Chapter VI

Maximal subgroups of the finite classical groups

Here the main references are [1], [2] and [15].

1 Some preliminary facts

(1.1) Definition Let $1 \neq G$ be a group. A subgroup M of G is said to be maximal if $M \neq G$ and there exists no subgroup H such that $M<H<G$.

If G is finite, by order reasons every subgroup $H \neq G$ is contained in a maximal subgroup. If M is maximal in G, then also every conjugate $g M g^{-1}$ of M in G is maximal. Indeed

$$
g M g^{-1}<K<G \Longrightarrow M<g^{-1} K g<G
$$

For this reason the maximal subgroups are studied up to conjugation.
(1.2) Lemma Let $G=G^{\prime}$ and let M be a maximal subgroup of G. Then:
(1) M contains the center Z of G;
(2) $\frac{M}{Z}$ is maximal in $\frac{G}{Z}$;
(3) the preimage in G of every maximal subgroup of $\frac{G}{Z}$ is maximal in G.

Proof

(1) Suppose $Z \not \leq M$. Then $M<Z M$ gives $Z M=G$, by the maximality of M. Hence M is normal in G and the factor group $\frac{G}{M}$ is abelian. In fact:

$$
\frac{G}{M}=\frac{Z M}{M} \cong \frac{Z}{M \cap Z}
$$

It follows $G^{\prime} \leq M$, a contradiction, as we are assuming $G^{\prime}=G$.
Points (2) and (3) follow from the fact that the subgroups of $\frac{G}{Z}$ are those of the form $\frac{K}{Z}$, where K is a subgroup of G which contains Z.
(1.3) Lemma If $Z(G)=\{1\}$ then G is isomorphic to a subgroup of $\operatorname{Aut}(G)$.

Proof For every $g \in G$ the map $\gamma: G \rightarrow G$ defined by $x \mapsto g x g^{-1}$ is an automorphism of G (called inner). Consider the homomorphism $\varphi: G \rightarrow \operatorname{Aut}(G)$ defined by: $g \mapsto \gamma$. Ker $\varphi=Z(G)$. Thus, under our assumption, $G \cong \varphi(G) \leq \operatorname{Aut}(G)$.

2 Aschbacher's Theorem

Let \bar{G}_{0} be one of the following groups, with the further assumption that it is simple:

$$
\operatorname{PSL}_{n}(q), \operatorname{PSU}_{n}\left(q^{2}\right), \operatorname{PSp}_{2 m}(q), P \Omega_{2 m}^{ \pm}(q), P \Omega_{2 m+1}(q)
$$

Suppose that \bar{G} is a group such that $\bar{G}_{0} \triangleleft \bar{G} \leq \operatorname{Aut}\left(\bar{G}_{0}\right)$. By the subgroup structure theorem due to Aschbacher, every maximal subgroup \bar{H} of \bar{G}, not containing \bar{G}_{0}, belongs to a class in the table below:

Rough description of the classes of maximal subgroups

$\mathcal{C}_{1} \mid$ Stabilizers of subspaces		
$\mathcal{C}_{2} \mid$ Stabilizers of decompositions $V=\oplus_{i=1}^{t} V_{i}$,	$\operatorname{dim} V_{i}=m$	
$\mathcal{C}_{3} \mid$ Stabilizers of prime degree extension fields of \mathbb{F}_{q}		
$\mathcal{C}_{4} \mid$ Stabilizers of tensor decompositions $V=V_{1} \otimes V_{2}$		
$\mathcal{C}_{5} \mid$ Stabilizers of prime index subfields of \mathbb{F}_{q}		
$\mathcal{C}_{6} \mid$ Normalisers of symplectic - type $r-$ groups, $(r, q)=1$		
$\mathcal{C}_{7} \mid$ Stabilizers of decompositions $\otimes_{i=1}^{t} V_{i}$,	$\operatorname{dim} V_{i}=m$	
$\mathcal{C}_{8} \mid$ Classical subgroups		
$\mathcal{S} \mid$ Almost simple absolutely irreducible subgroups		
\mathcal{N}	Novelty subgroups	

The 8 classes $\mathcal{C}_{i}=\mathcal{C}_{i}(\bar{G})$ consist of "natural" subgroups of \bar{G}, which can be described in geometric terms. Class \mathcal{N} exists only for $\bar{G}_{0}=P \Omega_{8}^{ \pm}\left(p^{a}\right)$ or $\bar{G}_{0}=\mathrm{PSp}_{2 m}\left(2^{a}\right)^{\prime}$ (see [4]). We will describe the structure of the groups in some of these classes in the case:

$$
\bar{G}=\bar{G}_{0}=\operatorname{PSL}_{n}(q) .
$$

It is easier to describe the linear preimages of such groups. To this purpose we set $V=\mathbb{F}^{n}$, with canonical basis $\left\{e_{1}, \ldots, e_{n}\right\}$, and $G=\operatorname{SL}_{n}(q)$.

