Capitolo 5

Teoria di Fredholm.

Alternativa di Fredholm.

Teorema spettrale di Hilbert-Schmidt per operatori compatti autoaggiunti su spazi di Hilbert separabili

5.1 Operatori aggiunti e proprietà. Operatori autoaggiunti (simmetrici) su spazi di Hilbert

Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ spazi di Banach su \mathbb{K} . Fissato un elemento $x \in X$ e un elemento del suo duale $x^* \in X^*$, indicheremo l'azione di x^* su x, x^* (x), anche col simbolo $\langle x^*, x \rangle_{X^*, X}$, cioè porremo

$$x^*(x) =: \langle x^*, x \rangle_{X^*, X}.$$

Al simbolo $\langle \cdot, \cdot \rangle_{X^*,X}$ daremo il nome di *crochet* o di *dualità* tra X^* e X. In uno spazio di Hilbert questa notazione si riduce al prodotto scalare (\cdot, \cdot) .

Definizione 5.1.1 (Operatore aggiunto). Sia $T: X \to Y$ un operatore lineare limitato, si definisce operatore aggiunto di T, l'operatore

$$T^*:Y^*\to X^*$$

tale che

$$\langle T^* y^*, x \rangle_{X^*, X} = \langle y^*, Tx \rangle_{Y^*, Y} \quad \forall y^* \in Y^*, \forall x \in X.$$
 (5.1)

Definizione 5.1.2. Sia $V \subseteq X$, si definisce insieme ortogonale a V l'insieme

$$V^{\perp} := \left\{ x^* \in X^* : \ \langle x^*, x \rangle_{X^*, X} = 0 \ \forall x \in V \right\}.$$

Se $W \subseteq X^*$, si definisce insieme ortogonale a W (talvolta detto insieme preortogonale a W) l'insieme

$$^{\perp}W:=\left\{ x\in X;\ \langle x^{*},x\rangle_{X^{*},X}=0\ \forall x^{*}\in W\right\} .$$

Talvolta, laddove non si crea ambiguità (ad esempio, negli spazi riflessivi e in particolare negli spazi di Hilbert), $^{\perp}W$ è indicato anche con il simbolo W^{\perp} .

È facile provare che V^{\perp} è sottospazio chiuso di X^* e ${}^{\perp}W$ è sottospazio chiuso di X. Sussiste il seguente risultato.

Proposizione 5.1.3.

$$^{\perp} (V^{\perp}) = \overline{V},$$
$$(^{\perp}W)^{\perp} \supseteq \overline{W}.$$

Dimostrazione. La dimostrazione si basa sulla separazione di insiemi convessi; per semplicità, tenendo conto dell'Osservazione 4.2.2, proviamo il risultato nel caso in cui il campo degli scalari è \mathbb{R} .

È evidente che $V \subseteq {}^{\perp}(V^{\perp})$, e poiché ${}^{\perp}(V^{\perp})$ è chiuso si ha $\overline{V} \subseteq {}^{\perp}(V^{\perp})$. Per provare che ${}^{\perp}(V^{\perp}) \subseteq \overline{V}$, supponiamo, per assurdo, che esista $x_0 \in {}^{\perp}(V^{\perp})$ tale che $x_0 \notin \overline{V}$

Applicando il Teorema 4.2.1 (punto (ii), con $A = \overline{V}$ e $B = \{x_0\}$), esistono $\varphi \in X^*$ e $c \in \mathbb{R}$ tali che $\varphi(x) < c < \varphi(x_0)$ per ogni $x \in V$.

Poiché V è uno spazio vettoriale (quindi, $\lambda \varphi(x) = \varphi(\lambda x) < c$ per ogni $\lambda \in \mathbb{R}$), risulta $\varphi(x) = 0$ per ogni $x \in V$ e anche $\varphi(x_0) > 0$. Allora $\varphi \in V^{\perp}$ e di conseguenza $\varphi(x_0) = 0$, una evidente contraddizione.

È ovvio che il chiuso $({}^{\perp}W)^{\perp} \supseteq W$ e quindi $({}^{\perp}W)^{\perp} \supseteq \overline{W}$. Se $X = X^{**}$ è evidente che $({}^{\perp}W)^{\perp} = \overline{W}$.

Osservazione 5.1.4. Un esempio in cui $({}^{\perp}W)^{\perp} \neq \overline{W}$ è il seguente. Sia $X = \ell^1$, per cui $X^* = \ell^{\infty}$ (vedere la sottosezione 4.3.1). Consideriamo $W = c_0$ (sottospazio chiuso di ℓ^{∞}). Allora,

$${}^{\perp}W = \left\{ x \in \ell^{1}; \ \langle x^{*}, x \rangle_{\ell^{\infty}, \ell^{1}} = 0 \ \forall x^{*} \in c_{0} \right\} = \left\{ 0_{\ell^{1}} \right\},$$
$$\left({}^{\perp}W\right)^{\perp} = \left\{ x^{*} \in \ell^{\infty}; \ \langle x^{*}, x \rangle_{\ell^{\infty}, \ell^{1}} = 0 \ \forall x \in {}^{\perp}W \right\} = \ell^{\infty}.$$

Risulta

$$(^{\perp}W)^{\perp} \neq c_0.$$

Proposizione 5.1.5 (Alcune proprietà dell'operatore aggiunto). $Sia T \in B(X;Y)$. Risulta:

(i)
$$||T||_{B(X;Y)} = ||T^*||_{B(Y^*;X^*)}$$
 (quindi $T^* \in B(Y^*;X^*)$);

(ii)
$$\ker T = {}^{\perp} [Im T^*], \ker T^* = [Im T]^{\perp};$$

(iii) T^* suriettivo $\Rightarrow T$ iniettivo; T suriettivo $\Rightarrow T^*$ iniettivo.

Dimostrazione.

(i) Risulta, per il Corollario 4.1.10,

$$\begin{split} \|T\|_{B(X;Y)} &= \sup_{\|x\|_X = 1} \|Tx\|_Y = \sup_{\|x\|_X = 1} \sup_{\|y^*\|_{Y^*} = 1} \left| \langle y^*, Tx \rangle_{Y^*,Y} \right| \\ &= \sup_{\|y^*\|_{Y^*} = 1} \sup_{\|x\|_X = 1} \left| \langle T^*y^*, x \rangle_{X^*,X} \right| \\ &= \sup_{\|y^*\|_{Y^*} = 1} \|T^*y^*\|_{X^*} = \|T^*\|_{B(Y^*;X^*)} \,. \end{split}$$

- (ii) Sono equivalenti le seguenti asserzioni (tenendo presente il Corollario 4.1.8):
 - $x \in \ker T$.
 - \bullet Tx = 0,
 - $\langle y^*, Tx \rangle_{Y^*,Y} = 0 \ \forall y^* \in Y^*,$
 - $\bullet \ \langle T^*y^*, x \rangle_{X^*, X} = 0 \ \forall y^* \in Y^*,$
 - $x \in {}^{\perp}[Im T^*]$.

Analogamente, sono equivalenti le seguenti asserzioni:

- $y^* \in \ker T^*$,
- $T^*y^* = 0$,
- $\langle T^*y^*, x \rangle_{X^*|X} = 0 \ \forall x \in X,$
- $\langle y^*, Tx \rangle_{Y^*,Y} = 0 \ \forall x \in X,$
- $y^* \in [Im T]^{\perp}$.
- (iii) Le implicazioni seguono dalle precedenti proprietà. Per brevità ne dimostriamo solo una.

$$T^*$$
 suriettivo $\Leftrightarrow Im T^* = X^* \Rightarrow \underbrace{\perp [Im T^*]}_{=\ker T} = {}^{\perp}(X^*) = \{0_X\}.$

Definizione 5.1.6 (Operatore aggiunto su uno spazio di Hilbert). Siano $(H, (\cdot, \cdot))$ uno spazio di Hilbert, $T: H \to H$ operatore lineare e limitato. Allora $T^*: H \to H$ è l'operatore aggiunto di T se

$$(T^*y, x) = (y, Tx) \ \forall x, y \in H.$$

Definizione 5.1.7 (Operatore autoaggiunto (simmetrico) su uno spazio di Hilbert). Sia $T \in B(H)$. Si dice che T è autoaggiunto (o simmetrico) se

$$(Ty, x) = (y, Tx) \ \forall x, y \in H,$$

cioè se $T = T^*$.

Osservazione 5.1.8. (dovuta a Hellinger e Toeplitz)

Un operatore T lineare autoaggiunto definito su tutto uno spazio di Hilbert H è necessariamente continuo.

Infatti, T ha il grafico chiuso (se $u_n \to u \in H$ e $Tu_n \to v \in H$, risulta

$$\forall x \in H \quad (Tu_n, x) = (u_n, Tx)$$

e, per $n \to +\infty$,

$$\forall x \in H \quad (v, x) = (u, Tx) = (Tu, x);$$

pertanto Tu = v). Allora, per il teorema del grafico chiuso, T è continuo. Ne segue che gli operatori autoaggiunti non-limitati possono essere definiti solo su un sottospazio proprio di uno spazio di Hilbert.

Osservazione 5.1.9. Per operatori lineari $T:D(T)\subsetneq H\to H$ non limitati, densamente definiti su H (i.e. $\overline{D(T)}=H$), i concetti "simmetrico" e "autoaggiunto" non sono sinonimi. Precisiamo per tali operatori le rispettive definizioni e le relazioni che intercorrono.

Definizione 5.1.10. Dato $T:D(T)\subseteq H\to H$ operatore lineare, densamente definito su H, si pone

$$D(T^*) = \{ y \in H; \exists y^* \in H \text{ t.c. } \forall x \in D(T) : (Tx, y) = (x, y^*) \}.$$

Osserviamo che, fissato $y \in H$ l'elemento y^* che compare in $D(T^*)$ è unico, per la densità di D(T) in H.

Allora è ben posta la seguente definizione.

Definizione 5.1.11. Dato $T:D(T)\subseteq H\to H$ operatore lineare, densamente definito su H, si definisce l'operatore aggiunto $T^*:D(T^*)\subseteq H\to H$ di $T:D(T)\subseteq H\to H$, ponendo per ogni $y\in D(T^*)$, $T^*y=y^*$ dove y^* è l'unico elemento di H tale che $(Tx,y)=(x,y^*)$ per ogni $x\in D(T)$.

Osserviamo che T^* è operatore lineare, ma, in generale, non è densamente definito (cfr. [1]).

Definizione 5.1.12. T è simmetrico se $T \subset T^*$, cioè se

$$\forall x, y \in D(T) \quad (Tx, y) = (x, Ty)$$

Definizione 5.1.13. T è autoaggiunto se $T = T^*$.

Ogni operatore autoaggiunto è chiaramente simmetrico. Il viceversa non è vero in generale. Infatti è sufficiente considerare il seguente esempio. Sia $H=L^2([0,1])$ su $\mathbb C$ e sia $T:D(T)=W_0^{1,2}([0,1])\subset L^2([0,1])\to L^2([0,1])$ l'operatore così definito

$$\forall u \in W_0^{1,2}([0,1]) \quad Tu := iu'.$$

Tè densamente definito su $L^2([0,1]).$ Si ha : $\forall u \in W^{1,2}_0([0,1])$ e $v \in W^{1,2}([0,1])$

$$(Tu, v)_{L^2([0,1])} = \int_0^1 iu' \overline{v} dx = -\int_0^1 iu \overline{v'} dx = \int_0^1 u \overline{(iv')} dx.$$

Pertanto (considerando anche $v\in W^{1,2}_0([0,1])$) l'operatore T è simmetrico, $W^{1,2}([0,1])\subseteq D(T^*)$ e $T^*v=iv'\quad \forall v\in W^{1,2}([0,1])$. Se dimostriamo che $D(T^*)=W^{1,2}([0,1])$, dedurremo che T non può essere autoaggiunto. Per questo resta da provare che $D(T^*)\subseteq W^{1,2}([0,1])$. Sia $v\in D(T^*)$, allora , per ogni $u\in D(T)=W^{1,2}_0([0,1])$ si ha :

$$(Tu, v)_{L^2([0,1])} = (u, T^*v)_{L^2([0,1])},$$

cioè

$$\int_{0}^{1} iu'\overline{v}dx = \int_{0}^{1} u'(i\overline{v})dx = \int_{0}^{1} u\overline{T^{*}v}dx.$$

Allora, per ogni $u \in C_0^{\infty}([0,1])$, si ha

$$\int_0^1 u'(i\overline{v})dx = \int_0^1 u\overline{T^*v}dx.$$

Per la definizione di $W^{1,2}([0,1])$, deduciamo che $iv \in W^{1,2}([0,1])$ e quindi che $D(T^*) = W^{1,2}([0,1])$.

5.2 Operatori compatti e proprietà

Definizione 5.2.1 (operatore compatto). Siano $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ spazi di Banach; un operatore $T \in B(X;Y)$ si dice *compatto* se per ogni successione $(x_n)_n$ limitata in X, esiste una sottosuccessione $(x_{n_k})_k$ tale che $(Tx_{n_k})_k$ converge in Y.

Equivalentemente, T è compatto se e solo se per ogni $U \subset X$ insieme limitato, l'immagine $T(U) \subset Y$ ha chiusura compatta nella topologia forte di Y (cioè T(U) è relativamente compatta). In particolare, riscalando le successioni limitate della definizione precedente, basterà provare che T(U) ha chiusura compatta per la palla unitaria aperta $U = B_X(0,1)$ oppure per la palla unitaria chiusa $U = \overline{B_X(0,1)}$.

Indichiamo con $\mathcal{K}(X;Y)$ lo spazio vettoriale degli operatori compatti da X in Y. Se X=Y, invece di $\mathcal{K}(X;X)$ scriveremo semplicemente $\mathcal{K}(X)$.

Osservazione 5.2.2. L'operatore identità I, su uno spazio di Banach X di dimensione infinita, non è compatto.

Difatti: $I:X\to X,\,x\in X\mapsto I(x):=x\in X$ (dim $X=\infty$) è lineare e limitato e

$$\overline{I(U)} = \overline{U}$$

per ogni U insieme limitato. Ora, $\overline{B_X(0,1)}$ è (chiuso e) limitato in X, ma non è compatto per il Teorema 1.8.5, essendo X di dimensione infinita.

Proposizione 5.2.3 (esempi di operatori compatti).

1. Se $T \in B(X;Y)$ e dim $(Im T) < +\infty$, allora $T \in \mathcal{K}(X;Y)$.

Dimostrazione. Un operatore $T \in B(X;Y)$ è compatto se e solo se la palla aperta unitaria $B_X(0,1) \subset X$ ha immagine $T(B_X(0,1)) \subset Y$ a chiusura compatta. Poiché $\dim(Im T) < +\infty$ e T è limitato, allora la chiusura $\overline{T(B_X(0,1))}$ è un sottoinsieme chiuso e limitato di uno spazio a dimensione finita, quindi è compatto.

2. Sia $(T_n)_n$ una successione in $\mathcal{K}(X;Y)$ e sia $T \in B(X;Y)$ tale che

$$\lim_{n \to +\infty} ||T_n - T||_{B(X;Y)} = 0.$$

Allora anche $T \in \mathcal{K}(X;Y)$.

<u>Dimostrazione</u>. Osserviamo che, poiché Y è di Banach, la chiusura $\overline{T(B_X(0,1))}$ è compatta se e solo se $T(B_X(0,1))$ è precompatta (Teorema 1.8.4) e quindi, per conseguire la tesi, proviamo che, per ogni $\varepsilon > 0$, $T(B_X(0,1))$ può essere ricoperto con un numero finito di palle aperte di raggio ε .

Per l'ipotesi, sia $\varepsilon > 0$ fissato e scegliamo $k \in \mathbb{N}$ tale che

$$||T_k - T||_{B(X;Y)} < \frac{\varepsilon}{2}.$$

Poiché T_k è compatto possiamo selezionare un numero finito di elementi $y_1, y_2, \ldots, y_N \in Y$ tali che

$$T_k(B_X(0,1)) \subset \bigcup_{i=1}^N B_Y\left(y_i, \frac{\varepsilon}{2}\right).$$
 (5.2)

Se $||x||_X < 1$, allora $||T_k x - Tx||_Y < \frac{\varepsilon}{2}$. Per (5.2) esiste un punto y_i con $||T_k x - y_i||_Y < \frac{\varepsilon}{2}$. Per la disuguaglianza triangolare,

$$||Tx - y_i||_V < \varepsilon.$$

Ciò prova che il numero finito di palle aperte di raggio ε , $B_Y(y_i, \varepsilon)$, ricopre $T(B_X(0, 1))$.

Osservazione 5.2.4. Un operatore $T \in B(X;Y)$ si dice di rango finito se dim $(ImT) < +\infty$. Per il punto 1 della Proposizione 5.2.3 un operatore di rango finito è compatto. Indicata con $\mathcal{F}(X;Y)$ la classe degli operatori lineari limitati di rango finito, risulta

$$\mathcal{F}(X;Y)\subset\mathcal{K}(X;Y)$$
.

Dalla Proposizione 5.2.3 si ha il seguente risultato.

Corollario 5.2.5. Sia $(T_n)_n$ una successione di operatori di rango finito e sia $T \in B(X;Y)$ tale che

$$\lim_{n\to+\infty} ||T_n - T||_{B(X;Y)} = 0.$$

Allora $T \in \mathcal{K}(X;Y)$.

Il problema inverso del Corollario 5.2.5, è noto come "Problema dell'approssimazione di Banach-Grothendieck":

"dato un operatore compatto tra spazi di Banach, $T \in \mathcal{K}(X;Y)$, esiste sempre una successione $(T_n)_n$ di operatori di rango finito tale che

$$\lim_{n \to +\infty} \|T_n - T\|_{B(X;Y)} = 0 ?$$

(in altre parole, è vero che $\overline{\mathcal{F}(X;Y)} = \mathcal{K}(X;Y)$?). Tale problema ha, in generale, risposta negativa (controesempio del 1972, dovuto a P. Enflo). La risposta è però positiva in alcuni casi speciali, ad esempio se Y è spazio di Hilbert.

Infatti, se $T \in \mathcal{K}(X; H)$, con X spazio di Banach e H spazio di Hilbert, posto $K := \overline{T(B_X(0,1))}$, assegnato $\varepsilon > 0$, esiste un ricoprimento finito di K con palle di raggio ε ; sia

$$K \subset \bigcup_{i \in I} B_H(y_i, \varepsilon),$$

con I insieme finito. Sia

$$S := \operatorname{span}\{y_i : i \in I\}$$

e consideriamo l'operatore di rango finito $T_{\varepsilon}:X\to S$ definito dalla composizione

$$T_{\varepsilon} := P_S T$$
.

Proviamo che

$$||T_{\varepsilon} - T||_{B(X;H)} < 2\varepsilon.$$

Per ogni $x \in B_X(0,1)$ esiste $i_0 \in I$ tale che

$$||Tx - y_{i_0}||_H < \varepsilon. \tag{5.3}$$

Pertanto (poiché le proiezioni non aumentano le distanze)

$$||P_S T x - P_S y_{i_0}||_H < \varepsilon,$$

cioè

$$||P_S T x - y_{i_0}||_H < \varepsilon. \tag{5.4}$$

Da (5.3) e (5.4) otteniamo

$$||P_STx - Tx||_H < 2\varepsilon$$

per ogni $x \in B_X(0,1)$ e quindi $||T_{\varepsilon} - T||_{B(X:H)} < 2\varepsilon$.

Osservazione 5.2.6. Per il punto 2 della Proposizione 5.2.3, $\mathcal{K}(X;Y)$ è un sottospazio chiuso di B(X;Y) nella norma $\|\cdot\|_{B(X;Y)}$ e quindi è uno spazio di Banach su \mathbb{K} (purché almeno Y sia uno spazio di Banach).

È utile il seguente risultato.

Proposizione 5.2.7. Siano $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$, $(Z, \|\cdot\|_Z)$ tre spazi di Banach su \mathbb{K} . Se $T \in B(X;Y)$ e $S \in \mathcal{K}(Y;Z)$ (rispettivamente $T \in \mathcal{K}(X;Y)$ e $S \in B(Y;Z)$) allora $S \circ T \in \mathcal{K}(X;Z)$.

Dimostrazione. Sia U un sottoinsieme limitato di X; poiché T è continuo, T(U) è un sottoinsieme limitato di Y, e quindi, per la compattezza di S, si ha che S(T(U)) è relativamente compatto in Z.

Se T è compatto e S è continuo, la dimostrazione è analoga.

Dimostriamo ora che un operatore compatto su uno spazio di Hilbert porta successioni debolmente convergenti in successioni fortemente convergenti.¹

Teorema 5.2.8. Sia $(H, (\cdot, \cdot))$ uno spazio di Hilbert, $x_n \to x$, $T \in \mathcal{K}(H)$. Allora $(Tx_n)_n$ converge fortemente a Tx in H, cioè

$$\lim_{n \to +\infty} ||Tx_n - Tx|| = 0.$$
 (5.5)

Dimostrazione. Per provare (5.5), è sufficiente dimostrare che ogni sottosuccessione $(x_n)_{n\in I_1}$ di $(x_n)_n$ ha una sottosuccessione $(x_n)_{n\in I_2}$ (con $I_2\subseteq I_1$ insiemi infiniti) tale che

$$\lim_{\substack{n \to +\infty \\ n \in I_2}} ||Tx_n - Tx|| = 0.$$

Sia allora $(x_n)_{n\in I_1}$ una sottosuccessione di $(x_n)_n$. Poiché per ipotesi $x_n \to x$, risulta per il punto (iii) della Proposizione 3.1.6 $||x_n|| \le c$ per ogni $n \in I_1$. Essendo T compatto, da questa sottosuccessione limitata possiamo estrarre una ulteriore sottosuccessione $(x_n)_{n\in I_2}$, con $I_2 \subseteq I_1$, tale che l'immagine converge fortemente, cioè

$$\lim_{\substack{n \to +\infty \\ n \in I_2}} ||Tx_n - y|| = 0,$$

per qualche $y \in H$.

Rimane da provare che y = Tx. Detto T^* l'aggiunto di T, si ha

$$(v, Tx_n - Tx) = (T^*v, x_n - x) \to 0$$

Teorema. Siano $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ spazi di Banach, $T \in \mathcal{K}(X; Y)$. Se x_n converge debolmente ad $x \in X$, allora $(Tx_n)_n$ converge fortemente a Tx.

Il viceversa è valido se X è riflessivo.

In virtù di questo teorema, in uno spazio di Hilbert H risulta comoda la seguente definizione di compattezza di un operatore:

$$T \in \mathcal{K}(H)$$
 \Leftrightarrow T trasforma successioni debolmente convergenti in successioni fortemente convergenti.

¹Più in generale, vale il seguente risultato.

per ogni $v \in H$, e questo prova la convergenza debole

$$Tx_n \rightharpoonup Tx$$
.

Poiché il limite debole è unico, questo implica che Tx=y, completando la dimostrazione.

Teorema 5.2.9 (di Schauder, compattezza dell'operatore aggiunto).

Siano $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ spazi di Banach e sia $T \in B(X; Y)$. Allora

$$T \in \mathcal{K}(X;Y) \iff T^* \in \mathcal{K}(Y^*;X^*).$$

(La dimostrazione di questo importante risultato si basa sul teorema di Ascoli-Arzelà.)

Dimostrazione. Assumiamo che $T \in \mathcal{K}(X;Y)$.

1. Dobbiamo dimostrare che $T^*(\overline{B_{Y^*}}(0,1))$ ha chiusura compatta in X^* . Sia $(y_n^*)_n$ una successione in Y^* , $y_n^*: Y \to \mathbb{K}$, con $\|y_n^*\|_{Y^*} \le 1$ per ogni $n \in \mathbb{N}$.

