Chapter IV

Some facts from representation theory

This deep and important theory cannot be developed in these notes. We just give some basic results and refer, for a systematic exposition, to books like [6], [7], [13].

1 Irreducible and indecomposable modules

We consider the space \mathbb{F}^{n} of column vectors as a left module over the ring $\operatorname{Mat}_{n}(\mathbb{F})$ with respect to the usual product of matrices. Let A be a subset of $\operatorname{Mat}_{n}(\mathbb{F})$.
(1.1) Definition A subspace W of \mathbb{F}^{n} is A-invariant if $A W \leq W$, i.e., if:

$$
a w \in W, \quad \forall a \in A, \forall w \in W .
$$

Clearly W is A-invariant if and only if it is $\mathbb{F} A$-invariant, where $\mathbb{F} A$ denotes the linear subspace of $\operatorname{Mat}_{n}(\mathbb{F})$ generated by A. Moreover, when A is a subring of $\operatorname{Mat}_{n}(\mathbb{F})$, then W is A-invariant if and only if it is a module over A.
(1.2) Lemma Let $\mathbb{F} \leq \mathbb{K}$, a field extension. If w_{1}, \ldots, w_{m} are linearly independent vectors of \mathbb{F}^{n}, then they are linearly independent in \mathbb{K}^{n}.

Proof There exists $P \in \mathrm{GL}_{n}(\mathbb{F})$ such that $P w_{j}=e_{j}, 1 \leq j \leq m$. So assume $\sum_{i=1}^{m} k_{i} w_{i}=$ 0 , with $k_{i} \in \mathbb{K}$. Multiplying by P we get $\sum_{i=1}^{m} k_{i} e_{i}=0$, whence $k_{1}=\cdots=k_{m}=0$.

A subspace W of \mathbb{F}^{n} can be extended to the subspace $W \otimes_{\mathbb{F}} \mathbb{K}$ of \mathbb{K}^{n} defined as the subspace of \mathbb{K}^{n} generated by any basis $\mathcal{B}=\left\{w_{1}, \ldots, w_{m}\right\}$ of W, namely:

$$
W \otimes_{\mathbb{F}} \mathbb{K}=\left\{\sum_{j=1}^{m} k_{j} w_{j} \mid k_{j} \in \mathbb{K}\right\} \quad \text { (tensor product) }
$$

\mathcal{B} is a basis of $W \otimes_{\mathbb{F}} \mathbb{K}$, by Lemma 1.2. Thus, if W is an A-module, also $W \otimes_{\mathbb{F}} \mathbb{K}$ becomes an A-module via the action:

$$
a \sum_{j=1}^{m} k_{j} w_{j}=\sum_{j=1}^{m} k_{j} a w_{j} \quad \forall a \in A .
$$

(1.3) Definition Let A be a subring (or a subgroup) of $\operatorname{Mat}_{n}(\mathbb{F})$ and W be an A invariant subspace of \mathbb{F}^{n}. The A-module W is said to be:
(1) indecomposable, if there is no decomposition $W=W_{1} \oplus W_{2}$ into proper A-invariant subspaces W_{1}, W_{2};
(2) irreducible, if the only A-invariant subspaces of W are $\left\{0_{\mathbb{F}^{n}}\right\}$ and W;
(3) absolutely irreducible, if $W \otimes_{\mathbb{F}} \mathbb{K}$ is irreducible for any field extension \mathbb{K} of \mathbb{F}.

Accordingly, a subring (or a subgroup) A of $\operatorname{Mat}_{n}(\mathbb{F})$ is said to be:

- indecomposable, if \mathbb{F}^{n} is indecomposable as an A-module;
- irreducible, if \mathbb{F}^{n} is irreducible as an A-module;
- absolutely irreducible, if \mathbb{F}^{n} is absolutely irreducible as an A-module.

Clearly an irreducible group is indecomposable. The converse is not true in general, as shown in Example 1.5 below. It is true when G is finite and \mathbb{F} has characteristic p where $p=0$ or p does not divide $|G|$ (see Theorem 1.11).
(1.4) Example The subgroup G of $\mathrm{GL}_{2}(\mathbb{R})$, generated by the matrix $g=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$, is irreducible but not absolutely irreducible.