3 The reducible subgroups \mathcal{C}_{1}

If W is a subspace of V, then its stabilizer $G_{W}:=\{g \in G \mid g W=W\}$ is a subgroup of G. If W^{\prime} is a subspace of V and $\operatorname{dim} W=\operatorname{dim} W^{\prime}$, there exists $g \in G$ such that $g W=W^{\prime}$. It follows that $G_{W^{\prime}}=g G_{W} g^{-1}$. So, if W is a subspace of dimension m, up to conjugation we may suppose:

$$
W=\left\langle e_{1}, \ldots, e_{m}\right\rangle, \quad G_{W}=\left\{\left.\left(\begin{array}{cc}
A & B \\
0 & C
\end{array}\right) \right\rvert\, \operatorname{det}(C)=\operatorname{det}(A)^{-1}\right\} .
$$

To see its structure we factorize G_{W} as follows:

$$
\begin{equation*}
G_{W}=U C_{q-1}\left(\mathrm{SL}_{m}(q) \times \mathrm{SL}_{n-m}(q)\right) \tag{3.1}
\end{equation*}
$$

where

$$
U=\left\{\left.\left(\begin{array}{cc}
I_{m} & B \\
0 & I_{n-m}
\end{array}\right) \right\rvert\, B \in \operatorname{Mat}_{m, n-m}(q)\right\} \cong\left(\mathbb{F}_{q},+\right)^{m(n-m)}
$$

$U \triangleleft G_{W}$,

$$
C_{q-1}=\left\{\left.\left(\begin{array}{cccc}
\alpha & 0 & 0 & 0 \\
0 & I_{m-1} & 0 & 0 \\
0 & 0 & \alpha^{-1} & 0 \\
0 & 0 & 0 & I_{n-m-1}
\end{array}\right) \right\rvert\, \alpha \in \mathbb{F}_{q}^{*}\right\} \cong\left(\mathbb{F}_{q}^{*}, \cdot\right)
$$

cyclic, and

$$
\mathrm{SL}_{m}(q) \times \mathrm{SL}_{n-m}(q)=\left\{\left.\left(\begin{array}{rr}
X & 0 \\
0 & Y
\end{array}\right) \right\rvert\, X \in \mathrm{SL}_{m}(q), Y \in \mathrm{SL}_{n-m}(q)\right\} .
$$

Actually we may suppose $m \leq \frac{n}{2}$ since, considering the transpose of G_{W}, namely

$$
G_{W}^{T}=\left\{\left.\left(\begin{array}{cc}
A & 0 \\
B^{T} & C
\end{array}\right) \right\rvert\, \operatorname{det}(C)=\operatorname{det}(A)^{-1}\right\}
$$

we obtain the stabilizer of a subspace of dimension $n-m \geq \frac{n}{2}$, namely of:

$$
\left\langle e_{m+1}, \ldots, e_{n}\right\rangle .
$$

(3.2) Definition The groups in class \mathcal{C}_{1} are called parabolic subgroups.

They are the only subgroups in the classes $\mathcal{C}_{i}, 1 \leq i \leq 8$, which contain a Sylow p subgroup of $\mathrm{SL}_{n}(q), q=p^{a}$. When W is chosen as above, the Sylow p-subgroup consists of the upper unitriangular matrices, namely:

$$
\left(\begin{array}{cccc}
1 & * & \ldots & * \\
0 & 1 & \ldots & * \\
& & \ldots & * \\
0 & 0 & \ldots & 1
\end{array}\right) .
$$

4 The imprimitive subgroups \mathcal{C}_{2}

Let $n=m t, 1 \leq m<n$ and consider a decomposition \mathcal{D} of V as a direct sum

$$
V=V_{1} \oplus \cdots \oplus V_{t}
$$

of t subspaces V_{i}, all of the same dimension m.
(4.1) Definition The stabilizer $N_{\mathrm{GL}_{n}(q)}(\mathcal{D})$ of the above decomposition is the subgroup of G which permutes the spaces V_{i} among themselves, i.e.,

$$
N_{\mathrm{GL}_{n}(q)}(\mathcal{D}):=\left\{g \in G \mid g V_{i}=V_{j}, 1 \leq i, j \leq t\right\} .
$$

