(n/d)− 4
∑

d | n

d2χ(d)

where the quadratic Dirichlet character χ(d) is defined by

χ(d) =





+1, d ≡4 +1
−1, d ≡4 −1
0, d ≡2 0.

The proof will be fulfilled in three steps.

G3.1. Recall Bailey’s very well-poised non-terminating bilateral series
identity

6ψ6

[
qa1/2, −qa1/2, b, c, d, e

a1/2, −a1/2, qa/b, qa/c, qa/d, qa/e

∣∣∣ q; qa2

bcde

]

=
[
q, qa, q/a, qa/bc, qa/bd, qa/be, qa/cd, qa/ce, qa/de
qa/b, qa/c, qa/d, qa/e, q/b, q/c, q/d, q/e, qa2/bcde

∣∣∣ q
]

∞

provided that
∣∣qa2/bcde

∣∣ < 1.

Specifying with b = c = d = −1 and e→∞, we may restate it as

(q; q)∞(q/a; q)∞(qa; q)4∞
(−q; q)3∞(−qa; q)3∞

= 1+
∞∑

k=1

a2k 1− q2ka

1− a
(−1; q)3k
(−qa; q)3k

q(
1+k
2 )

+
∞∑

k=1

a−2k 1− q−2ka

1− a
(−1; q)3−k

(−qa; q)3−k

q(
1−k
2 )

= 1+
∞∑

k=1

q(
1+k
2 )

1− a

{(
a2k − q2ka1+2k

) (−1; q)3k
(−qa; q)3k

+
(
q2kak − a1+k

) (−1/a; q)3k
(−q; q)3k

}
.
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Letting a→ 1, we can compute, through L’Hôspital’s rule, the limit of the
summand as follows:

8
1− q2k

(1 + qk)3
q(

1+k
2 )

{
(1 + 2k)q2k − 2k

1− q2k
+ 3

k∑

i=1

qi

1 + qi

+
(1 + k)− kq2k

1− q2k
− 3

k−1∑

j=0

qj

1 + qj

}

=
4q(

1+k
2 )+k

(1 + qk)3
{

6− (1− 2k)qk − (1 + 2k)q−k
}
.

Therefore we have found the expression:

{ (q; q)∞
(−q; q)∞

}6

= 1 + 4
∞∑

k=1

q(
1+k
2 )+k

(1 + qk)3
{

6− (1− 2k)qk − (1 + 2k)q−k
}
.

G3.2. Denoting the last sum with respect to k by ♣(q) and then recalling
the binomial expansion

qk

(1 + qk)3
=

∞∑

`=1

(−1)1+`
( 1 + `

2

)
qk`

we can manipulate ♣(q) in the following manner:

♣(q) =
∞∑

k=1

q(
1+k
2 )+k

(1 + qk)3
{
6− (1− 2k)qk − (1 + 2k)q−k

}

=
∞∑

k=1

∞∑

`=1

(−1)1+`
( 1 + `

2

){
6− (1− 2k)qk − (1 + 2k)q−k

}
q(

1+k
2 )+k`

=
∞∑

k=1

∞∑

`=0

(−1)1+`

{
6

( 1 + `
2

)
+(1−2k)

(
`
2

)
+(1+2k)

( 2 + `
2

)}
q(

1+k
2 )+k`

.

Rewriting the q-exponent by

( 1 + k
2

)
+ k` =

1
2

{
k(1 + 2`+ k)

}

and then simplifying the binomial sum

6
( 1 + `

2

)
+ (1− 2k)

( `
2

)
+ (1 + 2k)

(2 + `
2

)

= (1 + 2`)× (1 + 2k + 2`) = (1 + k + 2`)2 − k2
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we can split ♣, according to the parity of k, into two double sums:

♣(q) =
∞∑

k=1

∞∑

`=0

(−1)1+`
{

(1 + k + 2`)2 − k2
}
q(

1+k
2 )+k` (G3.1a)