Indeed g has no eigenvalue in \mathbb{R}. Thus \mathbb{R}^{2} has no 1 -dimensional G-submodule. But g has eigenvalues in \mathbb{C}. Thus, for example, $\left\langle\binom{ 1}{i}\right\rangle$ is G-invariant in \mathbb{C}^{2}.
(1.5) Example The subgroup $G=\left\{\left(\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right), \mid t \in \mathbb{F}\right\}$ of $\mathrm{GL}_{2}(\mathbb{F})$ is reducible, but indecomposable, for any field \mathbb{F}.
G is reducible because $\left\langle e_{1}\right\rangle$ is G-invariant. Suppose $\mathbb{R}^{2}=\left\langle v_{1}\right\rangle \oplus\left\langle v_{2}\right\rangle$ where each $\left\langle v_{i}\right\rangle$ is G-invariant. Then v_{1}, v_{2} should be a basis of eigenvectors of G. Since every $g \in G$ has only the eigenvalue 1 , one gets $G v_{1}=v_{1}, G v_{2}=v_{2}$, whence the contradiction $G=I$.
(1.6) Example The subgroup G of $\mathrm{GL}_{2}(\mathbb{R})$, generated by the matrices

$$
g_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), g_{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

is absolutely irreducible.
Indeed the only 1 -dimensional g_{1}-invariant subspaces are its eigenspaces, namely $\left\langle e_{1}\right\rangle$ and $\left\langle e_{2}\right\rangle$, but they are not g_{2}-invariant.
(1.7) Lemma $\operatorname{Mat}_{n}(\mathbb{F})$ is absolutely irreducible for any field \mathbb{F}. Moreover its center Z coincides with the field $\mathbb{F} I_{n}$ of scalar matrices.

Proof Set $A=\operatorname{Mat}_{n}(\mathbb{F})$ and let $\{0\} \neq W$ be an A-invariant subspace of \mathbb{K}^{n}, where \mathbb{K} is a field extension of \mathbb{F}. Take $0 \neq w \in W$. Then there exists a non-zero component α_{i} of w. From $e_{i, i} \in A$, it follows that $e_{i, i} w=\alpha_{i} e_{i} \in W$. Hence $e_{i} \in W$. Considering in A the permutation matrices $\pi_{(i, j)}$ we get that $\pi_{(i, j)} e_{i}=e_{j} \in W$ for $1 \leq j \leq n$. So W contains the canonical basis, whence $W=\mathbb{K}^{n}$.

By direct calculation one sees that a matrix commutes with all matrices $e_{i j} \in \operatorname{Mat}_{n}(\mathbb{F})$ if and only if it is scalar.
(1.8) Theorem Let G be one of the following classical groups:

$$
\mathrm{SL}_{n}(\mathbb{F}), \mathrm{SU}_{n}(\mathbb{F}), \mathrm{Sp}_{n}(\mathbb{F}), n=2 m, \Omega_{n}(\mathbb{F}, Q)
$$

Then $\mathbb{F} G=\operatorname{Mat}_{n}(\mathbb{F})$, except when $G=\Omega_{2}(\mathbb{F}, Q)$. In particular G is absolutely irreducible and its centralizer in $\operatorname{Mat}_{n}(\mathbb{F})$ consists of the scalar matrices.

Proof One can see that in each case, provided $G \neq \Omega_{2}(\mathbb{F}, Q)$, the group G contains n^{2} linearly independent matrices (for instance the generators of these groups given in the previous Chapter). Hence the subspace $\mathbb{F} G$ generated by G coincides with $\operatorname{Mat}_{n}(\mathbb{F})$, which is absolutely irreducible.
(1.9) Lemma (Schur's Lemma) Let $A \leq \operatorname{Mat}_{n}(\mathbb{F})$ be irreducible. Then

$$
C=C_{\operatorname{Mat}_{n}(\mathbb{F})}(A):=\left\{c \in \operatorname{Mat}_{n}(\mathbb{F}) \mid c a=a c, \forall a \in A\right\}
$$

is a division algebra over $\mathbb{F} I_{n}$. In particular, if commutative, C is a field.

Proof It is easy to see that C is a subalgebra of $\operatorname{Mat}_{n}(\mathbb{F})$, which contains $Z=\mathbb{F} I_{n}$. Consider a non-zero matrix $c \in C$. The subspace $c \mathbb{F}^{n}$ is A-invariant, as:

$$
a\left(c \mathbb{F}^{n}\right)=(a c) \mathbb{F}^{n}=(c a) \mathbb{F}^{n}=c\left(a \mathbb{F}^{n}\right) \leq c \mathbb{F}^{n}, \quad \forall a \in A
$$

$0_{\operatorname{Mat}_{n}(\mathbb{F})} \neq c \Longrightarrow c \mathbb{F}^{n} \neq\left\{0_{\mathbb{F}^{n}}\right\}$. It follows $c \mathbb{F}^{n}=\mathbb{F}^{n}$, by the irreducibility of A. Since the multiplication by c is surjective, it is injective. Thus c has inverse c^{-1}. Clearly $c^{-1} \in C$.

