Chapter IV

Some facts from representation theory

This deep and important theory cannot be developed in these notes. We just give some basic results and refer, for a systematic exposition, to books like [6], [7], [13].

1 Irreducible and indecomposable modules

We consider the space \mathbb{F}^n of column vectors as a *left module* over the ring $\operatorname{Mat}_n(\mathbb{F})$ with respect to the usual product of matrices. Let A be a subset of $\operatorname{Mat}_n(\mathbb{F})$.

(1.1) Definition A subspace W of \mathbb{F}^n is A-invariant if $AW \leq W$, i.e., if:

 $aw \in W, \quad \forall \ a \in A, \ \forall \ w \in W.$

Clearly W is A-invariant if and only if it is $\mathbb{F}A$ -invariant, where $\mathbb{F}A$ denotes the linear subspace of $\operatorname{Mat}_n(\mathbb{F})$ generated by A. Moreover, when A is a subring of $\operatorname{Mat}_n(\mathbb{F})$, then W is A-invariant if and only if it is a module over A.

(1.2) Lemma Let $\mathbb{F} \leq \mathbb{K}$, a field extension. If w_1, \ldots, w_m are linearly independent vectors of \mathbb{F}^n , then they are linearly independent in \mathbb{K}^n .

Proof There exists $P \in \operatorname{GL}_n(\mathbb{F})$ such that $Pw_j = e_j, 1 \leq j \leq m$. So assume $\sum_{i=1}^m k_i w_i = 0$, with $k_i \in \mathbb{K}$. Multiplying by P we get $\sum_{i=1}^m k_i e_i = 0$, whence $k_1 = \cdots = k_m = 0$.

A subspace W of \mathbb{F}^n can be extended to the subspace $W \otimes_{\mathbb{F}} \mathbb{K}$ of \mathbb{K}^n defined as the subspace of \mathbb{K}^n generated by any basis $\mathcal{B} = \{w_1, \ldots, w_m\}$ of W, namely:

$$W \otimes_{\mathbb{F}} \mathbb{K} = \left\{ \sum_{j=1}^{m} k_j w_j \mid k_j \in \mathbb{K} \right\}$$
 (tensor product).

 \mathcal{B} is a basis of $W \otimes_{\mathbb{F}} \mathbb{K}$, by Lemma 1.2. Thus, if W is an A-module, also $W \otimes_{\mathbb{F}} \mathbb{K}$ becomes an A-module via the action:

$$a\sum_{j=1}^{m}k_{j}w_{j}=\sum_{j=1}^{m}k_{j}aw_{j}\quad\forall\ a\in A.$$

(1.3) Definition Let A be a subring (or a subgroup) of $Mat_n(\mathbb{F})$ and W be an Ainvariant subspace of \mathbb{F}^n . The A-module W is said to be:

- (1) indecomposable, if there is no decomposition $W = W_1 \oplus W_2$ into proper A-invariant subspaces W_1, W_2 ;
- (2) irreducible, if the only A-invariant subspaces of W are $\{0_{\mathbb{F}^n}\}$ and W;
- (3) absolutely irreducible, if $W \otimes_{\mathbb{F}} \mathbb{K}$ is irreducible for any field extension \mathbb{K} of \mathbb{F} .

Accordingly, a subring (or a subgroup) A of $Mat_n(\mathbb{F})$ is said to be:

- *indecomposable*, if \mathbb{F}^n is indecomposable as an A-module;
- *irreducible*, if \mathbb{F}^n is irreducible as an A-module;
- absolutely irreducible, if \mathbb{F}^n is absolutely irreducible as an A-module.

Clearly an irreducible group is indecomposable. The converse is not true in general, as shown in Example 1.5 below. It is true when G is finite and \mathbb{F} has characteristic p where p = 0 or p does not divide |G| (see Theorem 1.11).

(1.4) Example The subgroup G of $GL_2(\mathbb{R})$, generated by the matrix $g = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, is irreducible but not absolutely irreducible.

Indeed g has no eigenvalue in \mathbb{R} . Thus \mathbb{R}^2 has no 1-dimensional G-submodule. But g has eigenvalues in \mathbb{C} . Thus, for example, $\left\langle \begin{pmatrix} 1\\i \end{pmatrix} \right\rangle$ is G-invariant in \mathbb{C}^2 .

