
CHAPTER E

Basic Hypergeometric Series

This chapter introduces the basic hypergeometric series. Its convergence
condition will be determined. The fundamental transformations and sum-
mation formulae will be covered briefly.

E1. Introduction and notation

E1.1. Definition. Let
{
ai

}r

i=0
and

{
bj

}s

j=1
be complex numbers subject

to the condition that bj 6= q−n with n ∈ N0 for all j = 1, 2, · · · , s. Then the
basic hypergeometric series with variable z is defined by

1+rφs

[
a0, a1, · · ·, ar

b1, · · ·, bs

∣∣∣q; z
]

=
∞∑

n=0

(a0; q)n(a1; q)n···(ar; q)n

(q; q)n(b1; q)n···(bs; q)n
zn

{
(−1)nq(

n
2)}s−r

.

Remark If there is a numerator parameter ai = q−k with k ∈ N0, then the
q-hypergeometric series is terminating, which is in fact a polynomial of z.
When the series is nonterminating, we assume that |q| < 1 for convenience.

E1.2. Convergence condition. For the q-hypergeometric series just de-
fined, the convergence conditions are as follows:

(A) If s > r, the series is convergent for all z ∈ C;
(B) If s < r, the series is convergent only when z = 0;
(C) If s = r, the series is convergent for |z| < 1.

Proof. Denote by Tn the summand of q-hypergeometric series

Tn :=
{
(−1)nq(

n
2)}s−r (a0; q)n(a1; q)n · · · (ar ; q)n

(q; q)n(b1; q)n · · · (bs; q)n
zn.
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To determine the convergence conditions, we consider the term-ratio:

Tn+1

Tn
= z

(1− qna0)(1− qna1) · · · (1− qnar)
(1− qn+1)(1− qnb1) · · · (1− qnas)

(−qn)s−r.

On account of |q| < 1, we have |qn| → 0 as n → +∞. Hence we get the
following limit:

lim
n→+∞

∣∣∣∣
Tn+1

Tn

∣∣∣∣ =





0, r < s

+∞, r > s and z 6= 0
|z|, r = s.

According to the D’Alembert ratio test, the convergence conditions stated
in the Theorem follow immediately. �

E1.3. Classification. For the basic hypergeometric series, suppose r = s,
the very important case. If the product of denominator parameters is equal
to the base q times the product of numerator parameters, i.e.,

qa0a1 · · ·ar = b1b2 · · ·br

then the 1+rφr-series is called balanced or Saalschützian.

Instead, if the numerator parameters and the denominator parameters can
be paired up so that each column has the same product:

qa0 = a1b1 = · · · = arbr

then we say that the 1+rφr-series is well-poised. In particular, it is said to
be very-well-poised if we have a1 = −a2 = q

√
a0 in addition. These pairs of

parameters appear in the basic hypergeometric sum as a linear fraction

1− a0q
2k

1− a0
=

(q
√
a0; q)k

(
√
a0; q)k

×
(−q√a0; q)k

(−√a0; q)k
.

E1.4. Examples. In terms of q-series, we can reformulate the Euler and
Gauss summation formulae as follows:

(z; q)∞ = 1φ1

[
−
−

∣∣∣ q; z
]

=
∞∑

k=0

(−z)k

(q; q)k
q(

k
2)

1
(z; q)∞

= 1φ0

[
0
−

∣∣∣ q; z
]

=
∞∑

k=0

zk

(q; q)k
.

They will be used to demonstrate the q-binomial theorem.
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E1.5. Ordinary hypergeometric series. In comparison with the basic
hypergeometric series, we present here briefly the ordinary hypergeometric
series, its convergence condition and classification. The details can be found
in the book by Bailey (1935).

Let
{
ai

}r

i=0
and

{
bj

}s

j=1
be complex numbers subject to the condition that

bj 6= −n with n ∈ N0 for j = 1, 2, · · · , s. Then the ordinary hypergeometric
series with variable z is defined by

1+rFs

[
a0, a1, · · ·, ar

b1, · · ·, bs

∣∣∣ z
]

=
∞∑

n=0

(a0)n(a1)n · · · (ar)n

n! (b1)n · · · (bs)n
zn

where the (rising) shifted factorial is defined by

(c)0 = 1 and (c)n = c(c + 1) · · · (c + n− 1) for n = 1, 2, · · · .

Classification Similar to basic hypergeometric series, we consider the
case r = s for ordinary hypergeometric series. If the sum of denominator
parameters is equal to one plus the sum of numerator parameters, i.e.,

1 + a0 + a1 + · · ·+ ar = b1 + b2 + · · ·+ br

then the 1+rFr-series is called balanced or Saalschützian.

Instead, if the numerator parameters and the denominator parameters can
be paired up so that each column has the same sum:

1 + a0 = a1 + b1 = · · ·= ar + br

then we say that the 1+rFr-series is well-poised. In particular, it is said to
be very-well-poised if we have a1 = 1 + a0/2 in addition. The last pair of
parameters appear in the (ordinary) hypergeometric sum as a linear fraction

a0 + 2k
a0

=
(1 + a0/2)k

(a0/2)k
.

Convergence condition for the (ordinary) hypergeometric series is deter-
mined as follows:

• if r < s, the 1+rFs-series converges for all z ∈ C;
• if r > s, the 1+rFs-series diverges for all z ∈ C except for z = 0;
• if r = s, the 1+rFr-series converges for |z| < 1, and when

z = +1 if <(B − A) > 0

z = −1 if <(B − A) > −1

where A and B are defined respectively by
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A =
r∑

i=0

ai and B =
r∑

j=1

bj.

Remark Noting that the limit relation between ordinary and q-shifted
factorials

lim
q→1

(qc; q)k

(1− q)k
= (c)k

we can consider the (ordinary) hypergeometric series as the limit of the
basic hypergeometric series:

1+rFs

[
a0, a1, · · ·, ar

b1, · · ·, bs

∣∣∣ z
]

= lim
q→1

1+rφs

[
qa0 , qa1, · · ·, qar

qb1 , · · ·, qbs

∣∣∣ q; (−1)r−s z

(1− q)r−s

]
.

This explains why there exist generally the q-counterparts for the (ordinary)
hypergeometric series identities.

E2. The q-Gauss summation formula

This section will prove the q-binomial theorem, the q-Gauss summation
formula as well as the q-Chu-Vandermonde convolution.

E2.1. The q-binomial theorem. In terms of hypergeometric series, the
classical binomial theorem reads as follows:

1F0

[
c
−

∣∣∣ z
]

=
∞∑

n=0

(c)n

n!
zn =

1
(1− z)c

, (|z| < 1).

Its q-analog is given by the following q-binomial theorem:

1φ0

[
c
−

∣∣∣ q; z
]

=
(cz; q)∞
(z; q)∞

=
∞∑

n=0

(c; q)n

(q; q)n
zn, (|z| < 1). (E2.1)

For c = 0 this identity reduces to Gauss summation formula. Replacing z
by z/c and then letting c→∞, we recover from it the Euler formula.
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Proof. In fact, expanding the numerator and the denominator respectively
according to Euler and Gauss summation formulae, we have

(cz; q)∞
(z; q)∞

=
∞∑

i=0

(−1)i cizi

(q; q)i
q(

i
2)

∞∑

j=0

zj

(q; q)j

=
∞∑

n=0

zn

(q; q)n

n∑

i=0

(−1)iq(
i
2)

[
n

i

]
ci =

∞∑

n=0

(c; q)n

(q; q)n
zn

where the last line follows from the finite q-differences. �

E2.2. The q-Gauss summation formula. The q-binomial theorem can
be generalized to the following theorem.

