
CHAPTER B

Generating Functions of Partitions

For a complex sequence {αn|n = 0, 1, 2, · · ·}, its generating function with a
complex variable q is defined by

A(q) :=
∞∑

n=0

αn q
n 
 αn = [qn]A(q).

When the sequence has finite non-zero terms, the generating function re-
duces to a polynomial. Otherwise, it becomes an infinite series. In that
case, we suppose in general |q| < 1 from now on.

B1. Basic generating functions of partitions

Given three complex indeterminates x, q and n with |q| < 1, the shifted
factorial is defined by

(x; q)∞ =
∞∏

k=0

(1− xqk)

(x; q)n =
(x; q)∞

(qnx; q)∞
.

When n is a natural number in particular, it reduces to

(x; q)0 = 1 and (x; q)n =
n−1∏

k=0

(1− qkx) for n = 1, 2, · · · .

We shall frequently use the following abbreviated notation for shifted fac-
torial fraction:

[
a, b, · · · , c
α, β, · · · , γ

∣∣∣ q
]

n

=
(a; q)n(b; q)n · · · (c; q)n

(α; q)n(β; q)n · · · (γ; q)n
.
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B1.1. Partitions with parts in S. We first investigate the generating
functions of partitions with parts in S, where the basic set S ⊆ N with N
being the set of natural numbers.

Let S be a set of natural numbers and p(n|S) denote the number of partitions
of n into elements of S (or in other words, the parts of partitions belong to
S). Then the univariate generating function is given by

∞∑

n=0

p(n|S) qn =
∏

k∈S

1
1− qk

. (B1.1a)

If we denote further by p`(n|S) the number of partitions with exactly `-parts
in S, then the bivariate generating function is

∑

`,n≥0

p`(n|S) x` qn =
∏

k∈S

1
1− xqk

. (B1.1b)

Proof. For |q| < 1, we can expand the right member of the equation
(B1.1a) according to the geometric series

∏

k∈S

1
1− qk

=
∏

k∈S

∞∑

mk=0

qkmk =
∑

mk≥0
k∈S

q
∑

k∈S kmk .

Extracting the coefficient of qn from both sides, we obtain

[qn]
∏

k∈S

1
1− qk

= [qn]
∑

mk≥0
k∈S

q
∑

k∈S kmk =
∑

∑
k∈S kmk=n

mk≥0: k∈S

1.

The last sum is equal to the number of solutions of the Diophantine equation
∑

k∈S

kmk = n

which enumerates the partitions
{
1m1 , 2m2 , · · · , nmn

}
of n into parts in S.

This completes the proof of (B1.1a). The bivariate generating function
(B1.1b) can be verified similarly.

In fact, consider the formal power series expansion

∏

k∈S

1
1− xqk

=
∏

k∈S

∞∑

mk=0

xmkqkmk =
∑

mk≥0
k∈S

x
∑

k∈S mkq
∑

k∈S kmk
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in which the coefficient of x`qn reads as

[x`qn]
∏

k∈S

1
1− xqk

= [x`qn]
∑

mk≥0
k∈S

x
∑

k∈S mkq
∑

k∈S kmk

=
∑

∑
k∈S mk = `∑
k∈S kmk = n

}

mk≥0: k∈S

1.

The last sum enumerates the solutions of the system of Diophantine equa-
tions 




∑

k∈S

mk = `

∑

k∈S

kmk = n

which are the number of partitions
{
1m1 , 2m2 , · · · , nmn

}
of n with exactly

`-parts in S. �

B1.2. Partitions into distinct parts in S. Next we study the generating
functions of partitions into distinct parts in S.

If we denote by Q(n|S) and Q`(n|S) the corresponding partition numbers
with distinct parts from S, then their generating functions read respectively
as

∞∑

n=0

Q(n|S) qn =
∏

k∈S

(
1 + qk

)
(B1.2a)

∑

`,n≥0

Q`(n|S) x`qn =
∏

k∈S

(
1 + xqk

)
. (B1.2b)

Proof. For the first identity, observing that

1 + qk =
∑

mk=0,1

qkmk

we can reformulate the product on the right hand side as
∏

k∈S

(
1 + qk

)
=

∏

k∈S

∑

mk=0,1

qkmk =
∑

mk=0,1
k∈S

q
∑

k∈S kmk .