Up to here we considered the natural $\operatorname{Mat}_{n}(\mathbb{F})$-module \mathbb{F}^{n}. But we may also consider the left regular module $\operatorname{Mat}_{n}(\mathbb{F}) \operatorname{Mat}_{n}(\mathbb{F})$ and compare these two modules.
(1.10) Lemma Let A be a subring of $\operatorname{Mat}_{n}(\mathbb{F})$, acting irreducibly on \mathbb{F}^{n}, and let $\{0\} \neq$ $W \leq \operatorname{Mat}_{n}(\mathbb{F})$ be a minimal A-invariant subspace, in the regular action of $\operatorname{Mat}_{n}(\mathbb{F})$ on itself. Then there exists a vector e_{i} of the canonical basis such that $\mathbb{F}^{n}=W e_{i}$. Moreover W is isomorphic to \mathbb{F}^{n}, as an A-module. In particular $\operatorname{dim}_{\mathbb{F}} W=n$.

Proof Choose $0 \neq w \in W$. Then w has a non-zero column $w e_{i}$. The subspace $W e_{i}$ of \mathbb{F}^{n} is such that $A\left(W e_{i}\right) \leq W e_{i}$. From $w e_{i} \in W e_{i}$ it follows $W e_{i} \neq\{0\}$. Hence $W e_{i}=\mathbb{F}^{n}$, by the irreducibility of A. Finally, the map $f: W \rightarrow \mathbb{F}^{n}$ defined by $w \mapsto w e_{i}$ is an \mathbb{F}-isomorphism such that $f(a w)=a f(w)$ for all $a \in A$.
(1.11) Theorem (Maschke) Let $G \leq \mathrm{GL}_{n}(\mathbb{F})$ be a finite group, where \mathbb{F} has characteristic 0 or a prime p which does not divide $|G|$. Then every G-invariant subspace W of \mathbb{F}^{n} has a G-invariant complement.

Proof Let $\mathbb{F}^{n}=W \oplus U$, where U is an \mathbb{F}-complement of W, and call $\pi: \mathbb{F}^{n} \rightarrow U$ the projection. Consider $\psi: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ defined by:

$$
\psi(v):=\frac{1}{|G|} \sum_{x \in G} x^{-1} \pi(x v), \quad \forall v \in \mathbb{F}^{n}
$$

The image of ψ, namely $\psi\left(\mathbb{F}^{n}\right)$, is G-invariant, since for all $g \in G$ and $v \in \mathbb{F}^{n}$:

$$
\psi(g v):=\frac{1}{|G|} \sum_{x \in G} x^{-1} \pi(x g v)=\frac{1}{|G|} g \sum_{x \in G}\left(g^{-1} x^{-1}\right) \pi(x g v)=g \psi(v) .
$$

Moreover, from $u-\pi(u) \in W$ for all $u \in \mathbb{F}^{n}$, it follows that:

$$
v-\psi(v)=\frac{1}{|G|} \sum_{x \in G} x^{-1} x v-\frac{1}{|G|} \sum_{x \in G} x^{-1} \pi(x v)=\frac{1}{|G|} \sum_{x \in G} x^{-1}(x v-\pi(x v)) \in W .
$$

Thus $v=(v-\psi(v))+\psi(v)$ for all $v \in \mathbb{F}^{n}$, gives $\mathbb{F}^{n}=W+\psi\left(\mathbb{F}^{n}\right)$.
For all $w \in W$ and all $x \in G$ we have $\pi(x w)=0$. So $\psi(w)=0$, whence $\psi(v-\psi(v))=0$, for all v. This gives $\psi^{2}=\psi$ and $W \cap \psi\left(\mathbb{F}^{n}\right)=\{0\}$. Indeed, from $w=\psi(v) \in W \cap \psi(V)$, we have $\psi(v)=\psi^{2}(v)=\psi(w)=0$.

We conclude that $\psi\left(\mathbb{F}^{n}\right)$ is a G-invariant complement of W in \mathbb{F}^{n}.

2 Representations of groups

(2.1) Definition Let H be an abstract group.
(1) A representation of H of degree n over \mathbb{F} is a homomorphism $f: H \rightarrow \mathrm{GL}_{n}(\mathbb{F})$. The representation f is said to be irreducible if \mathbb{F}^{n} is an irreducible $f(H)$-module.
(2) The character χ of f is the map $\chi: H \rightarrow \mathbb{F}$ such that

$$
\chi(h):=\operatorname{tr}(f(h)), \quad \forall h \in H .
$$

(3) Two representations $f_{i}: H \rightarrow \mathrm{GL}_{n}(\mathbb{F}), i=1,2$ are said to be equivalent if there exists $P \in \mathrm{GL}_{n}(\mathbb{F})$ such that

$$
\begin{equation*}
P f_{1}(h)=f_{2}(h) P, \quad \forall h \in H . \tag{2.2}
\end{equation*}
$$

Since conjugate matrices have the same trace, equivalent representations have the same characters.
(2.3) Definition Let H be an abstract group. The group algebra $\mathbb{F} H$ is defined as follows. The elements of H are a basis of $\mathbb{F} H$ as a vector space over \mathbb{F}. The product in $\mathbb{F} H$ is the extension, by linearity, of the product in H.