For three complex numbers a, b and c with |c/ab| < 1, there holds

2φ1

[
a, b

c

∣∣∣ q; c/ab
]

=
∞∑

n=0

(a; q)n(b; q)n

(q; q)n(c; q)n

(
c/ab

)n =
(c/a; q)∞(c/b; q)∞
(c; q)∞(c/ab; q)∞

.

Proof. We can manipulate, by means of the q-binomial theorem (E2.1),
the infinite series as follows:
∞∑

n=0

(a; q)n(b; q)n

(q; q)n(c; q)n

( c

ab

)n

=
(b; q)∞
(c; q)∞

∞∑

n=0

(a; q)n(qnc; q)∞
(q; q)n(qnb; q)∞

( c

ab

)n

=
(b; q)∞
(c; q)∞

∞∑

n=0

(a; q)n

(q; q)n

( c

ab

)n
∞∑

k=0

(c/b; q)k

(q; q)k

(
qnb

)k

=
(b; q)∞
(c; q)∞

∞∑

k=0

(c/b; q)k

(q; q)k
bk

∞∑

n=0

(a; q)n

(q; q)n

(qkc

ab

)n

=
(b; q)∞
(c; q)∞

∞∑

k=0

(c/b; q)k

(q; q)k
bk

(qkc/b; q)∞
(qkc/ab; q)∞

=
(b; q)∞(c/b; q)∞
(c; q)∞(c/ab; q)∞

∞∑

k=0

(c/ab; q)k

(q; q)k
bk

=
(c/a; q)∞(c/b; q)∞
(c; q)∞(c/ab; q)∞

which establishes the q-Gauss summation formula. �

E2.3. The q-analog of Chu-Vandermonde convolution. The termi-
nating case of the q-Gauss summation formula can be reformulated as the
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q-analogues of the Chu-Vandermonde convolution:

2φ1

[
q−n, b

c

∣∣∣ q; qn c/b

]
=

(c/b; q)n

(c; q)n
(E2.2a)

2φ1

[
q−n, b

c

∣∣∣ q; q
]

=
(c/b; q)n

(c; q)n
bn (E2.2b)

n∑

k=0

[
x

k

][
y

n − k

]
q(x−k)(n−k) =

[
x+ y

n

]
. (E2.2c)

Proof. The first formula is the case a = q−n of the q-Gauss theorem,
which can be reformulated to other two identities.

By definition of q-hypergeometric series, rewrite (E2.2a) explictly as

2φ1

[
q−n, b

c

∣∣∣ q; qnc/b

]
=

n∑

k=0

(q−n; q)k(b; q)k

(q; q)k(c; q)k
(qnc/b)k =

(c/b; q)n

(c; q)n
.

Considering that

(x; q)n−k = (−1)kx−kq(
k+1
2 )−nk (x; q)n

(q1−n/x; q)k

we can manipulate the reversed series as follows:

(c/b; q)n

(c; q)n
=

n∑

k=0

(q−n; q)n−k(b; q)n−k

(q; q)n−k(c; q)n−k
(qnc/b)n−k

=
(q−n; q)n(b; q)n

(q; q)n(c; q)n
(qnc/b)n

n∑

k=0

(q−n; q)k(q1−n/c; q)k

(q; q)k(q1−n/b; q)k
qk

=
(q−n; q)n(b; q)n

(q; q)n(c; q)n
(qnc/b)n

2φ1

[
q−n, q1−n/c

q1−n/b

∣∣∣ q; q
]

which is equivalent to

2φ1

[
q−n, q1−n/c

q1−n/b

∣∣∣ q; q
]

= (−1)nq−(n
2)

(b
c

)n (c/b; q)n

(b; q)n

in view of
(q−n; q)n = (−1)nq−(n+1

2 )(q; q)n.

Performing the parameter replacements

B → q1−n/c

C → q1−n/b

and then applying the relation

(q1−n/C; q)n = (−1)nq−(n
2)C−n(C; q)n
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we can restate the last formula as:

2φ1

[
q−n, B

C

∣∣∣ q; q
]

= Bn (C/B; q)n

(C; q)n

which is the second formula (E2.2b).

Writing the q-binomial coefficients in terms of q-shifted factorials
[
x

k

]
= (qx−k+1 ;q)k

(q;q)k
= (−1)kqxk−(k

2) (q−x; q)k

(q; q)k[
y

n− k

]
= (qy−n+k+1 ;q)n−k

(q;q)n−k
= (−1)kqnk−(k

2) (q−n; q)k

(q; q)n

(qy−n+1; q)n

(qy−n+1; q)k

we can express the q-binomial sum in terms of q-series:
n∑

k=0

[
x

k

][
y

n−k

]
q(x−k)(n−k) =

(qy−n+1; q)n

(q; q)n
qnx

n∑

k=0

(q−n; q)k(q−x; q)k

(q; q)k(qy−n+1; q)k
qk

=
(qy−n+1; q)n

(q; q)n
qnx

2φ1

[
q−n, q−x

qy−n+1

∣∣∣ q; q
]
.

Evaluate the last q-series by (E2.2b):

2φ1

[
q−n, q−x

qy−n+1

∣∣∣ q; q
]

= q−nx (qx+y−n+1; q)n

(qy−n+1; q)n

we find consequently the following q-binomial identity
n∑

k=0

[
x

k

][
y

n− k

]
q(x−k)(n−k) =

(qx+y−n+1; q)n

(q; q)n
=

[
x+ y

n

]

which is, in fact, the convolution formula (E2.2c). �

E3. Transformations of Heine and Jackson

E3.1. Jackson’s 2φ2-series transformation.

2φ1

[
a, b

c

∣∣∣ q; z
]

=
(az; q)∞
(z; q)∞

× 2φ2

[
a, c/b
c, az

∣∣∣ q; bz
]
.

Proof. According to the q-Chu-Vandermonde formula, we have

(b; q)n

(c; q)n
= 2φ1

[
q−n, c/b

c

∣∣∣ q; qnb

]
=

n∑

k=0

(q−n; q)k(c/b; q)k

(q; q)k(c; q)k
(bqn)k.
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Then the q-hypergeometric series in question can be expressed as a double
sum:

2φ1

[
a, b

c

∣∣∣ q; z
]

=
∞∑

n=0

(a; q)n

(q; q)n

(b; q)n

(c; q)n
zn

=
∞∑

n=0

zn (a; q)n

(q; q)n
×

n∑

k=0

(q−n; q)k(c/b; q)k

(q; q)k(c; q)k
(bqn)k

=
∞∑

k=0

(c/b; q)k

(q; q)k(c; q)k
bk ×

∞∑

n=k

(a; q)n(q−n; q)k

(q; q)n

(
zqk

)n
.

For the last sum with respect to n, changing by j := n−k on the summation
index and then applying transformations

(a; q)j+k = (a; q)k(aqk; q)j

(q−j−k; q)k

(q; q)j+k
=

(−1)kq−k(j+k)+(k
2)

(q; q)j

we can evaluate it, by means of (E2.1) with c→ aqk, as follows:

∞∑

n=k

(a; q)n(q−n; q)k

(q; q)n

(
zqk

)n = (−z)kq(
k
2)(a; q)k ×

∞∑

j=0

(aqk; q)j

(q; q)j
zj

= (−z)kq(
k
2)(a; q)k × 1φ0

[
aqk

−

∣∣∣ q; z
]

= (−z)kq(
k
2)(a; q)k ×

(qkaz; q)k

(z; q)k

= (−z)kq(
k
2) (a; q)k

(az; q)k

(az; q)∞
(z; q)∞

.

We have therefore established

2φ1

[
a, b

c

∣∣∣ q; z
]

=
(az; q)∞
(z; q)∞

∞∑

k=0

(−1)kq(
k
2) (a; q)k(c/b; q)k

(q; q)k(az; q)k(c; q)k
(bz)k

=
(az; q)∞
(z; q)∞

2φ2

[
a, c/b
c, az

∣∣∣ q; bz
]

which is Jackson’s transformation. �
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E3.2. Heine’s q-Euler transformations.