(1.5) Example The subgroup $G = \left\{ \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}, | t \in \mathbb{F} \right\}$ of $\operatorname{GL}_2(\mathbb{F})$ is reducible, but indecomposable, for any field \mathbb{F} .

G is reducible because $\langle e_1 \rangle$ is *G*-invariant. Suppose $\mathbb{R}^2 = \langle v_1 \rangle \oplus \langle v_2 \rangle$ where each $\langle v_i \rangle$ is *G*-invariant. Then v_1, v_2 should be a basis of eigenvectors of *G*. Since every $g \in G$ has only the eigenvalue 1, one gets $Gv_1 = v_1$, $Gv_2 = v_2$, whence the contradiction G = I.

(1.6) Example The subgroup G of $GL_2(\mathbb{R})$, generated by the matrices

$$g_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ g_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

is absolutely irreducible.

Indeed the only 1-dimensional g_1 -invariant subspaces are its eigenspaces, namely $\langle e_1 \rangle$ and $\langle e_2 \rangle$, but they are not g_2 -invariant.

(1.7) Lemma $\operatorname{Mat}_n(\mathbb{F})$ is absolutely irreducible for any field \mathbb{F} . Moreover its center Z coincides with the field $\mathbb{F}I_n$ of scalar matrices.

Proof Set $A = \operatorname{Mat}_n(\mathbb{F})$ and let $\{0\} \neq W$ be an A-invariant subspace of \mathbb{K}^n , where \mathbb{K} is a field extension of \mathbb{F} . Take $0 \neq w \in W$. Then there exists a non-zero component α_i of w. From $e_{i,i} \in A$, it follows that $e_{i,i}w = \alpha_i e_i \in W$. Hence $e_i \in W$. Considering in A the permutation matrices $\pi_{(i,j)}$ we get that $\pi_{(i,j)}e_i = e_j \in W$ for $1 \leq j \leq n$. So W contains the canonical basis, whence $W = \mathbb{K}^n$.

By direct calculation one sees that a matrix commutes with all matrices $e_{ij} \in Mat_n(\mathbb{F})$ if and only if it is scalar.

(1.8) Theorem Let G be one of the following classical groups:

$$\operatorname{SL}_n(\mathbb{F}), \ \operatorname{SU}_n(\mathbb{F}), \ \operatorname{Sp}_n(\mathbb{F}), \ n = 2m, \ \Omega_n(\mathbb{F}, Q).$$

Then $\mathbb{F}G = \operatorname{Mat}_n(\mathbb{F})$, except when $G = \Omega_2(\mathbb{F}, Q)$. In particular G is absolutely irreducible and its centralizer in $\operatorname{Mat}_n(\mathbb{F})$ consists of the scalar matrices.

Proof One can see that in each case, provided $G \neq \Omega_2(\mathbb{F}, Q)$, the group G contains n^2 linearly independent matrices (for instance the generators of these groups given in the previous Chapter). Hence the subspace $\mathbb{F}G$ generated by G coincides with $\operatorname{Mat}_n(\mathbb{F})$, which is absolutely irreducible.

(1.9) Lemma (Schur's Lemma) Let $A \leq Mat_n(\mathbb{F})$ be irreducible. Then

$$C = C_{\operatorname{Mat}_n(\mathbb{F})}(A) := \{ c \in \operatorname{Mat}_n(\mathbb{F}) \mid ca = ac, \ \forall \ a \in A \}$$

is a division algebra over $\mathbb{F}I_n$. In particular, if commutative, C is a field.

Proof It is easy to see that C is a subalgebra of $\operatorname{Mat}_n(\mathbb{F})$, which contains $Z = \mathbb{F}I_n$. Consider a non-zero matrix $c \in C$. The subspace $c\mathbb{F}^n$ is A-invariant, as:

$$a\left(c\mathbb{F}^{n}\right)=(ac)\mathbb{F}^{n}=(ca)\mathbb{F}^{n}=c(a\mathbb{F}^{n})\leq c\mathbb{F}^{n},\quad\forall\ a\in A.$$

 $0_{\operatorname{Mat}_n(\mathbb{F})} \neq c \Longrightarrow c\mathbb{F}^n \neq \{0_{\mathbb{F}^n}\}$. It follows $c\mathbb{F}^n = \mathbb{F}^n$, by the irreducibility of A. Since the multiplication by c is surjective, it is injective. Thus c has inverse c^{-1} . Clearly $c^{-1} \in C$.