In particular, by definition, the elements of $\mathbb{F} H$ are the formal linear combinations

$$
\sum_{h \in H} \alpha_{h} h, \quad \alpha_{h} \in \mathbb{F}
$$

with a finite number of non-zero coefficients. By definition, $\operatorname{dim}_{\mathbb{F}} \mathbb{F} H=|H|$.
The extension to $\mathbb{F} H$, by linearity, of any representation $f: H \rightarrow \mathrm{GL}_{n}(\mathbb{F})$ gives rise to an algebra homomorphism $f: \mathbb{F} H \rightarrow \operatorname{Mat}_{n}(\mathbb{F})$. Vice versa, if $f: \mathbb{F} H \rightarrow \operatorname{Mat}_{n}(\mathbb{F})$ is an algebra homomorphism, its restriction $f_{H}: H \rightarrow \mathrm{GL}_{n}(\mathbb{F})$ is a representation of H.
(2.4) Remark If $f: H \rightarrow \mathrm{GL}_{n}(\mathbb{F})$ is a representation, then \mathbb{F}^{n} is an H-module with respect to $h v:=f(h) v$, for all $v \in \mathbb{F}^{n}$. Vice versa, if \mathbb{F}^{n} is an $\mathbb{F} H$-module, the map $f: H \rightarrow \mathrm{GL}_{n}(\mathbb{F})$ such that $f(h)=\left(h e_{1}|\ldots| h e_{n}\right)$ is a representation.
(2.5) Lemma Two representations $f_{1}: H \rightarrow \mathrm{GL}_{n}(\mathbb{F})$ and $f_{2}: H \rightarrow \mathrm{GL}_{n}(\mathbb{F})$ are equivalent if and only if the corresponding $\mathbb{F} H$-modules $V_{i}=\mathbb{F}^{n}$ are isomorphic, $i=1,2$. Proof Suppose first that f_{1} and f_{2} equivalent and let $P \in \mathrm{GL}_{n}(\mathbb{F})$ be as in point (3) of Definition 2.1. Then the the multiplication by P, namely the map $\mu_{P}: V_{1} \rightarrow V_{2}$, is an $\mathbb{F} H$-isomorphism. Indeed μ_{P} is \mathbb{F}-linear and, for all $v \in \mathbb{F}^{n}$ and all $h \in H$:

$$
\mu_{P}\left(f_{1}(h) v\right)=P f_{1}(h) v=f_{2}(h) P v=f_{2}(h) \mu_{P}(v)
$$

Vice versa, if there exists an $\mathbb{F} H$-isomorphism $\sigma: V_{1} \rightarrow V_{2}$ and $P \in \mathrm{GL}_{n}(\mathbb{F})$ is the matrix of σ with respect to the canonical basis, then $P f_{1}(h)=f_{2}(h) P$ for all $h \in H$. Thus f_{1} and f_{2} are equivalent.

Given two representations $f_{i}: H \rightarrow \mathrm{GL}_{n_{i}}(\mathbb{F}), i=1,2$, we may consider their sum, namely the representation $f: H \rightarrow \mathrm{GL}_{n_{1}+n_{2}}(\mathbb{F})$, defined by:

$$
f(h):=\left(\begin{array}{cc}
f_{1}(h) & 0 \\
0 & f_{2}(h)
\end{array}\right), \forall h \in H .
$$

Set $M_{i}=\operatorname{Mat}_{n_{i}}(\mathbb{F})$. Clearly the subspace

$$
M_{1} \oplus M_{2}:=\left\{\left.\left(\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right) \right\rvert\, A_{1} \in \operatorname{Mat}_{n_{1}}(\mathbb{F}), A_{2} \in \operatorname{Mat}_{n_{2}}(\mathbb{F})\right\}
$$

is an $f(H)$-module. Moreover the projections

$$
\pi_{i}: M_{1} \oplus M_{2} \rightarrow \operatorname{Mat}_{n_{i}}(\mathbb{F})
$$

are $f(H)$-homomorphisms. In particular $f(H) \operatorname{Ker} \pi_{i}=\operatorname{Ker} \pi_{i}$, for $i=1,2$.
(2.6) Lemma In the above notation, suppose that the representations

$$
f_{i}: H \rightarrow \mathrm{GL}_{n_{i}}(\mathbb{F}), \quad i=1,2
$$

are irreducible and inequivalent. Let $0 \neq M$ be a minimal subspace of $M_{1} \oplus M_{2}$ such that $f(H) M=M$. Then either $\pi_{1}(M)=0$ or $\pi_{2}(M)=0$.