We study first the structure of $N_{\mathrm{GL}_{n}(q)}(\mathcal{D})$. Up to conjugation we may assume:

$$
V_{1}=\left\langle e_{1}, \ldots, e_{m}\right\rangle, \ldots, \quad V_{t}=\left\langle e_{(t-1) m+1}, \ldots, e_{n}\right\rangle .
$$

For each $g \in N_{\mathrm{GL}_{n}(q)}(\mathcal{D})$, let φ_{g} be the permutation induced by g on the set $\left\{V_{1}, \ldots, V_{t}\right\}$. The map

$$
\begin{aligned}
\varphi: \quad N_{\mathrm{GL}_{n}(q)}(\mathcal{D}) & \rightarrow & \operatorname{Sym}(t) \\
g & \mapsto & \varphi_{g}
\end{aligned}
$$

is a homomorphism and

$$
\operatorname{Ker} \varphi=\bigcap_{i=1}^{t} G_{V_{i}}=\left\{\left.\left(\begin{array}{cccc}
A_{1} & & & \\
& A_{2} & & \\
\cdots & \cdots & \cdots & \\
& & & A_{t}
\end{array}\right) \right\rvert\, A_{i} \in \mathrm{GL}_{m}(q)\right\} \cong \mathrm{GL}_{m}(q)^{t}
$$

Denote by H the subgroup of $\mathrm{GL}_{t}(q)$ consisting of all permutation matrices.

Then the group:

$$
\widehat{H}:=H \otimes I_{m}=\left\{h \otimes I_{m} \mid h \in H\right\} \leq \operatorname{GL}_{n}(q)
$$

permutes the V_{i}-s in all possible ways. Hence $\widehat{H} \leq N_{\mathrm{GL}_{n}(q)}(\mathcal{D})$ and

$$
\varphi(\widehat{H})=\operatorname{Sym}(t)
$$

It follows:

$$
N_{\mathrm{GL}_{n}(q)}(\mathcal{D})=(\operatorname{Ker} \varphi) \varphi(\widehat{H}) \cong \mathrm{GL}_{m}(q)^{t} \operatorname{Sym}(t)=\mathrm{GL}_{m}(q) \imath \operatorname{Sym}(t) .
$$

Finally we have to determine $N_{G}(\mathcal{D})=N_{\mathrm{GL}_{n}(q)}(\mathcal{D}) \cap \mathrm{SL}_{n}(q)$. To this purpose, let

$$
\sigma=\left(\begin{array}{ccc}
0 & 1 & \\
-1 & 0 & \\
& & I_{n-2}
\end{array}\right)
$$

Then $\langle\sigma, \operatorname{Alt}(t)\rangle$ is a subgroup of $N_{G}(\mathcal{D})$ which maps onto $\operatorname{Sym}(t)$. It follows that

$$
N_{G}(\mathcal{D})=\left(\operatorname{Ker} \varphi \cap \operatorname{SL}_{n}(q)\right)\langle\sigma, \operatorname{Alt}(t)\rangle .
$$

Note that $\operatorname{Ker} \varphi \cap \mathrm{SL}_{n}(q)$ can be factorized as the product of the group:

$$
\left\{\left.\left(\begin{array}{cccc}
B_{1} & & & \\
& B_{2} & & \\
\cdots & \cdots & \cdots & \\
& & & B_{t}
\end{array}\right) \right\rvert\, B_{i} \in \mathrm{SL}_{m}(q)\right\} \cong \mathrm{SL}_{m}(q)^{t}
$$

and the group

$$
\left\{\left.\left(\begin{array}{llll}
\operatorname{diag}\left(\alpha_{1}, \ldots, 1\right) & & & \\
& \operatorname{diag}\left(\alpha_{2}, \ldots, 1\right) & & \\
& & \ldots & \\
& & & \operatorname{diag}\left(\left(\prod_{i=1}^{t-1} \alpha_{i}\right)^{-1}, \ldots, 1\right)
\end{array}\right) \right\rvert\, \alpha_{i} \in \mathbb{F}_{q}^{*}\right\}
$$

is isomorphic to $\left(C_{q-1}\right)^{t-1}$. Thus:

$$
\frac{N_{G}(\mathcal{D})}{\mathrm{SL}_{m}(q)^{t}\left(C_{q-1}\right)^{t-1}} \cong \operatorname{Sym}(t)
$$

Equivalently:

$$
N_{G}(\mathcal{D})=\mathrm{SL}_{m}(q)^{t}\left(C_{q-1}\right)^{t-1} \cdot \operatorname{Sym}(t) \quad \text { (non }- \text { split extension). }
$$

(4.2) Remark For $m=1$, the subgroup $N_{\mathrm{GL}_{n}(q)}(\mathcal{D})$ coincides with the standard monomial subgroup.