Up to here we considered the natural $\operatorname{Mat}_n(\mathbb{F})$ -module \mathbb{F}^n . But we may also consider the left regular module $\operatorname{Mat}_n(\mathbb{F})$ $\operatorname{Mat}_n(\mathbb{F})$ and compare these two modules.

(1.10) Lemma Let A be a subring of $\operatorname{Mat}_n(\mathbb{F})$, acting irreducibly on \mathbb{F}^n , and let $\{0\} \neq W \leq \operatorname{Mat}_n(\mathbb{F})$ be a minimal A-invariant subspace, in the regular action of $\operatorname{Mat}_n(\mathbb{F})$ on itself. Then there exists a vector e_i of the canonical basis such that $\mathbb{F}^n = We_i$. Moreover W is isomorphic to \mathbb{F}^n , as an A-module. In particular dim_{$\mathbb{F}}W = n$.</sub>

Proof Choose $0 \neq w \in W$. Then w has a non-zero column we_i . The subspace We_i of \mathbb{F}^n is such that $A(We_i) \leq We_i$. From $we_i \in We_i$ it follows $We_i \neq \{0\}$. Hence $We_i = \mathbb{F}^n$, by the irreducibility of A. Finally, the map $f : W \to \mathbb{F}^n$ defined by $w \mapsto we_i$ is an \mathbb{F} -isomorphism such that f(aw) = af(w) for all $a \in A$.

(1.11) Theorem (Maschke) Let $G \leq \operatorname{GL}_n(\mathbb{F})$ be a finite group, where \mathbb{F} has characteristic 0 or a prime p which does not divide |G|. Then every G-invariant subspace W of \mathbb{F}^n has a G-invariant complement.

Proof Let $\mathbb{F}^n = W \oplus U$, where U is an \mathbb{F} -complement of W, and call $\pi : \mathbb{F}^n \to U$ the projection. Consider $\psi : \mathbb{F}^n \to \mathbb{F}^n$ defined by:

$$\psi(v) := \frac{1}{|G|} \sum_{x \in G} x^{-1} \pi(xv), \quad \forall \ v \in \mathbb{F}^n.$$

The image of ψ , namely $\psi(\mathbb{F}^n)$, is G-invariant, since for all $g \in G$ and $v \in \mathbb{F}^n$:

$$\psi(gv) := \frac{1}{|G|} \sum_{x \in G} x^{-1} \pi(xgv) = \frac{1}{|G|} g \sum_{x \in G} \left(g^{-1} x^{-1} \right) \pi(xgv) = g\psi(v).$$

Moreover, from $u - \pi(u) \in W$ for all $u \in \mathbb{F}^n$, it follows that:

$$v - \psi(v) = \frac{1}{|G|} \sum_{x \in G} x^{-1} x v - \frac{1}{|G|} \sum_{x \in G} x^{-1} \pi(xv) = \frac{1}{|G|} \sum_{x \in G} x^{-1} \left(xv - \pi(xv) \right) \in W.$$

Thus $v = (v - \psi(v)) + \psi(v)$ for all $v \in \mathbb{F}^n$, gives $\mathbb{F}^n = W + \psi(\mathbb{F}^n)$.

For all $w \in W$ and all $x \in G$ we have $\pi(xw) = 0$. So $\psi(w) = 0$, whence $\psi(v - \psi(v)) = 0$, for all v. This gives $\psi^2 = \psi$ and $W \cap \psi(\mathbb{F}^n) = \{0\}$. Indeed, from $w = \psi(v) \in W \cap \psi(V)$, we have $\psi(v) = \psi^2(v) = \psi(w) = 0$.

We conclude that $\psi(\mathbb{F}^n)$ is a *G*-invariant complement of *W* in \mathbb{F}^n .

2 Representations of groups

(2.1) Definition Let H be an abstract group.