Proof Suppose, by contradiction, $M \not \leq$ Ker π_{i}, for $i=1,2$. It follows that the $f(H)$ module Ker $\pi_{i} \cap M$ is zero, $i=1,2$, by the minimality of M. Thus the restrictions

$$
\pi_{i \mid M}: M \rightarrow \pi_{i}(M), \quad i=1,2
$$

are \mathbb{F}-isomorphisms. In particular $n_{1}=n_{2}=\operatorname{dim}_{\mathbb{F}} M$. Again by the minimality of M, each $\pi_{i}(M)$ is a minimal $f_{i}(H)$-submodule of $\operatorname{Mat}_{n_{i}}(\mathbb{F})$. It follows from Lemma 1.10 of this Chapter, with $A=f_{i}(H), W=\pi_{i}(M)$, that there exist $f_{i}(H)$ isomorphisms $\tau_{i}: \pi_{i}(M) \cong \mathbb{F}^{n_{i}}, i=1,2$. Thus $\tau_{2} \tau_{1}^{-1}: \mathbb{F}^{n_{1}} \rightarrow \mathbb{F}^{n_{2}}$ is a isomorphism of the $f_{1}(H)$-module $\mathbb{F}^{n_{1}}$ onto the $f_{2}(H)$-module $\mathbb{F}^{n_{2}}$, a contradiction.

Note that, if G is a group and V is a G-module, then $G W \leq W$ if and only if $G W=W$, for any subspace W of V. Indeed $W=1_{G} W \leq G W$.
(2.7) Theorem Let $f_{i}: H \rightarrow \mathrm{GL}_{n_{i}}(\mathbb{F})$ be irreducible pairwise inequivalent representations of a group H, with \mathbb{F} algebraically closed. Suppose that $m_{i} \in \operatorname{Mat}_{n_{i}}(\mathbb{F}), 1 \leq i \leq s$, are such that

$$
\sum_{i=1}^{s} \operatorname{tr}\left(m_{i} f_{i}(h)\right)=0_{\mathbb{F}}, \forall h \in H
$$

Then each $m_{i}=0_{\operatorname{Mat}_{n_{i}}(\mathbb{F})}$, for $i=1, \ldots, s$.
Proof Induction on s. Suppose $s=1$ and put $n=n_{1}, f=f_{1}$. The set

$$
M=\left\{m \in \operatorname{Mat}_{n}(\mathbb{F}) \mid \operatorname{tr}(m f(h))=0, \forall h \in H\right\}
$$

is a subspace. Moreover $f(H) M=M$ since for all $h_{1}, h \in H, m \in M$:

$$
\operatorname{tr}\left(f\left(h_{1}\right) m f(h)\right)=\operatorname{tr}\left(f(h) f\left(h_{1}\right) m\right)=\operatorname{tr}\left(f\left(h h_{1}\right) m\right)=0
$$

We want to show that $M=\left\{0_{\operatorname{Mat}_{n}(\mathbb{F})}\right\}$. If this is false, we may choose a non-zero subspace U of M of minimal dimension with respect to the property $f(H) U=U$. By Lemma 1.10 we have $\operatorname{dim} U=n$ and $U v=\mathbb{F}^{n}$ for some v. If $\left\{u_{1}, \ldots u_{n}\right\}$ is a basis of U, then $\left\{u_{1} v, \ldots u_{n} v\right\}$ is a basis of \mathbb{F}^{n}. Up to conjugation we may suppose that

$$
\left\{u_{1} v, \ldots u_{n} v\right\}=\left\{e_{1}, \ldots, e_{n}\right\} \quad \text { (canonical basis). }
$$

For all $w \in \mathbb{F}^{n}$ we consider the matrix A_{w} with columns $A_{w} e_{i}=u_{i} w$, i.e.,:

$$
A_{w}=\left(u_{1} w|\ldots| u_{n} w\right)
$$

Let λ_{w} be an eigenvalue of A_{w}, with eigenvector $\sum_{i=1}^{n} \rho_{i} e_{i} \neq 0_{\mathbb{F}^{n}}$. Then:

$$
\begin{gathered}
0_{\mathbb{F}^{n}}=\left(A_{w}-\lambda_{w} I\right) \sum_{i=1}^{n} \rho_{i} e_{i}= \\
\sum_{i=1}^{n} \rho_{i}\left(A_{w}-\lambda_{w} I\right) e_{i}=\sum_{i=1}^{n} \rho_{i}\left(u_{i} w-\lambda_{w} u_{i} v\right)=\sum_{i=1}^{n} \rho_{i} u_{i}\left(w-\lambda_{w} v\right) .
\end{gathered}
$$