Proviamo che $(T^*y_n^*)_n$ ha una sottosuccessione convergente.

Per l'ipotesi l'insieme $K := T(\overline{B_X(0,1)}) \subseteq Y$ è compatto.

2. Poniamo $\varphi_n := y_n^*|_K$ (la restrizione di y_n^* al compatto K). Consideriamo la famiglia

$$\mathcal{F} \subset C^0(K; \mathbb{K})$$

definita da

$$\mathcal{F} := \{ \varphi_n : y \in K \mapsto \varphi_n(y) \in \mathbb{K}; n \in \mathbb{N} \}.$$

Proviamo che \mathcal{F} soddisfa le ipotesi del Teorema di Ascoli-Arzelà 3.4.3. Infatti, tutte queste funzioni sono uniformemente Lipschitziane, perché

$$|\varphi_n(y) - \varphi_n(y')| \le ||y_n^*||_{Y^*} \cdot ||y - y'||_Y \le ||y - y'||_Y$$
 per ogni $y, y' \in K$.

Inoltre, osservato che

$$\sup_{y \in K} \|y\|_Y = \sup_{\|x\| \le 1} \|Tx\|_Y = \|T\|_{B(X;Y)},$$

si ha

$$|\varphi_n(y)| \le ||y_n^*||_{Y^*} \cdot ||y||_Y \le 1 \cdot ||T||_{B(X;Y)}$$
 per ogni $y \in K$.

Quindi tutte le funzioni φ_n sono anche uniformemente limitate. Per il Teorema di Ascoli-Arzelà esiste una sottosuccessione $(\varphi_{n_k})_k$ che converge uniformemente sul compatto K ad una funzione continua φ .

3. Osserviamo che

$$\begin{split} \|T^*y_{n_i}^* - T^*y_{n_j}^*\|_{X^*} &= \sup_{\|x\|_X \le 1} |\langle T^*y_{n_i}^* - T^*y_{n_j}^*, x \rangle_{X^*, X}| \\ &= \sup_{\|x\|_X \le 1} |\langle y_{n_i}^* - y_{n_j}^*, Tx \rangle_{Y^*, Y}| \\ &= \sup_{\|x\|_X \le 1} |\varphi_{n_i}(Tx) - \varphi_{n_j}(Tx)| \to 0 \quad \text{per } i, j \to +\infty. \end{split}$$

Pertanto la sottosuccessione $(T^*y_{n_k}^*)_k$ è di Cauchy in X^* , quindi convergente ad un limite $x^* \in X^*$.

Perciò $T^* \in \mathcal{K}(Y^*; X^*)$.

Viceversa, assumiamo $T^* \in \mathcal{K}(Y^*; X^*)$.

Per quanto già provato nella prima parte, risulta $T^{**} \in \mathcal{K}(X^{**}; Y^{**})$.

In particolare, $T^{**}(B_X(0,1))$ ha chiusura compatta in Y^{**} .

Ma $T(B_X(0,1))=T^{**}(B_X(0,1))$ e Y è chiuso in Y^{**} . Pertanto $T(B_X(0,1))$ ha chiusura compatta in Y.

Nel caso di operatori compatti su uno spazio di Hilbert H, il teorema di Schauder può essere dimostrato senza ricorrere al teorema di Ascoli-Arzelà. Dapprima ne proviamo solo un'implicazione, precisamente dimostriamo la seguente:

Proposizione 5.2.10. Sia $(H, (\cdot, \cdot))$ uno spazio di Hilbert. Se $T \in \mathcal{K}(H)$, allora $T^* \in \mathcal{K}(H)$.

Dimostrazione. Sia $(x_n)_n$ una successione limitata in H e sia (per il Teorema 3.3.5) $(x_{n_k})_k$ una sua sottosuccessione debolmente convergente a $x \in H$. Per conseguire la tesi, proviamo che $(T^*x_{n_k})_k$ è fortemente convergente in H. In particolare, proviamo che

$$T^*x_{n_k} \to T^*x \tag{5.6}$$

fortemente in H. Osserviamo che

$$||T^*x_{n_k} - T^*x||^2 = (T^*x_{n_k} - T^*x, T^*(x_{n_k} - x)) = (T(T^*x_{n_k}) - T(T^*x), x_{n_k} - x).$$
(5.7)

Ora, poiché T^* è lineare, si ha

$$T^*x_{n_k} \rightharpoonup T^*x. \tag{5.8}$$

Essendo $T \in \mathcal{K}(H)$ e $T^* \in B(H)$, per la Proposizione 5.2.7, si ha che $TT^* \in \mathcal{K}(H)$ e quindi, per il Teorema 5.2.8 applicato all'operatore compatto TT^* , da (5.8) segue la convergenza forte

$$T(T^*x_{n_k}) \to T(T^*x).$$

Pertanto, da (5.7), per il punto (iv) della Proposizione 3.1.6, segue (5.6) e dunque la tesi.

Osservazione 5.2.11. Se analizziamo la dimostrazione della Proposizione precedente, risulta evidente che la tesi è conseguita grazie al fatto che TT^* è compatto. È ragionevole ipotizzare che per dimostrare l'implicazione inversa della Proposizione precedente, basterà provare che da T^*T compatto segue che T è compatto. In effetti, vale il seguente risultato:

Lemma 5.2.12.

(i) $T \in \mathcal{K}(H) \Leftrightarrow T^*T \in \mathcal{K}(H)$;

(ii)
$$T^* \in \mathcal{K}(H) \Leftrightarrow ((T^*)^*T^* =) TT^* \in \mathcal{K}(H)$$
.

Dimostrazione. Proviamo (i); (ii) segue da (i) applicata a T^* .

Se T è compatto, allora T^*T è compatto, in quanto composizione dell'operatore T, compatto per ipotesi, e l'operatore limitato T^* . Per provare il viceversa, sia $(x_n)_n$ una successione limitata in H, assumiamo $||x_n|| \leq C$ per ogni $n \in \mathbb{N}$.

Allora, essendo T^*T compatto per ipotesi, la successione $(T^*Tx_n)_n$ ha una estratta convergente, sia $(T^*Tx_{n_k})_k$.

Risulta

$$||Tx_{n_k} - Tx_{n_l}||^2 = (T(x_{n_k} - x_{n_l}), T(x_{n_k} - x_{n_l}))$$

$$= (T^*T(x_{n_k} - x_{n_l}), x_{n_k} - x_{n_l}) \le ||T^*T(x_{n_k} - x_{n_l})|| ||x_{n_k} - x_{n_l}||$$

$$\le ||T^*T(x_{n_k} - x_{n_l})|| (||x_{n_k}|| + ||x_{n_l}||) \le 2C||T^*Tx_{n_k} - T^*Tx_{n_l}||.$$

Quindi, la successione Tx_{n_k} è di Cauchy in H e pertanto è convergente. \square

In definitiva è provato il seguente Teorema di Schauder in uno spazio di Hilbert $(H, (\cdot, \cdot))$.

Teorema 5.2.13.

$$T \in \mathcal{K}(H) \quad \Leftrightarrow \quad T^* \in \mathcal{K}(H).$$

Dimostrazione.

$$T \in \mathcal{K}(H) \Rightarrow TT^* \in \mathcal{K}(H) \Leftrightarrow (\text{per (ii) del Lemma 5.2.12}) \ T^* \in \mathcal{K}(H);$$

viceversa

$$T^* \in \mathcal{K}(H) \Rightarrow T^*T \in \mathcal{K}(H) \Leftrightarrow (\text{per (i) del Lemma 5.2.12}) \ T \in \mathcal{K}(H).$$

5.3 Operatori integrali compatti: di Fredholm, di Volterra, di Hilbert-Schmidt

Gli operatori compatti spesso, se X è uno spazio di funzioni, si presentano nella forma di operatori integrali definiti (di Fredholm) o nella forma di integrali indefiniti (o meglio, nella forma di funzioni integrali) (di Volterra). Vediamone un primo risultato in ipotesi di sufficiente regolarità.

Proposizione 5.3.1 (operatore integrale (di Fredholm) compatto).

Sia $k:[a,b]\times[a,b]\to\mathbb{R}$ un'applicazione continua. L'operatore integrale con nucleo k

$$K: C^0([a,b];\mathbb{R}) \to C^0([a,b];\mathbb{R})$$

definito, per ogni $f \in C^0([a,b];\mathbb{R})$ e $x \in [a,b]$, da

$$(Kf)(x) := \int_a^b k(x,t) f(t) dt,$$

è un operatore lineare compatto in $C^0([a,b];\mathbb{R})$.

Dimostrazione. L'operatore K è ovviamente lineare e continuo. Consideriamo una successione limitata di funzioni continue $f_n \in (C^0([a,b];\mathbb{R}),\|\cdot\|_{\infty})$. Proviamo che la successione $(Kf_n)_n$ ammette una sottosuccessione uniformemente convergente. Per il Teorema di compattezza di Ascoli-Arzelà 3.4.3, è sufficiente provare che la successione $(Kf_n)_n$ è equilimitata ed uniformemente equicontinua.

1. Poiché l'applicazione k è continua sul compatto $[a,b] \times [a,b]$, k è limitata ed uniformemente continua. Quindi, esiste una costante c tale che $|k(x,t)| \le c$ per ogni $(x,t) \in [a,b] \times [a,b]$; inoltre, per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che

$$|k(x,t) - k(\tilde{x},t)| \le \varepsilon \tag{5.9}$$

se $|\tilde{x} - x| \le \delta$, con $x, \tilde{x}, t \in [a, b]$.

2. Essendo $(f_n)_n$ successione limitata, esiste una costante M>0 tale che

$$\left\|f_{n}\right\|_{\infty}=\max_{t\in\left[a,b\right]}\left|f_{n}\left(t\right)\right|\leq M$$
 per ogni $n\in\mathbb{N}.$

Questo implica, per ogni $x \in [a, b]$,

$$|(Kf_n)(x)| \le \int_a^b |k(x,t)| |f_n(t)| dt \le (b-a) c \cdot M,$$

pertanto la successione $(Kf_n)_n$ è equilimitata.

3. Sia, ora, $\varepsilon>0$ fissato. Scegliamo $\delta>0$ tale che valga (5.9). Se $|\tilde{x}-x|\leq \delta$, allora per ogni $n\in\mathbb{N}$ si ha

$$|(Kf_n)(x) - (Kf_n)(\tilde{x})| \le \int_a^b |k(x,t) - k(\tilde{x},t)| \cdot |f_n(t)| dt$$

$$\le (b-a) \varepsilon \cdot M.$$

Per l'arbitrarietà di $\varepsilon > 0$, questo prova che la successione $(Kf_n)_n$ è uniformemente equicontinua. Per concludere la dimostrazione, basta quindi applicare il Teorema di Ascoli-Arzelà 3.4.3.

Una parziale generalizzazione della Proposizione 5.3.1 è il seguente risultato:

Proposizione 5.3.2.

Sia $\overline{\Omega}$ un compatto di \mathbb{R}^N e $k:\overline{\Omega}\times\overline{\Omega}\to\mathbb{R}$ un'applicazione continua. L'operatore integrale con nucleo k,

$$K: L^2(\Omega) \to L^2(\Omega),$$

definito per ogni $f \in L^2(\Omega)$ e $x \in \Omega$, da

$$(Kf)(x) := \int_{\Omega} k(x,t) f(t) dt,$$

è un operatore lineare compatto in $L^2(\Omega)$.

Dimostrazione. La dimostrazione può essere svolta come nella Proposizione 5.3.1, utilizzando la disuguaglianza di Cauchy-Schwarz.

(suggerimento: vedere la dimostrazione della Proposizione 6.2.4, in cui il nucleo k(x,y) è la funzione continua di Green G(x,y)).

Più in generale, vale il seguente risultato:

Teorema 5.3.3 (operatore di Hilbert-Schmidt). Sia Ω un aperto limitato di \mathbb{R}^N e $k \in L^2(\Omega \times \Omega)$.

L'operatore integrale con nucleo k,

$$K: L^2(\Omega) \to L^2(\Omega)$$

definito, per ogni $f \in L^2(\Omega)$ e q.o. $x \in \Omega$, da

$$(Kf)(x) := \int_{\Omega} k(x,t) f(t) dt,$$

è un operatore lineare compatto in $L^2(\Omega)$.

Dimostrazione. Proviamo che $Kf \in L^2(\Omega)$. Per il Teorema di Fubini, la funzione $x \mapsto k(x,t)$ è in $L^2(\Omega)$ per q.o. $t \in \Omega$ e quindi, per ogni $f \in L^2(\Omega)$, la funzione $x \mapsto k(x,t)f(t)$ è sommabile in Ω per q.o. $t \in \Omega$. Per la diseguaglianza di Cauchy-Schwarz, si ha q.o. in Ω ,

$$\int_{\Omega} |k(x,t)| |f(t)| dt \le \left(\int_{\Omega} |k(x,t)|^2 dt \right)^{\frac{1}{2}} ||f||_{L^2(\Omega)}.$$

Di conseguenza, la funzione integrale Kf verifica

$$|(Kf)(x)|^2 \le \left(\int_{\Omega} |k(x,t)|^2 dt\right) ||f||_{L^2(\Omega)}^2$$

q.o. in Ω , pertanto $Kf \in L^2(\Omega)$. Inoltre, per il Teorema di Tonelli,

$$||Kf||_{L^2(\Omega)} \le ||k||_{L^2(\Omega \times \Omega)} ||f||_{L^2(\Omega)}.$$

Allora, l'operatore integrale Kf di nucleo $k(x,t) \in L^2(\Omega \times \Omega)$ è lineare e continuo da $L^2(\Omega)$ in sé, con

$$||K||_{B(L^2(\Omega))} \le ||k||_{L^2(\Omega \times \Omega)}.$$

Proviamo la compattezza di K in $L^2(\Omega)$.

Sia $(v_n(x))_n$ una base di Hilbert per $L^2(\Omega)$, allora $(v_n(x)\overline{v_m(t)})_{m,n}$ è una base di Hilbert in $L^2(\Omega \times \Omega)$. L'ortonormalità di $(v_n(x)\overline{v_m(t)})_{m,n}$ è evidente; inoltre, se $h \in L^2(\Omega \times \Omega)$ è tale che $\int_{\Omega \times \Omega} h(x,t) v_n(x) \overline{v_m(t)} dx dt = 0$, si ha che la funzione g(x) (in $L^2(\Omega)$) data da $g(x) := \int_{\Omega} \overline{h(x,t)} v_m(t) dt$ è ortogonale a $(v_n(x))_n$, quindi g(x) = 0 per q.o. $x \in \Omega$. Ne segue che anche h è nulla q.o. in $\Omega \times \Omega$.

Pertanto il nucleo k si può sviluppare in serie di Fourier in $L^2(\Omega \times \Omega)$ rispetto a $(v_n(x)\overline{v_m(t)})_{m,n}$:

$$k(x,t) = \sum_{m,n=1}^{\infty} k_{m,n} v_n(x) \overline{v_m(t)}$$

$$(Kf,g)_{L^2(\Omega)} = \int_{\Omega} \left(\int_{\Omega} k(x,t) f(t) dt \right) \overline{g(x)} dx = \int_{\Omega} f(x) \left(\int_{\Omega} k(t,x) \overline{g(t)} dt \right) dx,$$

ne segue che

$$(K^*g)(x) = \int_{\Omega} \overline{k(t,x)}g(t)dt;$$

quindi K^* è l'operatore integrale con nucleo $k^*(x,t) = \overline{k(t,x)}$.

 $^{^2}$ Determiniamo $K^*,$ l'operatore aggiunto di K. Poiché per ogni $f,g\in L^2(\Omega)$ risulta

(in $L^2(\Omega \times \Omega)$) $(k_{m,n} \in \mathbb{C}$, dipendenti da k). Posto, per ogni $N \in \mathbb{N}$,

$$k_N(x,t) = \sum_{m,n=1}^{N} k_{m,n} v_n(x) \overline{v_m(t)},$$

si ha per $N \to +\infty$ $k_N \to k$ in $L^2(\Omega \times \Omega)$. Indicato con K_N l'operatore integrale di nucleo k_N , si ha per $N \to +\infty$

$$||K - K_N||_{B(L^2(\Omega))} \le ||k - k_N||_{L^2(\Omega \times \Omega)} \to 0.$$

Quindi K è limite in norma $B(L^2(\Omega))$ degli operatori di rango finito K_N , pertanto è compatto per la Proposizione 5.2.3.

Osservazione 5.3.4. Sia H uno spazio di Hilbert separabile. Un operatore $T \in B(H)$ si chiama operatore di Hilbert-Schmidt se, detta $(v_n)_n$ una base di Hilbert in H, risulta

$$||T||_{\mathcal{HS}(H)}^2 := \sum_{n=1}^{+\infty} ||Tv_n||_{L^2(\Omega)}^2 < +\infty.$$

Si dimostra che: questa definizione è indipendente dalla base; $\mathcal{HS}(H)$, insieme degli operatori di Hilbert-Schmidt, è uno spazio vettoriale; $||\cdot||_{\mathcal{HS}(H)}$ è una norma; ogni operatore di Hilbert-Schmidt è compatto (in quanto limite in norma B(H) di successione di operatori di rango finito).

Osservazione 5.3.5. Esistono operatori (compatti) di $\mathcal{K}(H)$ che non sono operatori di $\mathcal{HS}(H)$ (di Hilbert-Schmidt). Illustriamone un esempio.

Sia per ogni $\lambda > 0$ e $x = (x_n)_n \in \ell^2$, $T_\lambda x := (n^{-\lambda} x_n)_n$. Risulta $||T_\lambda||_{B(\ell^2)} = 1$ e T_λ è compatto per ogni $\lambda > 0$ (cfr. Esercizio 21). Infatti, sia $(e_n)_n$ la base di Hilbert in ℓ^2 e sia P_n l'operatore di proiezione su span $\{e_1, e_2, \cdots, e_n\}$. Allora, $||T_\lambda x - T_\lambda P_n x||_{\ell^2}^2 = \sum_{k=n+1}^{+\infty} k^{-2\lambda} |x_k|^2 \le (n+1)^{-2\lambda} ||x||_{\ell^2}^2$, quindi $||T_\lambda - T_\lambda P_n||_{B(\ell^2)} \to 0$ per $n \to +\infty$ e T_λ , limite in $B(\ell^2)$ di operatori di rango finito (compatti), è a sua volta compatto. Osservato che

$$\sum_{n=1}^{+\infty} ||T_{\lambda}e_n||_{\ell^2}^2 = \sum_{n=1}^{+\infty} n^{-2\lambda} < +\infty \iff \lambda > \frac{1}{2},$$

si deduce che per $\lambda \in]0, \frac{1}{2}]$ T_{λ} è compatto ma non è di Hilbert-Schmidt.

Quindi gli operatori di Hilbert-Schmidt in un generico spazio di Hilbert separabile H, costituiscono uno spazio di operatori $\mathcal{HS}(H)$ intermedio tra quello degli operatori di rango finito $\mathcal{F}(H)$ e quello degli operatori compatti $\mathcal{K}(H)$.

Osservazione 5.3.6. L'operatore integrale K definito nel Teorema 5.3.3 è di Hilbert-Schmidt, risultando

$$\sum_{n=1}^{+\infty} ||Kv_n||_{L^2(\Omega)}^2 = ||k||_{L^2(\Omega \times \Omega)}^2 < +\infty,$$

dove $(v_n)_n$ è una base di Hilbert in $L^2(\Omega)$.

Infatti, per l'uguaglianza di Bessel-Parseval e il Teorema di Tonelli, si ha:

$$\sum_{n=1}^{+\infty} ||Kv_n||^2_{L^2(\Omega)} = \sum_{m,n=1}^{+\infty} \left| (Kv_n, v_m)_{L^2(\Omega)} \right|^2$$

$$= \sum_{m,n=1}^{+\infty} \left| \int_{\Omega} \overline{v_m(x)} \left(\int_{\Omega} k(x, t) v_n(t) dt \right) dx \right|^2$$

$$= \sum_{m,n=1}^{+\infty} \left| \int_{\Omega \times \Omega} k(x, t) \overline{v_m(x)} v_n(t) dx dt \right|^2$$

$$= \sum_{m,n=1}^{+\infty} \left| (k, v_n \overline{v_m})_{L^2(\Omega \times \Omega)} \right|^2 = ||k||^2_{L^2(\Omega \times \Omega)} < +\infty.$$

Viceversa, se T è operatore di Hilbert-Schmidt in $L^2(\Omega)$, esiste un unico nucleo $k(x,t) \in L^2(\Omega \times \Omega)$ tale che T ha la forma integrale del Teorema 5.3.3.

Un caso importante del Teorema 5.3.3 è quello in cui il nucleo k ha una discontinuità per t=x del tipo

$$k(x,t) = \begin{cases} 1, & 0 \le t \le x; \\ 0, & x < t \le 1. \end{cases}$$

Proposizione 5.3.7 (operatore integrale (di Volterra) compatto). Sia il nucleo k definito da

$$k(x,t) = \begin{cases} 1, & 0 \le t \le x; \\ 0, & x < t \le 1. \end{cases}$$

L'operatore integrale con nucleo k,

$$K: L^2([0,1]) \to L^2([0,1])$$

 $definito, \; per \; ogni \; f \in L^2([0,1]) \; \; e \; x \in [0,1], \; da$

$$(Kf)(x) := \int_0^1 k(x,t) f(t) dt = \int_0^x f(t) dt,$$

è un operatore lineare compatto.

5.4 Dai sistemi di equazioni algebriche lineari alla teoria di Fredholm

Sia A una matrice $N \times N$ reale; l'equazione algebrica lineare

$$Ax = b$$

ha un'unica soluzione per ogni vettore $b \in \mathbb{R}^N$ se e solo se l'equazione omogenea associata

$$Ax = 0$$

ha solo la soluzione x = 0. Quindi

$$A \text{ iniettiva} \Leftrightarrow A \text{ suriettiva}.$$
 (5.10)

Ovviamente, questo vale se e solo se la matrice A è invertibile.

Considerato l'operatore lineare $T: \mathbb{R}^N \to \mathbb{R}^N$ associato alla matrice A, definito, per ogni $x \in \mathbb{R}^N$, da T(x) := Ax, l'equivalenza (5.10) si traduce in

$$T \text{ iniettivo} \Leftrightarrow T \text{ suriettivo}^3.$$
 (5.11)

Osserviamo che, nella equivalenza (5.11), per il Teorema 1.7.3, \mathbb{R}^N può essere sostituito con un qualunque spazio normato di dimensione finita N.

In generale, operatori lineari continui su uno spazio X a dimensione infinita non hanno la proprietà (5.11). Infatti, si possono costruire operatori lineari e limitati $T: X \to X$ che sono iniettivi, ma non suriettivi, o viceversa.⁴

$$e^{(k)} = (0, \dots, 0, \underbrace{1}_{e_k^{(k)}}, 0, 0, \dots),$$

costituiscono una base ortonormale di ℓ^2 . Consideriamo gli operatori lineari

$$T_{+}: \ell^{2} \to \ell^{2},$$

$$x = (x_{1}, x_{2}, \dots, x_{n}, \dots) \mapsto T_{+}x := (0, x_{1}, \dots, \underbrace{x_{n-1}}_{(T_{+}x)_{n}}, \dots)$$

е

$$T_{-}: \ell^{2} \to \ell^{2},$$

 $x = (x_{1}, x_{2}, \dots, x_{n}, \dots) \mapsto T_{-}x := (x_{2}, x_{3}, \dots, \underbrace{x_{n+1}}_{(T_{-}x)_{n}}, \dots),$

³Ricordiamo il Teorema del rango: $N = \dim(\ker T) + \dim(\operatorname{Im} T)$.