- (1) A representation of H of degree n over \mathbb{F} is a homomorphism $f : H \to \operatorname{GL}_n(\mathbb{F})$. The representation f is said to be irreducible if \mathbb{F}^n is an irreducible f(H)-module.
- (2) The character χ of f is the map $\chi: H \to \mathbb{F}$ such that

$$\chi(h) := \operatorname{tr}(f(h)), \quad \forall \ h \in H.$$

(3) Two representations $f_i : H \to \operatorname{GL}_n(\mathbb{F}), i = 1, 2$ are said to be equivalent if there exists $P \in \operatorname{GL}_n(\mathbb{F})$ such that

(2.2)
$$Pf_1(h) = f_2(h)P, \quad \forall \ h \in H.$$

Since conjugate matrices have the same trace, equivalent representations have the same characters.

(2.3) Definition Let H be an abstract group. The group algebra $\mathbb{F}H$ is defined as follows. The elements of H are a basis of $\mathbb{F}H$ as a vector space over \mathbb{F} . The product in $\mathbb{F}H$ is the extension, by linearity, of the product in H.

In particular, by definition, the elements of $\mathbb{F}H$ are the formal linear combinations

$$\sum_{h \in H} \alpha_h h, \quad \alpha_h \in \mathbb{F}$$

with a finite number of non-zero coefficients. By definition, $\dim_{\mathbb{F}} \mathbb{F}H = |H|$.

The extension to $\mathbb{F}H$, by linearity, of any representation $f : H \to \mathrm{GL}_n(\mathbb{F})$ gives rise to an algebra homomorphism $f : \mathbb{F}H \to \mathrm{Mat}_n(\mathbb{F})$. Vice versa, if $f : \mathbb{F}H \to \mathrm{Mat}_n(\mathbb{F})$ is an algebra homomorphism, its restriction $f_H : H \to \mathrm{GL}_n(\mathbb{F})$ is a representation of H. (2.4) Remark If $f : H \to \operatorname{GL}_n(\mathbb{F})$ is a representation, then \mathbb{F}^n is an H-module with respect to hv := f(h)v, for all $v \in \mathbb{F}^n$. Vice versa, if \mathbb{F}^n is an $\mathbb{F}H$ -module, the map $f : H \to \operatorname{GL}_n(\mathbb{F})$ such that $f(h) = (he_1 | \dots | he_n)$ is a representation.

(2.5) Lemma Two representations $f_1 : H \to \operatorname{GL}_n(\mathbb{F})$ and $f_2 : H \to \operatorname{GL}_n(\mathbb{F})$ are equivalent if and only if the corresponding $\mathbb{F}H$ -modules $V_i = \mathbb{F}^n$ are isomorphic, i = 1, 2.

Proof Suppose first that f_1 and f_2 equivalent and let $P \in \operatorname{GL}_n(\mathbb{F})$ be as in point (3) of Definition 2.1. Then the multiplication by P, namely the map $\mu_P : V_1 \to V_2$, is an $\mathbb{F}H$ -isomorphism. Indeed μ_P is \mathbb{F} -linear and, for all $v \in \mathbb{F}^n$ and all $h \in H$:

$$\mu_P(f_1(h)v) = Pf_1(h)v = f_2(h)Pv = f_2(h)\mu_P(v).$$

Vice versa, if there exists an $\mathbb{F}H$ -isomorphism $\sigma : V_1 \to V_2$ and $P \in \operatorname{GL}_n(\mathbb{F})$ is the matrix of σ with respect to the canonical basis, then $Pf_1(h) = f_2(h)P$ for all $h \in H$. Thus f_1 and f_2 are equivalent.

Given two representations $f_i : H \to \operatorname{GL}_{n_i}(\mathbb{F}), i = 1, 2$, we may consider their sum, namely the representation $f : H \to \operatorname{GL}_{n_1+n_2}(\mathbb{F})$, defined by:

$$f(h) := \begin{pmatrix} f_1(h) & 0\\ 0 & f_2(h) \end{pmatrix}, \ \forall \ h \in H.$$

Set $M_i = \operatorname{Mat}_{n_i}(\mathbb{F})$. Clearly the subspace

$$M_1 \oplus M_2 := \left\{ \begin{pmatrix} A_1 & 0\\ 0 & A_2 \end{pmatrix} \mid A_1 \in \operatorname{Mat}_{n_1}(\mathbb{F}), \ A_2 \in \operatorname{Mat}_{n_2}(\mathbb{F}) \right\}$$

is an f(H)-module. Moreover the projections

$$\pi_i: M_1 \oplus M_2 \to \operatorname{Mat}_{n_i}(\mathbb{F})$$

are f(H)-homomorphisms. In particular f(H) Ker $\pi_i = \text{Ker } \pi_i$, for i = 1, 2.