It follows that the vectors

$$
u_{1}\left(w-\lambda_{w} v\right), \ldots, u_{n}\left(w-\lambda_{w} v\right)
$$

are linearly dependent. Hence the space $U\left(w-\lambda_{w} v\right)$, generated by them, has dimension less then n. Since it is $f(H)$-invariant, the irreducibility of \mathbb{F}^{n} gives:

$$
U\left(w-\lambda_{w} v\right)=\left\{0_{\mathbb{F}^{n}}\right\}, \forall w \in \mathbb{F}^{n} .
$$

In particular $u_{i}\left(e_{j}-\lambda_{e_{j}} v\right)=0_{\mathbb{F}^{n}}$ for all i, j. Thus, setting $\lambda_{e_{j}}=\lambda_{j}$:

$$
\begin{equation*}
u_{i} e_{j}=\lambda_{j} u_{i} v=\lambda_{j} e_{i}, \quad 1 \leq i, j \leq n . \tag{2.8}
\end{equation*}
$$

This tells us:

$$
\begin{gathered}
u_{i}=\left(\lambda_{1} e_{i}|\ldots| \lambda_{n} e_{i}\right), \quad 1 \leq i \leq n . \\
0=\operatorname{tr}\left(u_{i} \operatorname{id}_{G}\right)=\operatorname{tr}\left(u_{i}\right)=\lambda_{i}, \quad 1 \leq i \leq n .
\end{gathered}
$$

And now (2.8) gives that u_{i} has all columns equal to zero, hence $u_{i}=0_{\mathbb{F}^{n}}$ for all i-s, against the assumption that u_{1}, \ldots, u_{n} are linearly independent. We conclude $M=$ $\left\{0_{\operatorname{Mat}_{n}(\mathbb{F})}\right\}$ and the first step of induction is proved.

Now suppose $s>1$. Set $n=\sum_{i=1}^{s} n_{i}$ and consider the sum $f: H \rightarrow \mathrm{GL}_{n}(\mathbb{F})$ of the representations f_{i}, defined by:

$$
f(h):=\left(\begin{array}{ccc}
f_{1}(h) & & \\
& \cdots & \\
& & f_{s}(h)
\end{array}\right), \forall h \in H .
$$

Let M be the following subset of $\operatorname{Mat}_{n_{1}}(\mathbb{F}) \oplus \cdots \oplus \operatorname{Mat}_{n_{s}}(\mathbb{F})$:

$$
M:=\left\{\left.m=\left(\begin{array}{lll}
c_{1} & & \\
& \ldots & \\
& & c_{s}
\end{array}\right) \right\rvert\, \operatorname{tr}(m f(h))=\sum_{i=1}^{s} \operatorname{tr}\left(c_{i} f_{i}(h)\right)=0, \quad \forall h \in H\right\} .
$$

Clearly M is an $f(H)$-invariant subspace and we want to show that $M=\left\{0_{\operatorname{Mat}_{n}(\mathbb{F})}\right\}$. If this is false, we may choose a non-zero subspace U of M of minimal dimension with respect to the property $f(H) U=U$. By the assumption that the representations f_{i} : $H \rightarrow \mathrm{GL}_{n_{i}}(\mathbb{F})$ are irreducible and pairwise inequivalent, Lemma 2.6 tells us that $\pi_{i}(U)=$ $0_{\text {Mat }_{n_{i}}(\mathbb{F})}$ for at least one i. We may suppose $i=1$. This means that, for all

$$
\left(\begin{array}{ccc}
u_{1} & & \\
& \ldots & \\
& & u_{s}
\end{array}\right) \in U
$$

we have $u_{1}=0_{\text {Mat }_{n_{1}}(\mathbb{F})}$. It follows

$$
0_{\mathbb{F}}=\sum_{i=1}^{s} \operatorname{tr}\left(u_{i} f_{i}(h)\right)=\sum_{i=2}^{s} \operatorname{tr}\left(u_{i} f_{i}(h)\right), \quad \forall h \in H .
$$

By induction $u_{2}=\cdots=u_{s}=0$, whence $U=\left\{0_{\operatorname{Mat}_{n}(\mathbb{F})}\right\}$, a contradiction.
(2.9) Corollary Let $f_{i}: G \rightarrow \mathrm{GL}_{n_{i}}(\mathbb{F}), i \leq s$, be pairwise inequivalent, absolutely irreducible representations of a group G with k conjugacy classes. Then $s \leq k$.