5 The irreducible subgroups \mathcal{C}_{3}

(5.1) Lemma Let \mathbb{K} be a subfield of the field \mathbb{F}. Two matrices $A, B \in \operatorname{Mat}_{n}(\mathbb{K})$ are conjugate under $\mathrm{GL}_{n}(\mathbb{K})$ if and only if they are conjugate under $\mathrm{GL}_{n}(\mathbb{F})$.

Proof The rational canonical forms C_{A} e C_{B} of A and B respectively lie in $\mathrm{Mat}_{n}(\mathbb{K})$. If A, B are conjugate under $\mathrm{GL}_{n}(\mathbb{F})$, we have $C_{A}=C_{B}$. Hence A and B are conjugate also under $\mathrm{GL}_{n}(\mathbb{K})$, having the same rational canonical form. The converse is obvious.
(5.2) Lemma $\operatorname{Mat}_{n}(q)$ contains a self-centralizing subalgebra $R \cong \mathbb{F}_{q^{n}}$. Moreover

$$
\frac{N_{\mathrm{GL}_{n}(q)}(R)}{C_{\mathrm{GL}_{n}(q)}(R)} \cong \operatorname{Gal}_{\mathbb{F}_{q}}\left(\mathbb{F}_{q^{n}}\right) \cong C_{n}(\text { cyclic group of order } n) .
$$

Proof Let $p(t)$ be an irreducible polynomial of degree n in $\mathbb{F}_{q}[t]$. Denoting by A its companion matrix, we obtain the subring:

$$
\mathbb{F}_{q}[A]=\mathbb{F}_{q} I_{n}+\mathbb{F}_{q} A+\cdots+\mathbb{F}_{q} A^{n-1} \cong \frac{\mathbb{F}_{q}[t]}{\langle p(t)\rangle} \cong \mathbb{F}_{q^{n}} .
$$

Since \mathbb{F}_{q}^{n} is an irreducible A-module, the centralizer C of A in $\operatorname{Mat}_{n}(q)$ is a field. The multiplicative group $C \backslash\{0\}$ is generated by a matrix $B \in \operatorname{Mat}_{n}(q)$. Since the minimal polynomial of B has degree $\leq n$, the dimension of C over \mathbb{F}_{q} does not exceed n. We conclude that $C=\mathbb{F}_{q}[A]$. Thus we take $R=\mathbb{F}_{q}[A]$.
The Jordan form of A in $\operatorname{Mat}_{n}\left(q^{n}\right)$ is $J_{A}=\operatorname{diag}\left(\epsilon, \epsilon^{q}, \ldots, \epsilon^{q^{n-1}}\right)$ where ϵ is a root of $p(t)$ in $\mathbb{F}_{q^{n}}$. It follows that J_{A} is conjugate to $\left(J_{A}\right)^{q}$ in $\mathrm{GL}_{n}\left(q^{n}\right)$. By the previous Lemma, there exists $g \in \mathrm{GL}_{n}(q)$ such that $g^{-1} A g=A^{q}$. Clearly g normalizes R. Moreover the automorphism $\gamma: R \rightarrow R$ such that $X \mapsto g^{-1} X g$ for all $X \in R$, has order n. Hence it generates the Galois group $\mathrm{Gal}_{\mathbb{F}_{q}}\left(\mathbb{F}_{q^{n}}\right)$.
Finally, let y be an element of the normalizer of R in $\mathrm{GL}_{n}(q)$. The map $\nu: R \rightarrow R$ such that $X \rightarrow y^{-1} X y$ for all $X \in R$, is a field automorphism. The scalar matrices, which form the subfield of R of order q, are fixed by ν. We conclude that $\nu \in \operatorname{Gal}_{\mathbb{F}_{q}}\left(\mathbb{F}_{q^{n}}\right)$.