=
∞∑

k=1

∞∑

`=0

(−1)1+`
{

(1 + 2k + 2`)2 − (2k)2
}
qk(1+2k+2`) (G3.1b)

+
∞∑

k=1

∞∑

`=0

(−1)1+`
{

(2k + 2`)2 − (2k − 1)2
}
q(k+`)(2k−1). (G3.1c)

G3.3. Putting n := k + ` and then applying the geometric series, we can
reduce (G3.1b) as follows:

Eq(G3.1b) =
∞∑

k=1

∞∑

n=k

(−1)1+n−k
{

(1 + 2n)2 − (2k)2
}
qk(1+2n)

=
∞∑

n=1

(−1)1+n(1 + 2n)2
n∑

k=1

(−1)kqk(1+2n)

+
∞∑

k=1

(−1)k(2k)2qk
∞∑

n=k

(−1)nq2nk

=
∞∑

n=0

(1 + 2n)2

1 + q1+2n

{
(−1)nq1+2n − q(1+n)(1+2n)

}

+
∞∑

k=1

4k2

1 + q2k
qk(1+2k).

We can also treat (G3.1c) analogously:

Eq(G3.1c) =
∞∑

k=1

∞∑

n=k

(−1)1+n−k
{

(2n)2 − (2k − 1)2
}
qn(2k−1)

=
∞∑

n=1

(−1)1+n(2n)2q−n
n∑

k=1

(−1)kq2nk

+
∞∑

k=1

(−1)k(2k − 1)2
∞∑

n=k

(−1)nqn(2k−1)

=
∞∑

n=1

(2n)2

1 + q2n

{
(−1)nqn − qn(1+2n)

}

+
∞∑

k=1

(2k − 1)2

1 + q2k−1
qk(2k−1).
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Their combination leads us to the following:

♣(q) = Eq(G3.1a) = Eq(G3.1b) + Eq(G3.1c)

=
∞∑

n=0

(−1)n q1+2n

1 + q1+2n
(1 + 2n)2 + 4

∞∑

n=1

(−1)n n2qn

1 + q2n
.

Replacing q by −q, we have finally established the q-series identity:

{ ∞∑

n=−∞
qn2

}6

=
{ (−q;−q)∞

(q;−q)∞

}6

= 1 + 4♣(−q)

= 16
∞∑

n=1

n2qn

1 + q2n
− 4

∞∑

n=0

(−1)n (1 + 2n)2q1+2n

1− q1+2n
.

Extracting the coefficient of qn, we get the formula for r6(n) stated in the
Theorem. This completes the solution of representations by six square sums.

�

G4. Representations by eight square sums

Following the same procedure to the last section, we can also show the eight
square sum theorem. But the proof is much easier this time.

The theorem states that there hold the q-series identity:

{ ∞∑

n=−∞
qn2

}8

=
{ (−q;−q)∞

(q;−q)∞

}8

= 1 + 16
∞∑

n=1

n3qn

1− (−q)n

and the corresponding formula for the numbers of representations by eight
squares

r8(n) = 16
∑

d | n

(−1)n+d d3.

The proof is divided into two parts.
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G4.1. Putting with b = c = d = e = −1 in Bailey’s very well-poised
non-terminating bilateral series identity, we can write the result as

(q; q)∞(q/a; q)∞(qa; q)7∞
(qa2; q)∞(−q; q)4∞(−qa; q)4∞

= 1+
∞∑

k=1

1− q2ka

1− a
(−1; q)4k
(−qa; q)4k

(qa2)k

+
∞∑

k=1

1− q−2ka

1− a
(−1; q)4−k

(−qa; q)4−k

(qa2)−k

= 1+
∞∑

k=1

qk

1− a

{(
a2k − q2ka1+2k

) (−1; q)4k
(−qa; q)4k

+
(
q2ka2k − a1+2k

) (−1/a; q)4k
(−q; q)4k

}
.