⁴Qui ne diamo un esempio. Consideriamo lo spazio completo ℓ^2 di successioni reali di quadrato sommabile (cfr. Definizione 1.4.6 e Proposizione 1.4.12); esso ha dimensione infinita: i vettori linearmente indipendenti $\{e^{(k)}: k \in \mathbb{N}\}$, dove

Tuttavia, la (5.11) valida in dimensione finita si estende ad una importante classe di operatori T su spazi X a dimensione infinita, precisamente agli operatori $T: X \to X$ della forma T = I - K, dove I è l'operatore identità su X e K è un operatore compatto su X. Se T è in questa classe, allora vale ancora l'equivalenza

$$T = I - K : X \to X$$
 iniettivo $\Leftrightarrow T = I - K : X \to X$ suriettivo. (5.12)

5.5 Teoria di Fredholm

Qui proviamo quanto affermato alla fine della precedente Sezione 5.4 nel caso in cui lo spazio a dimensione infinita sia uno spazio di Hilbert (cfr. proprietà (iv) nel Teorema di Fredholm 5.5.1).

Per il caso in cui lo spazio a dimensione infinita sia uno spazio di Banach arbitrario, cfr. Teorema 6.6 in [5].

Il teorema che segue descrive le varie relazioni tra nucleo (ker) e insieme immagine (Im) di un operatore avente la forma I-K con $K \in \mathcal{K}(H)$ (operatore di Riesz-Fredholm) e del suo operatore aggiunto.

Teorema 5.5.1 (di Fredholm). Sia $(H, (\cdot, \cdot))$ uno spazio di Hilbert e sia $K \in \mathcal{K}(H)$. Allora

- (i) ker(I K) ha dimensione finita;
- (ii) Im(I-K) è chiusa e, più precisamente,
- (iii) $Im(I-K) = \ker(I-K^*)^{\perp}$;
- (iv) $ker(I K) = \{0\} \Leftrightarrow Im(I K) = H;$
- (v) $\ker(I-K)$ e $\ker(I-K^*)$ hanno la stessa dimensione. ⁵

Dimostrazione. La dimostrazione di questo teorema sarà ottenuta in diversi passi.

chiamati rispettivamente operatore di traslazione a destra (right shift) e operatore di traslazione a sinistra (left shift). È facile provare che:

- $T_+, T_- \in B(\ell^2)$, con $||T_+||_{B(\ell^2)} = ||T_-||_{B(\ell^2)} = 1$;
- T_+ è iniettivo, ma non è suriettivo (infatti $T_+(\ell^2) \subset \ell^2$; ad esempio, $e_1 = (1, 0, 0, \ldots) \in \ell^2 \setminus T_+(\ell^2)$);
- T_{-} è suriettivo, ma non è iniettivo.

⁵Siano X e Y spazi di Banach, si dice che $T \in B(X;Y)$ è un **operatore di Fredholm**, se soddisfa:

⁽i) $\dim(\ker T) < +\infty$,

1. Per provare il punto (i), supponiamo per assurdo che dim $\ker(I-K)$ sia infinita. In tal caso, potremmo trovare una successione $(e_n)_n$ di vettori ortonormali contenuti in $\ker(I-K)^6$ per i quali si avrebbe

$$Ke_n = e_n \quad \forall n \in \mathbb{N}.$$

Inoltre, per l'Identità di Pitagora, per ogni $m \neq n$ si avrebbe

$$||e_m - e_n||^2 = ||e_m||^2 + ||e_n||^2 = 2.$$

Dunque

$$||Ke_m - Ke_n|| = ||e_m - e_n|| = \sqrt{2}$$

per ogni $m \neq n$. Pertanto, dalla successione $(Ke_n)_n$ non si potrebbe estrarre alcuna sottosuccessione convergente, contro il fatto che K è operatore compatto. Ciò prova l'affermazione (i).

2. Proviamo, preliminarmente alla dimostrazione di (ii), che

$$\exists \beta > 0 \quad \text{t.c.} \quad \|u - Ku\| \ge \beta \|u\| \quad \forall u \in \ker(I - K)^{\perp}. \tag{5.13}$$

Infatti, se (5.13) non fosse vera, potremmo trovare una successione $(u_n)_n \subset \ker(I-K)^{\perp}$ tale che

$$||u_n|| = 1$$
 e $||u_n - Ku_n|| < \frac{1}{n}$.

Poiché siffatta $(u_n)_n$ è limitata, esiste una sua estratta (che, per brevità, indicheremo ancora con $(u_n)_n$) debolmente convergente in H ad $u \in H$. Poiché K è compatto, per il Teorema 5.2.8, la successione $(Ku_n)_n$ converge fortemente a Ku. Inoltre, risulta

$$||u_n - Ku|| \le ||u_n - Ku_n|| + ||Ku_n - Ku|| \to 0$$

per $n \to +\infty$. Ne segue che u_n converge fortemente a Ku. Poiché u_n converge debolmente a u, concludiamo che u = Ku e $u_n \to u$. Per costruzione, abbiamo

$$||u|| = \lim_{n \to +\infty} ||u_n|| = 1, \quad u \in \ker(I - K)^{\perp}$$

(ii) Im T è chiusa e codim(Im T) $< +\infty$, dove

$$\operatorname{codim}(\operatorname{Im} T) := \dim(Y/\operatorname{Im} T) = \dim((\operatorname{Im} T)^{\perp}) = \dim(\ker T^*).$$

L'indice dell'operatore T è definito da ind $T = \dim(\ker T) - \operatorname{codim}(\operatorname{Im} T)$. Se T = I - K con $K \in \mathcal{K}(H)$, risulta

$$\operatorname{ind}(I - K) = \dim(\ker(I - K)) - \dim(\ker(I - K^*)) = 0$$

per (i) e (v) del Teorema 5.5.1.
⁶cfr. §2.4.

(poiché $\ker(I-K)^{\perp}$ è chiuso), mentre, contemporaneamente, u-Ku=0, quindi risulta anche $u\in\ker(I-K)$. Otteniamo così una contraddizione (in quanto $u\in\ker(I-K)\cap\ker(I-K)^{\perp}=\{0_H\}$, mentre $\|u\|=1$), per cui risulta provata la (5.13).

3. Proviamo ora l'affermazione (ii), cioè che Im(I-K) è chiusa. Consideriamo una successione $(v_n)_n \subset Im(I-K)$, con $v_n \to v$ per $n \to +\infty$ e dimostriamo che $v \in Im(I-K)$, cioè che esiste $u \in H$ tale che v = u - Ku.

Per assunzione, per ogni $n \in \mathbb{N}$ esiste $u_n \in H$ tale che $v_n = u_n - Ku_n$. Sia $\tilde{u}_n \in \ker(I - K)$ la proiezione di u_n su $\ker(I - K)$, cioè

$$\tilde{u}_n = P_{\ker(I-K)}u_n;$$

posto

$$z_n := u_n - \tilde{u}_n,$$

risulta $z_n \in \ker(I - K)^{\perp}$ e vale

$$v_n = u_n - Ku_n = (\tilde{u}_n + z_n) - K(\tilde{u}_n + z_n) = z_n - Kz_n + \underbrace{\tilde{u}_n - K\tilde{u}_n}_{=0}$$
$$= z_n - Kz_n.$$

Usando (5.13) (applicata a $z_m - z_n$), per ogni $m, n \in \mathbb{N}$ si ha

$$||v_m - v_n|| \ge \beta ||z_m - z_n||.$$

Poiché $(v_n)_n$ è di Cauchy, anche $(z_n)_n$ è di Cauchy. Pertanto esiste $u \in H$ tale che $z_n \to u$, e quindi

$$u - Ku = \lim_{n \to +\infty} (z_n - Kz_n) = \lim_{n \to +\infty} v_n = v,$$

il che dimostra l'asserto (ii).

4. Poiché Im(I-K) e ker $(I-K^*)^{\perp}$ sono sottospazi chiusi, la (iii) vale se e solo se

$$Im (I - K)^{\perp} = \ker (I - K^*).$$

Ciò è provato osservando che valgono le seguenti equivalenze:

$$x \in \ker(I - K^*),$$

 $(I - K^*) x = 0,$
 $(y, (I - K^*) x) = 0 \ \forall y \in H,$
 $((I - K) y, x) = 0 \ \forall y \in H,$
 $x \in Im (I - K)^{\perp}.$

5. Proviamo dapprima la seguente implicazione di (iv):

$$\ker(I - K) = \{0\} \Rightarrow Im(I - K) = H.$$

Sia, allora, I-K iniettivo e, per assurdo, supponiamo che I-K non sia suriettivo, cioè sia

$$(I-K)(H)=H_1\subsetneq H.$$

Per (ii) H_1 è un sottospazio chiuso di H.

Poiché I-K è iniettivo abbiamo che

$$H_2 := (I - K) (H_1) \subsetneq H_1.^7$$

Continuando questo processo, per induzione si ha che per ogni $n \in \mathbb{N}$:

$$H_n := (I - K)^n (H), \qquad (I - K)(H_n) = H_{n+1}.$$

Inoltre, per ogni $n \in \mathbb{N}$, H_n è sottospazio chiuso e

$$H \supseteq H_1 \supseteq H_2 \supseteq \ldots \supseteq H_n \supseteq H_{n+1} \supseteq \ldots$$

Per ogni $n\in\mathbb{N}$ scegliamo $e_n\in H_n\cap H_{n+1}^\perp$ con $\|e_n\|=1.$

Osserviamo che, se n > m si ha

$$H_{n+1} \subseteq H_n \subseteq H_{m+1} \subseteq H_m$$

e perciò

$$Ke_m - Ke_n = -(e_m - Ke_m) + (e_n - Ke_n) + (e_m - e_n) = e_m + z_m$$

dove $z_m=-(e_m-Ke_m)+(e_n-Ke_n)-e_n\in H_{m+1}$. Poiché $e_m\in H_{m+1}^\perp$, per l'Identità di Pitagora

$$||Ke_m - Ke_n|| > ||e_m|| = 1.$$

Pertanto la successione $(Ke_n)_n$ non può avere alcuna sottosuccessione convergente fortemente, contraddicendo così la compattezza di K.

⁷ Se, per assurdo, $(I-K)(H_1) = H_1$, $I-K: H_1 \to H_1$ risulta bigettivo. Sia $x \in H \setminus H_1$ (siffatto elemento esiste, in quanto $H_1 \subsetneq H$); allora $(I-K)(x) \in H_1$ e quindi esiste $x' \in H_1$ tale che (I-K)(x) = (I-K)(x') e, per l'iniettività di I-K, si ha $x = x' \in H_1$, il che è assurdo.

6. Proviamo ora l'implicazione inversa in (iv), cioè

$$Im(I-K) = H \Rightarrow \ker(I-K) = \{0\}.$$

Utilizziamo un argomento di dualità. Per una delle proprietà dell'operatore aggiunto (Proposizione 5.1.5(ii)), si ha

$$\ker (I - K^*) = Im (I - K)^{\perp} = H^{\perp} = \{0\}.$$

Poiché K^* è compatto, per il passo precedente si ha $Im(I - K^*) = H$. Usando ancora la Proposizione 5.1.5(ii), risulta

$$\ker(I - K) = Im(I - K^*)^{\perp} = H^{\perp} = \{0\},\$$

e ciò conclude la dimostrazione di (iv).

7. Per dimostrare (v), cominciamo col provare che

$$\dim \ker (I - K) \ge \dim \operatorname{Im} (I - K)^{\perp}. \tag{5.14}$$

Supponiamo, per assurdo, che (5.14) non sia vera, cioè

$$\dim \ker (I - K) < \dim \operatorname{Im} (I - K)^{\perp}. \tag{5.15}$$

Allora esiste un operatore lineare e limitato

$$A: \ker (I-K) \to Im (I-K)^{\perp}$$

che è iniettivo, ma non suriettivo. Estendiamo A ad un operatore (ancora indicato con A)

$$A: H \to Im (I - K)^{\perp}$$

definito su tutto lo spazio H ponendo

$$Au = 0 \text{ per } u \in \ker (I - K)^{\perp}. \tag{5.16}$$

Poiché Im A ha dimensione finita, A è compatto e quindi anche K+A è compatto. Proviamo che

$$\ker\left(I - (K + A)\right) = \{0\}. \tag{5.17}$$

Infatti, se Ku + Au = u, allora $u - Ku = Au \in Im(I - K)^{\perp}$; quindi u - Ku = Au = 0. Sicché $u \in \ker(I - K)$ e quindi u = 0 poiché A è iniettivo su $\ker(I - K)$. Da (5.17), applicando (iv) all'operatore compatto K + A, segue che Im(I - (K + A)) = H.

Tuttavia questo è impossibile: se $v \in Im(I-K)^{\perp}$ ma $v \notin ImA$ (tale v esiste in quanto A non è suriettivo), l'equazione u-(Ku+Au)=v non ha soluzione. Infatti, se esistesse una soluzione $u \in H$ della precedente equazione, essa sarebbe della forma $u=u_0+u_1$, con $u_0 \in \ker(I-K)$ e $u_1 \in \ker(I-K)^{\perp}$. Ne seguirebbe

$$v = u - Ku - Au = \underbrace{(I - K)u_0}_{=0} - Au_0 + (I - K)u_1 - \underbrace{Au_1}_{=0}$$

= $(I - K)u_1 - Au_0$,

in quanto $u_0 \in \ker(I - K)$ e $u_1 \in \ker A$ in virtù di (5.16). Ora, visto che $Au_0 \in Im A \subset Im (I - K)^{\perp}$, si avrebbe

$$(I - K)u_1 = v + Au_0 \in Im(I - K)^{\perp}$$

da cui $u_1 = 0$, il che è assurdo in quanto implicherebbe $v = -Au_0 \in Im A$.

Questa contraddizione mostra che (5.15) non può valere.

8. Tenendo presente la Proposizione 5.1.5(ii), da (5.14) si ha

$$\dim \ker (I - K) \ge \dim \operatorname{Im} (I - K)^{\perp} = \dim \ker (I - K^*).$$

Ancora da (5.14) applicata a $I - K^*$, si ha anche (scambiando il ruolo di K e K^*)

$$\dim \ker (I - K^*) \ge \dim \operatorname{Im} (I - K^*)^{\perp} = \dim \ker (I - K),$$

e quindi la tesi (v).

Osservazione 5.5.2 (una dimostrazione alternativa del punto (i)). Risulta

$$\overline{B_{\ker(I-K)}(0,1)} \subset K(\overline{B_H(0,1)})$$

e pertanto $\overline{B_{\ker(I-K)}(0,1)}$ è compatta. Per il Teorema 1.8.5, $\ker(I-K)$ ha dimensione finita.

Osservazione 5.5.3. La proprietà (iv) mostra che l'equivalenza (5.11), nota in spazi a dimensione finita, si estende alla classe di operatori della forma I - K su spazi a dimensione infinita.

Osservazione 5.5.4. È ovvio che tutto quanto affermato dal Teorema di Fredholm resta valido anche per gli operatori $\lambda I - K$ se $\lambda \neq 0$.

5.6 Alternativa di Fredholm

Quando K è un operatore compatto, il Teorema di Fredholm 5.5.1 fornisce informazioni su esistenza ed unicità delle soluzioni per l'equazione lineare

$$u - Ku = f \quad (f \in H). \tag{5.18}$$

Difatti, due eventualità possono verificarsi.

 $CASO\ 1$: $\ker(I-K)=\{0\}$. Questo significa che l'equazione omogenea u-Ku=0 ha la sola soluzione nulla. Allora, per il punto (iv) del Teorema di Fredholm 5.5.1, l'operatore I-K è iniettivo e suriettivo. Pertanto, per ogni $f\in H$, l'equazione non omogenea (5.18) ha esattamente una soluzione.

 $CASO\ 2$: $\ker(I-K) \neq \{0\}$. Questo significa che l'equazione omogenea u-Ku=0 ha una soluzione non nulla. In questo caso, lo spazio delle soluzioni di u-Ku=0 ha dimensione finita per il punto (i) del Teorema di Fredholm 5.5.1 e, per il punto (iii) dello stesso Teorema, l'equazione non omogenea (5.18) ha soluzioni se e solo se $f \in \ker(I-K^*)^{\perp}$, cioè se e solo se (f,u)=0 per ogni $u \in H$ tale che $u-K^*u=0$ (ovvero, se e solo se f è ortogonale ad ogni (in numero finito per (i) e (v) del Teorema di Fredholm 5.5.1) soluzione dell'equazione omogenea (duale) $u-K^*u=0$).

La descritta dicotomia è nota come Alternativa di Fredholm.

5.7 Dal teorema spettrale dell'Algebra Lineare al teorema spettrale di Hilbert-Schmidt

"È difficile indicare una nozione nella Teoria degli Operatori che sia più importante di quella di spettro." (da [14], pag. 230)

Iniziamo col considerare il caso della dimensione finita.

Sia $A := (a_{ij})_{i,j=1,\dots,N}$ matrice quadrata di ordine $N, a_{ij} \in \mathbb{C}$; si dice che $\lambda \in \mathbb{C}$ è un **autovalore** per A se esiste $x \in \mathbb{C}^N \setminus \{0\}$ per cui risulti

$$Ax = \lambda x$$

e quindi tale che det $(\lambda I - A) = 0$.

⁸Questa equazione impone al vettore Ax, trasformato di x, di risultare proporzionale ad x stesso.

In tal caso ogni elemento $x \in \mathbb{C}^N \setminus \{0\}$ tale che $Ax = \lambda x$ è detto **autovettore** relativo all'autovalore λ . L'insieme degli autovettori relativi ad un autovalore λ genera un sottospazio di \mathbb{C}^N chiamato **autospazio** relativo all'autovalore λ .

È noto, dall'Algebra Lineare, che se A è una matrice reale $N \times N$ e simmetrica

- i suoi autovalori $\lambda_1, \ldots, \lambda_N$ sono tutti reali,
- il $\det(A)$ (determinante di A) è uguale a $\lambda_1 \cdot \lambda_2 \cdot \cdots \cdot \lambda_N$,

e sussiste il seguente risultato di diagonalizzazione:

• (Teorema Spettrale) Esiste una base ortonormale $\{v_i\}_{i=1,...,N}$ di \mathbb{R}^N (detta **base spettrale**) formata da autovettori di A (cioè, $(v_i, v_j) = \delta_{ij}$ per ogni i, j = 1, ..., N e $||v_i|| = 1$ per ogni i = 1, ..., N; $Av_i = \lambda_i v_i$, i = 1, ..., N, dove $\lambda_1, ..., \lambda_N \in \mathbb{R}$ sono i corrispondenti autovalori).

5.7.1 Diagonalizzazione di una matrice simmetrica in dimensione finita

Rispetto alla base spettrale $\{v_1,\ldots,v_N\}$, per ogni $x\in\mathbb{R}^N$ si ha che, posto

$$x = \sum_{i=1}^{N} c_i v_i$$

e

$$b = \sum_{i=1}^{N} (b, v_i) v_i,$$

l'equazione Ax = b si presenta nella forma

$$Ax = \sum_{i=1}^{N} c_i A v_i = \sum_{i=1}^{N} \lambda_i c_i v_i = \sum_{i=1}^{N} (b, v_i) v_i = b,$$

ovvero, utilizzando la notazione matriciale rispetto alla base spettrale $\{v_1, \ldots, v_N\}$,

$$Ax = \begin{pmatrix} \lambda_1 & 0 \\ \lambda_2 & 0 \\ \vdots & \vdots & \vdots \\ \lambda_N c_N \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_N \end{pmatrix} = \begin{pmatrix} \lambda_1 c_1 \\ \lambda_2 c_2 \\ \vdots \\ \lambda_N c_N \end{pmatrix} = b = \begin{pmatrix} (b, v_1) \\ (b, v_2) \\ \vdots \\ (b, v_N) \end{pmatrix}$$
(5.19)

quindi la matrice A, rispetto alla base spettrale, è ridotta in forma diagonale. Di conseguenza, la soluzione $x \in \mathbb{R}^N$ di Ax = b, può essere ora trovata risolvendo, invece di un sistema di N equazioni in N incognite, N equazioni scalari, una per ognuno dei coefficienti c_1, \ldots, c_N .

Se tutti gli autovalori di A sono non nulli (quindi $\det(A) \neq 0$), la soluzione esplicita di Ax = b è data da

$$x = \sum_{i=1}^{N} \frac{1}{\lambda_i} (b, v_i) v_i.$$

Consideriamo ora l'operatore $T: \mathbb{R}^N \to \mathbb{R}^N$ associato alla matrice A, definito, per ogni $x \in \mathbb{R}^N$, da T(x) = Ax. Si ottiene, operando come sopra,

$$T(x) = \sum_{i=1}^{N} \lambda_i c_i v_i,$$

cioè possiamo esprimere l'operatore T come combinazione lineare (finita) dei vettori della base spettrale.

Il Teorema spettrale (in dimensione finita) appena richiamato, resta valido per operatori lineari, compatti e autoaggiunti (simmetrici) $K: H \to H$ con H spazio di Hilbert reale separabile di dimensione infinita (Teorema di Hilbert-Schmidt 5.11.1).

5.8 Risolvente e spettro di un operatore lineare limitato

Sulla base del caso particolare in \mathbb{C}^N , si può ora formulare una definizione più generale in uno spazio di Banach X, a dimensione infinita, su \mathbb{C} .

Definizione 5.8.1. Sia X uno spazio di **Banach complesso** e sia $T \in B(X)$. Si definisce *insieme risolvente* di T il sottoinsieme di \mathbb{C}

$$\rho(T) := \{ \lambda \in \mathbb{C} : \lambda I - T \text{ è iniettivo e suriettivo} \}.^{9}$$
 (5.20)

Se $\lambda \in \rho(T)$, esiste l'operatore inverso $(\lambda I - T)^{-1}$ che è un operatore lineare e continuo (Teorema 4.6.3), cioè $(\lambda I - T)^{-1} \in B(X)$. Tale operatore si dice

⁹Alcuni autori nella definizione di $\rho(T)$ considerano l'operatore $T - \lambda I$ invece di $\lambda I - T$. Nel seguito utilizzeremo indifferentemente l'uno o l'altro operatore.

operatore risolvente di T ed è definito da¹⁰

$$R_{\lambda}: X \to X$$

 $u \mapsto R_{\lambda}u = R(\lambda, T)u := (\lambda I - T)^{-1}u.$

Si definisce spettro di T il seguente sottoinsieme di $\mathbb C$

$$\sigma\left(T\right):=\mathbb{C}\setminus\rho\left(T\right)=\left\{\lambda\in\mathbb{C}:\ \lambda I-T\ \text{non \`e invertibile}\right\}.$$

Si definisce spettro puntuale di T

$$\sigma_p(T) := \{ \lambda \in \mathbb{C} : \lambda I - T \text{ non è iniettivo} \}.$$

Equivalentemente, $\lambda \in \sigma_p(T)$ se esiste un vettore $w \in X \setminus \{0\}$ tale che $Tw = \lambda w$. In questo caso, λ è detto **autovalore** di T e w è un **autovettore** (autofunzione) associato a λ . L'insieme degli autovettori relativi ad un autovalore λ genera un sottospazio di X chiamato autospazio relativo all'autovalore λ .

È evidente che $\sigma_p(T) \subseteq \sigma(T)$. In generale, questa inclusione può essere stretta: può esistere λ tale che $\ker(\lambda I - T) = \{0\}$ e $Im(\lambda I - T) \neq X$ (un tale λ appartiene allo spettro, poiché $\lambda I - T$ non è invertibile, ma non è autovalore). Consideriamo, per esempio, in $X = \ell^2$ l'operatore di traslazione a destra T_+ . Allora $0 \in \sigma(T_+)$, mentre $0 \notin \sigma_p(T_+)$ (cfr. Esercizio 20).