Extracting the coefficient of qn, we obtain

[qn]
∏

k∈S

(
1 + qk

)
= [qn]

∑

mk=0,1
k∈S

q
∑

k∈S kmk =
∑

∑
k∈S kmk=n

mk=0,1: k∈S

1.
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The last sum enumerates the solutions of Diophantine equation

∑

k∈S

kmk = n with mk = 0, 1

which is equal to Q(n|S), the number of partitions of n into distinct parts
in S.

Instead, we can proceed similarly for the second formula as follows:

∏

k∈S

(1 + xqk) =
∏

k∈S

∑

mk=0,1

xmkqkmk =
∑

mk=0,1
k∈S

x
∑

k∈S mkq
∑

k∈S kmk .

The coefficient of x`qn leads us to the following

[x`qn]
∏

k∈S

(1 + xqk) = [x`qn]
∑

mk=0,1
k∈S

x
∑

k∈S mkq
∑

k∈S kmk

=
∑

∑
k∈S mk = `∑
k∈S kmk = n

}

mk=0,1: k∈S

1.

The last sum equals the number of solutions of the system of Diophantine
equations

∑

k∈S
mk = `

∑

k∈S

kmk = n





with mk = 0, 1

which correspond to the partitions
{
1m1 , 2m2 , · · · , nmn

}
of n with exactly

` distinct parts in S. �
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B1.3. Classical generating functions. When S = N, the set of natural
numbers, the corresponding generating functions may be displayed, respec-
tively, as

1
(q; q)∞

=
∞∏

m=1

1
1− qm

=
∞∑

n=0

p(n) qn (B1.3a)

1
(qx; q)∞

=
∞∏

m=1

1
1− xqm

=
∑

`,n≥0

p`(n) x`qn (B1.3b)

(−q; q)∞ =
∞∏

m=1

(1 + qm) =
∞∑

n=0

Q(n) qn (B1.3c)

(−qx; q)∞ =
∞∏

m=1

(1 + xqm) =
∑

`,n≥0

Q`(n) x`qn. (B1.3d)

Manipulating the generating function of the partitions into odd numbers in
the following manner

∞∏

k=1

1
1− q2k−1

=
∞∏

k=1

1
1− qk

×
∞∏

k=1

(1− q2k)

=
∞∏

k=1

1− q2k

1− qk
=

∞∏

k=1

(1 + qk)

we see that it results in the generating function of the partitions into distinct
parts. We have therefore proved the following theorem due to Euler. The
number of partitions of n into odd numbers equals to the number of partitions
of n into distinct parts.

B2. Classical partitions and the Gauss formula

B2.1. Proposition. Let pm(n) be the number of partitions into exactlym
parts (or dually, partitions with the largest part equal to m). Its generating
function reads as

∞∑

n=0

pm(n) qn =
qm

(1 − q)(1− q2) · · · (1− qm)
. (B2.1)
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Proof. For S = N, the generating function of {p`(n|N)} reads as
∑

`,n≥0

p`(n) x`qn =
∑

`≥0

x`
∑

n≥0

p`(n)qn

=
∞∏

k=1

1
1− xqk

=
1

(qx; q)∞
.

Extracting the coefficient of xm, we get
∞∑

n=0

pm(n) qn = [xm]
1

(qx; q)∞
.

For |q| < 1, the function 1/(qx; q)∞ is analytic at x = 0. We can therefore
expand it in MacLaurin series:

1
(qx; q)∞

=
∞∑

`=0

A`(q)x` (B2.2)

where the coefficients
{
A`(q)

}
are independent of x to be determined. Per-

forming the replacement x → x/q, we can restate the expansion just
displayed as

1
(x; q)∞

=
∞∑

`=0

A`(q)x`q−`. (B2.3)

It is evident that (B2.2) equals (1 − x) times (B2.3), which results in the
functional equation

∞∑

`=0

A`(q)x` = (1− x)
∞∑

`=0

A`(q)x`q−`.

Extracting the coefficient of xm from both expansions, we get

Am(q) = Am(q)q−m −Am−1(q)q1−m

which is equivalent to the following recurrence relation

Am(q) =
q

1− qm
Am−1(q) where m = 1, 2, · · · .