Proof We may suppose \mathbb{F} algebraically closed. Choose representatives g_{1}, \ldots, g_{k} of the conjugacy classes of G and consider the s vectors of \mathbb{F}^{k} :

$$
v_{1}=\left(\begin{array}{c}
\operatorname{tr}\left(f_{1}\left(g_{1}\right)\right) \\
\cdots \\
\operatorname{tr}\left(f_{1}\left(g_{k}\right)\right)
\end{array}\right), \ldots, \quad v_{s}=\left(\begin{array}{c}
\operatorname{tr}\left(f_{s}\left(g_{1}\right)\right) \\
\ldots \\
\operatorname{tr}\left(f_{s}\left(g_{k}\right)\right)
\end{array}\right) .
$$

Suppose $\sum_{i=1}^{s} \alpha_{i} v_{i}=0_{\mathbb{F}^{n}}$ for some $\alpha_{i} \in \mathbb{F}$. It follows

$$
\sum_{i=1}^{s} \alpha_{i} \operatorname{tr}\left(f_{i}\left(g_{j}\right)\right)=\sum_{i=1}^{s} \operatorname{tr}\left(\alpha_{i} f_{i}\left(g_{j}\right)\right)=0_{\mathbb{F}}, \quad 1 \leq j \leq k
$$

Every $g \in G$ is conjugate to a g_{j} and $\operatorname{tr}(g)=\operatorname{tr}\left(g_{j}\right)$. Thus:

$$
\sum_{i=1}^{s} \operatorname{tr}\left(\alpha_{i} f_{i}(g)\right)=0_{\mathbb{F}}, \quad \forall g \in G .
$$

By the previous Theorem $\alpha_{i}=0$ for all $i \leq s$. This means that the vectors v_{1}, \ldots, v_{s} are linearly independent in \mathbb{F}^{k}. We conclude $s \leq k$.
(2.10) Theorem Let G be a subgroup of $\mathrm{GL}_{n}(\mathbb{F})$ and denote by $\mathbb{F} G$ the linear subspace of $\operatorname{Mat}_{n}(\mathbb{F})$ generated by G. The following conditions are equivalent:
(1) G is absolutely irreducible;
(2) $\mathbb{F} G=\operatorname{Mat}_{n}(\mathbb{F})$ (equivalently, $\operatorname{dim}_{\mathbb{F}} \mathbb{F} G=n^{2}$);
(3) G is irreducible and $C_{\operatorname{Mat}_{n}(\mathbb{F})}(G)=\mathbb{F} I_{n}$.

Proof
$(1) \Longrightarrow(2)$ Substituting \mathbb{F} with its algebraic closure, if necessary, we may suppose \mathbb{F} algebraically closed. Let g_{1}, \ldots, g_{m} be a basis of $\mathbb{F} G$ and consider the orthogonal space
$\mathbb{F} G^{\perp}$ with respect to the bilinear form $\left(g_{1}, g_{2}\right)=\operatorname{tr}\left(g_{1} g_{2}\right)$ (see (3.7) in the Exercises of this Chapter). Since this form is non-degenerate, $F G^{\perp}$ has dimension $n^{2}-m$. Thus, if $m<n^{2}$, there exists a non-zero matrix m such that $\operatorname{tr} m g=0$ for all $g \in G$, in contrast with Theorem 2.7.
$(2) \Longrightarrow(3)$ Any G-invariant subspace would be $\operatorname{Mat}_{n}(\mathbb{F})$ - invariant, against the irreducibility of $\operatorname{Mat}_{n}(\mathbb{F})$. The last claim follows from the fact that the center of $\operatorname{Mat}_{n}(\mathbb{F})$ consists of scalar matrices.
$(3) \Longrightarrow(1)[6$, Theorem 29.13].

Point (1) of the following Lemma explains why, in the study of classical groups, one is interested in the groups of isometries of non-degenerate forms. By point (2) an absolutely irreducible group can fix at most one form, necessarily non-degenerate, up to scalars.
(2.11) Lemma Let $J \in \operatorname{Mat}_{n}(\mathbb{F})$ be such that $J^{T}=J^{\sigma}$ (σ a field automorphism), or $J^{T}=-J$ and let $G \leq \mathrm{GL}_{n}(\mathbb{F})$ be a group of isometries of J, namely

$$
g^{T} J g^{\sigma}=J, \quad \forall g \in G
$$

(1) if $\operatorname{det} J=0$, then G is reducible;
(2) if G is absolutely irreducible, and J^{\prime} is such that $g^{T} J^{\prime} g^{\sigma}=J^{\prime}$ for all $g \in G$, then $J^{\prime}=\lambda J$ for some $0 \neq \lambda \in \mathbb{F}$.

Proof
(1) The 0-eigenspace W of J is non-zero. W is G^{σ}-invariant, since:

$$
J g^{\sigma} w=\left(g^{-1}\right)^{T} J w=0 \Longrightarrow g^{\sigma} w \in W, \quad \forall g \in G, w \in W
$$

From the fact that W is G^{σ}-invariant, it follows that $W^{\sigma^{-1}}$ is G-invariant.
(2) $J g^{\sigma} J^{-1}=\left(g^{-1}\right)^{T}=J^{\prime} g^{\sigma} J^{\prime-1}$ for all g gives $J^{\prime-1} J \in C_{\operatorname{Mat}_{n}(\mathbb{F})}\left(G^{\sigma}\right)=\mathbb{F} I_{n}$.