Sussistono le seguenti proprietà:

Proposizione 5.8.2. Sia $(X, \|\cdot\|)$ uno spazio di Banach, a dimensione infinita, su \mathbb{C} e $T \in B(X)$. Allora si ha:

(i) Se $\lambda \in \mathbb{C}$ è tale che $|\lambda| > ||T||_{B(X)}$, allora $\lambda \in \rho(T)$,

$$R(\lambda, T) = \sum_{n=0}^{+\infty} \frac{T^n}{\lambda^{n+1}}$$
 (serie di Neumann)

e

$$||R(\lambda, T)||_{B(X)} \le \frac{1}{|\lambda| - ||T||_{B(X)}};$$

in particolare $\rho(T) \neq \emptyset$;

The precisamente il risolvente è la funzione $\rho(T) \ni \lambda \mapsto R_{\lambda} \in B(X)$. Il termine "risolvente di T" è giustificato dal fatto che l'equazione lineare non omogenea $(\lambda I - T)u = v$ (dove $\lambda \in \mathbb{C}$ e $v \in X$ sono assegnati e $u \in X$ è da determinare) ha soluzione per ogni v se e solo se $\lambda \in \rho(T)$ (cioè, se e solo se $(\lambda I - T)^{-1}$ esiste). Allora la soluzione u esiste ed è data da $u = (\lambda I - T)^{-1}v$.

- (ii) $\sigma(T) \neq \emptyset$;
- (iii) $\sigma(T) \subseteq \{\lambda \in \mathbb{C} : |\lambda| \le ||T||_{B(X)}\};$
- (iv) $\rho(T)$ è aperto e $\sigma(T)$ è compatto;
- (v) Il raggio spettrale di T, denotato r(T), è definito da

$$r(T) = \sup_{\lambda \in \sigma(T)} |\lambda| = \max_{\lambda \in \sigma(T)} |\lambda|.$$

Risulta (Gelfand)

$$r(T) = \lim_{n \to +\infty} ||T^n||_{B(X)}^{\frac{1}{n}}$$

e soddisfa

$$r(T) \le ||T||_{B(X)}.$$

Dimostrazione.

(i) Sia $\lambda \in \mathbb{C}$ tale che $|\lambda| > ||T||_{B(X)}$. Proviamo che $\lambda I - T$ è bigettivo. Assegnato $f \in X$ l'equazione $\lambda u - Tu = f$ ha un'unica soluzione, poiché $u = \lambda^{-1}(Tu + f)$, e si può applicare il Principio delle contrazioni. Quindi $\lambda \in \rho(T)$, e

$$R(\lambda, T) = (\lambda I - T)^{-1} = \frac{1}{\lambda} \left(I - \frac{T}{\lambda} \right)^{-1} = \frac{1}{\lambda} \sum_{n=0}^{+\infty} \frac{T^n}{\lambda^n} = \sum_{n=0}^{+\infty} \frac{T^n}{\lambda^{n+1}}.$$

La serie $\sum_{n=0}^{+\infty} \frac{T^n}{\lambda^{n+1}}$ converge (totalmente) in B(X) per $||T||_{B(X)} < |\lambda|$ in virtù della stima

$$||T^n||_{B(X)} \le ||T||_{B(X)}^n.$$

Risulta

$$||R(\lambda, T)||_{B(X)} \le \frac{1}{|\lambda|} \cdot \frac{1}{1 - \frac{||T||_{B(X)}}{|\lambda|}} = \frac{1}{|\lambda| - ||T||_{B(X)}}.$$
 (5.21)

$$d(Sv_1, Sv_2) \le k \cdot d(v_1, v_2),$$

per ogni $v_1, v_2 \in X$, con k < 1. Allora S ha un unico punto fisso $u \in X$, cioè u = Su.

¹¹Teorema (di Banach del punto fisso - Principio delle contrazioni) Sia (X, d) uno spazio metrico non vuoto completo e sia $S: X \to X$ una contrazione stretta, cioè,

(ii) Per provare (ii), supponiamo, per assurdo, $\sigma(T) = \emptyset$, cioè $\rho(T) = \mathbb{C}$. Allora, la funzione risolvente di T, $\lambda \mapsto R(\lambda, T)$, è definita ed analitica su tutto \mathbb{C} e, per (5.21), soddisfa

$$||R(\lambda, T)||_{B(X)} \to 0 \quad \text{per} \quad |\lambda| \to +\infty.$$
 (5.22)

Fissati $x \in X$ e $\varphi \in X^*$, definiamo su \mathbb{C} la funzione intera

$$\Phi: \mathbb{C} \to \mathbb{C},$$
$$\lambda \mapsto \Phi(\lambda) := (\varphi \circ R(\lambda, T))(x).$$

Per (5.21), $|\Phi(\lambda)| \leq \|\varphi\|_{X^*} \frac{1}{|\lambda| - \|T\|_{B(X)}} \|x\|_X$, $\lambda \in \mathbb{C}$ e $|\lambda| > \|T\|_{B(X)}$. Ne segue che Φ è anche limitata in \mathbb{C} e

$$\lim_{|\lambda| \to +\infty} \Phi(\lambda) = 0.$$

Allora, per il Teorema di Liouville sulle funzioni intere (cfr., ad esempio, [8]) applicato a Φ , risulta $\Phi = 0$ in \mathbb{C} . Per l'arbitrarietà di φ e x, abbiamo che $R(\lambda, T) = O$ per ogni $\lambda \in \mathbb{C}$. Ma ciò porta alla contraddizione

$$I = (\lambda I - T)R(\lambda, T) = O.$$

(iii) Per (i), si ha

$$\{\lambda \in \mathbb{C} : |\lambda| > ||T||_{B(X)}\} \subseteq \rho(T)$$

e quindi, passando al complementare in \mathbb{C}

$$\sigma(T) = \mathbb{C} \setminus \rho(T) \subseteq \left\{ \lambda \in \mathbb{C} : |\lambda| \le \|T\|_{B(X)} \right\}.$$

(iv) Proviamo ora che $\rho(T)$ è aperto. Sia $\lambda_0 \in \rho(T)$ e proviamo che esiste r > 0 tale che $B_r(\lambda_0) \subset \rho(T)$. Assegnati $\lambda \in \mathbb{C}$ tale che

$$|\lambda_0 - \lambda| < \frac{1}{\|(\lambda_0 I - T)^{-1}\|_{B(X)}}$$

e $f \in X$, risolviamo $\lambda u - Tu = f$. Questa equazione può essere così riscritta

$$\lambda_0 u - Tu = f + (\lambda_0 - \lambda)u$$
,

cioè,

$$u = (\lambda_0 I - T)^{-1} [(\lambda_0 - \lambda)u + f].$$

Quest'ultima equazione ha, ancora per il Principio delle contrazioni, un'unica soluzione in virtù dell'ipotesi $|\lambda_0 - \lambda| < \frac{1}{\|(\lambda_0 I - T)^{-1}\|_{B(X)}}$. Quindi $\lambda \in \rho(T)$. Posto $r = \frac{1}{\|(\lambda_0 I - T)^{-1}\|_{B(X)}}$, per l'arbitrarietà di $\lambda \in B_r(\lambda_0)$ conseguiamo la tesi. Allora $\sigma(T)$ è chiuso e, per (iii), è anche limitato in \mathbb{C} , quindi è compatto.

(v) Poniamo $r:=\limsup_{n\to +\infty}||T^n||_{B(X)}^{\frac{1}{n}}$ e osserviamo che la serie $\sum_{n=0}^{+\infty}\frac{T^n}{\lambda^n}$ $(0\neq \lambda\in\mathbb{C})$ converge in norma operatoriale se $|\lambda|>r$. Inoltre, se $|\lambda|>r$ vale l'identità

$$\frac{\lambda - T}{\lambda} \sum_{n=0}^{+\infty} \frac{T^n}{\lambda^n} = \sum_{n=0}^{+\infty} \frac{T^n}{\lambda^n} \frac{\lambda - T}{\lambda} = I.$$

Allora l'insieme $\{\lambda \in \mathbb{C}; |\lambda| > r\} \subseteq \rho(T)$ e

$$R(\lambda, T) = \sum_{n=0}^{+\infty} \frac{T^n}{\lambda^{n+1}} \quad (\lambda \in \mathbb{C}, |\lambda| > r).$$
 (5.23)

Ne segue che $\sigma(T) \subseteq \{\lambda \in \mathbb{C}; |\lambda| \leq r\}$, pertanto (per la definizione di raggio spettrale r(T)) risulta

(1) $r(T) \leq r$.

Proviamo che risulta anche

 $(2) r \le r(T).$

La serie (5.23) converge uniformemente in norma operatoriale sulla circonferenza di centro l'origine e raggio $\rho > r$, pertanto possiamo integrare per serie e si ha

$$\frac{1}{2\pi i} \int_{|\lambda|=\rho} \lambda^n R(\lambda, T) d\lambda = \frac{1}{2\pi i} \sum_{k=0}^{+\infty} \left(\int_{|\lambda|=\rho} \lambda^{n-k-1} d\lambda \right) T^k$$

$$= \frac{1}{2\pi} \sum_{k=0}^{+\infty} \left(\int_0^{2\pi} \rho^{n-k} e^{i(n-k)t} dt \right) T^k = T^n.$$
(5.24)

Essendo la funzione $\lambda \mapsto \lambda^n R(\lambda, T)$ analitica per $|\lambda| > r(T)$, l'integrale precedente è uguale (per il Teorema di Cauchy) se consideriamo una circonferenza con raggio $\rho > r(T)$. Allora, poiché la funzione $\lambda \mapsto R(\lambda, T)$ è continua in $\rho(T)$, per $\rho > r(T)$, si ha

$$||T^n||_{B(X)} \le \rho^{n+1} \max_{|\lambda|=\rho} ||R(\lambda, T)||_{B(X)},$$

e quindi

$$\limsup_{n \to +\infty} ||T^n||_{B(X)}^{\frac{1}{n}} \le \rho \quad (\rho > r(T)).$$

Per l'arbitrarietà di ρ ,

$$r := \limsup_{n \to +\infty} ||T^n||_{B(X)}^{\frac{1}{n}} \le r(T).$$

Da (1) e (2) risulta r = r(T).

Concludiamo la dimostrazione provando che esiste

$$\lim_{n\to+\infty}||T^n||_{B(X)}^{\frac{1}{n}}=r=r(T)\leq ||T||_{B(X)}.$$
 Per questo, proviamo che

$$\limsup_{n\rightarrow +\infty}||T^n||_{B(X)}^{\frac{1}{n}}=\lim_{n\rightarrow +\infty}||T^n||_{B(X)}^{\frac{1}{n}}$$

 \mathbf{e}

$$\lim_{n \to +\infty} ||T^n||_{B(X)}^{\frac{1}{n}} \le ||T||_{B(X)}.$$

Fissato $n \in \mathbb{N}$, sia $m \in \mathbb{N}$ tale che m > n. Allora esistono (unici) $k, h \in \mathbb{N}$ tali che m = kn + h con $0 \le h < n$.

Risulta
$$0 \le \frac{h}{m} < \frac{n}{m}$$
, $\frac{m-n}{m} < \frac{kn}{m} \le 1$ e per $m \to +\infty$ si ha $\frac{h}{m} \to 0$ e $\frac{kn}{m} \to 1$. Di conseguenza

$$||T^{m}||_{B(X)}^{\frac{1}{m}} = ||T^{kn+h}||_{B(X)}^{\frac{1}{m}} \le ||T^{n}||_{B(X)}^{\frac{k}{m}}||T||_{B(X)}^{\frac{h}{m}}$$
$$= \left(||T^{n}||_{B(X)}^{\frac{1}{n}}\right)^{\frac{kn}{m}} ||T||_{B(X)}^{\frac{h}{m}}$$

e quindi

$$\limsup_{m \to +\infty} ||T^m||_{B(X)}^{\frac{1}{m}} \le ||T^n||_{B(X)}^{\frac{1}{n}} \le ||T||_{B(X)}.$$

Per l'arbitrarietà di n si ha

$$\limsup_{m \to +\infty} ||T^m||_{B(X)}^{\frac{1}{m}} \le \liminf_{n \to +\infty} ||T^n||_{B(X)}^{\frac{1}{n}} \le ||T||_{B(X)}.$$

Pertanto esiste $\lim_{n\to+\infty} ||T^n||_{B(X)}^{\frac{1}{n}} \le ||T||_{B(X)}$.

Osservazione 5.8.3. Evidenziamo che, in uno spazio di Banach X a dimensione infinita su \mathbb{C} , è un risultato non banale il fatto che lo spettro σ (T) è sempre non vuoto.

Non è superfluo ricordare che in spazi a dimensione finita N su \mathbb{C} risulta $\sigma_p(T) = \sigma(T) \neq \emptyset$: una matrice $N \times N$ con elementi in \mathbb{C} ha autovalori in \mathbb{C} (le radici del polinomio caratteristico), ma può non avere alcun autovalore in \mathbb{R} , anche se gli elementi della matrice sono reali.

5.9 Spettro di un operatore lineare compatto

Esaminiamo ora lo spettro di un operatore lineare compatto. Proveremo, tra l'altro, che per un operatore compatto K in uno spazio di Hilbert a dimensione infinita, lo spettro si riduce soltanto allo zero e allo spettro puntuale $\sigma_p(K)$.

Teorema 5.9.1. (Spettro di un operatore lineare compatto) Sia $(H, (\cdot, \cdot))$ uno spazio di Hilbert di dimensione infinita e $K \in \mathcal{K}(H)$. Allora

(i) $0 \in \sigma(K)$ (quindi K non è invertibile);

(ii)
$$\sigma(K) = \sigma_n(K) \cup \{0\}$$

o, equivalentemente,

(iii)
$$\sigma(K) \setminus \{0\} = \sigma_p(K) \setminus \{0\};$$

- (iv) Vale uno dei seguenti casi:
 - $\sigma(K) = \{0\}$
 - $\sigma_p(K) \setminus \{0\}$ è un insieme finito
 - $\sigma_p(K) \setminus \{0\}$ è una successione di autovalori $(\lambda_n)_n$ soddisfacente

$$\lim_{n \to +\infty} \lambda_n = 0.$$

Dimostrazione. Per provare (i) ragioniamo per assurdo. Se $0 \notin \sigma(K)$ allora K ha inverso K^{-1} continuo, pertanto l'operatore identità su H, $I = K \circ K^{-1}$, risulta compatto per la Proposizione 5.2.7 (in quanto composizione di un operatore compatto e di uno continuo). Ma questo è falso, in quanto dim H è infinita.

Per provare (ii), è sufficiente dimostrare l'inclusione $\sigma(K) \subseteq \sigma_p(K) \cup \{0\}$. Sia $\lambda \in \sigma(K) \setminus \{0\}$ e proviamo che λ è un autovalore. Se, per assurdo, λ non è autovalore di K, cioè se ker $(\lambda I - K) = \{0\}$, per (iv) del Teorema di Fredholm, $Im(\lambda I - K) = H$. Per il Teorema 4.6.3 $\lambda I - K$ ha inverso limitato, e quindi $\lambda \in \rho(K)$, contro l'assunto. Questa contraddizione prova che $\lambda \in \sigma_p(K)$.

Per provare (iii), essendo ovvia l'inclusione $\sigma_p(K) \setminus \{0\} \subseteq \sigma(K) \setminus \{0\}$, sia $\lambda \in \sigma(K) \setminus \{0\}$ e proviamo che λ è un autovalore. Procediamo come nella dimostrazione di (ii). Se, per assurdo, λ non è autovalore di K, cioè se $\ker(\lambda I - K) = \{0\}$, per (iv) del Teorema di Fredholm, $Im(\lambda I - K) = H$. Per il Teorema 4.6.3 $\lambda I - K$ ha inverso limitato, e quindi $\lambda \in \rho(K)$, contro l'assunto. Questa contraddizione prova che $\lambda \in \sigma_p(K) \setminus \{0\}$.

Per provare (iv), assumiamo che $(\lambda_n)_n$ sia una successione di autovalori di K, distinti e in $\sigma_p(K) \setminus \{0\}$ e premettiamo i seguenti risultati:

Lemma 5.9.2. Autovettori corrispondenti ad autovalori distinti sono linearmente indipendenti. Dimostrazione. Proviamo per induzione su $n \in \mathbb{N}$, che se $\lambda_1, \lambda_2, \ldots, \lambda_n$ sono autovalori distinti di K, e per ogni $i = 1, \ldots, n$ w_i è autovettore relativo a λ_i (quindi $w_i \neq 0$ e $Kw_i = \lambda_i w_i$ per ogni $i = 1, \ldots, n$), allora w_1, \ldots, w_n sono linearmente indipendenti.

Assumiamo, per ipotesi induttiva, che la tesi valga fino ad n, e supponiamo, per assurdo, che

$$0 \neq w_{n+1} = \sum_{i=1}^{n} a_i w_i.$$

Allora risulta

$$Kw_{n+1} = \sum_{i=1}^{n} a_i \lambda_i w_i$$

 \mathbf{e}

$$Kw_{n+1} = \lambda_{n+1}w_{n+1} = \sum_{i=1}^{n} a_i \lambda_{n+1}w_i.$$

Per differenza, segue che $\sum_{i=1}^{n} a_i (\lambda_i - \lambda_{n+1}) w_i = 0$ e per l'ipotesi induttiva $a_i (\lambda_i - \lambda_{n+1}) = 0$ per ogni i = 1, ..., n. In definitiva, essendo $\lambda_i \neq \lambda_{n+1}$ per ogni i = 1, ..., n, risulta $a_i = 0$ per ogni i = 1, ..., n; una contraddizione. \square

Lemma 5.9.3. Sia $(\lambda_n)_n$ una successione di elementi distinti di $\sigma_p(K) \setminus \{0\}$ tale che $\lambda_n \to \lambda$. Allora $\lambda = 0$.

In altre parole, tutti i punti di $\sigma_p(K) \setminus \{0\}$ sono punti isolati.

Dimostrazione. Poiché $\lambda_n \in \sigma_p(K) \setminus \{0\}$, esiste $w_n \neq 0$ t.c.

$$Kw_n = \lambda_n w_n$$
.

Sia $H_n := \operatorname{span} \{w_1, \ldots, w_n\}$. Allora $H_n \subsetneq H_{n+1}$ per ogni $n \in \mathbb{N}$, poiché per il Lemma 5.9.2 autovettori corrispondenti ad autovalori distinti sono linearmente indipendenti. Osserviamo che $(K - \lambda_n I) H_n \subseteq H_{n-1}$ per ogni $n \geq 2$. Scegliamo ora, per ogni $n \in \mathbb{N}, n \geq 2$, un elemento $e_n \in H_n \cap H_{n-1}^{\perp}$ con $||e_n|| = 1$. Se $2 \leq m < n$, risulta $H_{m-1} \subsetneq H_m \subseteq H_{n-1} \subsetneq H_n$, allora $(Ke_n - \lambda_n e_n) \in H_{n-1}, (Ke_m - \lambda_m e_m) \in H_{m-1} \subset H_{n-1}, e_m \in H_m \subseteq H_{n-1}$, mentre $e_n \in H_{n-1}^{\perp}$. Quindi (per l'identità di Pitagora)

$$||Ke_n - Ke_m|| = ||\underbrace{(Ke_n - \lambda_n e_n) - (Ke_m - \lambda_m e_m) - \lambda_m e_m}_{\in H_{n-1}} + \underbrace{\lambda_n e_n}_{\in H_{n-1}^{\perp}}||$$

$$\geq ||\lambda_n e_n|| = |\lambda_n|.$$

Perciò

$$\liminf_{m,n\to+\infty} ||Ke_n - Ke_m|| \ge \lim_{n\to+\infty} |\lambda_n| = |\lambda|.$$

Necessariamente risulta $\lambda = 0$, in quanto se $|\lambda| > 0$, allora la successione $(Ke_n)_n$ non potrebbe avere alcuna sottosuccessione convergente, contraddicendo l'ipotesi di compattezza dell'operatore K.

Concludiamo la dimostrazione del punto (iv). Per ogni intero $n \geq 1$ l'insieme

 $\sigma_p(K) \cap \left\{ \lambda \in \mathbb{C} : |\lambda| \ge \frac{1}{n} \right\}$ (5.25)

è o vuoto o finito (se l'insieme (5.25) avesse infiniti punti distinti, esisterebbe, poiché $\sigma(K)$ è compatto, una sottosuccessione convergente a un λ , con $|\lambda| \geq \frac{1}{n}$, contraddicendo il Lemma 5.9.3). È allora chiara la struttura di $\sigma_p(K)$: esso è formato al più da una successione $(\lambda_n)_n$ di punti distinti con punto limite lo zero. Quindi, se $\sigma_p(K) \setminus \{0\}$ ha infiniti punti distinti, questi si possono ordinare come successione tendente a zero (si possono ordinare secondo i valori decrescenti $|\lambda_1| > |\lambda_2| > \ldots$).

Osservazione 5.9.4. Il Teorema 5.9.1 precedente resta valido anche in spazi di Banach a dimensione infinita, cioè anche se $K \in \mathcal{K}(X)$ con X spazio di Banach e $\dim(X) = \infty$ (cfr. Teorema 6.8 in [5]).

Osservazione 5.9.5. Riformuliamo, ora, l'Alternativa di Fredholm vista nel §5.6.

CASO 1. Se $\lambda = 1 \in \rho(K)$ (cioè se l'unità non è autovalore di K, $1 \notin \sigma_p(K)$), l'equazione non omogenea u - Ku = f ha una e una sola soluzione, qualunque sia $f \in H$.

 $CASO\ 2$. Se, invece, $\lambda=1\in\sigma_p(K)$ (cioè se l'unità è autovalore di K), l'equazione non omogenea u-Ku=f ha soluzione se e solo se il termine noto f è ortogonale a tutte (in numero finito) le soluzioni dell'equazione omogenea (duale) $u-K^*u=0$.

5.10 Limitazioni per lo spettro di un operatore lineare autoaggiunto

Osservazione 5.10.1. Sia $A = (a_{ij})_{i,j=1,...,N}$ una matrice $N \times N$ simmetrica (evidentemente, anche l'operatore lineare $T : \mathbb{R}^N \to \mathbb{R}^N$ associato ad A, definito da T(x) = Ax, è simmetrico). Considerata la forma quadratica determinata da A

$$x \mapsto (x, Ax) := \sum_{i,j=1}^{N} a_{ij} x_i x_j,$$
 (5.26)

risulta

$$m \le (x, Ax) \le M$$

dove

$$m := \min_{\|x\|=1} (x, Ax),$$

 $M := \max_{\|x\|=1} (x, Ax)$

 $(m \in M \text{ sono, rispettivamente, il più piccolo ed il più grande autovalore di <math>A$).

Estenderemo la precedente proprietà delle matrici simmetriche ad operatori lineari, limitati e autoaggiunti su spazi di Hilbert di dimensione infinita.

Osservazione 5.10.2. Siano $(H, (\cdot, \cdot))$ uno spazio di Hilbert e $S \in B(H)$ autoaggiunto. Allora,

Gli autovalori di S sono reali.

Infatti, se $\lambda \in \sigma_p(S)$ e x è un autovettore relativo a λ , si ha

$$\lambda \|x\|^2 = (\lambda x, x) = (Sx, x) = (x, Sx) = (x, \lambda x) = \overline{\lambda}(x, x) = \overline{\lambda} \|x\|^2,$$

da cui $\lambda = \overline{\lambda}$ e quindi $\lambda \in \mathbb{R}$.