Iterating this recursion for m-times, we find that

Am(q) =
qm A0(q)

(1− qm)(1 − qm−1) · · · (1− q) =
qm

(q; q)m
A0(q).

Noting that A0(q) = 1, we get finally
∞∑

n=0

pm(n) qn = [xm]
1

(qx; q)∞
=

qm

(q; q)m
.

This completes the proof of Proposition B2.1. �
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A combinatorial proof. Let p(n|λ1 = m) be the number of partitions of
n with the first part λ1 equal to m. Then pm(n) = p(n|λ1 = m) because
the partitions enumerated by pm(n) are conjugate with those enumerated
by p(n|λ1 = m). Therefore they have the same generating functions:

∞∑

n=0

pm(n) qn =
∞∑

n=0

p(n|λ1 = m) qn.

All the partition of n enumerated by p(n|λ1 = m) have the first part λ1 = m

in common and the remaining parts constitute the partitions of n−m with
each part ≤ m. Therefore we have
∞∑

n=0

p(n|λ1 = m) qn =
∞∑

n=m

p(n−m|λ1 ≤ m) qn = qm
∞∑

n=0

p(n|λ1 ≤ m) qn

= qm
∞∑

n=0

p(n|{1, 2, · · · ,m}) qn =
qm

(q; q)m

where the first line is justified by replacement n → n + m on summation
index, while the second is a consequence of (B1.1a).

This confirms again the generating function (B2.1). �

B2.2. Proposition. Let pm(n) be the number of partitions into≤ m parts
(or dually, partitions into parts ≤ m). Then we have the generating function

∞∑

n=0

pm(n) qn =
1

(1− q)(1− q2) · · · (1− qm)
(B2.4)

which yields a finite summation formula

1
(1− q)(1− q2) · · · (1− qm)

= 1 +
m∑

k=1

qk

(1− q)(1 − q2) · · · (1− qk)
.

Proof. Notice that pm(n), the number of partitions into ≤ m parts is equal
to the number of partitions into parts ≤ m in view of conjugate partitions.
We get immediately from (B1.1a) the generating function (B2.4).

The classification of the partitions of n into ≤ m parts with respect to the
number k of parts yields

pm(n) = p0(n) + p1(n) + p2(n) + · · ·+ pm(n).
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The corresponding generating function results in

∞∑

n=0

pm(n) qn =
m∑

k=0

∞∑

n=0

pk(n) qn =
m∑

k=0

qk

(q; q)k
.

Recalling the first generating function expression (B2.4), we get the second
formula from the last relation. �

B2.3. Gauss’ classical partition identity.

∞∏

n=0

1
1− xqn

= 1 +
∞∑

m=1

xm

(1− q)(1− q2) · · · (1− qm)
. (B2.5)

Proof. In fact, we have already established this identity from the demon-
stration of the last theorem, where it has been displayed explicitly in (B2.3).

Alternatively, classifying all the partitions with respect to the number of
parts, we can manipulate the bivariate generating function

1
(xq; q)∞

=
∞∑

`,n=0

p`(n)x`qn =
∞∑

`=0

x`
∞∑

n=0

p`(n)qn

=
∞∑

`=0

x`q`

(1− q)(1 − q2) · · · (1− q`)

which is equivalent to Gauss’ classical partition identity. �

B2.4. Theorem. Let p`(n|m) be the number of partitions of n with
exactly `-parts ≤ m. Then we have its generating function

∞∑

`,n=0

p`(n|m) x`qn =
1

(1− qx)(1− q2x) · · · (1− qmx)
.

The classification with respect to the maximum part k of partitions produces
another identity

1
(1− qx)(1− q2x) · · · (1− qmx)

= 1 + x
m∑

k=1

qk

(1− qx)(1− q2x) · · · (1− qkx)
.

Proof. The first generating function follows from (B1.1b).
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From the first generating function, we see that the bivariate generating
function of partitions into parts ≤ k reads as

∞∑

`,n=0

p`(n|k) x`qn =
1

(qx; q)k
.

Putting an extra part λ1 = k with enumerator xqk over the partitions
enumerated by the last generating function, we therefore derive the bivariate
generating function of partitions into ` parts with the first one λ1 = k as
follows:

∞∑

`,n=0

p`(n|λ1 = k) x`qn =
xqk

(qx; q)k
.