The subgroups of class \mathcal{C}_{3} are $N(R) \cap \mathrm{SL}_{n}(q)$, where $N(R)$ is defined as in the previous Lemma.

6 Groups in class \mathcal{S}

They arise from absolutely irreducible representations of simple groups. We give only some examples.

6.1 The Suzuki groups $S z(q)$ in $\operatorname{Sp}_{4}(q)$

The Suzuki groups ${ }^{2} B_{2}(q)=S z(q)$ are simple groups of order $q^{2}(q-1)\left(q^{2}+1\right)$, with $q=2^{2 r+1}, r \geq 1$. They were discovered by M.Suzuki in 1960. $S z(q)$ was originally defined as the subgroup of $\mathrm{SL}_{4}\left(2^{2 r+1}\right)$ generated by:

$$
T:=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \tag{6.1}\\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

and by the groups:

$$
Q:=\left\{\left.\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{6.2}\\
\alpha^{r} & 1 & 0 & 0 \\
\beta & \alpha & 1 & 0 \\
\alpha^{2 r+1}+\alpha^{r} \beta+\beta^{2 r} & \alpha^{r+1}+\beta & \alpha^{r} & 1
\end{array}\right) \right\rvert\, \alpha, \beta \in \mathbb{F}_{q}\right\} .
$$

T and Q fix the symplectic form T. Hence $S z(q)$ is a subgroup of $\mathrm{Sp}_{4}(q)$, with respect to T. For $q \geq 8$ it is a maximal subgroup.

6.2 Representations of $\mathrm{SL}_{2}(\mathbb{F})$

Let \mathbb{F} be a field of characteristic $p \geq 0$ and V be the vector space of homogeneous polynomials in two variables x, y, of degree $d-1$, over \mathbb{F}. Every matrix

$$
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \in \operatorname{Mat}_{2}(\mathbb{F})
$$

acts in a natural way on the basis $\mathcal{B}=\left\{x^{d-1}, x^{d-2} y, \ldots, y^{d-1}\right\}$ of V, via:

$$
x^{i} y^{j} \mapsto\left(a_{11} x+a_{21} y\right)^{i}\left(a_{12} x+a_{22} y\right)^{j} .
$$

Call $\alpha: V \rightarrow V$ the extension by linearity of this action. The homomorphism

$$
\begin{equation*}
h_{d}: \mathrm{SL}_{2}(\mathbb{F}) \rightarrow \mathrm{SL}_{d}(\mathbb{F}) \tag{6.3}
\end{equation*}
$$

such that each $A \in \mathrm{SL}_{2}(\mathbb{F})$ maps to the matrix of α with respect to \mathcal{B}, is a representation of degree d of $\mathrm{SL}_{2}(\mathbb{F})$. This representation is absolutely irreducible whenever $0<d \leq p$ (see also [3]). When d is even and $\mathbb{F}=\mathbb{F}_{q}$, with q appropriate, it gives rise to maximal subgroups of $\mathrm{Sp}_{d}(q)$.
(6.4) Example For $d=4$, the homomorphism $h_{4}: \mathrm{SL}_{2}(\mathbb{F}) \rightarrow \mathrm{SL}_{4}(\mathbb{F})$ acts as:

$$
\left(\begin{array}{cc}
a & b \tag{6.5}\\
c & d
\end{array}\right) \mapsto\left(\begin{array}{cccc}
a^{3} & a^{2} b & a b^{2} & b^{3} \\
3 a^{2} c & a^{2} d+2 a b c & 2 a b d+b^{2} c & 3 b^{2} d \\
3 a c^{2} & 2 a c d+b c^{2} & a d^{2}+2 b c d & 3 b d^{2} \\
c^{3} & c^{2} d & c d^{2} & d^{3}
\end{array}\right)
$$

7 Exercises

(7.1) Exercise Let W and W^{\prime} be subspaces of \mathbb{F}^{n}. Show that there exists $g \in \mathrm{SL}_{n}(\mathbb{F})$ such that $g W=W^{\prime}$ if and only if they have the same dimension.
(7.2) Exercise $\operatorname{In} \operatorname{Mat}_{3}(7)$ find a field of order 7^{3}, its centralizer and its normalizer.
(7.3) Exercise Show that the representation (6.5) fixes a symplectic form.
(7.4) Exercise Write explicitly an absolutely irreducible representation of $\mathrm{SL}_{2}(7)$ of degree 6 , fixing a symplectic form.