Inoltre,

Autovettori associati ad autovalori distinti sono ortogonali.

Infatti, se λ, μ sono autovalori distinti di S, e x_{λ} e x_{μ} sono corrispondenti autovettori, si ha

$$\lambda(x_{\lambda}, x_{\mu}) = (\lambda x_{\lambda}, x_{\mu}) = (Sx_{\lambda}, x_{\mu}) = (x_{\lambda}, Sx_{\mu}) = (x_{\lambda}, \mu x_{\mu}) = \mu(x_{\lambda}, x_{\mu}),$$

e questo è possibile solo se $(x_{\lambda}, x_{\mu}) = 0$ (essendo $\lambda \neq \mu$).

Teorema 5.10.3 (limitazioni per lo spettro di un operatore autoaggiunto). Siano $(H, (\cdot, \cdot))$ uno spazio di Hilbert reale e $S \in B(H)$ autoaggiunto. Posto

$$m := \inf_{\substack{u \in H \\ \|u\| = 1}} (Su, u), \quad M := \sup_{\substack{u \in H \\ \|u\| = 1}} (Su, u), \tag{5.27}$$

si ha

(i)
$$\sigma(S) \subset [m, M];$$

(ii)
$$m, M \in \sigma(S)$$
;

(iii)
$$||S||_{B(H)} = \max\{|m|, |M|\}.$$

Dimostrazione.

(i) Sia $\lambda > M$ e proviamo che $\lambda \in \rho(S)$. Per la definizione di M, risulta, per ogni $u \in H \setminus \{0\}$,

$$\left(\frac{Su}{\|u\|}, \frac{u}{\|u\|}\right) = \frac{1}{\|u\|^2} (Su, u) \le M$$

e quindi

$$(Su, u) \le M||u||^2 \quad \forall u \in H,$$

pertanto

$$(\lambda u - Su, u) = \lambda(u, u) - (Su, u) \ge (\lambda - M) \|u\|^2 = \beta \|u\|^2$$

con $\beta = \lambda - M > 0$. Per il Teorema 2.7.2, si deduce che $\lambda I - S$ è bigettivo, pertanto $\lambda \in \rho(S)$.

Analogamente, si prova che ogni $\lambda < m$ appartiene a $\rho(S)$ (considerando -S al posto di S), quindi $\sigma(S) \subset [m, M]$. È così provata la (i).

(ii) Proviamo che $M \in \sigma(S)$ (per dimostrare che $m \in \sigma(S)$ si procede in maniera analoga). La forma bilineare

$$a(u,v) := (Mu - Su, v)$$

è simmetrica e soddisfa

$$a(v,v) > 0 \quad \forall v \in H.$$

Allora, per la disuguaglianza di Cauchy-Schwarz, si ha

$$|a(u,v)| \le a(u,u)^{\frac{1}{2}} \cdot a(v,v)^{\frac{1}{2}} \quad \forall u,v \in H,$$

cioè

$$|(Mu - Su, v)| \le (Mu - Su, u)^{\frac{1}{2}} \cdot (Mv - Sv, v)^{\frac{1}{2}} \quad \forall u, v \in H.$$
 (5.28)

In particolare, poiché

$$(Su, u) \ge m||u||^2 \quad \forall u \in H,$$

risulta (preso v = Mu - Su nella (5.28))

$$||Mu - Su||^2$$

 $\leq (Mu - Su, u)^{\frac{1}{2}} \left[\left(M(Mu - Su) - S(Mu - Su), Mu - Su \right) \right]^{\frac{1}{2}}$

$$= (Mu - Su, u)^{\frac{1}{2}} \left[M \| Mu - Su \|^{2} \underbrace{-\left(S(Mu - Su), Mu - Su\right)}_{\leq -m \| Mu - Su \|^{2}} \right]^{\frac{1}{2}}$$

$$\leq (Mu - Su, u)^{\frac{1}{2}} \left[(M - m) \| Mu - Su \|^{2} \right]^{\frac{1}{2}}$$

$$= (Mu - Su, u)^{\frac{1}{2}} (M - m)^{\frac{1}{2}} \| Mu - Su \|.$$

Pertanto, esiste $c := (M - m)^{\frac{1}{2}} > 0$ tale che

$$||Mu - Su|| \le c(Mu - Su, u)^{\frac{1}{2}} \quad \forall u \in H.$$
 (5.29)

Per la definizione di M, esiste una successione $(u_n)_n \subset H$ tale che $||u_n|| = 1$ per ogni $n \in \mathbb{N}$ e $(Su_n, u_n) \to M$ per $n \to +\infty$. Da (5.29) si deduce che $||Mu_n - Su_n|| \to 0$ e quindi $M \in \sigma(S)$ (perché, se $M \in \rho(S)$, allora esiste $(MI - S)^{-1}$ operatore lineare e continuo, per cui $u_n = (MI - S)^{-1}(Mu_n - Su_n) \to 0$, e ciò è impossibile, perché $||u_n|| = 1$). Risulta così provata la (ii).

(iii) Posto $\mu = \max\{|m|, |M|\},$ proviamo che $\|S\|_{B(H)} = \mu.$ Per ogni $u, v \in H$

$$(S(u+v), u+v) = (Su, u) + (Sv, v) + 2(Su, v)$$

$$(S(u - v), u - v) = (Su, u) + (Sv, v) - 2(Su, v).$$

Pertanto

$$4(Su,v) = (S(u+v),u+v) - (S(u-v),u-v) \le M\|u+v\|^2 - m\|u-v\|^2,$$
e quindi

$$4|(Su,v)| \le \mu(\|u+v\|^2 + \|u-v\|^2) = 2\mu(\|u\|^2 + \|v\|^2).$$

Sostituendo $v \operatorname{con} \alpha v, \alpha > 0$, si ha

$$4|(Su, v)| \le 2\mu \left(\frac{\|u\|^2}{\alpha} + \alpha \|v\|^2\right).$$

Minimizzando il membro a destra rispetto ad α si ha $\alpha = \frac{\|u\|}{\|v\|}, v \neq 0$, e otteniamo

$$|(Su, v)| \le \mu ||u|| ||v|| \quad \text{per ogni} \quad u, v \in H,$$

sicché, scelto v = Su, si ha

$$||Su||^2 = |(Su, Su)| \le \mu ||u|| ||Su||$$
 per ogni $u \in H$,

da cui

$$||S||_{B(H)} \le \mu.$$

D'altra parte, risulta, per ogni $u \in H$, ||u|| = 1

$$|(Su, u)| \le ||Su|| \le ||S||_{B(H)},$$

pertanto

$$|M| = \left| \sup_{\substack{u \in H \\ \|u\| = 1}} (Su, u) \right| \le \sup_{\substack{u \in H \\ \|u\| = 1}} |(Su, u)| \le \|S\|_{B(H)}$$

 \mathbf{e}

$$|m| = \left| \inf_{\substack{u \in H \\ \|u\| = 1}} (Su, u) \right| \le \sup_{\substack{u \in H \\ \|u\| = 1}} |(Su, u)| \le \|S\|_{B(H)}$$

e quindi

$$\mu \leq ||S||_{B(H)}.$$

Corollario 5.10.4. Sia $S \in B(H)$ autoaggiunto tale che $\sigma(S) = \{0\}$. Allora S = O (operatore nullo su H).

5.11 Teorema spettrale di Hilbert-Schmidt per operatori compatti autoaggiunti su spazi di Hilbert reali e separabili

Dimostriamo, ora, che anche in dimensione infinita vale il seguente fondamentale risultato di diagonalizzabilità (in una opportuna base) per gli operatori lineari compatti autoaggiunti.

Teorema 5.11.1 (spettrale, di Hilbert-Schmidt; autovettori di un operatore compatto autoaggiunto). Siano $(H, (\cdot, \cdot))$ uno spazio di Hilbert reale separabile e $K: H \to H$ un operatore lineare, compatto e autoaggiunto. Allora esistono una base numerabile e ortonormale $(v_n)_n$ di H formata da

autovettori di K (base spettrale) e una successione di autovalori reali e distinti $(\lambda_n)_{n\geq 1}$, con $\lambda_n \neq 0$ e $\lambda_n \to 0$, tali che, per ogni $u \in H$ l'operatore K ha la rappresentazione

$$Ku = \sum_{n=1}^{+\infty} \lambda_n (u, v_n) v_n.$$

Dimostrazione. Se $H = \mathbb{R}^N$, abbiamo il classico Teorema spettrale dell'Algebra Lineare. Assumiamo, allora, che H abbia dimensione infinita. Poiché $K \in \mathcal{K}(H)$, risulta, per il Teorema 5.9.1,

$$\sigma(K) \setminus \{0\} = \sigma_p(K) \setminus \{0\} = \{\lambda_n\}_{n \ge 1},$$

con la successione $(\lambda_n)_{n\geq 1}\in c_0$.

1. Sia, quindi, $(\lambda_n)_{n\geq 1} \subset \mathbb{R}$ la successione di tutti gli autovalori distinti di K, escluso lo zero. Poniamo

$$\lambda_0 := 0, \quad H_0 := \ker K, \quad H_n := \ker (K - \lambda_n I) \quad (n \ge 1).$$

Osserviamo che H_0 e H_n $(n \ge 1)$ sono sottospazi chiusi di H, in quanto nuclei di operatori lineari continui; inoltre,

$$0 \le \dim H_0 \le \infty$$
 mentre $0 < \dim H_n < \infty$,

in virtù del punto (i) del Teorema di Fredholm 5.5.1.

- 2. Proviamo che H è la somma di Hilbert degli H_n , $n \in \mathbb{N}_0$ (nel senso della Definizione 2.5.1). Per questo, dimostriamo che gli spazi H_k sono mutualmente ortogonali e, inoltre, che lo span della loro unione è denso in H.
 - (a) Gli H_k sono mutualmente ortogonali. Infatti, se $u \in H_m$ e $v \in H_n$, con $m \neq n$, allora $Ku = \lambda_m u$ e $Kv = \lambda_n v$, pertanto

$$\lambda_m(u,v) = (Ku,v) = (u,Kv) = \lambda_n(u,v).$$

Poiché $\lambda_n \neq \lambda_m$, si deduce che (u,v) = 0; di conseguenza, i sottospazi H_m e H_n sono mutualmente ortogonali.

(b) Sia

$$F := \operatorname{span}\left(\bigcup_{n=0}^{\infty} H_n\right) = \left\{\sum_{n=0}^{m} a_n u_n : m \in \mathbb{N}_0, u_n \in H_n, a_n \in \mathbb{R}\right\}.$$

Proviamo che F è denso in H. Ovviamente, $K(F) \subseteq F$. Ne segue che $K(F^{\perp}) \subseteq F^{\perp}$. Infatti, dato $u \in F^{\perp}$, per ogni $v \in F$, si ha $Kv \in F$ e quindi

$$(Ku, v) = (u, Kv) = 0;$$

in virtù dell'arbitrarietà di $v \in F$, deduciamo che $Ku \in F^{\perp}$.

Denotiamo ora la restrizione di K a F^{\perp} con K_0 ; l'operatore

$$K_0 = K|_{F^{\perp}}: F^{\perp} \to K(F^{\perp}) \subseteq F^{\perp}$$
 è compatto ed autoaggiunto su F^{\perp} .

Proviamo che $\sigma(K_0) = \{0\}$.

Sia, per assurdo, $\lambda \in \sigma(K_0)$, $\lambda \neq 0$. Poiché $\lambda \in \sigma_p(K_0) \setminus \{0\}$, esiste $u \in F^{\perp}$, $u \neq 0$, tale che $K_0u = \lambda u$. Perciò λ è uno degli autovalori di K; supponiamo $\lambda = \lambda_n$, con $n \geq 1$. Pertanto $u \in H_n \subseteq F$. Poiché $u \in F^{\perp} \cap F$, risulta u = 0, ottenendo una contraddizione. Dunque $\sigma(K_0) = \{0\}$ e, per il Corollario 5.10.4, $K_0 = O$ (operatore nullo su F^{\perp}), cioè l'operatore K si annulla su F^{\perp} . Si ha, allora,

$$F^{\perp} \subseteq \ker K = H_0 \subset F$$
,

cioè $F^{\perp} \subset F$ e quindi (poiché $\{0\} = F \cap F^{\perp} = F^{\perp}$) $F^{\perp} = \{0\}$. Ne segue che F è denso in H. Infatti, ricordato che

$$\left(F^{\perp}\right)^{\perp} = \overline{F},$$

risulta

$$\overline{F} = (F^{\perp})^{\perp} = \{0\}^{\perp} = H.$$

Da (a) e (b) deduciamo che H è somma di Hilbert degli H_n , $n \in \mathbb{N}_0$:

$$H = \underbrace{H_0}_{0 \le dim.=N(0) \le \infty} \oplus \underbrace{H_1}_{dim.=N(1) < \infty} \oplus \underbrace{H_2}_{dim.=N(2) < \infty} \cdots \oplus \underbrace{H_n}_{dim.=N(n) < \infty} \oplus \cdots$$

3. Per ogni $n \geq 1$, gli spazi a dimensione finita H_n hanno una base ortonormale, formata da autovettori di K relativi all'autovalore λ_n ,

$$\mathcal{B}_n = \{v_{n,1}, v_{n,2}, \dots, v_{n,N(n)}\}$$

(Teorema spettrale dell'Algebra Lineare).

D'altra parte, $H_0 = \ker K$ è sottospazio chiuso dello spazio H, separabile per ipotesi, pertanto H_0 è separabile (cfr. Proposizione 2.5.10)

e quindi ammette una base di Hilbert numerabile e ortonormale (cfr. Teorema 2.5.6)

$$\mathcal{B}_0 = \{v_{0,1}, v_{0,2}, \ldots\}$$

formata da autovettori di K (relativi a $\lambda_0 = 0$).

In definitiva, l'unione

$$\mathcal{B} = \bigcup_{n \in \mathbb{N}_0} \mathcal{B}_n$$

è una base ortonormale di H, formata da autovettori di K.

Sia $\mathcal{B} = \{v_1, v_2, \ldots\}$ la base di Hilbert numerabile e ortonormale formata da autovettori di K.

Allora, se $u \in H$, $u = \sum_{n=0}^{+\infty} (u, v_n) v_n$ (cfr. Corollario 2.5.5) e quindi

$$Ku = \sum_{n=1}^{+\infty} (u, v_n) Kv_n = \sum_{n=1}^{+\infty} \lambda_n(u, v_n) v_n.$$

Osservazione 5.11.2. È importante sottolineare che l'autospazio relativo a ciascun λ_n $(n \ge 1)$ autovalore di K ha dimensione finita.

5.11.1 Diagonalizzazione in dimensione infinita

Dalla precedente analisi, per ciascun elemento $u \in H$ si ha

$$u = \sum_{n=0}^{+\infty} (u, v_n) v_n,$$

con $v_n \in H_n$, $n \in \mathbb{N}_0$ $(Kv_n = \lambda_n v_n, n \in \mathbb{N}_0)$ e

$$Ku\left(=\sum_{n=1}^{+\infty}\left(u,v_{n}\right)Kv_{n}\right)=\sum_{n=1}^{+\infty}\lambda_{n}\left(u,v_{n}\right)v_{n}.$$

Rispetto alla base spettrale $\mathcal B$ del Teorema 5.11.1, possiamo quindi pensare K come una matrice diagonale infinita

$$\begin{pmatrix} \lambda_1 & & & & \\ & \lambda_2 & & 0 & \\ & & \ddots & \\ & 0 & & \lambda_N & \\ & & & \ddots \end{pmatrix}.$$

In altre parole, si ottiene un risultato "analogo" al Teorema spettrale sulla riduzione della matrice associata ad un operatore simmetrico T in dimensione finita N alla forma diagonale rispetto ad una base spettrale $\{v_1, \ldots, v_N\}$ (cfr. Sezione 5.7):

$$Tx = \sum_{i=1}^{N} \lambda_i (x, v_i) v_i \quad \left(x = \sum_{i=1}^{N} (x, v_i) v_i \in \mathbb{R}^N \right).$$

Osservazione 5.11.3. Ribadiamo quanto già premesso all'inizio della Sezione 2.6: il Teorema spettrale di Hilbert-Schmidt esprime una tecnica generale per costruire basi ortonormali in spazi di Hilbert reali e separabili, prendendo gli autovettori di operatori lineari, compatti e autoaggiunti (base spettrale). Come applicazione, in alcuni Esercizi sviluppati alla fine di questo capitolo, si costruiscono basi speciali dello spazio di Hilbert reale e separabile L^2 formate da autofunzioni di operatori differenziali.

Osservazione 5.11.4. A questo punto verrebbe di pensare che tutta l'Analisi Funzionale tratti esclusivamente operatori limitati. Non è così: i metodi dell'Analisi Funzionale si estendono a operatori non-limitati (cfr., ad esempio, [1]). Qui segnaliamo alcuni sviluppi dell'Analisi spettrale. Sia H uno spazio di Hilbert e sia $T \in B(H)$, autoaggiunto, possibilmente non compatto. È possibile costruire una "famiglia spettrale" di T che estende il Teorema 5.11.1. In particolare, si definisce un "calcolo funzionale" per dare senso a f(T) per ogni funzione continua f, estendendo l'Analisi spettrale ad operatori T non limitati e non autoaggiunti, normali, cioè tali che $TT^* = T^*T$. L'analisi spettrale è stata anche affrontata in Spazi di Banach su \mathbb{C} .

"Longum iter est per praecepta, breve et efficax per exempla"

(Sen., Ep. 6,5)

5.12 Esercizi proposti per i capitoli 1-5.

1. Lo spazio $C^0([a,b];\mathbb{R})$ non è di Banach rispetto alla norma definita da

$$||u||_{L^1([a,b])} := \int_a^b |u(x)| dx$$

per ogni $u \in C^0([a, b]; \mathbb{R})$.

Soluzione. Senza perdere in generalità, consideriamo l'intervallo [-1, 1]. Sia $(u_n)_n$ la successione di funzioni continue

$$u_n(x) := \begin{cases} -1, & -1 \le x \le -1/n \\ nx, & -1/n \le x \le 1/n \\ 1, & 1/n \le x \le 1. \end{cases}$$

e sia u la funzione discontinua in 0

$$u(x) := \begin{cases} 0, & x = 0 \\ 1, & 0 < x \le 1 \\ -1, & -1 \le x < 0. \end{cases}$$

Risulta

$$\int_{-1}^{1} |u_n(x) - u(x)| \, dx = \frac{1}{n} \to 0 \text{ per } n \to +\infty.$$

Se esistesse $w \in C^0([-1,1];\mathbb{R})$ tale che $\|u_n-w\|_{L^1([-1,1])} \to 0$, allora da

$$\int_{-1}^{1} |w(x) - u(x)| \, dx \le \int_{-1}^{1} |u_n(x) - u(x)| \, dx + \int_{-1}^{1} |u_n(x) - u(x)| \, dx$$

dedurremmo che (siccome il secondo membro è infinitesimo)

$$\int_{-1}^{1} |w(x) - u(x)| \, dx = 0.$$

Pertanto, w = u q.o. e quindi w è discontinua in 0, in contraddizione con l'assunto.

Osservazione 5.12.1. Il completamento dello spazio normato $C^0([a,b];\mathbb{R},\|.\|_{L^1([a,b])})$ è lo spazio di Lebesgue $L^1([a,b])$.

2. Sia $C^1([-1,1];\mathbb{R})$ lo spazio delle funzioni continue, con derivata prima continua in [-1,1]. Consideriamo in $C^1([-1,1];\mathbb{R})$ la norma della convergenza uniforme $\|\cdot\|_{\infty}$. Mostrare che $(C^1([-1,1];\mathbb{R}),\|\cdot\|_{\infty})$ non è uno spazio di Banach.

Soluzione. Considerata la successione definita da

$$u_n(x) = \frac{\sqrt{1 + n^2 x^2}}{n}, \quad x \in [-1, 1],$$

risulta che u_n converge uniformemente alla funzione valore assoluto in [-1, 1]. Infatti

$$\lim_{n\to +\infty} \frac{\sqrt{1+n^2x^2}}{n} = \lim_{n\to +\infty} \sqrt{\frac{1}{n^2}+x^2} = |x|$$

e inoltre

$$|u_n(x) - |x|| = \left| \frac{\sqrt{1 + n^2 x^2} - n|x|}{n} \right| = \frac{1}{n \left(\sqrt{1 + n^2 x^2} + n|x| \right)} \le \frac{1}{n}.$$

Pertanto u_n converge uniformemente alla funzione valore assoluto in [-1,1].

Ne segue che $(C^1([-1,1];\mathbb{R}), \|\cdot\|_{\infty}) \subset (C^0([-1,1];\mathbb{R}), \|\cdot\|_{\infty})$ non è chiuso rispetto alla norma $\|\cdot\|_{\infty}$, per cui non è completo, tenendo conto dell'Osservazione 1.1.15.

3. Sia $C^1([a,b];\mathbb{R})$ lo spazio delle funzioni continue, con derivata prima continua in [a,b]. Mostrare che $(C^1([a,b];\mathbb{R}), \|\cdot\|_{\infty} + \|\cdot'\|_{\infty})$ è uno spazio di Banach.

Soluzione. Sia $(u_n)_n$ una successione di Cauchy in $(C^1([a,b];\mathbb{R}), \|\cdot\|_{\infty} + \|\cdot'\|_{\infty})$. Allora $(u_n)_n$ e $(u'_n)_n$ sono entrambe di Cauchy nello spazio di Banach $(C^0([a,b];\mathbb{R}), \|\cdot\|_{\infty})$ e pertanto esistono due funzioni $u, v \in C^0([a,b];\mathbb{R})$ tali che $\|u_n - u\|_{\infty} \to 0$ e $\|u'_n - v\|_{\infty} \to 0$.

Proviamo che v(x) = u'(x) per ogni $x \in [a, b]$. Essendo

$$u_n(x) - u_n(a) = \int_a^x u'_n(t) dt,$$

poiché $u_n(x) \to u(x)$ e $u_n(a) \to u(a)$, passando al limite sotto il segno di integrale (giustificato dal fatto che $u'_n \rightrightarrows v$) si ha

$$u(x) - u(a) = \int_{a}^{x} v(t) dt.$$

Quindi v(x) = u'(x).

Osservazione 5.12.2. Verificare che lo spazio $C^1([a,b]; \mathbb{R}, \|\cdot\|_{L^1([a,b])} + \|\cdot\|_{L^1([a,b])})$ non è completo. Il completamento di $C^1([a,b]; \mathbb{R}, \|\cdot\|_{L^1([a,b])} + \|\cdot\|_{L^1([a,b])})$ è lo spazio di Sobolev $H^{1,1}([a,b])$.

4. Per ogni $u \in C^0([0,2];\mathbb{R})$ definiamo

$$||u|| := \sup_{0 \le x \le 1} |u(x)| + \int_{1}^{2} |u(x)| dx.$$
 (5.30)

- (a) Verificare se (5.30) definisce una norma su $C^0([0,2];\mathbb{R})$.
- (b) In caso affermativo, dire se lo spazio normato $(C^0([0,2];\mathbb{R}),\|\cdot\|)$ è uno spazio di Banach.

Soluzione. La risposta affermativa al punto (a) è lasciata per esercizio. Per il punto (b), consideriamo la successione di funzioni

$$v_n(x) := \begin{cases} -1, & x \in [0, 1] \\ u_n(2x - 3) & x \in [1, 2], \end{cases}$$

dove u_n è definita nell'esercizio 1. Osservato che $v_n(1)=u_n(-1)=-1$, risulta $v_n \in (C^0([0,2];\mathbb{R}), \|\cdot\|), n \in \mathbb{N}$, con $(v_n)_n$ di Cauchy.