3 Exercises

(3.1) Exercise Let \mathbb{K} be a field extension of \mathbb{F}. Show that any subset $\left\{w_{1}, \ldots, w_{m}\right\}$ of \mathbb{F}^{n} which is linearly independent over \mathbb{F} is also linearly independent over \mathbb{K}.
(3.2) Exercise Let $G=\mathrm{GL}_{4}(\mathbb{F})$ and $W=\left\langle e_{1}, e_{2}\right\rangle \leq \mathbb{F}^{4}$. Determine:
i) the stabilizer G_{W} of W in G;
ii) the kernel of the restriction map defined by $h \mapsto h_{W}$ for all $h \in G_{W}$;
iii) the group $\left(G_{W}\right)^{W}$ induced by G_{W} on W.
(3.3) Exercise Let $W \leq \mathbb{F}^{n}, G \leq \mathrm{GL}_{n}(\mathbb{F})$. Suppose that $\operatorname{dim} W=m>\frac{n}{2}$ and that G_{W} acts irreducibly on W. Show that W is the only G_{W}-invariant subspace of dimension m. Deduce that $C_{G}\left(G_{W}\right) \leq G_{W}$.
(3.4) Exercise Show that $C_{\operatorname{Mat}_{2}(\mathbb{F})}\left(\mathrm{SL}_{2}(\mathbb{F})\right)=\mathbb{F} I_{2}$.
(3.5) Exercise Show, by induction on n, that $C_{\operatorname{Mat}_{n}(\mathbb{F})}\left(\operatorname{SL}_{n}(\mathbb{F})\right)=\mathbb{F} I_{n}$.

Hint. For $n \geq 3$, start with any ($n-1$)-dimensional subspace W. Consider its stabilizer H in $\mathrm{SL}_{n}(\mathbb{F})$ and note that $H^{W} \cong \mathrm{GL}_{n-1}(\mathbb{F})$ acts irreducibly on W. Deduce that, for every $c \in C_{\operatorname{Mat}_{n}(\mathbb{F})}(H)$ and for every $w \in W$

$$
c w=\lambda_{c} w, \quad \lambda_{c} \in \mathbb{F} .
$$

Take another $(n-1)$-dimensional subspace $W^{\prime} \neq W$. Again, for all $w^{\prime} \in W^{\prime}$:

$$
c w^{\prime}=\mu_{c} w^{\prime}, \quad \mu_{c} \in \mathbb{F} .
$$

The conclusion follows easily from $\mathbb{F}^{n}=W+W^{\prime}$.
(3.6) Exercise Show that the map (,): $\operatorname{Mat}_{n}(\mathbb{F}) \times \operatorname{Mat}_{n}(\mathbb{F}) \rightarrow \mathbb{F}$ defined by:

$$
\begin{equation*}
(A, B):=\operatorname{tr}(A B) \tag{3.7}
\end{equation*}
$$

is bilinear and that it is non-degenerate.
(3.8) Exercise Let $G=\operatorname{Sym}(3)$ and set:

$$
\begin{aligned}
& \sigma=\mathrm{id}+(123)+(132)+(12)+(13)+(23), \\
& \tau=\mathrm{id}+(123)+(132)-(12)-(13)-(23), \\
& \rho_{1}=\mathrm{id}+(12)-(13)-(123), \quad \rho_{2}=\mathrm{id}+(23)-(13)-(132), \\
& \zeta_{1}=\mathrm{id}+(12)-(23)-(132), \quad \zeta_{2}=\mathrm{id}+(12)-(13)+(123)-(132) .
\end{aligned}
$$

i) Show that, with respect to the product $j(f g):=(j f) g$ for $j \in\{1,2,3\}, f, g \in G$:

$$
\mathbb{C} G=\mathbb{C} \sigma \oplus \mathbb{C} \tau \oplus\left(\mathbb{C} \rho_{1}+\mathbb{C} \rho_{2}\right) \oplus\left(\mathbb{C} \zeta_{1}+\mathbb{C} \zeta_{2}\right)
$$

is a decomposition of the group algebra $\mathbb{C} G$ into 4 minimal left ideals.
ii) Calculate explicitly the representations f_{i} of G afforded by these ideals and show that they are irreducible (Clearly it is enough to write $f_{i}(12)$ and $f_{i}(13)$ for $i=$ $1,2,3)$.
iii) Show that 3 of them, say f_{1}, f_{2}, f_{3} are inequivalent, of respective degrees $1,1,2$.
iv) Conclude that f_{1}, f_{2}, f_{3} are the only irreducible representations of G over \mathbb{C} (use Corollary 2.9).