(2.6) Lemma In the above notation, suppose that the representations

$$f_i: H \to \operatorname{GL}_{n_i}(\mathbb{F}), \quad i = 1, 2$$

are irreducible and inequivalent. Let $0 \neq M$ be a minimal subspace of $M_1 \oplus M_2$ such that f(H)M = M. Then either $\pi_1(M) = 0$ or $\pi_2(M) = 0$.

Proof Suppose, by contradiction, $M \not\leq \text{Ker } \pi_i$, for i = 1, 2. It follows that the f(H)module Ker $\pi_i \cap M$ is zero, i = 1, 2, by the minimality of M. Thus the restrictions

$$\pi_{i|M}: M \to \pi_i(M), \quad i = 1, 2$$

are \mathbb{F} -isomorphisms. In particular $n_1 = n_2 = \dim_{\mathbb{F}} M$. Again by the minimality of M, each $\pi_i(M)$ is a minimal $f_i(H)$ -submodule of $\operatorname{Mat}_{n_i}(\mathbb{F})$. It follows from Lemma 1.10 of this Chapter, with $A = f_i(H)$, $W = \pi_i(M)$, that there exist $f_i(H)$ isomorphisms $\tau_i : \pi_i(M) \cong \mathbb{F}^{n_i}$, i = 1, 2. Thus $\tau_2 \tau_1^{-1} : \mathbb{F}^{n_1} \to \mathbb{F}^{n_2}$ is a isomorphism of the $f_1(H)$ -module \mathbb{F}^{n_1} onto the $f_2(H)$ -module \mathbb{F}^{n_2} , a contradiction.

Note that, if G is a group and V is a G-module, then $GW \leq W$ if and only if GW = W, for any subspace W of V. Indeed $W = 1_G W \leq GW$.

(2.7) Theorem Let $f_i : H \to \operatorname{GL}_{n_i}(\mathbb{F})$ be irreducible pairwise inequivalent representations of a group H, with \mathbb{F} algebraically closed. Suppose that $m_i \in \operatorname{Mat}_{n_i}(\mathbb{F}), 1 \leq i \leq s$, are such that

$$\sum_{i=1}^{s} \operatorname{tr} \left(m_i f_i(h) \right) = 0_{\mathbb{F}}, \ \forall \ h \in H.$$

Then each $m_i = 0_{\operatorname{Mat}_{n_i}(\mathbb{F})}$, for $i = 1, \ldots, s$.

Proof Induction on s. Suppose s = 1 and put $n = n_1$, $f = f_1$. The set

$$M = \{ m \in \operatorname{Mat}_n(\mathbb{F}) \mid \operatorname{tr}(mf(h)) = 0, \ \forall \ h \in H \}$$

is a subspace. Moreover f(H)M = M since for all $h_1, h \in H, m \in M$:

$$tr(f(h_1)m f(h)) = tr(f(h) f(h_1)m) = tr(f(hh_1)m) = 0.$$

We want to show that $M = \{0_{\operatorname{Mat}_n(\mathbb{F})}\}$. If this is false, we may choose a non-zero subspace U of M of minimal dimension with respect to the property f(H)U = U. By Lemma 1.10 we have dim U = n and $Uv = \mathbb{F}^n$ for some v. If $\{u_1, \ldots, u_n\}$ is a basis of U, then $\{u_1v, \ldots, u_nv\}$ is a basis of \mathbb{F}^n . Up to conjugation we may suppose that

$$\{u_1v, \dots u_nv\} = \{e_1, \dots, e_n\}$$
 (canonical basis).