La funzione

$$v(x) := \begin{cases} -1, & 0 \le x < \frac{3}{2} \\ 0, & x = \frac{3}{2} \\ 1, & \frac{3}{2} < x \le 2, \end{cases}$$

è tale che $||v_n - v|| \to 0$ per $n \to +\infty$, ma non è continua in [0,2]. Pertanto $(C^0([0,2];\mathbb{R}), ||\cdot||)$ non è spazio di Banach.

5. Considerare su $C^0([0,1];\mathbb{R})$, per ogni $p \in [1,+\infty[$, la norma 12

$$||u||_{L^p([0,1])} := \left(\int_0^1 |u(x)|^p dx\right)^{1/p}.$$
 (5.31)

 $^{^{12}}$ Per provare che il funzionale in (5.31) è una norma, seguire i passi della dimostrazione negli spazi (ℓ^p , $\|\cdot\|_{\ell^p}$), passando, evidentemente, dal discreto al continuo (ovvero, operando l'ovvia sostituzione delle serie con gli appropriati integrali).

(a) Data la successione $(u_n)_n$ definita da

$$u_n(x) = \sqrt{n}x^n, \forall x \in [0, 1], \forall n \in \mathbb{N},$$

dimostrare che

$$u_n \to u = 0$$
 rispetto a $\|\cdot\|_{L^1([0,1])}$,

ma

$$u_n \not\to u = 0$$
 rispetto a $\|\cdot\|_{L^2([0,1])}$.

(b) Generalizzare il punto (a) provando che, considerata la successione di funzioni $u_n(x) := n^{1/q}x^n$, con q > 1, risulta

$$u_n \to u = 0$$
 rispetto a $\|\cdot\|_{L^p([0,1])} \Leftrightarrow p < q$.

Solutione.

(a) Risulta

$$||u_n - u||_{L^1([0,1])} = \int_0^1 |\sqrt{n}x^n| \, dx = \frac{\sqrt{n}}{n+1} \to 0$$

 \mathbf{e}

$$||u_n - u||_{L^2([0,1])}^2 = \int_0^1 (\sqrt{n}x^n)^2 dx = \frac{n}{2n+1} \not\to 0.$$

(b) Si ha

$$||u_n||_{L^p([0,1])}^p = \int_0^1 |n^{\frac{1}{q}} x^n|^p dx = n^{\frac{p}{q}} \int_0^1 x^{np} dx$$
$$= \frac{n^{\frac{p}{q}}}{np+1} \to 0$$

se e solo se p/q < 1, cioè p < q.

6. Dimostrare che la palla unitaria chiusa di $(C^0([-1,1];\mathbb{R}), \|\cdot\|_{\infty})$ non è compatta.

Soluzione. Tenere presente il Teorema 1.8.5

7. Dimostrare che la palla unitaria chiusa di $(C^1([-1,1];\mathbb{R}), ||u||_{\infty} + ||u'||_{\infty})$ non è compatta.

Soluzione. Tenere presente il Teorema 1.8.5

8. Sia $\mathcal{P}_1([a,b])$ lo spazio dei polinomi di grado al più 1 sull'intervallo [a,b]. Provare che $\|\cdot\|_{L^1([a,b])}$ e $\|\cdot\|_{\infty}$ sono norme equivalenti su $\mathcal{P}_1([a,b])$.¹³

Soluzione. Lo spazio $\mathcal{P}_1([a,b])$ ha dimensione due (una base è $\{1,t\}$), pertanto la tesi segue dal Corollario 1.7.5.

9. Sullo spazio $C^1([a,b];\mathbb{R})$ consideriamo le norme definite da

$$||u|| := ||u||_{\infty} + ||u'||_{\infty}$$

e

$$||u||' := |u(a)| + ||u'||_{\infty}$$

per ogni $u \in C^1([a, b]; \mathbb{R})$.

Provare che $\left\|\cdot\right\|$ e $\left\|\cdot\right\|'$ sono norme equivalenti.

Soluzione. Evidentemente $\|u\|' \leq \|u\|$. Non è difficile provare che esiste c>0 tale che $\|u\| \leq c \|u\|'$. Domanda: è possibile, in alternativa, utilizzare il Corollario 4.6.4?

10. Sia $w:[a,b]\to\mathbb{R}$ continua e positiva su [a,b]. Consideriamo il funzionale definito da

$$||u||_w := \max_{a \le x \le b} |w(x)u(x)|,$$

per ogni $u \in C^0([a, b]; \mathbb{R})$.

- (a) Provare che $\|\cdot\|_w$ definisce una norma su $C^0([a,b];\mathbb{R})$.
- (b) Provare che $\left\|\cdot\right\|_w$ è equivalente a $\left\|\cdot\right\|_{\infty}.$
- 11. Sia $u \in C^0([a, b]; \mathbb{R});$ allora

$$\lim_{p \to +\infty} \left(\int_a^b |u(x)|^p dx \right)^{\frac{1}{p}} = \max_{a \le x \le b} |u(x)|.$$

 $^{^{13}}$ Osserviamo che, sullo spazio dei polinomi $\mathcal{P}([a,b])$ di grado qualunque su [a,b], le norme $\|\cdot\|_{L^1([a,b])}$ e $\|\cdot\|_{\infty}$ non sono equivalenti (cfr. Osservazione 1.7.2).

Soluzione. Sia $M = \max_{a \le x \le b} |u(x)| > 0$; allora, per ogni $k > M^{-1}$ esiste un intervallo $[a_k, b_k] \subset [a, b]$ con $a_k \ne b_k$, tale che

$$|u(x)| > M - \frac{1}{k}$$

per ogni $x \in [a_k, b_k]$; pertanto, per $x \in [a, b]$, si ha

$$\left(M - \frac{1}{k}\right) \chi_{[a_k, b_k]}(x) \le |u(x)| \le M,$$

dove $\chi_{[a_k,b_k]}$ è la funzione caratteristica di $[a_k,b_k]$. Ne segue

$$\left(\int_{a}^{b} \left(M - \frac{1}{k}\right)^{p} \chi_{[a_{k}, b_{k}]}(x) dx\right)^{\frac{1}{p}} \le \left(\int_{a}^{b} |u(x)|^{p} dx\right)^{\frac{1}{p}} \le M(b - a)^{\frac{1}{p}}.$$

Il primo membro di tali disuguaglianze è uguale a $\left(M - \frac{1}{k}\right) \left(b_k - a_k\right)^{\frac{1}{p}}$ e tende a $M - \frac{1}{k}$ per $p \to +\infty$. Allora risulta

$$M - \frac{1}{k} \le \lim_{p \to +\infty} \left(\int_a^b |u(x)|^p dx \right)^{\frac{1}{p}} \le M$$

e la tesi segue per $k \to +\infty$.

12. Sia $T: C^0([-1,1];\mathbb{R}) \to \mathbb{R}$ definito da

$$T(u) := \int_{-1}^{1} g(x)u(x)dx \quad \forall u \in C^{0}([-1, 1]; \mathbb{R}),$$

dove

$$g(x) := \begin{cases} -1, & -1 \le x \le 0 \\ 1, & 0 < x \le 1. \end{cases}$$

- (a) Provare che T è lineare e continuo.
- (b) Calcolare ||T||.

Soluzione. T è ovviamente lineare ed è continuo, infatti

$$|T(u)| \le \int_{-1}^{1} |g(x)| |u(x)| dx \le \int_{-1}^{1} |u(x)| dx \le 2||u||_{\infty}.$$

Pertanto $||T|| \le 2$. Proviamo che ||T|| = 2. Consideriamo la successione di funzioni continue $(u_n)_n$ considerate nell'esercizio 1.

Risulta
$$||u_n||_{\infty}=1$$
 e $T(u_n)=2-\frac{1}{n}$, per cui $|T(u_n)|\to 2$, per $n\to\infty$. \square

13. Sia $T: C^0([-1,1];\mathbb{R}) \to \mathbb{R}$ definito da

$$T(u) := \int_{-1}^{1} g(x)u(x)dx \quad \forall u \in C^{0}([-1, 1]; \mathbb{R}),$$

dove

$$g(x) := \begin{cases} -1, & -1 \le x \le 1/3 \\ 1, & 1/3 < x \le 1. \end{cases}$$

- (a) Provare che T è lineare e continuo.
- (b) Calcolare ||T||.
- 14. Sia $T:\ell^2\to\ell^2$ l'operatore definito da

$$(Tx)_n := \frac{n}{1+n^2}x_n \quad \forall x = (x_n)_n \in \ell^2.$$

- (a) Provare che T è lineare e continuo.
- (b) Calcolare ||T||

Soluzione. T è ovviamente lineare ed è continuo, infatti

$$||Tx||_{\ell^2}^2 = \sum_{n=1}^{+\infty} \frac{n^2}{(1+n^2)^2} |x_n|^2 \le \frac{1}{4} ||x||_{\ell^2}^2,$$

cioè $||Tx||_{\ell^2} \leq \frac{1}{2}||x||_{\ell^2}$, quindi $||T||_{B(\ell^2)} \leq \frac{1}{2}$. Proviamo che $||T||_{B(\ell^2)} = \frac{1}{2}$. Consideriamo $e^{(1)} = (1,0,0,\cdots,0)$; risulta $||e^{(1)}||_{\ell^2} = 1$ e $||Te^{(1)}||_{\ell^2} = \frac{1}{2}$.

15. Sia $T: \ell^2 \to \ell^2$ l'operatore definito da

$$(Tx)_n := \frac{n}{1+n} x_n \quad \forall x = (x_n)_n \in \ell^2.$$

- (a) Provare che T è lineare e continuo.
- (b) Calcolare ||T||.
- 16. Verificare che, per ogni $N \in \mathbb{N}, N \geq 2$, gli spazi $(\mathbb{R}^N, \|\cdot\|_1)$ e $(\mathbb{R}^N, \|\cdot\|_\infty)$ non sono spazi di Hilbert. $(\|\cdot\|_1 \in \|\cdot\|_\infty)$ sono definite nell'Esempio 1.1.2).
- 17. Verificare che la norma $\|\cdot\|_{\infty}$ su $(C^0([0,1];\mathbb{R})$ non è di Hilbert.
- 18. Verificare che la norma $||u||_{L^1([a,b])} := \int_a^b |u(x)| dx$ su $(C^0([0,1];\mathbb{R})$ non è di Hilbert.

19. Verificare che la norma $\|\cdot\|_{\ell^p}$ su $\ell^p, p \in [1, +\infty]$ è di Hilbert se e solo se p=2.

Soluzione. Per gli esercizi 16, 17, 18, 19, tenere presente l'Osservazione 2.1.3.

Per l'esercizio 16, considerare

$$x = (1, 1, \underbrace{0, 0, \cdots, 0}_{N-2}), \quad y = (-1, 1, \underbrace{0, 0, \cdots, 0}_{N-2}).$$

Relativamente all'esercizio 17, siano $f(t)=t, g(t)=1-t, t\in [0,1]$. Risulta

$$||f||_{\infty} = ||g||_{\infty} = 1, \quad ||f + g||_{\infty} = ||f - g||_{\infty} = 1.$$

È evidente che l'identità del parallelogramma non è verificata. Relativamente all'esercizio 18, prendere $u(t) = \sin^2(\frac{\pi \cdot t}{2})$ e $v(t) = \cos^2(\frac{\pi \cdot t}{2})$. Relativamente all'esercizio 19, verifichiamo l'implicazione

$$(\ell^p, \|\cdot\|_{\ell^p})$$
 di Hilbert $\Rightarrow p=2$

(l'implicazione inversa è ovvia). Sia $p \in [1, +\infty[$ e prendiamo

$$x = (1, 1, 0, 0, \dots, 0, \dots), \quad y = (-1, 1, 0, 0, \dots, 0, \dots).$$

Risulta

$$||x+y||_{\ell^p} = ||x-y||_{\ell^p} = 2, \quad ||x||_{\ell^p} = ||y||_{\ell^p} = 2^{\frac{1}{p}}.$$

Pertanto, se $(\ell^p, \|\cdot\|_{\ell^p})$ è di Hilbert, vale l'identità del parallelogramma

$$8 = \|x + y\|_{\ell^p}^2 + \|x - y\|_{\ell^p}^2 = 2(\|x\|_{\ell^p}^2 + \|y\|_{\ell^p}^2) = 4 \cdot 2^{\frac{2}{p}},$$

da cui necessariamente p=2. Se $p=\infty$, si verifica che $(\ell^{\infty}, \|\cdot\|_{\ell^{\infty}})$ non è di Hilbert con la stessa scelta di vettori x e y.

20. Proprietà spettrali degli operatori di traslazione.

Siano T_+, T_- gli operatori di traslazione (rispettivamente) a destra e a sinistra già definiti nella nota 4 del Capitolo 5:

$$T_{+}: \ell^{2} \to \ell^{2},$$

 $x = (x_{1}, x_{2}, \dots, x_{n}, \dots) \mapsto T_{+}x := (0, x_{1}, \dots, \underbrace{x_{n-1}}_{(T_{+}x)_{n}}, \dots)$

е

$$T_{-}: \ell^{2} \to \ell^{2},$$

 $x = (x_{1}, x_{2}, \dots, x_{n}, \dots) \mapsto T_{-}x := (x_{2}, x_{3}, \dots, \underbrace{x_{n+1}}_{(T_{-}x)_{n}}, \dots).$

- (a) Dimostrare che gli operatori lineari T_+ e T_- sono continui, ma non sono compatti.
- (b) Provare che $T_{+}^{*} = T_{-}$ e $T_{-}^{*} = T_{+}$.
- (c) Provare che $\sigma_p(T_+) = \emptyset$, $\sigma_p(T_-) =]-1,1[$, $\sigma(T_+) = \sigma(T_-) = [-1,1]$. (Osserviamo che risulta : $\sigma(T_+^*) = \sigma(T_+)$ e $\sigma(T_-^*) = \sigma(T_-)$).

Solutione.

- (a) $||T_+||_{B(\ell^2)} = ||T_-||_{B(\ell^2)} = 1$. Osserviamo che $T_- \circ T_+ = I : \ell^2 \to \ell^2$, pertanto T_+ e T_- non sono compatti (tenuto conto dell'Osservazione 5.2.2 e della Proposizione 5.2.7).
- (b) $(T_+^*x, y) := (x, T_+y) = ((x_1, x_2, x_3, ...), (0, y_1, y_2, y_3, ...)) = (T_-x, y),$ e quindi $T_+^* = T_-$. Analogamente si prova che $T_-^* = T_+$.
- (c) Se $T_+x = \lambda x$, $\lambda \neq 0$, si ha

$$(0, x_1, x_2, \ldots) = \lambda(x_1, x_2, \ldots)$$

e quindi

$$0 = \lambda x_1, \ x_1 = \lambda x_2, \ x_2 = \lambda x_3, \ \ldots;$$

ne segue che $x_1 = x_2 = x_3 = \ldots = 0$. Pertanto $\sigma_p(T_+) = \emptyset$.

Se $T_{-}x = \lambda x$, $\lambda \neq 0$, si ha

$$(x_2, x_3, \ldots) = \lambda(x_1, x_2, \ldots)$$

e quindi

$$x_2 = \lambda x_1, \ x_3 = \lambda x_2, \ x_4 = \lambda x_3, \ \ldots;$$

ne segue che

$$x = (x_1, \lambda x_1, \lambda^2 x_1, \lambda^3 x_1, \ldots) = x_1(1, \lambda, \lambda^2, \lambda^3, \ldots).$$

Tale vettore è non nullo e appartiene a ℓ^2 se e solo se $|\lambda| < 1$. Pertanto $\sigma_p(T_-) =]-1,1[$.

Per ogni $\lambda \in [-1, 1]$ l'operatore $(T_+ - \lambda I)$ non è suriettivo (per esempio, se $y = (-1, 0, 0, 0, \ldots)$ l'equazione $T_+ x - \lambda x = y$ non ha alcuna soluzione $x \in \ell^2$), pertanto $\sigma(T_+) = [-1, 1]$.

Per ogni $\lambda \in [-1, 1]$ l'operatore $(T_- - \lambda I)$ non è iniettivo, pertanto $\sigma(T_-) = [-1, 1]$.

21. Sia $1 \le p \le \infty$ e $\lambda = (\lambda_n)_n$ una successione di numeri complessi; sia $T_{\lambda} : \ell^p \to \ell^p$ l'operatore lineare

$$x = (x_1, x_2, x_3, \ldots) \mapsto T_{\lambda}(x) = (\lambda_1 x_1, \lambda_2 x_2, \lambda_3 x_3, \ldots).$$

Dimostrare che

$$T_{\lambda} \in B(\ell^p)$$
 compatto $\Leftrightarrow \lim_{n \to +\infty} \lambda_n = 0 \quad (\lambda \in c_0).$

Soluzione. Diamo la dimostrazione nel caso p=2. Supponiamo che $\lim_{n\to+\infty}\lambda_n=0$. Definiamo

$$T_{\lambda}^{(j)}(x) = (\lambda_1 x_1, \lambda_2 x_2, \lambda_3 x_3, \dots, \lambda_j x_j, 0, 0, 0, \dots).$$

Risulta

$$(T_{\lambda} - T_{\lambda}^{(j)})(x) = (0, 0, 0, \dots, 0, \lambda_{j+1}x_{j+1}, \lambda_{j+2}x_{j+2}, \dots)$$

е

$$||T_{\lambda} - T_{\lambda}^{(j)}||_{B(\ell^2)}^2 = \sup_{n > j+1} |\lambda_n| \to 0.$$

Poiché ciascun $T_{\lambda}^{(j)}$ ha rango finito e quindi è compatto (Proposizione 5.2.3, punto 1), l'operatore T_{λ} è compatto (Proposizione 5.2.3, punto 2). Viceversa, supponiamo, per assurdo, che $(\lambda_n)_n$ non converga a zero per $n \to +\infty$. Allora esiste una sottosuccessione $(\lambda_{n_k})_k$ tale che $|\lambda_{n_k}| \geq \epsilon > 0$. Consideriamo la successione ortonormale $(e_{n_k})_k$ di vettori base di ℓ^2 . Per ogni indice ℓ , ℓ , abbiamo

$$||T_{\lambda}e_{n_{l}} - T_{\lambda}e_{n_{m}}||_{\ell^{2}}^{2} = ||\lambda_{n_{l}}e_{n_{l}} - \lambda_{n_{m}}e_{n_{m}}||_{\ell^{2}}^{2} = |\lambda_{n_{l}}|^{2} + |\lambda_{n_{m}}|^{2} \ge 2\epsilon^{2} > 0.$$

Concludiamo che la successione $(T_{\lambda}e_{n_k})_k$ non contiene una sottosuccessione convergente e quindi T_{λ} non è compatto.

22. Siano X e Y spazi di Banach di **dimensione infinita** e sia $K: X \to Y$ un operatore lineare compatto.

Allora $K(X) \neq Y$, cioè K non è suriettivo.

Soluzione. Supponiamo, per assurdo, che K sia suriettivo. Allora K è operatore lineare, continuo (in quanto compatto per ipotesi) e suriettivo. Per il Teorema dell'applicazione aperta 4.6.1, esiste $\delta > 0$ tale che $B_Y(0,\delta) \subseteq K(B_X(0,1))$.

Sia $(y_h)_h$ una successione in $B_Y(0, \delta)$. Poiché K è suriettivo e $B_Y(0, \delta) \subseteq K(B_X(0, 1))$, esiste una successione $(x_h)_h \subseteq B_X(0, 1)$ tale che $y_h = Kx_h$ per ogni h. Per la compattezza di K, la successione $(y_h = Kx_h)_h$ ha una estratta $(y_{h_k} = Kx_{h_k})_k$ convergente. Ne segue che $B_Y(0, \delta)$ ha chiusura compatta (cioè, Y è localmente compatto). Allora, per il Teorema di Riesz 1.8.5, Y ha dimensione finita, contro l'ipotesi.

Come esempio, considerare $K: \ell^2 \to \ell^2$ tale che

$$x = (x_1, x_2, x_3, \ldots) \mapsto K(x) = \left(\frac{x_1}{1}, \frac{x_2}{2}, \frac{x_3}{3}, \ldots\right).$$

L'operatore K è compatto (per quanto provato nell'esercizio 21 precedente) ed esiste $y = (1, 1/2, 1/3, ...) \in \ell^2 \setminus K(\ell^2)$, in quanto

$$K(l^2) = \left\{ y \in \ell^2 : \exists x = (x_n)_n \in \ell^2 \text{ t.c. } y_n = \frac{x_n}{n} \ \forall n \in \mathbb{N} \right\}.$$

23. Sia $T:\ell^2\to\ell^2$ l'operatore definito, per ogni $x=(x_n)_n\in\ell^2$ da

$$(Tx)_n := \frac{x_n}{2^n}, \quad \forall n \in \mathbb{N}.$$

- (a) Provare che T è lineare e continuo.
- (b) Dire se T è compatto.
- (c) Trovare gli eventuali autovalori di T e descriverne lo spettro.

Soluzione. La linearità è di facile verifica; per la continuità basta osservare che risulta

$$||Tx||_{\ell^2}^2 \le \frac{1}{4} \sum_{n=1}^{+\infty} |x_n|^2 = \frac{1}{4} ||x||_{\ell^2}^2.$$

T è compatto per quanto provato nell'esercizio 21. Risulta

$$\sigma_p(T) = \left(\frac{1}{2^n}\right)_n,$$

con rispettivi autovettori

$$e^{(n)} = (0, 0, \dots, \underbrace{1}_{\text{componente } n\text{-esima}}, 0, 0, \dots)$$

per ogni
$$n \in \mathbb{N}$$
 e $\sigma(T) = \sigma_p(T) \cup \{0\}.$

24. Sia $T:\ell^2\to\ell^2$ l'operatore definito, per ogni $x=(x_n)_n\in\ell^2$ da

$$(Tx)_n := \frac{x_n}{1+n^2}, \quad \forall n \in \mathbb{N}.$$

- (a) Dire se T è lineare e continuo.
- (b) Dire se T è compatto.
- (c) Descrivere $\sigma(T)$ e $\sigma_p(T)$.
- 25. Sia $T: \ell^2 \to \ell^2$ l'operatore definito, per ogni $x = (x_n)_n \in \ell^2$ da

$$(Tx)_n := \frac{x_n}{n}, \quad \forall n \in \mathbb{N}.$$

- (a) Dire T è lineare e continuo.
- (b) Dire se T è compatto.
- (c) Descrivere $\sigma(T)$ e $\sigma_p(T)$.

Suggerimento. Per la risoluzione degli esercizi 24 e 25, si procede come nell'esercizio 23.

Un caso particolare di operatore di moltiplicazione in $(C^0([0,1];\mathbb{R}),\|\cdot\|_{\infty})$.

26. Sia $T: (C^0([0,1];\mathbb{R}), \|\cdot\|_{\infty}) \to (C^0([0,1];\mathbb{R}), \|\cdot\|_{\infty})$ l'operatore definito, per ogni $u \in C^0([0,1];\mathbb{R})$, da

$$(Tu)(x) := xu(x), \quad \forall x \in [0, 1].$$

- (a) Verificare che T è lineare e continuo.
- (b) Determinare lo spettro puntuale $\sigma_p(T)$.
- (c) Determinare lo spettro $\sigma(T)$ e dedurne l'eventuale compattezza di T.

Solutione.