Classifying the partitions of n into exactly ` parts with each parts ≤ m

according to the first part λ1 = k, we get the following expression

∞∑

`,n=0

p`(n|m) x`qn =
m∑

k=0

∞∑

`,n=0

p`(n|λ1 = k)x`qn

= 1 + x

m∑

k=1

qk

(qx; q)k

which is the second identity. �

B3. Partitions into distinct parts and the Euler formula

B3.1. Theorem. Let Qm(n) be the number of partitions into exactly m
distinct parts. Its generating function reads as

∞∑

n=0

Qm(n) qn =
q(

1+m
2 )

(1 − q)(1− q2) · · · (1− qm)
. (B3.1)

Proof. Let λ = (λ1 > λ2 · · · > λm > 0) be a partition enumerated by
Qm(n). Based on λ, define another partition µ = (µ1 ≥ µ2 ≥ · · · ≥ µm ≥ 0)
by

µk := λk − (m− k + 1) for k = 1, 2, · · · ,m. (B3.2)
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It is obvious that µ is a partition of |λ|− (1+m
2 ) into ≤ m parts. As an exam-

ple, the following figures show this correspondence between two partitions
λ = (97431) and µ = (4311).

λ = (97431) µ = (4311)

It is not difficult to verify that the mapping (B3.2) is a bijection between the
partitions of n with exactly m distinct parts and the partitions of n− (1+m

2 )
with ≤ m parts. Therefore the generating function of {Qm(n)}n is equal to
that of {pm

(
n − (1+m

2 )
)
}n, the number of partitions of n − (1+m

2 ) with the
number of parts ≤ m:

∞∑

n=0

Qm(n) qn =
∞∑

n=0

pm
(
n− (1+m

2 )
)
qn

= q(
1+m

2 )
∞∑

n=0

pm(n) qn =
q(

1+m
2 )

(q; q)m

thanks for the generating function displayed in (B2.4). This completes the
proof of Theorem B3.1. �

Instead of the ordinary Ferrers diagram, we can draw a shifted diagram of
λ as follows (see the figure). Under the first row of λ1 squares, we put λ2

squares lined up vertically from the second column. For the third row, we
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put λ3 squares beginning from the third column. Continuing in this way,
the last row of λm squares will be lined up vertically from the m-th column.

The shifted diagram
of partition λ = (97431)

From the shifted diagram of λ, we see that all the partitions enumerated
by Qm(n) have one common triangle on the left whose weight is (1+m

2 ). The
remaining parts right to the triangle are partitions of n − (m+1

2 ) with ≤ m

parts. This reduces the problem of computing the generating function to
the case just explained.

B3.2. Classifying all the partitions with distinct parts according to the
number of parts, we get Euler’s classical partition identity

∞∏

n=0

(1− xqn) = 1 +
∞∑

m=1

(−1)m xmq(
m
2 )

(1− q)(1 − q2) · · · (1− qm)
(B3.3)

which can also be verified through the correspondence between partitions
into distinct odd parts and self-conjugate partitions.

Proof. Considering the bivariate generating function of Qm(n), we have

∞∏

k=1

(1 + xqk) =
∞∑

m=0

xm
∞∑

n=0

Qm(n)qn.
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Recalling (B3.1) and then noting that Q0(n) = δ0,n, we deduce that

∞∏

k=1

(1 + xqk) = 1 +
∞∑

m=1

xmq(
1+m

2 )

(q; q)m

which becomes the Euler identity under parameter replacement x→−x/q.

In view of Euler’s Theorem A2.1, we have a bijection between the partitions
into distinct odd parts and the self-conjugate partitions.

The self-conjugate partition
λ = (653221)

with the Durfee square 3× 3

For a self-conjugate partition with the main diagonal length equal to m

(which corresponds exactly to the length of partitions into distinct odd
parts), it consists of three pieces: the first piece is the square of m × m

on the top-left with bivariate enumerator xmqm2
, the second piece right to

the square is a partition with ≤ m parts enumerated by 1/(q; q)m and the
third piece under the square is in effect the conjugate of the second one.
Therefore the partitions right to the square and under the square m × m
are altogether enumerated by 1/(q2; q2)m.