For all $w \in \mathbb{F}^n$ we consider the matrix A_w with columns $A_w e_i = u_i w$, i.e.,:

$$A_w = \left(\begin{array}{c} u_1 w \\ \dots \end{array} \right)$$

Let λ_w be an eigenvalue of A_w , with eigenvector $\sum_{i=1}^n \rho_i e_i \neq 0_{\mathbb{F}^n}$. Then:

$$0_{\mathbb{F}^n} = (A_w - \lambda_w I) \sum_{i=1}^n \rho_i e_i =$$
$$\sum_{i=1}^n \rho_i (A_w - \lambda_w I) e_i = \sum_{i=1}^n \rho_i (u_i w - \lambda_w u_i v) = \sum_{i=1}^n \rho_i u_i (w - \lambda_w v)$$

It follows that the vectors

$$u_1(w-\lambda_w v), \ldots, u_n(w-\lambda_w v)$$

are linearly dependent. Hence the space $U(w - \lambda_w v)$, generated by them, has dimension less then *n*. Since it is f(H)-invariant, the irreducibility of \mathbb{F}^n gives:

$$U(w - \lambda_w v) = \{0_{\mathbb{F}^n}\}, \forall w \in \mathbb{F}^n$$

In particular $u_i(e_j - \lambda_{e_j}v) = 0_{\mathbb{F}^n}$ for all i, j. Thus, setting $\lambda_{e_j} = \lambda_j$:

(2.8)
$$u_i e_j = \lambda_j u_i v = \lambda_j e_i, \quad 1 \le i, j \le n.$$

This tells us:

$$u_i = \left(\begin{array}{c} \lambda_1 e_i \end{array} \middle| \ldots \right| \lambda_n e_i \right), \quad 1 \le i \le n.$$
$$0 = \operatorname{tr}(u_i \operatorname{id}_G) = \operatorname{tr}(u_i) = \lambda_i, \quad 1 \le i \le n.$$

And now (2.8) gives that u_i has all columns equal to zero, hence $u_i = 0_{\mathbb{F}^n}$ for all *i*-s, against the assumption that u_1, \ldots, u_n are linearly independent. We conclude $M = \{0_{\text{Mat}_n(\mathbb{F})}\}$ and the first step of induction is proved.

Now suppose s > 1. Set $n = \sum_{i=1}^{s} n_i$ and consider the sum $f : H \to \operatorname{GL}_n(\mathbb{F})$ of the representations f_i , defined by:

$$f(h) := \begin{pmatrix} f_1(h) & & \\ & \dots & \\ & & f_s(h) \end{pmatrix}, \ \forall \ h \in H.$$

Let M be the following subset of $Mat_{n_1}(\mathbb{F}) \oplus \cdots \oplus Mat_{n_s}(\mathbb{F})$:

$$M := \left\{ m = \begin{pmatrix} c_1 & \\ & \dots & \\ & & c_s \end{pmatrix} \mid \operatorname{tr}(mf(h)) = \sum_{i=1}^s \operatorname{tr}(c_i f_i(h)) = 0, \quad \forall h \in H \right\}.$$

Clearly M is an f(H)-invariant subspace and we want to show that $M = \{0_{\operatorname{Mat}_n(\mathbb{F})}\}$. If this is false, we may choose a non-zero subspace U of M of minimal dimension with respect to the property f(H)U = U. By the assumption that the representations $f_i :$ $H \to \operatorname{GL}_{n_i}(\mathbb{F})$ are irreducible and pairwise inequivalent, Lemma 2.6 tells us that $\pi_i(U) =$ $0_{\operatorname{Mat}_{n_i}(\mathbb{F})}$ for at least one i. We may suppose i = 1. This means that, for all

$$\begin{pmatrix} u_1 & & \\ & \dots & \\ & & u_s \end{pmatrix} \in U$$

we have $u_1 = 0_{\operatorname{Mat}_{n_1}(\mathbb{F})}$. It follows

$$0_{\mathbb{F}} = \sum_{i=1}^{s} \operatorname{tr} \left(u_i f_i(h) \right) = \sum_{i=2}^{s} \operatorname{tr} \left(u_i f_i(h) \right), \quad \forall \ h \in H.$$

By induction $u_2 = \cdots = u_s = 0$, whence $U = \{0_{\operatorname{Mat}_n(\mathbb{F})}\}$, a contradiction.

(2.9) Corollary Let $f_i : G \to \operatorname{GL}_{n_i}(\mathbb{F}), i \leq s$, be pairwise inequivalent, absolutely irreducible representations of a group G with k conjugacy classes. Then $s \leq k$.