(a) La linearità dell'operatore T si prova banalmente; la continuità segue immediatamente dalla stima

$$|(Tu)(x)| \le x|u(x)| \le |u(x)| \quad \forall x \in [0, 1].$$

(b) Osserviamo che $\lambda \in \sigma_p(T)$ se e solo se esiste una funzione $u \in C^0([0,1];\mathbb{R}), u \neq 0$, tale che

$$xu(x) = \lambda u(x) \quad \forall x \in [0, 1].$$

Poiché l'unica possibilità è che u sia la funzione identicamente nulla in [0,1], deduciamo che $\sigma_p(T) = \emptyset$.

(c) Troviamo dapprima $\rho(T)$. Osserviamo che

$$\begin{split} \lambda &\in \rho(T) \iff T - \lambda I \text{ è bigettivo} \\ &\Leftrightarrow \forall \, g \in C^0([0,1];\mathbb{R}) \, \exists \, | u \in C^0([0,1];\mathbb{R}) \, \operatorname{t.c.} \, (T - \lambda I)u = g \\ &\Leftrightarrow \forall \, g \in C^0([0,1];\mathbb{R}) \, \exists \, | u \in C^0([0,1];\mathbb{R}) \, \operatorname{t.c.} \\ & (x - \lambda)u(x) = g(x) \quad \forall x \in [0,1] \\ &\Leftrightarrow \forall \, g \in C^0([0,1];\mathbb{R}) \, \exists \, | u \in C^0([0,1];\mathbb{R}) \, \operatorname{t.c.} \\ & u(x) = \frac{g(x)}{x - \lambda} \quad \forall x \in [0,1]. \end{split}$$

L'unica possibilità affinché l'equazione sia risolta in $C^0([0,1];\mathbb{R})$ per qualsiasi scelta di $g \in C^0([0,1];\mathbb{R})$ è che $x - \lambda$ non si annulli per alcun $x \in [0,1]$, cioè che $\lambda \notin [0,1]$. Perciò $\rho(T) = \mathbb{R} \setminus [0,1]$ e, di conseguenza, $\sigma(T) = [0,1]$. Allora, risultando

$$\underbrace{\sigma(T)\setminus\{0\}}_{=[0,1]}\neq\underbrace{\sigma_p(T)\setminus\{0\}}_{=\emptyset},$$

deduciamo (tenuto conto anche dell'Osservazione 5.9.4), che T non è compatto.

L'operatore di Hardy in $(C^0([0,1];\mathbb{R}), \|\cdot\|_{\infty})$.

27. Sia $T: (C^0([0,1];\mathbb{R}), \|\cdot\|_{\infty}) \to (C^0([0,1];\mathbb{R}), \|\cdot\|_{\infty})$ l'operatore definito, per ogni $u \in C^0([0,1];\mathbb{R})$, da

$$(Tu)(0) := u(0)$$

e, per $x \in]0, 1]$, da

$$(Tu)(x) := \frac{1}{x} \int_0^x u(t) dt.$$

- (a) Verificare che $Tu \in (C^0([0,1];\mathbb{R}), \|\cdot\|_{\infty})$, è lineare e $||Tu||_{\infty} \leq ||u||_{\infty}$ per ogni $u \in (C^0([0,1];\mathbb{R}), \|\cdot\|_{\infty})$.
- (b) Provare che T è iniettivo ma non suriettivo.
- (c) Provare che T non è compatto.

Soluzione. Il primo punto è di facile verifica.

Tè iniettivo. Infatti, da (Tu)(x)=0 in]0,1] con u(0)=0, segue che $u\equiv 0$ $\,$ in [0,1]. Quindi $0\notin\sigma_p(T)$

T non è suriettivo. Infatti, sia

$$v(x) = \begin{cases} x, & 0 \le x \le \frac{1}{2} \\ 1 - x, & \frac{1}{2} \le x \le 1 \end{cases}.$$

Evidentemente questa funzione $v \in C^0([0,1];\mathbb{R})$, ma non esiste $u \in C^0([0,1];\mathbb{R})$ tale che Tu = v.

Se una tale $u \in C^0([0,1];\mathbb{R})$ esistesse, risulterebbe

$$(Tu)(x) := \frac{1}{x} \int_0^x u(t) dt = v(x), \quad \text{con } u(0) = v(0) = 0.$$

Allora per x > 0:

$$\int_0^x u(t) dt = xv(x) = \begin{cases} x^2, & 0 \le x \le \frac{1}{2} \\ x - x^2, & \frac{1}{2} \le x \le 1. \end{cases}$$

Pertanto $xv(x) \in C^1([0,1];\mathbb{R})$, assurdo perché

$$(xv(x))' = \begin{cases} 2x & 0 \le x \le \frac{1}{2} \\ 1 - 2x, & \frac{1}{2} < x \le 1. \end{cases}$$

Quindi $(xv(x))' \notin C^0([0,1]; \mathbb{R}).$

Proviamo che T non è compatto. Sia, per ogni $n \in \mathbb{N}$,

$$u_n(x) := \left(1 - \frac{x}{n}\right) \exp\left(-\frac{x}{n}\right)$$
 (successione uniformemente limitata).

Risulta

$$(Tu_n)(0) = u_n(0) = 1,$$

e

$$(Tu_n)(x) = \exp\left(-\frac{x}{n}\right);$$

questa successione non ammette estratte uniformemente convergenti (comunque si prenda una successione estratta il massimo si ha per x = 0 e il valore massimo è 1), pertanto T non è compatto.

Operatori integrali di Volterra

28. Sia $T: C^0([0,1]; \mathbb{R}; \|\cdot\|_{\infty}) \to C^0([0,1]; \mathbb{R}; \|\cdot\|_{\infty})$ l'operatore definito, per ogni $u \in C^0([0,1]; \mathbb{R})$, da

$$(Tu)(x) := \int_0^x e^t u(t)dt, \quad \forall x \in [0,1].$$

- (a) Verificare che T è lineare e continuo.
- (b) Dire se T è compatto.
- (c) Trovare gli eventuali autovalori di T e descriverne lo spettro.

Soluzione. Osserviamo che

$$(Tu)(x) := \int_0^x e^t u(t)dt = \int_0^1 k(x,t)u(t)dt,$$

dove

$$k(x,t) = \begin{cases} e^t, & 0 \le t \le x \\ 0, & x < t \le 1. \end{cases}$$

La linearità e continuità di T sono ovvie; T è compatto per il Teorema 5.3.3.

Per la compattezza di T segue che $\sigma(T) = \sigma_p(T) \cup \{0\}$.

Determiniamo $\sigma_p(T)$. Sia $\lambda \in \mathbb{R} \setminus \{0\}$ tale che (equazione integrale di Volterra di seconda specie)

$$(Tu)(x) = \int_0^x e^t u(t)dt = \lambda u(x).$$

Risulta $u \in C^1$, e derivando si ha $e^x \cdot u(x) = \lambda u'(x)$, con u(0) = 0. L'unica soluzione del problema di Cauchy

$$\begin{cases} u'(x) = \frac{e^x \cdot u(x)}{\lambda} \\ u(0) = 0 \end{cases}$$

è $u \equiv 0$. Pertanto $\sigma_p(T) = \emptyset$.

29. Siano q>2 e $T_q:C^0([0,1];\mathbb{R},\|\cdot\|_{\infty})\to C^0([0,1];\mathbb{R},\|\cdot\|_{\infty})$ l'operatore definito, per ogni $u\in C^0([0,1];\mathbb{R})$, da

$$(T_q u)(x) := \int_0^x \frac{u(t)}{t^{1/q}} dt, \quad \forall x \in [0, 1].$$

- (a) Verificare che T_q è lineare e continuo.
- (b) Dire se T_q è compatto.
- (c) Descrivere $\sigma(T_q)$ e $\sigma_p(T_q)$, e verificare che non dipendono dalla scelta di q.

Soluzione. La linearità di T_q è ovvia; per provare la continuità, osserviamo che $|(T_q u)(x)| \leq \frac{q}{q-1} ||u||_{\infty}$, pertanto $||T_q u||_{\infty} \leq \frac{q}{q-1} ||u||_{\infty}$, da cui segue $||T_q||_{B(C^0([0,1];\mathbb{R},||\cdot||_{\infty}))} \leq \frac{q}{q-1}$.

Osserviamo che

$$(T_q u)(x) = \int_0^x \frac{u(t)}{t^{1/q}} dt = \int_0^1 k(x, t) u(t) dt,$$

dove

$$k(x,t) = \begin{cases} \frac{1}{1}, & 0 \le t \le x \\ t^{\frac{1}{q}}, & x < t \le 1. \end{cases}$$

Allora T_q è compatto per il Teorema 5.3.3.

Per la compattezza di T_q segue che $\sigma(T_q) = \sigma_p(T_q) \cup \{0\}$.

Determiniamo $\sigma_p(T_q)$. Sia $\lambda \in \mathbb{R} \setminus \{0\}$ tale che $(T_q u)(x) = \int_0^x \frac{u(t)}{t^{1/q}} dt = \lambda u(x)$. Poiché u è continua, per cui u(0) = 0, e $\int_0^1 \frac{1}{x^{1/q}} dx$ è finito, per il Lemma di Gronwall (forma differenziale)¹⁴ risulta $u \equiv 0$ in [0,1], e quindi $\sigma_p(T_q) = \emptyset$.

- 30. Ripetere l'esercizio precedente con $1 < q \le 2$. Per provare che T_q è compatto possiamo usare ancora il Teorema 5.3.3? In caso negativo, quale altro risultato di compattezza è possibile utilizzare?
- 31. Sia $T: C^0([0,1]; \mathbb{R}, \|\cdot\|_{\infty}) \to C^0([0,1]; \mathbb{R}, \|\cdot\|_{\infty})$ l'operatore definito, per ogni $u \in C^0([0,1]; \mathbb{R})$, da

$$(Tu)(x) := \int_0^x \frac{u(t)}{1+t^2} dt, \quad \forall x \in [0,1].$$

- (a) Verificare che T è lineare e continuo e calcolare ||T||.
- (b) Dire se T è compatto.
- (c) Trovare gli eventuali autovalori di T e descriverne lo spettro.

¹⁴cfr., ad esempio, [12] pag. 624.

Soluzione. La linearità di T è ovvia; per provare la continuità, osserviamo che $|(Tu)(x)| \leq \frac{\pi}{4} ||u||_{\infty}$, pertanto $||Tu||_{\infty} \leq \frac{\pi}{4} ||u||_{\infty}$, da cui segue $||T||_{B(C^0([0,1];\mathbb{R},\|\cdot\|_{\infty}))} \leq \frac{\pi}{4}$. In effetti risulta $||T||_{B(C^0([0,1];\mathbb{R},\|\cdot\|_{\infty}))} = \frac{\pi}{4}$ (considerare la funzione $u \equiv 1$).

Osserviamo che

$$(Tu)(x) := \int_0^x \frac{u(t)}{1+t^2} dt = \int_0^1 k(x,t)u(t)dt,$$

dove

$$k(x,t) = \begin{cases} \frac{1}{1+t^2}, & 0 \le t \le x \\ 0, & x < t \le 1. \end{cases}$$

Allora T è compatto per il Teorema 5.3.3.

Per la compattezza di T segue che $\sigma(T) = \sigma_p(T) \cup \{0\}$.

Determiniamo $\sigma_p(T)$. Sia $\lambda \in \mathbb{R} \setminus \{0\}$ tale che $(Tu)(x) = \int_0^x \frac{u(t)}{1+t^2} dt = \lambda u(x)$.

Risulta $u \in C^1$, u(0) = 0 e derivando si ha $\frac{u(x)}{1+x^2} = \lambda u'(x)$, L'unica soluzione del problema di Cauchy

$$\begin{cases} u'(x) = \frac{u(x)}{\lambda \cdot (1+x^2)} \\ u(0) = 0 \end{cases}$$

è $u \equiv 0$. Pertanto $\sigma_p(T) = \emptyset$.

32. Sia $T: C^0([0,1]; \mathbb{R}, \|\cdot\|_{\infty}) \to C^0([0,1]; \mathbb{R}, \|\cdot\|_{\infty})$ l'operatore definito, per ogni $u \in C^0([0,1])$, da

$$(Tu)(x) := \int_0^x (\log t)u(t)dt, \quad \forall x \in [0, 1].$$

- (a) Verificare che T è lineare e continuo e calcolare ||T||.
- (b) Dire se T è compatto.
- (c) Trovare gli eventuali autovalori di T e descriverne lo spettro.

Soluzione. La linearità di T è ovvia e risulta $||T||_{B(C^0([0,1];\mathbb{R},\|\cdot\|_{\infty}))}=1$. Osserviamo che

$$(Tu)(x) := \int_0^x (\log t)u(t)dt = \int_0^1 k(x,t)u(t)dt,$$

dove

$$k(x,t) = \begin{cases} \log t, & 0 < t \le x \\ 0, & x < t \le 1. \end{cases}$$

Allora T è compatto per il Teorema 5.3.3. Per la compattezza di T segue che $\sigma(T) = \sigma_p(T) \cup \{0\}$.

Determiniamo $\sigma_p(T)$. Sia $\lambda \in \mathbb{R} \setminus \{0\}$ tale che

$$(Tu)(x) = \int_0^x (\log t)u(t)dt = \lambda u(x).$$

Poiché u è continua, per cui u(0) = 0, e $\int_0^1 \log x dx$ è finito, per il Lemma di Gronwall (forma differenziale) risulta $u \equiv 0$ in [0,1], e quindi $\sigma_p(T) = \emptyset$.

33. Sia $T: C^0([0,1]; \mathbb{R}, \|\cdot\|_{\infty}) \to C^0([0,1]; \mathbb{R}, \|\cdot\|_{\infty})$ l'operatore definito, per ogni $u \in C^0([0,1]; \mathbb{R})$, da

$$(Tu)(x) := \int_0^x tu(t)dt, \quad \forall x \in [0, 1].$$

- (a) Dire se T è lineare e continuo.
- (b) Dire se T è compatto.
- (c) Descrivere $\sigma(T)$ e $\sigma_p(T)$.

Soluzione. La linearità e continuità di T è ovvia. Osserviamo che

$$(Tu)(x) := \int_0^x tu(t)dt = \int_0^1 k(x,t)u(t)dt,$$

dove

$$k(x,t) = \begin{cases} t, & 0 \le t \le x \\ 0, & x < t \le 1. \end{cases}$$

Allora T è compatto per il Teorema 5.3.3.

Per la compattezza di T segue che $\sigma(T) = \sigma_p(T) \cup \{0\}$.

Determiniamo $\sigma_p(T)$. Sia $\lambda \in \mathbb{R} \setminus \{0\}$ tale che $(Tu)(x) = \int_0^x tu(t)dt = \lambda u(x)$.

Poiché u è continua, per cui u(0) = 0, e $\int_0^1 x dx$ è finito, per il Lemma di Gronwall (forma differenziale) risulta $u \equiv 0$ in [0,1], e quindi $\sigma_p(T) = \emptyset$.

Osservazione 5.12.3. Per gli esercizi 28-29-30-31-32-33, si provi la compattezza dei rispettivi operatori (in alternativa alla applicazione diretta del Teorema 5.3.3), provando in modo analitico l'applicabilità del teorema di Ascoli-Arzelà.

34. Descrivere lo spettro dell'operatore

$$K: L^2([0,1]) \to L^2([0,1])^{15}$$

definito da

$$(Ku)(x) = \int_0^1 k(x,t)u(t)dt$$

dove

$$k(x,t) = \begin{cases} 1, & 0 \le t \le x, \\ 0, & x < t \le 1. \end{cases}$$

Soluzione. Essendo K operatore compatto (cfr. Proposizione 5.3.7), $0 \in \sigma(K)$ e ogni $\lambda \in \sigma(K) \setminus \{0\}$ è un autovalore. Sia $(Ku)(t) = \lambda u(t)$, $\lambda \neq 0$. Questo significa che

$$\int_0^1 k(x,t)u(t)dt = \int_0^x u(t)dt = \lambda u(x).$$

Ne segue che $u \in C^1$, $\lambda u' = u$ e u(0) = 0, pertanto $u \equiv 0$. Quindi $\sigma_p(K) = \emptyset$ e $\sigma(K) = \{0\}$.

Osserviamo che l'equazione

$$u(x) - \int_0^1 k(x,t)u(t)dt = f(x)$$

ha un'unica soluzione per ogni $f \in L^2([0,1])$, in quanto $1 \notin \sigma_p(K)$ (cfr. 5.9.5).

Osservazione 5.12.4. Dall'esame dei risultati degli esercizi 28 - 29 - 30 - 31 - 32 - 33 - 34, si evidenzia che per gli operatori integrali compatti T, di Volterra, risulta $\sigma(T) = \{0\}$, essendo $\sigma_p(T) = \emptyset$.

In effetti, in generale,

Gli operatori integrali V di Volterra hanno spettro $\sigma(V) = \{0\}$. (1) Illustriamone dapprima la dimostrazione per l'operatore lineare compatto su $C^0([0,1]; \mathbb{R}, \|\cdot\|_{\infty})$,

$$V: C^0([0,1]; \mathbb{R}, \|\cdot\|_{\infty}) \to C^0([0,1]; \mathbb{R}, \|\cdot\|_{\infty}),$$

definito, per ogni $u\in C^0([0,1];\mathbb{R},\|\cdot\|_{\infty})$ e $x\in[0,1],$ da

$$(Vu)(x) := \int_0^1 k(x,t) u(t) dt = \int_0^x u(t) dt.$$

 $^{^{15}{\}rm Per}$ lo svolgimento degli esercizi da 34 a 38, occorre la conoscenza degli spazi di Lebesgue $L^p,$ cfr. [2]

dove il nucleo k è definito da

$$k(x,t) = \begin{cases} 1, & 0 \le t \le x; \\ 0, & x < t \le 1. \end{cases}$$

Dimostrazione. Per induzione, con integrazione per parti, si ha per ogni $x \in [0,1]$ e $u \in C^0([0,1]; \mathbb{R}, \|\cdot\|_{\infty})$

$$(V^n u)(x) = \frac{1}{(n-1)!} \int_0^x (x-t)^{n-1} u(t) dt.$$

Quindi,

$$|(V^n u)(x)| \le \frac{1}{(n-1)!} \int_0^x (x-t)^{n-1} |u(t)| dt \le \frac{||u||_{\infty}}{n!}.$$

Allora,

$$||V^n||_{B(C^0([0,1];\mathbb{R},\|\cdot\|_{\infty}))} \le \frac{1}{n!}$$

e, per la formula di Stirling

$$n! = n^n \exp(-n)\sqrt{2\pi n}(1 + o(n)),$$

risulta

$$\lim_{n \to +\infty} ||V^n||_{B(C^0([0,1];\mathbb{R}, ||\cdot||_{\infty}))}^{\frac{1}{n}} = r(V) = 0,$$

da cui segue l'asserto.

(2) Consideriamo ora l'operatore lineare compatto su $L^p([0,1]; \mathbb{R}, \|\cdot\|_{L^p([0,1])}),$

$$V: L^p([0,1]; \mathbb{R}, \|\cdot\|_{L^p([0,1])}) \to L^p([0,1]; \mathbb{R}, \|\cdot\|_{L^p([0,1])}), 1 \le p \le \infty,$$

definito, per ogni $u \in L^p([0,1]; \mathbb{R}, \|\cdot\|_{L^p([0,1])})$ e $x \in [0,1]$, da

$$(Vu)(x) = \int_0^x u(t)dt.$$

Dimostrazione. Assumiamo, per ipotesi induttiva, che per un fissato $n \geq 2$ sia

$$(V^n u)(x) = \frac{1}{(n-1)!} \int_0^x (x-t)^{n-1} u(t) dt.$$

Risulta

$$(V^{n+1}u)(x) = \frac{1}{(n-1)!} \int_0^x ds \int_0^s (s-t)^{n-1} u(t) dt$$

$$= \frac{1}{(n-1)!} \int_0^x u(t) \left[\int_t^x (s-t)^{n-1} ds \right] dt$$
$$= \frac{1}{n!} \int_0^x (x-t)^n u(t) dt.$$

Allora, per ogni $n \in \mathbb{N}$ si ha

$$(V^n u)(x) = \frac{1}{(n-1)!} \int_0^x (x-t)^{n-1} u(t) dt.$$

Consideriamo le funzioni $u_1 \in L^1(\mathbb{R})$ e $u_2 \in L^p(\mathbb{R})$ definite da

$$u_1(x) = \begin{cases} \frac{x^{n-1}}{(n-1)!}, & \text{se } 0 \le x \le 1\\ 0, & \text{altrimenti} \end{cases}$$

e

$$u_2(x) = \begin{cases} u(x), & \text{se } 0 \le x \le 1\\ 0, & \text{altrimenti} \end{cases}$$

Per $0 \le x \le 1$ si ha (il prodotto di convoluzione)

$$(u_1 * u_2)(x) = (V^n u)(x).$$

Allora, per la diseguaglianza di Young (per il prodotto di convoluzione, cfr., ad esempio, [7])

$$||u_1 * u_2||_{L^p([0,1])} \le ||u_1 * u_2||_{L^p(\mathbb{R})} \le ||u_1||_{L^1(\mathbb{R})} ||u_2||_{L^p(\mathbb{R})} = \frac{1}{n!} ||u||_{L^p([0,1])},$$

cioè $\|V^n\|_{B(L^p([0,1]))} \leq \frac{1}{n!}$, da cui segue che (per la formula di Stirling)

$$\lim_{n \to +\infty} ||V^n||_{B(L^p([0,1]))}^{\frac{1}{n}} = r(V) = 0,$$

e quindi l'asserto.

Operatori integrali di Fredholm

35. Descrivere lo spettro dell'operatore compatto ed autoaggiunto

$$K: L^2([0,1]) \to L^2([0,1])$$

definito da

$$(Ku)(t) = \int_0^1 k(t,s)u(s)ds$$

dove

$$k(t, s) = \min\{t, s\}$$
 per $0 \le t, s \le 1$.