Letting a→ 1, we can compute, through L’Hôspital’s rule, the limit of the
summand as follows:

16qk 1− q2k

(1 + qk)4

{
(1 + 2k)q2k − 2k

1− q2k
+ 4

k∑

i=1

qi

1 + qi

+
(1 + 2k)− 2kq2k

1− q2k
− 4

k−1∑

j=0

qj

1 + qj

}

=
16q2k

(1 + qk)4
{
4− qk − q−k

}
.

Therefore we have found the expression:

{ (q; q)∞
(−q; q)∞

}8

= 1 + 16
∞∑

k=1

q2k

(1 + qk)4
{
4− qk − q−k

}
.

G4.2. Denoting the last sum with respect to k by ♦(q) and then recalling
the binomial expansion

q2k

(1 + qk)4
=

∞∑

`=2

(−1)`
( 1 + `

3

)
qk`
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we can manipulate ♦(q) in the following manner:

♦(q) =
∞∑

k=1

q2k

(1 + qk)4
{

4− qk − q−k
}

=
∞∑

k=1

∞∑

`=2

(−1)`
(1 + `

3

){
4− qk − q−k

}
qk`

=
∞∑

k=1

∞∑

`=1

(−1)`

{
4
(1 + `

3

)
+

(
`
3

)
+

( 2 + `
3

)}
qk`

=
∞∑

k=1

∞∑

`=1

(−1)``3qk` =
∞∑

`=1

(−1)` q`

1− q`
`3

where the following binomial sum has been used

4
(1 + `

3

)
+

(
`
3

)
+

( 2 + `
3

)
= `3.

Now replacing q by −q, we derive the q-series identity:
{ ∞∑

n=−∞
qn2

}8

=
{ (−q;−q)∞

(q;−q)∞

}8

= 1 + 16♦(−q)

= 1 + 16
∞∑

n=1

n3qn

1− (−q)n
.

Extracting the coefficient of qn, we get the formula for r8(n) stated in the
Theorem. This completes the solution of representations by eight square
sums. �

G5. Jacobi’s identity and q-difference equations

Among q-difference equations, there is a beautiful result due to Jacobi
(1829), which will be proved and generalized in this section.

G5.1. Jacobi’s q-difference equation. The identity on eight infinite
products states that

(
−q; q2

)8

∞ −
(
q; q2

)8

∞ = 16q
(
−q2; q2

)8

∞

which has been commented by Jacobi (1829) as “aequatio identica satis
abstrusa”.

Its proof can be fulfilled by means of the Jacobi-triple product identity and
Lagrange’s four square theorem.
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In fact, multiplying both sides by
(
q2; q2

)4

∞ and then noticing that

[
q2, q, q; q2

]
∞ =

+∞∑

m=−∞
(−1)m qm2

we can reformulate the eight product difference equation as follows

2q
∞∑

m=0

r4(1 + 2m) q2m = q
{ +∞∑

n=−∞
qn(n+1)

}4

= q
∞∑

n=0

s4(n) q2n

where s4(n) is the number of integer solutions of Diophantine equation

n =
( 1 + x1

2

)
+

( 1 + x2

2

)
+

( 1 + x3

2

)
+

( 1 + x4

2

)

which counts the number of ways expressing n as sums of four triangles. It
is equal to the number of integer solutions of Diophantine equation

4 + 8n = (1 + 2x1)2 + (1 + 2x2)2 + (1 + 2x3)2 + (1 + 2x4)2.

The last one is in turn the number of odd integer solutions of Diophantine
equation

4 + 8n = y2
1 + y2

2 + y2
3 + y2

4

whose integer solutions enumerated by r4(4 + 8n) may be divided into two
categories: odd integer solutions counted by s4(n) and even integer solutions
by r4(1 + 2n). Therefore we have

s4(n) = r4(4 + 8n) − r4(1 + 2n) = 2r4(1 + 2n)

which leads us to Jacobi’s q-difference equation.