2φ1

[
a, b

c

∣∣∣ q; z
]

=
[b, az; q]∞
[c, z; q]∞

× 2φ1

[
c/b, z

az

∣∣∣ q; b

]
(E3.1a)

=
[c/b, bz; q]∞

[c, z; q]∞
× 2φ1

[
abz/c, b

bz

∣∣∣ q; c/b
]

(E3.1b)

=
(abz/c; q)∞

(z; q)∞
× 2φ1

[
c/a, c/b

c

∣∣∣ q; abz/c
]
. (E3.1c)

Proof. Substituting the q-factorial fraction

(b; q)n

(c; q)n
=

(b; q)∞
(c; q)∞

× (qnc; q)∞
(qnb; q)∞

into the q-hypergeometric series

2φ1

[
a, b

c

∣∣∣ q; z
]

=
∞∑

n=0

(a; q)n(b; q)n

(q; q)n(c; q)n
zn

and then applying the q-binomial theorem (E2.1):

(qnc; q)∞
(qnb; q)∞

= 1φ0

[
c/b
−

∣∣∣ q; qnb

]
=

∞∑

k=0

(c/b; q)k

(q; q)k
qnkbk

we can manipulate the q-series as follows:

2φ1

[
a, b

c

∣∣∣ q; z
]

=
(b; q)∞
(c; q)∞

∞∑

n=0

(a; q)n

(q; q)n
zn

∞∑

k=0

(c/b; q)k

(q; q)k
qnkbk

=
(b; q)∞
(c; q)∞

∞∑

k=0

(c/b; q)k

(q; q)k
bk

∞∑

n=0

(a; q)n

(q; q)n
(zqk)n.

Again by means of (E2.1), evaluating the last sum with respect to n as

∞∑

n=0

(a; q)n

(q; q)n
(zqk)n =

(qkaz; q)∞
(qkz; q)∞

and then simplifying the series with

(qkaz; q)∞ =
(az; q)∞
(az; q)k

(qkz; q)∞ =
(z; q)∞
(z; q)k
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we derive the following expression

2φ1

[
a, b

c

∣∣∣ q; z
]

=
(b; q)∞(az; q)∞
(c; q)∞(z; q)∞

∞∑

k=0

(c/b; q)k(z; q)k

(q; q)k(az; q)k
bk

=
(b; q)∞(az; q)∞
(c; q)∞(z; q)∞

2φ1

[
c/b, z

az

∣∣∣ q; b
]

which is the first transformation (E3.1a).

Applying the transformation just established to the series on the right hand
side, we have

2φ1

[
z, c/b

az

∣∣∣ q; b
]

=
(c/b; q)∞(bz; q)∞
(az; q)∞(b; q)∞

2φ1

[
abz/c, b

bz

∣∣∣ q; c/b
]

whose combination with the first one result in

2φ1

[
a, b

c

∣∣∣ q; z
]

=
(b; q)∞(az; q)∞
(c; q)∞(z; q)∞

2φ1

[
c/b, z

az

∣∣∣ q; b
]

=
(c/b; q)∞(bz; q)∞

(c; q)∞(z; q)∞
2φ1

[
abz/c, b

bz

∣∣∣ q; c/b
]
.

This is the second transformation (E3.1b).

Applying again the first transformation, we get

2φ1

[
b, abz/c

bz

∣∣∣ q; c/b
]

=
(abz/c; q)∞(c; q)∞
(bz; q)∞(c/b; q)∞

2φ1

[
c/a, c/b

c

∣∣∣ q; abz/c
]
.

This leads us to the following

2φ1

[
a, b

c

∣∣∣ q; z
]

=
(c/b; q)∞(bz; q)∞

(c; q)∞(z; q)∞
2φ1

[
abz/c, b

bz

∣∣∣ q; c/b
]

=
(abz/c; q)∞

(z; q)∞
2φ1

[
c/a, c/b

c

∣∣∣ q; abz/c
]

which is exactly the third transformation (E3.1c).

The last transformation can also be derived by means of the Jackson trans-
formation stated in E3.1. In fact, interchanging a and b in the Jackson
formula, we have

2φ1

[
a, b

c

∣∣∣ q; z
]

=
(bz; q)∞
(z; q)∞

× 2φ2

[
b, c/a
c, bz

∣∣∣ q; az
]
.

While the q-series on the right hand side of (E3.1c) can be transformed, by
means of the Jackson identity, into the following

2φ1

[
c/a, c/b

c

∣∣∣ q; abz/c
]

=
(bz; q)∞

(abz/c; q)∞
× 2φ2

[
c/a, b
c, bz

∣∣∣ q; az
]
.
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Equating both expressions, we have

2φ1

[
a, b

c

∣∣∣ q; z
]

=
(abz/c; q)∞

(z; q)∞
× 2φ1

[
c/a, c/b

c

∣∣∣ q; abz/c
]
.

The proof of (E3.1c) is therefore completed again. �

Remark The Heine’s transformations (E3.1a-E3.1b-E3.1c) may be consi-
dered as q-analogues of the Pfaff-Euler Transformations for the (ordinary)
hypergeometric series:

2F1

[
a, b

c

∣∣∣ z
]

= (1− z)−a
2F1

[
a, c− b

c

∣∣∣ z

z − 1

]

= (1− z)c−a−b
2F1

[
c − a, c− b

c

∣∣∣ z
]
.

E3.3. The Bailey-Daum summation formula.

2φ1

[
a, b

qa/b

∣∣∣ q; −q/b
]

= (−q; q)∞

[
qa, q2a/b2; q2

]
∞[

qa/b,−q/b; q
]
∞
, (|q/b| < 1).

Proof. Applying the Heine transformation (E3.1a)

2φ1

[
a, b

c

∣∣∣ q; z
]

=
[b, az; q]∞
[c, z; q]∞

× 2φ1

[
c/b, z

az

∣∣∣ q; b

]

we can proceed as follows:

2φ1

[
b, a
qa/b

∣∣∣ q;−q/b
]

=
(a; q)∞(−q; q)∞

(qa/b; q)∞(−q/b; q)∞ 2φ1

[
q/b, −q/b

−q

∣∣∣ q; a
]

=
(a; q)∞(−q; q)∞

(qa/b; q)∞(−q/b; q)∞

∞∑

n=0

(q/b; q)n(−q/b; q)n

(q; q)n(−q; q)n
an.

Simplifying the last sum with relations

(q2/b2; q2)n = (q/b; q)n(−q/b; q)n

(q2; q2)n = (q; q)n(−q; q)n

and then evaluating it by means of the q-binomial theorem (E2.1), we have
∞∑

n=0

(q/b; q)n(−q/b; q)n

(q; q)n(−q; q)n
an =

∞∑

n=0

(q2/b2; q2)n

(q2; q2)n
an =

(q2a/b2; q2)∞
(a; q2)∞

which results consequently in the following

2φ1

[
a, b

qa/b

∣∣∣ q; −q/b
]

=
(a; q)∞(−q; q)∞

(qa/b; q)∞(−q/b; q)∞
×

(q2a/b2; q2)∞
(a; q2)∞

=
(−q; q)∞(aq; q2)∞(q2a/b2; q2)∞

(qa/b; q)∞(−q/b; q)∞
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thanks to the shifted factorial relation

(a; q)∞ = (aq; q2)∞(a; q2)∞.

This proves the Bailey-Daum summation theorem. �

E3.4. Infinite series transformation. Armed with the q-series transfor-
mation formulae, we apply again inverse series relations (D1.3a-D1.3b) to
establish another infinite series transformation, which will be used in turn
to prove two infinite series identities of Rogers-Ramanujan type.