Proof We may suppose \mathbb{F} algebraically closed. Choose representatives g_1, \ldots, g_k of the conjugacy classes of G and consider the s vectors of \mathbb{F}^k :

$$v_1 = \begin{pmatrix} \operatorname{tr}(f_1(g_1)) \\ \dots \\ \operatorname{tr}(f_1(g_k)) \end{pmatrix}, \dots, \quad v_s = \begin{pmatrix} \operatorname{tr}(f_s(g_1)) \\ \dots \\ \operatorname{tr}(f_s(g_k)) \end{pmatrix}.$$

Suppose $\sum_{i=1}^{s} \alpha_i v_i = 0_{\mathbb{F}^n}$ for some $\alpha_i \in \mathbb{F}$. It follows

$$\sum_{i=1}^{s} \alpha_i \operatorname{tr} \left(f_i(g_j) \right) = \sum_{i=1}^{s} \operatorname{tr} \left(\alpha_i f_i(g_j) \right) = 0_{\mathbb{F}}, \quad 1 \le j \le k.$$

Every $g \in G$ is conjugate to a g_j and $tr(g) = tr(g_j)$. Thus:

$$\sum_{i=1}^{s} \operatorname{tr} \left(\alpha_{i} f_{i}(g) \right) = 0_{\mathbb{F}}, \quad \forall \ g \in G.$$

By the previous Theorem $\alpha_i = 0$ for all $i \leq s$. This means that the vectors v_1, \ldots, v_s are linearly independent in \mathbb{F}^k . We conclude $s \leq k$.

(2.10) Theorem Let G be a subgroup of $\operatorname{GL}_n(\mathbb{F})$ and denote by $\mathbb{F}G$ the linear subspace of $\operatorname{Mat}_n(\mathbb{F})$ generated by G. The following conditions are equivalent:

- (1) G is absolutely irreducible;
- (2) $\mathbb{F}G = \operatorname{Mat}_n(\mathbb{F})$ (equivalently, $\dim_{\mathbb{F}} \mathbb{F}G = n^2$);
- (3) G is irreducible and $C_{\operatorname{Mat}_n(\mathbb{F})}(G) = \mathbb{F}I_n$.

Proof

(1) \implies (2) Substituting \mathbb{F} with its algebraic closure, if necessary, we may suppose \mathbb{F} algebraically closed. Let g_1, \ldots, g_m be a basis of $\mathbb{F}G$ and consider the orthogonal space

 $\mathbb{F}G^{\perp}$ with respect to the bilinear form $(g_1, g_2) = \operatorname{tr}(g_1g_2)$ (see (3.7) in the Exercises of this Chapter). Since this form is non-degenerate, FG^{\perp} has dimension $n^2 - m$. Thus, if $m < n^2$, there exists a non-zero matrix m such that $\operatorname{tr} mg = 0$ for all $g \in G$, in contrast with Theorem 2.7.

(2) \implies (3) Any *G*-invariant subspace would be $\operatorname{Mat}_n(\mathbb{F})$ - invariant, against the irreducibility of $\operatorname{Mat}_n(\mathbb{F})$. The last claim follows from the fact that the center of $\operatorname{Mat}_n(\mathbb{F})$ consists of scalar matrices.

 $(3) \Longrightarrow (1)$ [6, Theorem 29.13].

Point (1) of the following Lemma explains why, in the study of classical groups, one is interested in the groups of isometries of non-degenerate forms. By point (2) an absolutely irreducible group can fix at most one form, necessarily non-degenerate, up to scalars.

(2.11) Lemma Let $J \in Mat_n(\mathbb{F})$ be such that $J^T = J^{\sigma}$ (σ a field automorphism), or $J^T = -J$ and let $G \leq GL_n(\mathbb{F})$ be a group of isometries of J, namely

$$g^T J g^\sigma = J, \quad \forall \ g \in G.$$

- (1) if det J = 0, then G is reducible;
- (2) if G is absolutely irreducible, and J' is such that $g^T J' g^{\sigma} = J'$ for all $g \in G$, then $J' = \lambda J$ for some $0 \neq \lambda \in \mathbb{F}$.

Proof

(1) The 0-eigenspace W of J is non-zero. W is G^{σ} -invariant, since:

$$Jg^{\sigma}w = (g^{-1})^T Jw = 0 \implies g^{\sigma}w \in W, \quad \forall \ g \in G, \ w \in W.$$

From the fact that W is G^{σ} -invariant, it follows that $W^{\sigma^{-1}}$ is G-invariant.