Classifying the self-conjugate partitions according to the main diagonal
length m, multiplying both generating functions together and summing m
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over 0 ≤ m ≤∞, we find the following identity:

∞∏

n=0

(1 + xq1+2n) =
∞∑

m=0

xmqm2

(q2; q2)m

where the left hand side is the bivariate generating function of the partitions
into odd distinct parts.

It is trivial to verify that under replacements

x→ −xq−1/2 and q→ q1/2

the last formula is exactly the identity displayed in (B3.3). �

Unfortunately, there does not exist the closed form for the generating func-
tion of Qm(n), numbers of partitions into ≤ m distinct parts.

B3.3. Dually, if we classify the partitions into distinct parts ≤ m accor-
ding to their maximum part. Then we can derive the following finite and
infinite series identities

m∏

j=1

(1 + qjx) = 1 + x

m∑

k=1

qk
k−1∏

i=1

(1 + qix) (B3.4a)

∞∏

j=1

(1 + qjx) = 1 + x

∞∑

k=1

qk
k−1∏

i=1

(1 + qix). (B3.4b)

Proof. For the partitions into distinct parts with the maximum part equal
to k, their bivariate generating function is given by

qkx

k−1∏

i=1

(1 + qix) which reduces to 1 for k = 0.

Classifying the partitions into distinct parts ≤ m according to their maxi-
mum part k with 0 ≤ k ≤ m, we get

(−qx; q)m = 1 + x

m∑

k=1

qk(−qx; q)k−1.

The second identity follows from the first one with m→∞. �
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B4. Partitions and the Gauss q-binomial coefficients

B4.1. Lemma. Let p`(n|m) and p`(n|m) be the numbers of partitions of
n into ` and ≤ ` parts, respectively, with each part ≤ m. We have the
generating functions:

∑

`,n≥0

p`(n|m) x`qn =
1

(1− xq)(1− xq2) · · · (1− xqm)
(B4.1a)

∑

`,n≥0

p`(n|m) x`qn =
1

(1 − x)(1− xq) · · · (1− xqm)
. (B4.1b)

The first identity (B4.1a) is a special case of the generating function shown
in (B1.1b).

On account of the length of partitions, we have

p`(n|m) = p0(n|m) + p1(n|m) + · · ·+ p`(n|m).

Manipulating the triple sum and then applying the geometric series, we can
calculate the corresponding generating function as follows:

∑

`,n≥0

p`(n|m) x`qn =
∑

`,n≥0

∑̀

k=0

pk(n|m)x`qn

=
∞∑

k=0

∞∑

n=0

pk(n|m)qn
∞∑

`=k

x`

=
1

1− x

∞∑

k=0

∞∑

n=0

pk(n|m)xkqn.

The last expression leads us immediately to the second bivariate generating
function (B4.1b) in view of the first generating function (B4.1a). �

B4.2. The Gauss q-binomial coefficients as generating functions.
Let p`(n|m) and p`(n|m) be as in Lemma B4.1. The corresponding univa-
riate generating functions read respectively as

∑

n≥0

p`(n|m) qn =
[
`+m− 1
m− 1

]
q` (B4.2a)

∑

n≥0

p`(n|m) qn =
[
`+m

m

]
(B4.2b)
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where the q-Gauss binomial coefficient is defined by
[
m+ n

m

]

q

=
(q; q)m+n

(q; q)m(q; q)n
.

Proof. For these two formulae, it is sufficient to prove only one identity
because

p`(n|m) = p`(n|m) − p`−1(n|m).

In fact, supposing that (B4.2b) is true, then (B4.2a) follows in this manner:
∑

n≥0

p`(n|m) qn =
∑

n≥0

p`(n|m) qn −
∑

n≥0

p`−1(n|m) qn

=
[
` +m

m

]

q

−
[
`− 1 +m

m

]

q

= q`

[
`+m− 1
m− 1

]

q

.

Now we should prove (B4.2b). Extracting the coefficient of x` from the
generation function (B4.1b), we get

∞∑

n=0

p`(n|m) qn = [x`]
1

(x; q)m+1
.

Observing that the function 1/(x; q)m+1 is analytic at x = 0 for |q| < 1, we
can expand it into MacLaurin series:

1
(x; q)m+1

=
∞∑

k=0

Bk(q)xk

where the coefficients
{
Bk(q)

}
are independent of x to be determinated.