Recalling the inverse series relations (D1.3a-D1.3b), if we take the g-sequence

g(n) =
(λ; q)n

(qλ; q2)n
q(

n
2) with n = 0, 1, 2, · · ·

then the dual sequence will be determined by

f(n) =

{
0, n− odd
(−1)m

[
q, λ; q2

]
m
qm2−m, n = 2m.

We have accordingly from (D1.4b) the infinite series transformation:

∞∑

n=0

λnq
3n2−n

2

(q; q)n(qλ; q2)n
=

∞∑

k=0

(−1)k 1− q4kλ

(λ; q)∞
(λ; q2)k

(q2; q2)k
q5k2−kλ2k. (E3.2)

Proof. Substituting g(k) into (D1.3a) and then rewriting the q-Gauss bi-
nomial coefficient, we have

f(n) =
n∑

k=0

(−1)k

[
n

k

]
q(

n−k
2 )(qkλ; q)n g(k)

=
n∑

k=0

(q−n; q)k

(q; q)k
q(

n
2)+(k+1

2 ) (λ; q)n+k

(qλ; q2)k
.

By means of factorization

(qλ; q2)k = (
√
qλ; q)k × (−

√
qλ; q)k

we can express f(n) in terms of a terminating q-hypergeometric series

f(n) = q(
n
2)(λ; q)n ×

n∑

k=0

[
q−n, qnλ
q, ±

√
qλ

∣∣∣ q
]

k

q(
k+1
2 )

= q(
n
2)(λ; q)n × 2φ2

[
q−n, qnλ√
qλ, −

√
qλ

∣∣∣ q; −q
]
.
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Rewriting Jackson’s transformation formula stated in E3.1

2φ2

[
a, c
b, d

∣∣∣ q; bd
ac

]
=

(d/a; q)∞
(d; q)∞

× 2φ1

[
a, b/c

b

∣∣∣ q; d/a
]

we can further reformulate f(n) as follows:

f(n) = q(
n
2) (λ; q)n

(−
√
qλ; q)n

× 2φ1

[
q−n, q−n

√
q/λ√

qλ

∣∣∣ q; −qn
√
qλ

]
.

Evaluating the last series by means of the Bailey-Daum formula stated in
E3.3:

2φ1

[
a, b

qa/b

∣∣∣ q; −q/b
]

= (−q; q)∞

[
qa, q2a/b2; q2

]
∞[

qa/b,−q/b; q
]
∞
, (|q/b| < 1)

we find that

f(n) = q(
n
2)(λ; q)n

[
q1−n, q1+nλ
q, qλ

∣∣∣ q2
]

∞
.

If n is odd, we have f(n) = 0 for (q1−n; q2)∞ = 0. Suppose n = 2m
instead, we have the following reduction

f(n) = q(
2m
2 )(λ; q)2m

[
q1−2m, q1+2mλ
q, qλ

∣∣∣ q2
]

∞

= q(
2m
2 )(λ; q)2m

(q1−2m; q2)m

(qλ; q2)m

= (−1)mqm2−m
[
q, λ; q2

]
m
.

Substituting g(n) and f(k) into (D1.4b), we establish (E3.2). �

E3.5. Two further identities of Rogers-Ramanujan type. Speci-
fying with λ→ 1 and λ→ q2 in (E3.2), we derive the following identities of
Rogers-Ramanujan type:

∞∑

n=0

q
3n2−n

2

(q; q)n (q; q2)n
=

[
q10, q4, q6; q10

]
∞

(q; q)∞
∞∑

n=0

q
3n2+3n

2

(q; q)n(q; q2)n+1
=

[
q10, q2, q8; q10

]
∞

(q; q)∞
.
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Proof. Putting λ → 1 in (E3.2) and then separating the first term from
the right hand side, we derive

∞∑

n=0

q
3n2−n

2

(q; q)n(q; q2)n
=

1
(q; q)∞

{
1 +

∞∑

k=1

(−1)k
{
1 + q2k

}
q5k2−k

}

=
1

(q; q)∞

{
1 +

∞∑

k=1

(−1)kq5k2−k +
∞∑

k=1

(−1)kq5k2+k

}
.

Performing replacement k → −k in the last sum and then applying the
Jacobi triple product identity, we reduce the sum inside {· · · } as

∞∑

k=−∞

(−1)kq10(k
2)+4k =

[
q10, q4, q6; q10

]
∞

which leads us to the first identity:

∞∑

n=0

q
3n2−n

2

(q; q)n(q; q2)n
=

[
q10, q4, q6; q10

]
∞

(q; q)∞
.

When λ→ q2, we can similarly write (E3.2) as

∞∑

n=0

q
3n2+3n

2

(q; q)n(q; q2)n+1
=

1
(q; q)∞

∞∑

k=0

(−1)k
{
1− q4k+2

}
q5k2+3k

=
1

(q; q)∞

{ ∞∑

k=0

(−1)kq5k2+3k +
∞∑

k=0

(−1)k+1q5k2+7k+2

}
.

Replacing k by −k − 1 in the second sum and then applying the Jacobi
triple product identity, we find that the sum inside {· · ·} equals

∞∑

k=−∞

(−1)kq10(k
2)+8k =

[
q10, q2, q8; q10

]
∞

which results in the second identity:

∞∑

n=0

q
3n2+3n

2

(q; q)n(q; q2)n+1
=

[
q10, q2, q8; q10

]
∞

(q; q)∞
.

This completes proofs of two infinite series identities of Rogers-Ramanujan
type. �
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E4. The q-Pfaff-Saalschütz summation theorem

The formula under the title reads as the following

3φ2

[
q−n, a, b

c, q1−nab/c

∣∣∣ q; q
]

=
[
c/a, c/b
c, c/ab

∣∣∣ q; q
]

n

. (E4.1)

E4.1. Proof. Recall the q-Euler transformation (E3.1c):

2φ1

[
c/a, c/b

c

∣∣∣ q; abz/c
]

=
(z; q)∞

(abz/c; q)∞
× 2φ1

[
a, b

c

∣∣∣ q; z
]

which can be reformulated through the q-binomial theorem (E2.1), as a
product of two basic hypergeometric series:

2φ1

[
c/a, c/b

c

∣∣∣ q; abz/c
]

= 1φ0

[
c/ab,
−

∣∣∣ q; abz/c
]
× 2φ1

[
a, b

c

∣∣∣ q; z
]
.

Extracting the coefficient of zn from both members, we have

(c/a; q)n(c/b; q)n

(q; q)n(c; q)n
(ab/c)n =

n∑

k=0

(a; q)k(b; q)k

(q; q)k(c; q)k

(c/ab; q)n−k

(q; q)n−k
(ab/c)n−k

which can be restated equivalently as

(c/a; q)n(c/b; q)n

(c; q)n(c/ab; q)n
=

n∑

k=0

(a; q)k(b; q)k

(q; q)k(c; q)k

(q−n; q)k

(q1−nab/c; q)k
qk

= 3φ2

[
q−n, a, b

c, q1−nab/c

∣∣∣ q; q
]

in view of shifted factorial fraction

(c/ab; q)n−k

(q; q)n−k
=

(c/ab; q)n

(q; q)n

(qn−k+1; q)k

(qn−kc/ab; q)k

=
(c/ab; q)n

(q; q)n

(q−n; q)k

(q1−nab/c; q)k
(qab/c)k.

This completes the proof of the q-Saalschütz formula. �

E4.2. The formula (E4.1) can also be proved by means of series rearrange-
ment.