Soluzione. Poiché k(t,s) è una funzione continua e $k(t,s) = \overline{k(s,t)}$, l'operatore K è compatto e autoaggiunto. Pertanto lo spettro di K consiste dello zero e di autovalori reali. Sia (equazione integrale di Fredholm di seconda specie)

$$(Ku)(t) = \lambda u(t), \quad \lambda \neq 0$$

Questo significa che

$$\lambda u(t) = \int_0^t s \, u(s) \, ds + t \int_t^1 u(s) \, ds.$$

Derivando due volte rispetto a t, si ha

$$\lambda u'(t) = t \, u(t) + \int_{t}^{1} u(s) \, ds - t \, u(t) = \int_{t}^{1} u(s) \, ds, \tag{5.32}$$

e

$$\lambda u''(t) = -u(t). \tag{5.33}$$

Osserviamo che $\lambda > 0$, cioè l'operatore K è positivo. Infatti, moltiplicando l'equazione differenziale (5.33) per $\overline{u}(t)$ e integrando tra 0 e 1, si ha

$$\lambda \int_0^1 u''(t)\overline{u}(t) dt + ||u||_{L^2([0,1])}^2 = 0.$$

Integrando per parti, si ha

$$\lambda \left(\left[u'(t)\overline{u}(t) \right]_0^1 - \int_0^1 |u'(t)|^2 dt \right) + \|u\|_{L^2([0,1])}^2 = 0.$$

Tenendo conto delle condizioni ai limiti u(0) = 0 = u'(1), si ha

$$-\lambda \int_0^1 |u'(t)|^2 dt + ||u||_{L^2([0,1])}^2 = 0$$

e quindi $\lambda > 0$. L'integrale generale dell'equazione differenziale (5.33) è

$$u(t) = c_1 \cos\left(\frac{1}{\sqrt{\lambda}}t\right) + c_2 \sin\left(\frac{1}{\sqrt{\lambda}}t\right).$$

Imponendo le condizioni ai limiti, si ha

$$0 = u(0) = c_1,$$

$$0 = u'(1) = c_2 \frac{1}{\sqrt{\lambda}} \cos\left(\frac{1}{\sqrt{\lambda}}\right)$$

e pertanto $\cos\left(\frac{1}{\sqrt{\lambda}}\right) = 0$, quindi

$$\frac{1}{\sqrt{\lambda}} = \left\{ \frac{\pi}{2}, \frac{3}{2}\pi, \frac{5}{2}\pi, \dots \right\}$$

e gli autovalori sono

$$\sigma_p(K) = \left\{ \frac{4}{\pi^2}, \frac{4}{9\pi^2}, \frac{4}{25\pi^2}, \dots \right\} = \left\{ \lambda_k = \frac{4}{\pi^2 (2k-1)^2}, k \in \mathbb{N} \right\}$$

con corrispondenti autofunzioni

$$u_k(t) = \sin\left(\frac{\pi(2k-1)}{2}t\right), \quad k \in \mathbb{N},$$

(base (spettrale) ortogonale dello spazio di Hilbert separabile $L^2([0,1])$, per il Teorema spettrale di Hilbert-Schmidt 5.11.1). Poiché K è autoaggiunto, si ha

$$||K||_{B(L^2([0,1])} = \max_k |\lambda_k| = |\lambda_1| = \frac{4}{\pi^2}.$$

Poiché K è positivo, si ha ¹⁶

$$\sum_{k=1}^{\infty} \lambda_k = \int_0^1 k(t, t) dt = \int_0^1 t dt = \frac{1}{2}.$$

36. Come nell'esercizio precedente, con

$$k(t,s) = \begin{cases} 1 - t, & 0 \le s \le t \le 1\\ 1 - s, & 0 \le t \le s \le 1. \end{cases}$$

Soluzione. Poiché k(t,s) è una funzione continua e $k(t,s)=\overline{k(s,t)}$, l'operatore K è compatto e autoaggiunto. Pertanto lo spettro di K consiste dello zero e di autovalori reali. Sia

$$(Ku)(t) = \lambda u(t), \quad \lambda \neq 0.$$

Teorema di Mercer : Sia K : $L^2([a,b]) \to L^2([a,b])$ definito da $(Ku)(t) = \int_a^b k(t,s)u(s)ds$, con k(t,s) continuo , un operatore lineare, compatto e positivo. Allora $\sum_{k=1}^{\infty} \lambda_k = \int_a^b k(t,t)dt$, dove i λ_k sono gli autovalori di K.

Questo significa che

$$\lambda u(t) = (1 - t) \int_0^t u(s) \, ds + \int_t^1 (1 - s) u(s) \, ds$$

Derivando due volte rispetto a t, si ha

$$\lambda u'(t) = -\int_0^t u(s)ds + (1-t)u(t) - (1-t)u(t) = -\int_0^t u(s)ds \quad (5.34)$$

e

$$\lambda u''(t) = -u(t), \text{con } u(1) = 0 = u'(0). \tag{5.35}$$

Osserviamo che $\lambda > 0$, cioè l'operatore K è positivo. Infatti, moltiplicando l'equazione differenziale (5.35) per $\overline{u}(t)$ e integrando tra 0 e 1, si ha

$$\lambda \int_0^1 u''(t)\overline{u}(t) dt + ||u||_{L^2([0,1])}^2 = 0.$$

Integrando per parti, si ha

$$\lambda \left(\left[u'(t)\overline{u}(t) \right]_0^1 - \int_0^1 |u'(t)|^2 dt \right) + \|u\|_{L^2([0,1])}^2 = 0.$$

Tenendo conto delle condizioni ai limiti u(1) = 0 = u'(0), si ha

$$-\lambda \int_0^1 |u'(t)|^2 dt + ||u||_{L^2([0,1])}^2 = 0$$

e quindi $\lambda > 0$.

L'integrale generale dell'equazione differenziale (5.35) è

$$u(t) = c_1 \cos\left(\frac{1}{\sqrt{\lambda}}t\right) + c_2 \sin\left(\frac{1}{\sqrt{\lambda}}t\right).$$

Imponendo le condizioni ai limiti, si ha $c_2 = 0$ e

$$\frac{1}{\sqrt{\lambda}} = \left\{ \frac{\pi}{2}, \frac{3}{2}\pi, \frac{5}{2}\pi, \dots \right\}$$

e gli autovalori sono

$$\sigma_p(K) = \left\{ \frac{4}{\pi^2}, \frac{4}{9\pi^2}, \frac{4}{25\pi^2}, \dots \right\} = \left\{ \lambda_k = \frac{4}{\pi^2 (2k-1)^2}, k \in \mathbb{N} \right\}$$

con corrispondenti autofunzioni

$$u_k(t) = \cos\left(\frac{\pi(2k-1)}{2}t\right), \quad k \in \mathbb{N}.$$

Poiché K è autoaggiunto, si ha

$$||K||_{B(L^2([0,1])} = \max_k |\lambda_k| = |\lambda_1| = \frac{4}{\pi^2}.$$

Poiché K è positivo, si ha

$$\sum_{k=1}^{\infty} \lambda_k = \int_0^1 k(t, t) dt = \int_0^1 (1 - t) dt = \frac{1}{2}.$$

37. Descrivere lo spettro dell'operatore compatto ed autoaggiunto

$$K: L^2([0,1]) \to L^2([0,1])$$

definito da

$$(Ku)(t) = \int_0^1 k(t,s)u(s)ds$$

dove

$$k(t, s) = \max\{t, s\}$$
 per $0 \le t, s \le 1$.

Soluzione. Poiché k(t,s) è una funzione continua e $k(t,s) = \overline{k(s,t)}$, l'operatore K è compatto e autoaggiunto. Pertanto lo spettro di K consiste dello zero e di una successione infinitesima di autovalori reali. Sia

$$\lambda u(t) = (Ku)(t), \quad \lambda \neq 0.$$

Questo significa che

$$\lambda u(t) = t \int_0^t u(s)ds + \int_t^1 su(s)ds.$$

Derivando due volte rispetto a t, si ha

$$\lambda u'(t) = \int_0^t u(s)ds + tu(t) - tu(t),$$

 \mathbf{e}

$$\lambda u''(t) = u(t).$$

Per t = 1 e t = 0, si ha

$$u'(0) = 0,$$

$$u(1) = u'(1).$$

Così abbiamo l'equazione differenziale

$$u''(t) = \mu u(t), \tag{5.36}$$

con $\mu = \frac{1}{\lambda}$, e le condizioni ai limiti

$$u'(0) = 0,$$

$$u(1) = u'(1).$$

Consideriamo dapprima il caso

$$\mu > 0$$
.

In questo caso, l'integrale generale di (5.36) è

$$u(t) = c_1 \exp\left(\sqrt{\mu t}\right) + c_2 \exp\left(-\sqrt{\mu t}\right)$$

e

$$u'(t) = \sqrt{\mu}(c_1 \exp(\sqrt{\mu}t) - c_2 \exp(-\sqrt{\mu}t)).$$

Applicando la prima condizione ai limiti, si ha

$$\sqrt{\mu}(c_1 - c_2) = 0,$$

che implica $c_1 = c_2$ e quindi

$$u(t) = C \cosh(\sqrt{\mu}t), \quad u'(t) = C\sqrt{\mu} \sinh(\sqrt{\mu}t)$$

Applicando la seconda condizione ai limiti, si ha $\coth(\sqrt{\mu}) = \sqrt{\mu}$. Questa equazione ha un'unica soluzione (positiva) μ^0 . Pertanto l'unico autovalore positivo di K è

$$\lambda^{\mathbf{0}} = \frac{1}{\mu^{\mathbf{0}}},$$

con corrispondente autofunzione

$$u^{\mathbf{0}}(t) = \cosh(\frac{1}{\sqrt{\lambda^{\mathbf{0}}}}t).$$

Consideriamo, ora, il caso

$$\mu < 0$$
,

cioè

$$\mu = -\nu^2, \nu \in \mathbb{R} \setminus \{0\}.$$

In questo caso l'integrale generale di (5.36) è

$$u(t) = c_3 \cos(\nu t) + c_4 \sin(\nu t)$$

 \mathbf{e}

$$u'(t) = \nu(-c_3\sin(\nu t) + c_4\cos(\nu t)).$$

Imponendo la prima condizione ai limiti, si ha $c_4 = 0$, e quindi

$$u(t) = c_3 \cos(\nu t), \ u'(t) = -c_3 \nu \sin(\nu t).$$

Imponendo la seconda condizione ai limiti, si ha $\cos(\nu) = -\nu \sin(\nu)$, ovvero

$$\cot(\nu) = -\nu.$$

Questa equazione ha una infinità numerabile di soluzioni ν_n^1 per $n \in \mathbb{N}$ che formano una successione divergente positivamente e così otteniamo una successione infinitesima di autovalori negativi di K:

$$\lambda_n^1 = -\frac{1}{(\nu_n^1)^2} \quad \text{per } n \in \mathbb{N}$$

con corrispondenti autofunzioni

$$u_n^{\mathbf{1}}(t) = \cos(\nu_n^{\mathbf{1}}t).$$

L'operatore K non è positivo perché ha anche autovalori negativi. \square

38. Descrivere lo spettro dell' operatore compatto ed autoaggiunto

$$K: L^2([-\pi, \pi]) \to L^2([-\pi, \pi])$$

definito da

$$(Ku)(t) = \int_{-\pi}^{\pi} |t - s|u(s)ds.$$

Soluzione. Poiché k(t,s) = |t-s| è una funzione continua e $k(t,s) = \overline{k(s,t)}$, l'operatore K è compatto e autoaggiunto. Pertanto lo spettro di K consiste dello zero e di una successione infinitesima di autovalori reali. Sia

$$\lambda u(t) = (Ku)(t), \quad \lambda \neq 0.$$

Questo significa che

$$\lambda u(t) = \int_{-\pi}^{t} (t-s)u(s)ds + \int_{t}^{\pi} (s-t)u(s)ds.$$

Derivando due volte rispetto a t, si ha

$$\lambda u'(t) = \int_{-\pi}^{t} u(s)ds - \int_{t}^{\pi} u(s)ds$$

e

$$\lambda u''(t) = 2u(t).$$

Per $t=\pi$ e $t=-\pi$, si ha

$$\lambda u(\pi) = \int_{-\pi}^{\pi} (\pi - s)u(s)ds,$$

$$\lambda u(-\pi) = \int_{-\pi}^{\pi} (\pi + s)u(s)ds,$$

$$\lambda (u(\pi) + u(-\pi)) = 2\pi \int_{-\pi}^{\pi} u(s)ds,$$

$$\lambda u'(\pi) = \int_{-\pi}^{\pi} u(s)ds,$$

$$\lambda u'(-\pi) = -\int_{-\pi}^{\pi} u(s)ds.$$

Così abbiamo l'equazione differenziale

$$u''(t) = \mu u(t), \quad \text{con} \quad \mu = \frac{2}{\lambda}$$
 (5.37)

e le condizioni ai limiti

$$u(\pi) + u(-\pi) = 2\pi u'(\pi),$$

$$u'(\pi) + u'(-\pi) = 0.$$

Consideriamo dapprima il caso

$$\mu > 0$$
,

cioè

$$\mu = \nu^2, \nu \in \mathbb{R} \setminus \{0\}.$$

In questo caso, l'integrale generale di (5.37) è

$$u(t) = c_1 \exp(\nu t) + c_2 \exp(-\nu t)$$

e

$$u'(t) = \nu(c_1 \exp(\nu t) - c_2 \exp(-\nu t)).$$

Applicando la seconda condizione ai limiti, si ha

$$(c_1 - c_2)(\exp(\nu \pi) - \exp(-\nu \pi)) = 0$$

che implica $c_1 = c_2$ e quindi $u(t) = C \cosh(\nu t)$.

Applicando la prima condizione ai limiti, si ha $\cosh(\nu\pi) = \pi\nu \sinh(\nu\pi)$ ovvero $\coth(\nu\pi) = \nu\pi$.

Questa equazione ha un'unica soluzione (positiva) $\nu^{\mathbf{0}}$. Pertanto l'unico autovalore positivo di K è

$$\lambda^{\mathbf{0}} = \frac{2}{(\nu^{\mathbf{0}})^2},$$

con corrispondente autofunzione

$$u^{\mathbf{0}}(t) = \cosh(\nu^{\mathbf{0}}t).$$

Consideriamo, ora, il caso

$$\mu < 0$$
,

cioè

$$\mu = -\nu^2$$
.

In questo caso l'integrale generale di (5.37) è

$$u(t) = c_3 \cos(\nu t) + c_4 \sin(\nu t)$$

е

$$u'(t) = \nu(-c_3\sin(\nu t) + c_4\cos(\nu t)).$$

Per la seconda condizione ai limiti, si ha

$$2c_4\cos(\nu\pi)=0.$$

Esaminiamo allora due casi.

Consideriamo dapprima il caso $c_4 = 0$, pertanto $u(t) = c_3 \cos(\nu t)$. Applicando la prima condizione ai limiti, si ha

$$2c_3\cos(\nu\pi) = -2\pi c_3\nu\sin(\nu\pi),$$

ovvero

$$\cot(\nu\pi) = -\nu\pi.$$

Questa equazione ha una infinità numerabile di soluzioni ν_n^1 per $n \in \mathbb{N}$ che formano una successione divergente positivamente e così otteniamo una successione infinitesima di autovalori negativi di K:

$$\lambda_n^1 = -\frac{2}{(\nu_n^1)^2} \quad \text{per } n \in \mathbb{N}$$

con corrispondenti autofunzioni

$$u_n^{\mathbf{1}}(t) = \cos(\nu_n^{\mathbf{1}}t).$$

Rimane da considerare il caso: $c_4 \neq 0$, $\cos(\nu \pi) = 0$, ovvero

$$c_4 \neq 0, \ \nu_n^2 = \frac{2n-1}{2}, n \in \mathbb{N}.$$

Applicando la prima condizione ai limiti, si ha

$$-2\pi\nu c_3\sin(\nu\pi)=0,$$

e quindi $c_3 = 0$ (essendo $\sin(\nu \pi) \neq 0$, in quanto $\cos(\nu \pi) = 0$). Così otteniamo una seconda successione di autovalori negativi di K:

$$\lambda_n^2 = -\frac{8}{(2n-1)^2} \quad \text{per } n \in \mathbb{N}$$

con corrispondenti autofunzioni

$$u_n^2(t) = \sin\left(\frac{2n-1}{2}t\right).$$

L'operatore K non è positivo, avendo anche autovalori negativi. Osserviamo che la collezione di tutte le autofunzioni di K,

$$\{u^{\mathbf{0}}(t), (u_n^{\mathbf{1}}(t))_n, (u_n^{\mathbf{2}}(t))_n\}$$

è una base (spettrale) numerabile ed ortogonale dello spazio di Hilbert separabile $L^2([-\pi,\pi])$, per il Teorema spettrale di Hilbert-Schmidt 5.11.1.

Riportiamo qui la dimostrazione dell'implicazione (Teorema di Schur):

$$x^{(n)} \rightharpoonup x$$
 debolmente in $\ell^1 \Rightarrow x^{(n)} \to x$ fortemente in ℓ^1 .

Dimostrazione. Proviamo dapprima che:

$$x^{(n)} \to 0$$
 debolmente in $\ell^1 \Rightarrow x^{(n)} \to 0$ fortemente in ℓ^1 ,

ovvero, sia per ogni $n \in \mathbb{N}$ $x^{(n)} = (x_i^{(n)})_i \subseteq \ell^1$ tale che $\varphi(x^{(n)}) \to 0$ per ogni $\varphi \in \ell^{\infty} (= (\ell^1)^*)$, allora

$$||x^{(n)}||_{\ell^1} = \sum_{i=1}^{+\infty} |x_i^{(n)}| \to 0.$$

Per ogni $f=(f_1,f_2,\ldots,f_i,\ldots),g=(g_1,g_2,\ldots,g_i,\ldots)\in\overline{B_{\ell^\infty}}$ definiamo la metrica (verificare) su $\overline{B_{\ell^\infty}}$

$$d(f,g) := \sum_{i=1}^{+\infty} \frac{1}{2^i} |f_i - g_i|.$$

Per il teorema 3.2.5 $(\overline{B}_{\ell^{\infty}}, \sigma(\ell^{\infty}, \ell^{1}))$ è compatta. Sia \mathcal{T} la topologia corrispondente alla metrica d.

L'immersione $(\overline{B}_{\ell^{\infty}}, \sigma(\ell^{\infty}, \ell^{1})) \hookrightarrow (\overline{B}_{\ell^{\infty}}, \mathcal{T})$ è continua. Infatti, per ogni $\varphi^{0} \in \overline{B}_{\ell^{\infty}}$ e per ogni $\epsilon > 0$ esiste un intorno $I^{*}(\varphi^{0})$ di φ^{0} per $(\overline{B}_{\ell^{\infty}}, \sigma(\ell^{\infty}, \ell^{1}))$ contenuto nella palla

$$B_d(\varphi^0, \epsilon) := \{ \varphi \in \overline{B}_{\ell^{\infty}}; \quad d(\varphi, \varphi^0) < \epsilon \} \in \mathcal{T}.$$

Per provare l'inclusione, sia

$$V^*(\varphi^0; (e^{(i)})_{i=1,2,\dots,n}; \delta) = \{ \varphi \in \ell^{\infty}; |(\varphi - \varphi^0)(e^{(i)})| < \delta, \text{ per ogni } i = 1,2,\dots n \}$$

con $(e^{(i)})_i$ base canonica di ℓ^1 e $\delta+\frac{1}{2^{n-1}}<\epsilon.$ Allora:

$$V^*(\varphi^0; (e^{(i)})_{i=1,2,\dots,n}; \delta) \cap \overline{B}_{\ell^{\infty}} \subset \{\varphi \in \overline{B}_{\ell^{\infty}}; \quad d(\varphi, \varphi^0) < \epsilon\} = B_d(\varphi^0, \epsilon)^{17}$$

$$\varphi \in V^*(\varphi^0; (e^{(i)})_{i=1,2,...,n}; \delta) \cap \overline{B}_{\ell^{\infty}} = \{ \varphi \in \ell^{\infty}; |(\varphi - \varphi^0)(e^{(i)})| < \delta, \forall i = 1, 2, ..., n \} \cap \overline{B_{\ell^{\infty}}};$$
allora,

$$d(\varphi,\varphi^0) = \sum_{i=1}^n \frac{1}{2^i} |\varphi_i - \varphi_i^0| + \sum_{i=n+1}^{+\infty} \frac{1}{2^i} |\varphi_i - \varphi_i^0| < \delta + 2 \sum_{i=n+1}^{+\infty} \frac{1}{2^i} = \delta + \frac{1}{2^{n-1}}.$$

Pertanto, basta prendere $\delta = \frac{\epsilon}{2}$ e *n* sufficientemente grande in modo che $\frac{1}{2^{n-1}} < \delta$, per avere $d(\varphi, \varphi^0) < \epsilon$.

The scellar discrete discrete

Scegliendo $I^*(\varphi^0) := V^*(\varphi^0; (e^{(i)})_{i=1,2,\dots,n}; \delta) \cap \overline{B}_{\ell^{\infty}}$ si ottiene l'inclusione cercata.

Pertanto, $\overline{B}_{\ell^{\infty}}$ è compatta rispetto alla topologia \mathcal{T} e $(\overline{B}_{\ell^{\infty}},d)$ è spazio metrico compatto e quindi è spazio metrico completo. Sia $\epsilon>0$ e definiamo gli insiemi

$$F_k := \{ \varphi \in \overline{B}_{\ell^{\infty}}; |\varphi(x^{(n)})| \le \epsilon \text{ per ogni } n \ge k \}.$$

Gli F_k sono chiusi nella topologia $\mathcal T$ e inoltre, poiché $\varphi(x^{(n)}) \to 0$ per ogni $\varphi \in \ell^\infty$, risulta

$$\bigcup_{k=1}^{+\infty} F_k = \overline{B}_{\ell^{\infty}}.$$

Per il teorema di Baire-Hausdorff 4.4.2, esiste un intero k_0 tale che $\mathring{F}_{k_0} \neq \emptyset$, cioè F_{k_0} ha interno non vuoto nella topologia \mathcal{T} .

cioè F_{k_0} ha interno non vuoto nella topologia \mathcal{T} . Sia, allora, $\varphi^0 = (\varphi_1^0, \varphi_2^0, \varphi_3^0, \dots, \varphi_i^0, \dots) \in \mathring{F}_{k_0}$ e sia $\rho > 0$ tale che $B_d(\varphi^0, \rho) \subset \mathring{F}_{k_0}$.

Consideriamo gli elementi $\varphi \in \overline{B}_{\ell^\infty}$ della forma

$$\varphi = (\varphi_1^0, \varphi_2^0, \varphi_3^0, \dots, \varphi_N^0, \pm 1, \pm 1, \dots),$$

con $N \in \mathbb{N}$ tale che $\frac{1}{2^{N-1}} < \rho$. Allora

$$d(\varphi, \varphi^0) \le \sum_{i=N+1}^{+\infty} \frac{2}{2^i} = \frac{1}{2^{N-1}} < \rho.$$

Perciò tali φ appartengono a (all'interno di) F_{k_0} e si ha, per ogni $n \geq k_0$,

$$|\varphi(x^{(n)})| = \left| \sum_{i=1}^{+\infty} \varphi_i x_i^{(n)} \right| = \left| \sum_{i=1}^{N} \varphi_i^0 x_i^{(n)} + \sum_{i=N+1}^{+\infty} (\pm x_i^{(n)}) \right| \le \epsilon.$$
 (5.38)

Fissato $n \geq k_0$, scegliamo in particolare,

$$\varphi = (\varphi_1^0, \varphi_2^0, \varphi_3^0, \dots, \varphi_N^0, \operatorname{sign}(x_{N+1}^{(n)}), \operatorname{sign}(x_{N+2}^{(n)}), \dots).$$

Da tale scelta in (5.38) segue che

$$\sum_{i=N+1}^{+\infty} |x_i^{(n)}| \le \epsilon + \sum_{i=1}^{N} |\varphi_i^0| |x_i^{(n)}| \le \epsilon + \sum_{i=1}^{N} |x_i^{(n)}|$$

e quindi

$$\sum_{i=1}^{+\infty} |x_i^{(n)}| \le \epsilon + 2\sum_{i=1}^{N} |x_i^{(n)}| \quad \text{per ogni } n \ge k_0.$$

Da qui segue la tesi, poiché per ogni fissato i la successione $(x_i^{(n)})_n$ tende a 0 per $n \to +\infty$.

Concludiamo la dimostrazione provando che

$$x^{(n)} \rightharpoonup x$$
 debolmente in $\ell^1 \implies x^{(n)} \to x$ fortemente in ℓ^1 .

Fissato $\epsilon>0$ e definiti gli insiemi

$$F_k := \{ \varphi \in \overline{B}_{\ell^{\infty}}; |\varphi(x^{(n)} - x^{(m)})| \le \epsilon \text{ per ogni } m, n \ge k \},$$

si trovano k_0 e $N \in \mathbb{N}$ tali che

$$||x^{(n)} - x^{(m)}||_{\ell^1} \le \epsilon + 2\sum_{i=1}^N |x_i^{(n)} - x_i^{(m)}|$$

per ogni $m, n \ge k_0$.

Ne segue che la successione $(x^{(n)})_n$ è di Cauchy nello spazio di Banach ℓ^1 e quindi è convergente.