Reformulating it under replacement x→ qx as

1
(qx; q)m+1

=
∞∑

k=0

Bk(q)xkqk

and then noting further that both fractions just displayed differ in factors
(1− x) and (1− xqm+1), we have accordingly the following:

(1− x)
∞∑

k=0

Bk(q)xk = (1− xqm+1)
∞∑

k=0

Bk(q)xkqk.

Extracting the coefficient of x` from both sides we get

B`(q)− B`−1(q) = q` B`(q)− qm+` B`−1(q)

which is equivalent to the following recurrence relation

B`(q) = B`−1(q)
1 − qm+`

1− q`
for ` = 1, 2, · · · .
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Iterating this relation `-times, we find that

B`(q) = B0(q)
(qm+1; q)`

(q; q)`
=

[
m+ `

`

]

q

where B0(q) = 1 follows from setting x = 0 in the generating function

1
(xq; q)m+1

=
∞∑

k=0

Bk(q)xk.

Therefore we conclude the proof. �

B4.3. Theorem. Classifying the partitions according to the number of
parts, we derive immediately two q-binomial identities (finite and infinite):

n∑

`=0

q`

[
`+m

m

]
=

[
m + n + 1

n

]
(B4.3a)

∞∑

`=0

x`

[
`+m

m

]
=

m∏

k=0

1
1− xqk

. (B4.3b)

Proof. In view of (B4.2a) and (B4.2b), the univariate generating func-
tions for the partitions into parts ≤ m + 1 with the lengths equal to ` and

≤ n are respectively given by the q-binomial coefficients q`
[
` +m
m

]
and

[
m + n+ 1

n

]
. Classifying the partitions enumerated by the latter accor-

ding to the number of parts ` with 0 ≤ ` ≤ n, we establish the first identity.

By means of (B4.1b), we have

m∏

k=0

1
1− xqk

=
∞∑

`=0

x`
∞∑

n=0

p`(n|m) qn =
∞∑

`=0

x`

[
m+ `

`

]

which is the second q-binomial identity. �
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B5. Partitions into distinct parts and finite q-differences

Similarly, let Q`(n|m) be the number of partitions of n into exactly ` distinct
parts with each part ≤ m. Then we have generating functions

[
m

`

]
q(

1+`
2 ) =

∑

n≥0

Q`(n|m) qn (B5.1)

m∏

k=1

(1 + xqk) =
∑

`,n≥0

Q`(n|m) x`qn (B5.2)

whose combination leads us to Euler’s finite q-differences

(x; q)n =
n−1∏

`=0

(1− xq`) =
n∑

k=0

(−1)k

[
n

k

]
q(

k
2)xk. (B5.3)

Following the second proof of Theorem B3.1, we can check without difficulty
that the shifted Ferrers diagrams of the partitions into `-parts ≤ m are
unions of the same triangle of length ` enumerated by q(

`+1
2 ) and the ordinary

partitions into parts ≤ m − ` with length ≤ ` whose generating function

reads as the q-binomial coefficient
[m
`

]
. The product of them gives the

generating function for {Q`(n|m)}n.

The second formula is a particular case of (B1.2b). Its combination with
the univariate generating function just proved leads us to the following:

(−qx; q)m =
m∑

`=0

∑

n≥0

Q`(n|m) qn x` =
m∑

`=0

x`

[
m

`

]
q(

1+`
2 ).

Replacing x by −x/q in the above, we get Euler’s q-difference formula:

(x; q)m =
m∑

`=0

(−1)`

[
m

`

]
q(

`
2)x`.

Remark The last formula is called the Euler q-difference formula because
if we put x := q−n, the finite sum results in

m∑

`=0

(−1)`

[
m

`

]
q(

`
2)−`n = (q−n; q)m =

{
0, 0 ≤ n < m

(−1)nq−(n+1
2 )(q; q)n, n = m

just like the ordinary finite differences of polynomials.
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Keep in mind of the q-binomial limit
[
n

k

]
=

(q1+n−k; q)k

(q; q)k
−→ 1

(q; q)k
as n→∞.

Letting n → ∞ in Euler’s q-finite differences, we recover again the Euler
classical partition identity

(x; q)∞ =
∞∑

k=0

(−1)k xk

(q; q)k
q(

k
2)

where Tannery’s theorem has been applied for the limiting process.