Recalling the q-Chu-Vandermonde formula (E2.2a), we have

(a; q)k

(c; q)k
= 2φ1

[
q−k, c/a

c

∣∣∣ q; qka

]
=

k∑

j=0

(q−k; q)j(c/a; q)j

(q; q)j(c; q)j
qkjaj .
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Then the q-hypergeometric series in (E4.1) can be written as a double sum:

LHS(E4.1) =
n∑

k=0

(q−n; q)k(a; q)k(b; q)k

(q; q)k(c; q)k(q1−nab/c; q)k
qk

=
n∑

k=0

(q−n; q)k(b; q)k

(q; q)k(q1−nab/c; q)k
qk

k∑

j=0

(q−k; q)j(c/a; q)j

(q; q)j(c; q)j
qkjaj

=
n∑

j=0

(c/a; q)j

(q; q)j(c; q)j
aj

n∑

k=j

(q−n; q)k(b; q)k(q−k; q)j

(q; q)k(q1−nab/c; q)k
qk(j+1)

where we have changed the summation order.

Denote by Ω(j) the last sum with respect to k. Changing the summation
index with i := k − j and then applying relations

(x; q)i+j = (x; q)i(qix; q)j = (x; q)j(qjx; q)i

(q−i−j; q)j = (−1)jq−j(i+j)+(j
2)(qi+1; q)j

we can reduce Ω(j) as follows:

Ω(j) =
n∑

k=j

(q−n; q)k(b; q)k(q−k; q)j

(q; q)k(q1−nab/c; q)k
qk(j+1)

=
n−j∑

i=0

(q−n; q)i+j(b; q)i+j(q−i−j; q)j

(q; q)i+j(q1−nab/c; q)i+j
q(i+j)(j+1)

= (−1)jq(
j+1
2 ) (q−n; q)j(b; q)j

(q1−nab/c; q)j

n−j∑

i=0

(q−n+j; q)i(qjb; q)i

(q; q)i(q1−n+jab/c; q)i
qi

= (−1)jq(
j+1
2 ) (q−n; q)j(b; q)j

(q1−nab/c; q)j
2φ1

[
q−n+j , qjb
q1−n+jab/c

∣∣∣ q; q
]
.

Applying now the q-Chu-Vandermonde formula (E2.2b), we can evaluate
the q-series on the right hand side as

2φ1

[
q−n+j, bqj

q1−n+jab/c

∣∣∣ q; q
]

=
(q1−na/c; q)n−j

(q1−n+jab/c; q)n−j

(
bqj

)n−j

which results consequently in

Ω(j) = (−1)jq(
j+1
2 ) (q−n; q)j(b; q)j

(q1−nab/c; q)j
× (q1−na/c; q)n−j

(q1−n+jab/c; q)n−j

(
bqj

)n−j

= (−1)jq(
j+1
2 ) (q−n; q)j(b; q)j

(q1−ja/c; q)j
× (q1−na/c; q)n

(q1−nab/c; q)n

(
bqj

)n−j

=
(c/a; q)n

(c/ab; q)n

(q−n; q)j(b; q)j

(c/a; q)j

(
qnc/ab

)j
.
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Substituting the last expression of Ω(j) into the 3φ2-series and then applying
the q-Chu-Vandermonde formula (E2.2a), we get the following evaluation

3φ2

[
q−n, a, b

c, q1−nab/c

∣∣∣ q; q
]

=
n∑

j=0

aj (c/a; q)j

(q; q)j(c; q)j
Ω(j)

=
(c/a; q)n

(c/ab; q)n
2φ1

[
q−n, b

c

∣∣∣ q; qnc/b

]

=
(c/a; q)n

(c/ab; q)n

(c/b; q)n

(c; q)n

which is equivalent to the q-Pfaff-Saalschütz formula (E4.1).

E5. The terminating q-Dougall-Dixon formula

It is, in fact, a very-well-poised terminating series identity

6φ5

[
a, q
√
a, −q

√
a, b, c, q−n

√
a, −

√
a, qa/b, qa/c, q1+na

∣∣∣q;q
1+na

bc

]
=

[
qa, qa/bc
qa/b, qa/c

∣∣∣q
]

n

. (E5.1)

Proof. Based on the Carlitz inversions presented in (D1.1), we can derive
the identity directly as the dual relation of the q-Pfaff-Saalschütz formula
(E4.1).

Recalling the q-Pfaff-Saalschütz theorem (E4.1)

3φ2

[
q−n, a, b

c, q1−nab/c

∣∣∣ q; q
]

=
[
c/a, c/b
c, c/ab

∣∣∣ q; q
]

n

we can restate it under parameter replacements as

3φ2

[
q−n, qna, qa/bc

qa/b, qa/c

∣∣∣ q; q
]

=
(q1−n/b; q)n(c; q)n

(qa/b; q)n(q−nc/a; q)n

=
(b; q)n(c; q)n

(qa/b; q)n(qa/c; q)n

(
qa

bc

)n

.

In order to apply the Carlitz inversions, we reformulate the q-series

3φ2

[
q−n, qna, qa/bc

qa/b, qa/c

∣∣∣ q; q
]

=
n∑

k=0

(q−n; q)k(qna; q)k(qa/bc; q)k

(q; q)k(qa/b; q)k(qa/c; q)k
qk

in terms of the q-binomial sum
n∑

k=0

(−1)k

[
n

k

]
q(

n−k
2 )(qka; q)n

(a; q)k(qa/bc; q)k

(qa/b; q)k(qa/c; q)k

= q(
n
2) (a; q)n(b; q)n(c; q)n

(qa/b; q)n(qa/c; q)n

(
qa

bc

)n
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where we have used the following transformations:

(q−n; q)k

(q; q)k
= (−1)k

[
n

k

]
q(

n−k
2 )q−(n

2)−k

(qna; q)k =
(a; q)n+k

(a; q)n
=

(a; q)k(qka; q)n

(a; q)n
.

Specifying the φ-polynomials with ak = 1 and bk = −qka in the Carlitz
inversions (D1.1a-D1.1b), which implies

φ(x;n) := (ax; q)n =
n−1∏

i=0

(1− axqi)

and then choosing two sequences

f(n) := q(
n
2) (a; q)n(b; q)n(c; q)n

(qa/b; q)n(qa/c; q)n

(
qa

bc

)n

g(k) :=
(a; q)k(qa/bc; q)k

(qa/b; q)k(qa/c; q)k

we write down directly the dual relation
n∑

k=0

(−1)k

[
n

k

]
1− q2ka

(qna; q)k+1
q(

k
2) (a; q)k(b; q)k(c; q)k

(qa/b; q)k(qa/c; q)k

(
qa

bc

)k

=
(a; q)n(qa/bc; q)n

(qa/b; q)n(qa/c; q)n
.

Feeding back the q-binomial coefficient to factorial fraction
[
n

k

]
=

(qn−k+1; q)k

(q; q)k
= (−1)kqnk−(k

2) (q−n; q)k

(q; q)k

1− q2ka

1− a
=

(q
√
a; q)k

(
√
a; q)k

(−q
√
a; q)k

(−
√
a; q)k

we reformulate the dual relation in terms of q-series

(qa; q)n(qa/bc; q)n

(qa/b; q)n(qa/c; q)n
= 6φ5

[
a, q
√
a,−q
√
a, b, c, q−n

√
a, −
√
a, qa/b, qa/c, q1+na

∣∣∣ q; q
1+na

bc

]

which is the terminating q-Dixon formula (E5.1). �

E6. The Sears balanced transformations

Replacing the base q with its inverse 1/q and then observing that
[
n

k

]

q−1

=
[
n

k

]

q

× q(
k
2)−(n

2)+(n−k
2 )
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we can restate the Carlitz inversions in an equivalent form

f(n) =
n∑

k=0

(−1)k

[
n

k

]
φ(q−k;n) g(k), n = 0, 1, 2, · · · (E6.1a)

g(n) =
n∑

k=0

(−1)k

[
n

k

]
q(

n−k
2 ) ak + q−kbk

φ(q−n; k + 1)
f(k), n = 0, 1, 2, · · · (E6.1b)





which will be used in this section to prove the Sears transformations on
balanced basic hypergeometric series.

E6.1. The Sears balanced transformations.

4φ3

[
q−n, a, c, e

b, d, q1−nace/bd

∣∣∣ q; q
]

(E6.2a)

= 4φ3

[
q−n, a, b/c, b/e

b, bd/ce, q1−na/d

∣∣∣ q; q
]
×

[d/a, bd/ce; q]n
[d, bd/ace; q]n

(E6.2b)

= 4φ3

[
q−n, b/c, d/c, bd/ace

bd/ac, bd/ce, q1−n/c

∣∣∣ q; q
]
×

[c, bd/ac, bd/ce; q]n
[b, d, bd/ace; q]n

. (E6.2c)

E6.2. Proof of (E6.2a-E6.2c). The second transformation formula is a
consequence of the first. In fact, applying the symmetric property to (E6.2b)
and then transform it by the first transformation (E6.2a-E6.2b), we have

4φ3

[
q−n, a, b/c, b/e

b, bd/ce, q1−na/d

∣∣∣ q; q
]

= 4φ3

[
q−n, b/c, a, b/e

bd/ce, b, q1−na/d

∣∣∣ q; q
]

= 4φ3

[
q−n, b/c, bd/ace, d/c

bd/ce, bd/ac, q1−n/c

∣∣∣ q; q
]
×

[c, bd/ac; q]n
[b, d/a; q]n

.

Substituting this result into (E6.2b), we find the transformation

4φ3

[
q−n, a, c, e

b, d, q1−nace/bd

∣∣∣ q; q
]

= 4φ3

[
q−n, a, b/c, b/e

b, bd/ce, q1−na/d

∣∣∣ q; q
]
× [d/a, bd/ce; q]n

[d, bd/ace; q]n

= 4φ3

[
q−n, b/c, d/c, bd/ace

bd/ac, bd/ce, q1−n/c

∣∣∣ q; q
]
×

[d/a, bd/ce; q]n
[d, bd/ace; q]n

[c, bd/ac; q]n
[b, d/a; q]n

= 4φ3

[
q−n, b/c, d/c, bd/ace

bd/ac, bd/ce, q1−n/c

∣∣∣ q; q
]
×

[c, bd/ac, bd/ce; q]n
[b, d, bd/ace; q]n

which is the second formula (E6.2a-E6.2c).
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E6.3. Proof of (E6.2a-E6.2b). Let the φ-polynomials be defined by

φ(x;n) = (acex/bd; q)n 
 ak = 1 and bk = −qkace/bd.

Then the corresponding inversions (E6.1a-E6.1b) become the following:

f(n) =
n∑

k=0

(−1)k

[
n

k

]
(q−kace/bd; q)n g(k) (E6.3a)

g(n) =
n∑

k=0

(−1)k

[
n

k

]
q(

n−k
2 ) 1− ace/bd

(q−nace/bd; q)k+1
f(k). (E6.3b)

By means of two q-shifted factorial relations

(q−n; q)k

(q; q)k
= (−1)k

[
n

k

]
q(

n−k
2 )−(n

2)−k

(q1−nace/bd; q)k =
(q−nace/bd; q)k+1

1− q−nace/bd

we can rewrite the 4φ3-series displayed in (E6.2a) as a q-binomial sum

4φ3

[
q−n, a, c, e

b, d, q1−nace/bd

∣∣∣ q; q
]

1− bd/ace
1− qnbd/ace

q(
n+1

2 )

=
n∑

k=0

(−1)k

[
n

k

]
q(

n−k
2 ) 1− ace/bd

(q−nace/bd; q)k+1

[
a, c, e
b, d

∣∣∣ q
]

k

.

Then the first transformation of Sears (E6.2a-E6.2b) can be stated equiva-
lently as

n∑

k=0

(−1)k

[
n

k

]
q(

n−k
2 ) 1− ace/bd

(q−nace/bd; q)k+1

[
a, c, e
b, d

∣∣∣ q
]

k

(E6.4a)

= 4φ3

[
q−n, a, b/c, b/e
b, bd/ce, q1−na/d

∣∣∣ q; q
] [

d/a, bd/ce
d, qbd/ace

∣∣∣ q
]

n

q(
n+1

2 ). (E6.4b)

This expression matches perfectly with the relation (E6.3b), where two se-
quences have been specified by

f(k) :=
[
a, c, e
b, d

∣∣∣ q
]

k

(E6.5a)

g(n) :=
[
d/a, bd/ce
d, qbd/ace

∣∣∣ q
]

n
4φ3

[
q−n, a, b/c, b/e
b, bd/ce, q1−na/d

∣∣∣ q; q
]
q(

n+1
2 ). (E6.5b)

Therefore in order to demonstrate the first transformation (E6.4a-E6.4b) of
Sears, it suffices to prove the following dual relation, which corresponds to
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the relation (E6.3a):

[
a, c, e
b, d

∣∣∣ q
]

n

=
n∑

k=0

(−1)k

[
n

k

]
(q−kace/bd; q)n

[
d/a, bd/ce
d, qbd/ace

∣∣∣ q
]

k

q(
k+1
2 ) (E6.6a)

× 4φ3

[
q−k, a, b/c, b/e

b, bd/ce, q1−ka/d

∣∣∣ q; q
]
. (E6.6b)

Let Ξ stand for the double sum on the right. We should therefore verify
that Ξ reduces to the factorial fraction on the left.

Recalling the definition of q-hypergeometric series

4φ3

[
q−k, a, b/c, b/e

b, bd/ce, q1−na/d

∣∣∣ q; q
]

=
k∑

i=0

[
q−k, a, b/c, b/e
q, b, bd/ce, q1−ka/d

∣∣∣ q
]

i

qi

and the relation of q-binomial coefficient in terms of factorial fraction
[
n

k

]
= (−1)k (q−n; q)k

(q; q)k
qnk−(k

2)

we can rearrange the double sum as follows:

Ξ =
n∑

k=0

(−1)k

[
n

k

]
(q−kace/bd; q)n

[
d/a, bd/ce
d, qbd/ace

∣∣∣ q
]

k

q(
k+1
2 )

×
k∑

i=0

[
q−k, a, b/c, b/e
q, b, bd/ce, q1−ka/d

∣∣∣ q
]

i

qi

=
n∑

i=0

[
a, b/c, b/e
q, b, bd/ce

∣∣∣ q
]

i

qi
n∑

k=i

[
q−n, d/a, bd/ce
q, d, qbd/ace

∣∣∣ q
]

k

× (q−kace/bd; q)n
(q−k; q)i

(q1−ka/d; q)i
qk(n+1).

For the inner sum, performing the replacement j := k − i on summation
index and then applying relations

(q−i−j; q)i

(q1−i−ja/d; q)i
=

( d

qa

)i (q1+j ; q)i

(qjd/a; q)i
=

( d

qa

)i (q; q)i+j

(d/a; q)i+j

(d/a; q)j

(q; q)j

(q−i−jace/bd; q)n =
(q−i−jace/bd; q)i+j

(qn−i−jace/bd; q)i+j
(ace/bd; q)n

=
(qbd/ace; q)i+j

(q1−nbd/ace; q)i

(ace/bd; q)n

(q1+i−nbd/ace; q)j
q−n(i+j)
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we can reduce it to the following
n∑

k=i

[
q−n, d/a, bd/ce
q, d, qbd/ace

∣∣∣ q
]

k

(q−kace/bd; q)n(q−k; q)i

(q1−ka/d; q)i
qk(n+1)

=
n−i∑

j=0

[
q−n, d/a, bd/ce
q, d, qbd/ace

∣∣∣ q
]

i+j

(q−i−jace/bd; q)n(q−i−j ; q)i

(q1−i−ja/d; q)i
q(i+j)(n+1)

=(ace/bd; q)n

[
q−n, bd/ce
d, q1−nbd/ace

∣∣∣ q
]

i

(d
a

)i
n−i∑

j=0

[
qi−n, d/a, qibd/ce
q, qid, q1+i−nbd/ace

∣∣∣ q
]

j

qj.

The last sum with respect to j can be evaluated by means of the q-Saalschütz
formula as follows:

3φ2

[
qi−n, d/a, qibd/ce

qid, q1+i−nbd/ace

∣∣∣ q; q
]

=
[
qia, ce/b
qid, ace/bd

∣∣∣ q
]

n−i

.

Substituting this result into the double sum expression of Ξ and then ap-
plying transformation

(ce/b; q)n−i

(ace/bd; q)n−i
=

(ce/b; q)n

(ace/bd; q)n

(q1−nbd/ace; q)i

(q1−nb/ce; q)i

(a
d

)i

we reduce the double sum to a single 3φ2-series:

Ξ =
n∑

i=0

[
a, b/c, b/e
q, b, bd/ce

∣∣∣ q
]

i

(qd
a

)i
[

q−n, bd/ce
d, q1−nbd/ace

∣∣∣ q
]

i

× (ace/bd; q)n

[
qia, ce/b
qid, ace/bd

∣∣∣ q
]

n−i

= (ce/b; q)n
(a; q)n

(d; q)n

n∑

i=0

qi

[
b/c, b/e, q−n

q, b, q1−nb/ce

∣∣∣ q
]

i

.

Evaluating the last sum with respect to i through the q-Saalschütz formula

3φ2

[
q−n, b/c, b/e

b, q1−nb/ce

∣∣∣ q; q
]

=
[
c, e
b, ce/b

∣∣∣ q
]

n

which is equivalent to

Ξ =
[
a, c, e
b, d

∣∣∣ q
]

n

.

This completes the proof of (E6.2a-E6.2b). �

E6.4. The q-Kummer-Thomae-Whipple’s formulae. As the limiting
cases n → ∞ of Sears’ transformations, we have the non-terminating
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q-Kummer-Thomae-Whipple’s formulae:

3φ2

[
a, c, e
b, d

∣∣∣ q; bd
ace

]
=3φ2

[
a, b/c, b/e

b, bd/ce

∣∣∣ q; d
a

]
×

[d/a, bd/ce; q]∞
[d, bd/ace; q]∞

=3φ2

[
b/c, d/c, bd/ace

bd/ac, bd/ce

∣∣∣ q; c
]
× [c, bd/ac, bd/ce; q]∞

[b, d, bd/ace; q]∞
.

Other transformations on terminating series derived from Sears’ transfor-
mation may be displayed as follows:

3φ2

[
q−n, a, c

b, d

∣∣∣ q; q
]

a
e===
e→0

3φ2

[
q−n, b/a, b/c

b, bd/ac

∣∣∣ q; q
]

(bd/ac; q)n

(d; q)n

(qc
b

)n

3φ2

[
q−n, a, c

b, d

∣∣∣ q; q
]

===
e→0

3φ2

[
q−n, a, b/c

b, q1−na/d

∣∣∣ q; qc
d

]
(d/a; q)n

(d; q)n
an

3φ2

[
q−n, a, c

b, d

∣∣∣ q; q
]

===
e→0

3φ2

[
q−n, b/c, d/c

q1−n/c, bd/ac

∣∣∣ q; q
a

]
[c, bd/ac; q]n

[b, d; q]n
an.

3φ2

[
q−n, a, c

b, d

∣∣∣ q; bd
ac
qn

]
a
e===
e→∞ 3φ2

[
q−n, b/a, b/c

b, bd/ac

∣∣∣ q; qnd

]
(bd/ac; q)n

(d; q)n

3φ2

[
q−n, a, c

b, d

∣∣∣ q; bd
ac
qn

]
===
e→∞ 3φ2

[
q−n, a, b/c

b, q1−na/d

∣∣∣ q; q
]

(d/a; q)n

(d; q)n

3φ2

[
q−n, a, c

b, d

∣∣∣ q; bd
ac
qn

]
===
e→∞ 3φ2

[
q−n, b/c, d/c

q1−n/c, bd/ac

∣∣∣ q; q
]

[c, bd/ac; q]n
[b, d; q]n

.

E7. Watson’s q-Whipple transformation

E7.1. The Watson transformation. One of the most important basic
hypergeometric transformations reads as

8φ7

[
a, q
√
a, −q

√
a, b, c, d, e, q−n

√
a, −

√
a, qa/b, qa/c, qa/d, qa/e, aqn+1

∣∣∣ q; q
2+na2

bcde

]
(E7.1a)

=
[
qa, qa/bc
qa/b, qa/c

∣∣∣ q
]

n
4φ3

[
q−n, b, c, qa/de

qa/d, qa/e, q−nbc/a

∣∣∣ q; q
]
. (E7.1b)
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Proof. In view of the definition of q-hypergeometric series, we can write
(E7.1a) explicitly as

Eq(E7.1a) =
n∑

k=0

[
a, q
√
a, −q

√
a, b, c, q−n

√
a, −

√
a, qa/b, qa/c, aqn+1

∣∣∣ q
]

k

(
q1+na

bc

)k

×
[

d, e
qa/d, qa/e

∣∣∣ q
]

k

(qa
de

)k

.

Recalling the q-Paff-Saalschütz theorem, we have

[
d, e

qa/d, qa/e

∣∣∣ q
]

k

(
qa

de

)k

= 3φ2

[
q−k, qka, qa/de

qa/d, qa/e

∣∣∣ q ; q
]

=
k∑

i=0

[
q−k, qka, qa/de
q, qa/d, qa/e

∣∣∣ q
]

i

qi.

Therefore substituting this result into Eq(E7.1a) and changing the order of
the double sum, we obtain

Eq(E7.1a) =
n∑

i=0

[
qa/de

q, qa/d, qa/e

∣∣∣ q
]

i

qi

×
n∑

k=i

1− q2ka

1− a

[
b, c, q−n

qa/b, qa/c, qn+1a

∣∣∣ q
]

k

× (a; q)k+i(q−k; q)i

(q; q)k

(
q1+na

bc

)k

.

Indicate with Ω the inner sum with respect to k. Putting k − i = j and
observing that

(q−i−j; q)i

(q; q)i+j
=

(−1)iq−(i+1
2 )−ij

(q; q)j

we have

Ω = (−1)i q−(i+1
2 ) (a; q)2i

1− q2ia

1− a

[
b, c, q−n

qa/b, qa/c, qn+1a

∣∣∣ q
]

i

(
q1+n a

b c

)i

×
n−i∑

j=0

1− q2i+2ja

1− q2ia

[
q2ia, qib, qic, q−n+i

q, q1+ia/b, q1+ia/c, q1+n+ia

∣∣∣ q
]

j

(
q1+n−ia

bc

)j

= (−1)i q−(i+1
2 ) (qa; q)2i

[
b, c, q−n

qa/b, qa/c, qn+1a

∣∣∣ q
]

i

(
q1+n a

b c

)i

× 6φ5

[
q2ia, q1+i

√
a, −q1+i

√
a, qib, qic, q−n+i

qi
√
a, −qi

√
a, q1+ia/b, q1+ia/c, q1+n+ia

∣∣∣ q; q
1+n−ia

bc

]
.
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Evaluating the last series by the terminating q-Dougall-Dixon formula (E5.1),
we obtain

6φ5

[
q2ia, q1+i√a, −q1+i√a, qib, qic, q−n+i

qi
√
a, −qi

√
a, qi+1a/b, qi+1a/c, q1+n+ia

∣∣∣ q; q
1+n−ia

bc

]

=
[
q1+2ia, qa/bc
q1+ia/b, q1+ia/c

∣∣∣ q
]

n−i

which implies the following:

Eq(E7.1a) =
n∑

i=0

[
qa/de

q, qa/d, qa/e

∣∣∣ q
]

i

qi ×
[
q1+2ia, qa/bc
q1+ia/b, q1+ia/c

∣∣∣ q
]

n−i

× (−1)i q−(i+1
2 ) (qa; q)2i

[
b, c, q−n

qa/b, qa/c, qn+1a

∣∣∣ q
]

i

(
q1+n a

b c

)i

.

Noting that for the shifted factorials, there hold relations:

(qa/bc; q)n−i = (−1)iq(
i
2)−ni

(
bc

a

)i (qa/bc; q)n

(q−nbc/a; q)i

(qa; q)2i
(q1+2ia; q)n−i

(q1+na; q)i
= (qa; q)n.

Consequently, we have the following expression

Eq(E7.1a) =
[
qa, qa/bc
qa/b, qa/c

∣∣∣ q
]

n

n∑

i=0

[
q−n, b, c, qa/de
q, qa/d, qa/e, q−nbc/a

∣∣∣ q
]

i

qi

=
[
qa, qa/bc
qa/b, qa/c

∣∣∣ q
]

n
4φ3

[
q−n, b, c, qa/de

qa/d, qa/e, q−nbc/a

∣∣∣ q; q
]

which is exactly (E7.1b). �

E7.2. Rogers-Ramanujan identities. In view of |q| < 1 and

x→∞ =⇒ (x; q)k ∼ (−1)kq(
k
2)xk

the limiting case b, c, d, e, n→∞ of the Watson transformation reads as:
∞∑

m=0

qm2
am

(q; q)m
=

1
(qa; q)∞

∞∑

k=0

(−1)k 1− q2ka

1− a
(a; q)k

(q; q)k
q5(

k
2)+2ka2k. (E7.2)

This transformation can provide us an alternative demonstration of the
well-known Rogers-Ramanujan identities (D3.2a) and (D3.2b):

∞∑

m=0

qm2

(q; q)m
=

1
(q; q5)∞ (q4; q5)∞

∞∑

m=0

qm2+m

(q; q)m
=

1
(q2; q5)∞ (q3; q5)∞

.
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In fact, observe first that

1− q2ka

1− a
(a; q)k

(q; q)k
=

1− q2ka

1− qka

(qa; q)k

(q; q)k

a→1===

{
1, k = 0
1 + qk, k > 0.

Then letting a→ 1, we can restate the transformation (E7.2) as
∞∑

m=0

qm2

(q; q)m
=

1
(q; q)∞

{
1 +

∞∑

k=1

(−1)k(1 + qk)q5(
k
2)+2k

}

=
1

(q; q)∞

{
1 +

∞∑

k=1

(−1)kq5(
k
2)+2k +

∞∑

k=1

(−1)kq5(
k
2)+3k

}

=
1

(q; q)∞

{
1 +

∞∑

k=1

(−1)kq5(
k
2)+2k +

∞∑

k=1

(−1)kq5(
−k
2 )−2k

}
.

Applying the Jacobi-triple product identity, we therefore establish the first
Rogers-Ramanujan identity:

∞∑

m=0

qm2

(q; q)m
=

1
(q; q)∞

∞∑

k=−∞

(−1)kq5(
k
2)+2k =

[
q5, q2, q3; q5

]

(q; q)∞
.

Letting a→ q instead, we can write the transformation (E7.2) as
∞∑

m=0

qm2+m

(q; q)m
=

1
(q; q)∞

∞∑

k=0

(−1)k(1 − q1+2k)q5(
k
2)+4k

=
1

(q; q)∞

{ ∞∑

k=0

(−1)kq5(
k
2)+4k +

∞∑

k=0

(−1)k+1q5(
k
2)+6k+1

}

=
1

(q; q)∞

{ ∞∑

k=0

(−1)kq5(
k
2)+4k +

∞∑

k=1

(−1)kq5(
−k
2 )−4k

}

where the last line is justified by k → k − 1 in the second sum. It leads us
to the second Rogers-Ramanujan identity

∞∑

m=0

qm2+m

(q; q)m
=

1
(q; q)∞

∞∑

k=−∞

(−1)kq5(
k
2)+4k =

[
q5, q4, q; q5

]

(q; q)∞

thanks again to the Jacobi-triple product identity. �

E7.3. Jackson’s q-Dougall-Dixon formula.

8φ7

[
a, q
√
a, −q

√
a, b, c, d, e, q−n

√
a, −

√
a, qa/b, qa/c, qa/d, qa/e, aqn+1

∣∣∣ q; q
]

(E7.3a)

=
[
qa, qa/bc, qa/bd, qa/cd
qa/b, qa/c, qa/d, qa/bcd

∣∣∣ q
]

n

, where qn+1a2 = bcde. (E7.3b)
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Proof. When q1+na2 = bcde or equivalently qa/de = q−nbc/a, the 4φ3-
series in the Watson transformation reduces to a balanced 3φ2-series. There-
fore, we have in this case the simplified form:

8φ7

[
a, q
√
a, −q

√
a, b, c, d, e, q−n

√
a, −

√
a, qa/b, qa/c, qa/d, qa/e, aqn+1

∣∣∣ q; q
]

=
[
qa, qa/bc
qa/b, qa/c

∣∣∣ q
]

n
3φ2

[
q−n, b, c

qa/d, qa/e

∣∣∣ q ; q
]
.

Evaluating the balanced series by the q-Pfaff-Saalschütz theorem, we have

8φ7

[
a, q
√
a, −q

√
a, b, c, d, e, q−n

√
a, −

√
a, qa/b, qa/c, qa/d, qa/e, aqn+1

∣∣∣ q; q
]

=
[
qa, qa/bc
qa/b, qa/c

∣∣∣ q
]

n

×
[
qa/bd, qa/cd
qa/d, qa/bcd

∣∣∣ q
]

n

which is essentially the same as Jackson’s q-Dougall-Dixon formula. �

E7.4. The non-terminating 6φ5-summation formula.

6φ5

[
a, q

√
a, −q

√
a, b, c, d√

a, −
√
a, qa/b, qa/c, qa/d

∣∣∣ q; qa

bcd

]
(E7.4a)

=
[
qa, qa/bc, qa/bd, qa/cd
qa/b, qa/c, qa/d, qa/bcd

∣∣∣ q
]

∞
,

∣∣∣ qa
bcd

∣∣∣ < 1. (E7.4b)

Proof. Substituting e = q1+na2/bcd in the Jackson’s q-Dougall-Dixon for-
mula explicitly, we have

8φ7

[
a, q
√
a, −q

√
a, b, c, d, q1+na2/bcd, q−n

√
a, −

√
a, qa/b, qa/c, qa/d, q−nbcd/a, qn+1a

∣∣∣ q; q
]

=
[
qa, qa/bc, qa/bd, qa/cd
qa/b, qa/c, qa/d, qa/bcd

∣∣∣ q
]

n

.

For n→∞, recalling the limit relations

(q1+na2/bcd; q)k

(q1+na; q)k
∼ 1 and

(q−n; q)k

(q−nbcd/a; q)k
∼

( a

bcd

)k

and then applying the Tannery limiting theorem, we get the non-terminating
q-Dougall-Dixon formula (E7.4a-E7.4b). �

We remark that when d = q−n, the formula (E7.4a-E7.4b) reduces to the
terminating q-Dougall-Dixon summation identity (E5.1).