G5.2. Theorem. Generalizing the Jacobi q-difference equation, we prove,
by combining the telescoping method with bailey’s bilateral 6ψ6-series iden-
tity, the following theorem due to Chu (1992).

For five parameters related by multiplicative relation A2 = bcde, there holds

〈A/b; q〉∞ 〈A/c; q〉∞ 〈A/d; q〉∞ 〈A/e; q〉∞ (G5.1a)

− 〈b; q〉∞ 〈c; q〉∞ 〈d; q〉∞ 〈e; q〉∞ (G5.1b)

= b 〈A; q〉∞ 〈A/bc; q〉∞〈A/bd; q〉∞ 〈A/be; q〉∞ (G5.1c)

where the q-shifted factorial for |q| < 1 is defined by

(x; q)∞ =
∞∏

n=0

(1− xqn) and 〈x; q〉∞ = (x; q)∞ × (q/x; q)∞.

This identity reduces to Jacobi’s equation under parameter replacements

q→ q2 : A = −q2 and b = c = d = e = −q.
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Proof. Define the factorial fractions by

Tk :=
[
b, c, d, e
A/b, A/c, A/d, A/e

∣∣∣ q
]

k

.

It is trivial to check factorization

(1− qkA/b)(1− qkA/c)(1− qkA/d)(1− qkA/e)

− (1− qkb)(1− qkc)(1− qkd)(1− qke)

= bqk(1− q2kA)(1− A/bc)(1−A/bd)(1−A/be)

which leads us to the following difference relation:

Tk − Tk+1 =
[

b, c, d, e
qA/b, qA/c, qA/d, qA/e

∣∣∣ q
]

k

×

{
(1−qkA/b)(1−qkA/c)(1−qkA/d)(1−qkA/e)

−(1−qkb) (1−qkc) (1−qkd) (1−qke)

}

(1− A/b)(1−A/c)(1− A/d)(1− A/e)

=
[

b, c, d, e
qA/b, qA/c, qA/d, qA/e

∣∣∣ q
]

k

× bqk(1 − q2kA)(1− A/bc)(1−A/bd)(1−A/be)
(1− A/b)(1−A/c)(1− A/d)(1−A/e)

.

Reformulating the last relation as

1− q2kA

1−A

[
b, c, d, e

qA/b, qA/c, qA/d, qA/e

∣∣∣ q
]

k

qk

=
{
Tk − Tk+1

} (1− A/b)(1−A/c)(1− A/d)(1−A/e)
b(1−A)(1 −A/bc)(1− A/bd)(1− A/be)

and then applying the telescoping method, we derive the bilateral finite
summation formula:

n−1∑

k=m

1− q2kA

1− A

[
b, c, d, e

qA/b, qA/c, qA/d, qA/e

∣∣∣ q
]

k

qk (G5.2a)

=
(1− A/b)(1−A/c)(1− A/d)(1−A/e)
b(1−A)(1 −A/bc)(1−A/bd)(1− A/be)

n−1∑

k=m

{
Tk − Tk+1

}
(G5.2b)

=
(1− A/b)(1−A/c)(1− A/d)(1−A/e)
b(1−A)(1 −A/bc)(1−A/bd)(1− A/be)

{
Tm − Tn

}
. (G5.2c)
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Recalling the definition of Tk and keeping in mind of A2 = bcde, we have

lim
n→+∞

Tn =
[
b, c, d, e
A/b, A/c, A/d, A/e

∣∣∣ q
]

∞

lim
m→−∞

Tm = lim
m→+∞

[
b, c, d, e
A/b, A/c, A/d, A/e

∣∣∣ q
]

−m

= lim
m→+∞

[
qb/A, qc/A, qd/A, qe/A
q/b, q/c, q/d, q/e

∣∣∣ q
]

m

=
[
qb/A, qc/A, qd/A, qe/A
q/b, q/c, q/d, q/e

∣∣∣ q
]

∞
.