(2)
$$Jg^{\sigma}J^{-1} = (g^{-1})^T = J'g^{\sigma}J'^{-1}$$
 for all g gives $J'^{-1}J \in C_{\operatorname{Mat}_n(\mathbb{F})}(G^{\sigma}) = \mathbb{F}I_n$.

3 Exercises

(3.1) Exercise Let \mathbb{K} be a field extension of \mathbb{F} . Show that any subset $\{w_1, \ldots, w_m\}$ of \mathbb{F}^n which is linearly independent over \mathbb{F} is also linearly independent over \mathbb{K} .

(3.2) Exercise Let $G = GL_4(\mathbb{F})$ and $W = \langle e_1, e_2 \rangle \leq \mathbb{F}^4$. Determine:

- i) the stabilizer G_W of W in G;
- ii) the kernel of the restriction map defined by $h \mapsto h_W$ for all $h \in G_W$;
- iii) the group $(G_W)^W$ induced by G_W on W.

(3.3) Exercise Let $W \leq \mathbb{F}^n$, $G \leq \operatorname{GL}_n(\mathbb{F})$. Suppose that dim $W = m > \frac{n}{2}$ and that G_W acts irreducibly on W. Show that W is the only G_W -invariant subspace of dimension m. Deduce that $C_G(G_W) \leq G_W$.

(3.4) Exercise Show that $C_{\operatorname{Mat}_2(\mathbb{F})}(\operatorname{SL}_2(\mathbb{F})) = \mathbb{F}I_2$.

(3.5) Exercise Show, by induction on n, that $C_{\operatorname{Mat}_n(\mathbb{F})}(\operatorname{SL}_n(\mathbb{F})) = \mathbb{F}I_n$.

Hint. For $n \geq 3$, start with any (n-1)-dimensional subspace W. Consider its stabilizer H in $SL_n(\mathbb{F})$ and note that $H^W \cong GL_{n-1}(\mathbb{F})$ acts irreducibly on W. Deduce that, for every $c \in C_{Mat_n(\mathbb{F})}(H)$ and for every $w \in W$

$$cw = \lambda_c w, \quad \lambda_c \in \mathbb{F}.$$

Take another (n-1)-dimensional subspace $W' \neq W$. Again, for all $w' \in W'$:

$$cw' = \mu_c w', \quad \mu_c \in \mathbb{F}.$$

The conclusion follows easily from $\mathbb{F}^n = W + W'$.

(3.6) **Exercise** Show that the map (,): $Mat_n(\mathbb{F}) \times Mat_n(\mathbb{F}) \to \mathbb{F}$ defined by:

$$(3.7) (A,B) := tr(AB)$$

is bilinear and that it is non-degenerate.

(3.8) Exercise Let G = Sym(3) and set:

$$\begin{aligned} \sigma &= \mathrm{id} + (123) + (132) + (12) + (13) + (23), \\ \tau &= \mathrm{id} + (123) + (132) - (12) - (13) - (23), \\ \rho_1 &= \mathrm{id} + (12) - (13) - (123), \quad \rho_2 &= \mathrm{id} + (23) - (13) - (132), \\ \zeta_1 &= \mathrm{id} + (12) - (23) - (132), \quad \zeta_2 &= \mathrm{id} + (12) - (13) + (123) - (132). \end{aligned}$$

i) Show that, with respect to the product j(fg) := (jf)g for $j \in \{1, 2, 3\}$, $f, g \in G$:

$$\mathbb{C}G = \mathbb{C}\sigma \oplus \mathbb{C}\tau \oplus (\mathbb{C}\rho_1 + \mathbb{C}\rho_2) \oplus (\mathbb{C}\zeta_1 + \mathbb{C}\zeta_2)$$

is a decomposition of the group algebra $\mathbb{C}G$ into 4 minimal left ideals.

- ii) Calculate explicitly the representations f_i of G afforded by these ideals and show that they are irreducible (Clearly it is enough to write $f_i(12)$ and $f_i(13)$ for i = 1, 2, 3).
- iii) Show that 3 of them, say f_1 , f_2 , f_3 are inequivalent, of respective degrees 1, 1, 2.
- iv) Conclude that f_1 , f_2 , f_3 are the only irreducible representations of G over \mathbb{C} (use Corollary 2.9).