Now letting m →−∞ and n→ +∞ in (G5.2), we get a closed formula for
the non-terminating bilateral convergent series:

6ψ6

[
q
√
A, −q

√
A, b, c, d, e√

A, −
√
A, qA/b, qA/c, qA/d, qA/e

∣∣∣ q; q
]

=
(1−A/b)(1− A/c)(1− A/d)(1− A/e)
b(1− A)(1− A/bc)(1−A/bd)(1−A/be)

×
{ [

qb/A, qc/A, qd/A, qe/A
q/b, q/c, q/d, q/e

∣∣∣ q
]

∞

−
[
b, c, d, e
A/b, A/c, A/d, A/e

∣∣∣ q
]

∞

}
.

Alternatively, the last bilateral sum can be evaluated by Bailey’s 6ψ6-series
identity with A2 = bcde as follows:

6ψ6

[
qA1/2, −qA1/2, b, c, d, e

A1/2, −A1/2, qA/b, qA/c, qA/d, qA/e

∣∣∣ q; qA2

bcde

]

=
[
qA, q/A, qA/bc, qA/bd, qA/be, qA/cd, qA/ce, qA/de
qA/b, qA/c, qA/d, qA/e, q/b, q/c, q/d, q/e

∣∣∣ q
]

∞
.

Equating the right members of both results, we get the following relation:

b

[
A, q/A, A/bc, A/bd, A/be, qA/cd, qA/ce, qA/de

A/b, A/c, A/d, A/e, q/b, q/c, q/d, q/e

∣∣∣ q
]

∞

=
[
qb/A, qc/A, qd/A, qe/A
q/b, q/c, q/d, q/e

∣∣∣ q
]

∞
−

[
b, c, d, e

A/b,A/c,A/d,A/e

∣∣∣ q
]

∞

which is equivalent to the q-difference equation

b 〈A; q〉∞ 〈A/bc; q〉∞〈A/bd; q〉∞ 〈A/be; q〉∞
= 〈A/b; q〉∞ 〈A/c; q〉∞ 〈A/d; q〉∞ 〈A/e; q〉∞
− 〈b; q〉∞ 〈c; q〉∞ 〈d; q〉∞ 〈e; q〉∞.
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This proves the q-difference equation stated in Theorem G5.2. �

G5.3. A trigonometric identity. The discovery of Theorem G5.2 has
been inspired by the following interesting fact. Given five parameters related
instead by additive relation 2A = b+ c+ d+ e, it can be verified that

(A−b)(A−c)(A−d)(A−e) − bcde = A(A−b−c)(A−b−d)(A−b−e).
Surprisingly, it is also true even if we replace each linear factor with its sine
function:

sin(A−b) sin(A−c) sin(A−d) sin(A−e) − sin b sin c sin d sin e

= sinA sin(A− b− c) sin(A − b− d) sin(A− b− e).
The q-difference equation displayed in Theorem G5.2 may be considered as
the q-analogue of this trigonometric identity.

According to the factorial fraction

〈x; q〉∞
(1− q)(q; q)2∞

=
1− x
1− q

∞∏

n=1

(1− qnx)(1− qn/x)
(1− qn)2

we have the following limit relation

lim
q→1

〈qx; q〉∞
(1− q)(q; q)2∞

= lim
q→1

1− qx

1− q

∞∏

n=1

(1− qn+x)(1− qn−x)
(1− qn)2

= x
∞∏

n=1

{
1− x2

n2

}
=

sin(πx)
π

.

Replacing first b, c, d, e respectively by qb, qc, qd, qe in the q-difference
equation stated in Theorem G5.2, then dividing both sides by (1−q)4(q; q)8∞
and finally letting q→ 1, we get the following trigonometric formula:

sinπA sinπ(A − b− c) sinπ(A − b− d) sinπ(A− b− e)
= sinπ(A−b) sinπ(A−c) sinπ(A−d) sinπ(A−e)
− sinπb sinπc sinπd sinπe, (b + c+ d+ e = 2A)

which is the equivalent form of the trigonometric identity to be proved. �




