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Introduction

These notes are based on a 24 hours course given in the spring 2015 at the University of

Milano Bicocca and the following year, in a revised and more complete version, at the

University of Salento. In both cases it was part of the Dottorato di Ricerca programme.

My aim here is to introduce students to the study of classical groups, an important

instance of groups of Lie type, to their subgroup structure according to the famous clas-

sification Theorem of Aschbacher, and their matrix representations. My main references

for such topics, which are absolutely central in abstract algebra and also reflect my

personal tastes, have been [1], [2], [5], [6], [11], [13], [15] and [21].

These notes have no claim of completeness. For this reason each Chapter suggests more

specific excellent textbooks, where a systematic treatment of the subject can be found.

On the other hand a great deal of significant facts are presented, with proofs in several

cases and a lot of examples.

As background I assume linear algebra and the basic notions of group theory, ring theory

and Galois theory. As generale reference one may consult, for example, among many

others: [9], [12], [14], [16], [17] and [19].

I am grateful to prof. Francesco Catino and the Università del Salento for the invita-

tion and financial support. I appreciated a lot the warm hospitality of Maddalena and

Francesco, which made so pleasant my short visits to the beautiful town of Lecce.

A special thank to my students of Milano and Lecce and also to prof. Salvatore Siciliano,

dr. Paola Stefanelli and again to Maddalena and Francesco, for their stimulating and

constructive attendance to my seminars.

Milano, September 2016.
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Chapter I

Modules and matrices

Apart from the general reference given in the Introduction, for this Chapter we refer in

particular to [8] and [20].

Let R be a ring with 1 6= 0. We assume most definitions and basic notions concerning

left and right modules over R and recall just a few facts.

If M is a left R-module, then for every m ∈ M the set Ann (m) := {r ∈ R | rm = 0M}

is a left ideal of R. Moreover Ann (M) =
⋂
m∈M Ann (m) is an ideal of R. The module

M is torsion free if Ann (m) = {0} for all non-zero m ∈M .

The regular module RR is the additive group (R,+) considered as a left R-module with

respect to the ring product. The submodules of RR are precisely the left ideals of R.

A finitely generated R-module is free if it is isomorphic to the direct sum of n copies of

RR, for some natural number n. Namely if it is isomorphic to the module

(0.1) (RR)n := RR⊕ · · · ⊕R R︸ ︷︷ ︸
n times

in which the operations are performed component-wise. If R is commutative, then

(RR)n ∼= (RR)m only if n = m. So, in the commutative case, the invariant n is called

the rank of (RR)n. Note that (RR)n is torsion free if and only if R has no zero-divisors.

The aim of this Chapter is to determine the structure of finitely generated modules over

a principal ideal domain (which are a generalization of finite dimensional vector spaces)

and to describe some applications. But we start with an important result, valid for

modules over any ring.

1 The Theorem of Krull-Schmidt

(1.1) Definition An R-module M is said to be indecomposable if it cannot be written

as the direct sum of two proper submodules.
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For example the regular module ZZ is indecomposable since any two proper ideals nZ

and mZ intersect non-trivially. E.g. 0 6= nm ∈ nZ ∩mZ.

(1.2) Definition Let M be an R-module.

(1) M is noetherian if, for every ascending chain of submodules

M1 < M2 < M3 < . . .

there exists n ∈ N such that Mn = Mn+r for all r ≥ 0;

(2) M is artinian if, for every descending chain of submodules

M1 > M2 > M3 < . . .

there exists n ∈ N such that Mn = Mn+rfor all r ≥ 0.

(1.3) Lemma An R-module M is noetherian if and only if every submodule of M is

finitely generated.

(1.4) Examples

• every finite dimensional vector space is artinian and noetherian;

• the regular Z-modulo ZZ is noetherian, but it is not artinian;

• for every field F, the polynomial ring F[x1, . . . , xn] is noetherian.

(1.5) Theorem (Krull-Schmidt) Let M be an artinian and noetherian R-module.

Given two decompositions

M = M1 ⊕M2 ⊕Mn = N1 ⊕N2 ⊕Nm

suppose that the Mi-s and the Nj-s are indecomposable submodules. Then m = n and

there exists a permutation of the Ni-s such that Mi is isomorphic to Ni for all i ≤ n.
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2 Finitely generated modules over a PID

We indicate by D a principal ideal domain (PID), namely a commutative ring, without

zero-divisors, in which every ideal is of the form Dd = 〈d〉, for some d ∈ D.

Every euclidean domain is a PID. In particular we have the following

(2.1) Examples of PID-s:

• the ring Z of integers;

• every field F;

• the polynomial ring F[x] over a field.

Let A be an m × n matrix with entries in D. Then there exist P ∈ GLm(D) and

Q ∈ GLn(D) such that PAQ is a pseudodiagonal matrix in which the entry in position

(i, i) divides the entry in position (i + 1, i + 1) for all i-s. The matrix PAQ is called a

normal form of A. A consequence of this fact is the following:

(2.2) Theorem Let V be a free D-module of rank n and W be a submodule.

(1) W is free of rank t ≤ n;

(2) there exist a basis B = {v1, · · · , vn} of V and a sequence d1, · · · , dt of elements of

D with the following properties:

i) di divides di+1 for 1 ≤ i ≤ t− 1,

ii) C = {d1v1, · · · , dtvt} is a basis of W .

We may now state the structure theorem of a finitely generated D-module M . To this

purpose let us denote by d(M) the minimal number of generators of M as a D-module.

(2.3) Theorem Let M be a finitely generated D-module, with d(M) = n.

There exists a descending sequence of ideals:

(2.4) Dd1 ≥ · · · ≥ Ddn (invariant factors of M)

with Dd1 6= D, such that:

(2.5) M ' D

Dd1
⊕ · · · ⊕ D

Ddn
(normal form of M).
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Let t ≥ 0 be such that dt 6= 0D and dt+1 = 0D. Then, setting:

(2.6) T := {0M} if t = 0, T :=
D

Dd1
⊕ · · · ⊕ D

Ddt
if t > 0,

we have that Ann (T ) = Ddt and T is isomorphic to the torsion submodule of M .

M is torsion free if and only if t = n, M = T . Indeed, by this Theorem:

M ' T ⊕Dn−t

where Dn−t is free, of rank n− t.

Proof (sketch) Let m1, . . . ,mn be a set of generators of M as a D-module. Consider the

epimorphism ψ : Dn →M such thatx1

. . .
xn

 7→ n∑
i=1

ximi.

By Theorem 2.2, there exist a basis {v1, · · · , vn} of Dn and a sequence d1, · · · , dt of

elements of D with the property that di divides di+1 for 1 ≤ i ≤ t − 1, such that

{d1v1, · · · , dtvt} is a basis of Ker ψ. It follows Dn

Kerψ
∼= M , whence:

Dv1⊕···⊕Dvt
Dd1v1⊕···⊕Ddtvt ⊕

Dvt+1⊕···⊕Dvn
{0}⊕···⊕{0}

∼= M

D
Dd1
⊕ · · · ⊕ D

Ddt
⊕D ⊕ · · · ⊕D ∼= M.

(2.7) Corollary Let V be a vector space over F, with d(V ) = n. Then V ' Fn.

(2.8) Corollary Let M be a f.g. abelian group, with d(M) = n. Then either:

(1) M ' Zn, or

(2) M ' Zd1 ⊕ · · ·Zdt ⊕ Zn−t, t ≤ n,

where d1, · · · , dt is a sequence of integers ≥ 2, each of which divides the next one.

It can be shown that the normal form (2.5) of a f.g. D-module M is unique. Thus:

(2.9) Theorem Two finitely generated D-modules are isomorphic if and only if they

have the same normal form (2.5) or, equivalently, the same invariant factors (2.4).

In the notation of Theorem 2.3, certain authors prefer to call invariant factors the el-

ements d1, . . . , dn instead of the ideals generated by them. In this case the invariant

factors are determined up to unitary factors.
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(2.10) Example Every abelian group of order p3, with p prime, is isomorphic to one

and only one of the following:

• Zp3, t = 1, d1 = p3;

• Zp ⊕ Zp2, t = 2, d1 = p, d2 = p2;

• Zp ⊕ Zp ⊕ Zp, t = 3, d1 = d2 = d3 = p.

(2.11) Example Every abelian group of order 20 is isomorphic to one and only one

of the following:

• Z20, t = 1, d1 = 20;

• Z2 ⊕ Z10, t = 2, d1 = 2, d2 = 10.

3 The primary decomposition

We recall that D is a PID. For any a, b ∈ D we have Da + Db = Dd, whence d =

G.C.D.(a, b). It follows easily that D is a unique factorization domain.

The results of this Section are based on the previous facts and the well known Chinese

remainder Theorem, namely:

(3.1) Theorem Let a, b ∈ D such that M.C.D.(a, b) = 1. For all b1, b2 ∈ D, there exists

c ∈ D such that

(3.2)
{
c ≡ b1 (mod a)
c ≡ b2 (mod b).

Proof There exist y, z ∈ D such that ay + bz = 1. Multiplying by b1 and b2:

ayb1 + bzb1 = b1
ayb2 + bzb2 = b2

.

It follows
bzb1 ≡ b1 (mod a)
ayb2 ≡ b2 (mod b)

.

We conclude that c = bzb1 + ayb2 satisfies (3.2).
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(3.3) Theorem Let d = pm1
1 . . . pmkk , where each pi is an irreducible element of D and

pi 6= pj for 1 ≤ i 6= j ≤ k. Then:

(3.4)
D

Dd
' D

Dpm1
1

⊕ · · · ⊕ D

Dpmkk
(primary decomposition).

Dpm1
1 , · · · , Dpmkk (or simply pm1

1 , · · · , pmkk ) are the elementary divisors of D
Dd .

Proof Setting a = pm1
1 , b = pm2

2 . . . pmkk , we have d = ab with G.C.D.(a, b) = 1. The map

f : D → D

Da
⊕ D

Db
such that x 7→

(
Da+ x
Db+ x

)
is a D-homomorphism. Moreover it is surjective by theorem 3.1. Finally Ker f =

Da ∩Db = Dd. We conclude that

D

Dd
' D

Da
⊕ D

Db
=

D

Dpm1
1

⊕ D

D
(
pm2

2 . . . pmkk
)

and our claim follows by induction on k.

(3.5) Examples

• Z6
∼= Z2 ⊕ Z3, elementary divisors 2, 3;

• Z6 ⊕ Z6
∼= Z2 ⊕ Z3 ⊕ Z2 ⊕ Z3, elementary divisors 2, 2, 3, 3;

• Z40
∼= Z8 ⊕ Z5, elementary divisors 8, 5;

• C[x]
〈x3−1〉

∼= C[x]
〈x−1〉 ⊕

C[x]
〈x−ω〉 ⊕

C[x]
〈x−ω〉 , el. div. x− 1, x− ω, x− ω where ω = e

i2π
3 .

4 Modules over F[x] defined by matrices

Let F be a field. We recall that two matrices A,B ∈ Matn(F) are conjugate if there exist

P ∈ GLn(F) such that P−1AP = B. The conjugacy among matrices is an equivalence

relation in Matn(F), whose classes are called conjugacy classes. Our goal here is to find

representatives for these classes.

The additive group (Fn,+) of column vectors is a left module over the ring Matn(F),

with respect to the usual product of matrices. For a fixed matrix A ∈ Matn(F), the

map: ϕA : F[x]→ Matn(F) such that

f(x) 7→ f(A)

8



is a ring homomorphism. It follows that Fn is an F[x]-module with respect to the product:

(4.1) f(x)

 x1

. . .
xn

 := f(A)

 x1

. . .
xn

 .

The F[x]-module defined by (4.1) will be denoted by AFn. Identifying F with the subring

Fx0 of F[x], the module AFn is a vector space over F in the usual way. Indeed, for all

α ∈ F and all v ∈ AFn, we have: (αx0)v = (αA0)v = αv.

Clearly, if V is any F[x]-module, the map µx : V → V such that

(4.2) v 7→ xv, ∀ v ∈ V

is an F[x]-homomorphism. In particular µx is F-linear.

(4.3) Theorem Let V be an F[x]-module, dimF(V ) = n, and let A,B ∈ Matn(F).

(1) V ' AFn if and only if µx has matrix A with respect to a basis B of V ;

(2) AFn ' BFn if and only if B is conjugate to A.

Proof

(1) Suppose that µx has matrix A with respect to a basis B and call η the map which

assigns to each v ∈ V its coordinate vector vB with respect to B. We have:

AvB = (µx(v))B = (xv)B, ∀ v ∈ V.

Clearly η : V → AFn is an isomorphism of F-modules. Moreover:

η(xv) = (xv)B = AvB = x vB = x η(v).

It follows easily that η is an isomorphism of F[x]-modules. Thus V ' AFn.

Vice versa, suppose that there exists an F[x]-isomorphism γ : V → AFn. Set B ={
γ−1(e1), . . . , γ−1(en)

}
, where {e1, . . . , en} is the canonical basis of Fn. Then

γ(v) = γ

(
n∑
i=1

ki γ
−1 (ei)

)
=

n∑
i=1

kiei = vB, ∀ v ∈ V.

Now γ(xv) = xγ(v) gives (µx(v))B = AvB. So µx has matrix A with respect to B.

(2) Take V = AFn, the F[x]-module for which µx = µA. By the previous point AFn ' BFn

if and only if the linear map µA, induced by A with respect to the canonical basis, has

matrix B with respect to an appropriate basis B of V . By elementary linear algebra this

happens if and only if B is conjugate to A.
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5 The rational canonical form of matrices

(5.1) Theorem Let A ∈ Matn(F). The F[x]-module AFn defined in (4.1) is finitely

generated and torsion free.

Proof Fn is finitely generated as a F-module. Hence, a fortiori, as a F[x]-module. In order

to show that it is torsion free we must show that, for all v ∈ Fn, there exists a non-zero

polynomial f(x) ∈ F[x] such that f(x)v = f(A)v = 0Fn . This is clear if Aiv = Ajv for

some non-negative i 6= j. Because, in this case, we may take f(x) = xi − xj . Otherwise

the subset {v, Av, · · · , Anv} of Fn has cardinality n + 1. It follows that there exist

k0, · · · , kn in F, not all zero, such that k0v + k1Av + · · · knAnv = 0Fn . So we may take

f(x) = k0 + k1x+ · · ·+ knx
n.

By Theorem 2.3 there exists a chain of ideals 〈d1(x)〉 ≥ · · · ≥ 〈dt(x)〉 6= {0} such that

(5.2) AFn ' F[x]
〈d1(x)〉

⊕ · · · ⊕ F[x]
〈dt(x)〉

.

Clearly 〈dt(x)〉 = Ann(AFn) = Ker ϕA. Moreover each di(x) can be taken monic.

(5.3) Definition

(1) d1(x), · · · , dt(x) are called the similarity invariants of A;

(2) dt(x) is called the minimal polynomial of A.

(5.4) Definition For a given monic polynomial of degree s

d(x) = k0 + k1x+ k2x
2 · · ·+ ks−1x

s−1 + xs ∈ F[x]

its companion matrix Cd(x) is defined as the matrix of Mats(F) whose columns are re-

spectively e2, . . . , es, [−k0, . . . ,−ks−1]T , namely the matrix:

(5.5) Cd(x) :=


0 0 · · · −k0

1 0 · · · −k1

0 1 · · · −k2

· · · · · · · · · · · ·
0 · · · 1 −ks−1

 .

(5.6) Lemma The companion matrix Cd(x) has d(x) as characteristic polynomial and

as minimal polynomial.
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The first claim can be shown by induction on s, the second noting that

Cd(x)ei = ei+1, i ≤ s− 1.

(5.7) Theorem Consider the F[x]-module V = F[x]
〈d(x)〉 and the map µx : V → V .

(1) B :=
{
〈d(x)〉+ x0, 〈d(x)〉+ x, · · · , 〈d(x)〉+ xs−1

}
is a basis of V over F;

(2) µx has matrix Cd(x) with respect to B.

Proof Routine calculation, noting that µx (〈d(x)〉+ f(x)) = 〈d(x)〉+ xf(x).

We may now consider the general case. Let

V =
F[x]
〈d1(x)〉

⊕ · · · ⊕ F[x]
〈dt(x)〉

= V1 ⊕ · · · ⊕ Vt

where each di(x) is a monic, non-constant polynomial, and

(5.8) di(x) divides di+1(x), 1 ≤ i ≤ t− 1.

With respect to the basis B1×{0V2⊕···⊕Vt} ∪̇ . . . ∪̇ Bt×
{

0V1⊕···⊕Vt−1

}
, where each Bi is

the basis of F[x]
〈di(x)〉 defined in Theorem 5.7, the map µx has matrix:

(5.9) C =

 Cd1(x)

. . .
Cdt(x)

 .

(5.10) Definition Every matrix C as in (5.9), with d1(x), . . . , dt(x) satisfying (5.8),

is called a rational canonical form.

(5.11) Lemma The rational canonical form C in (5.9) has characteristic polynomial∏t
1 di(x) and minimal polynomial dt(x).

From the above results we may conclude the following

(5.12) Theorem For any field F, every matrix A ∈ Matn(F) is conjugate to a unique

rational canonical form.

Clearly conjugate matrices have the same characteristic polynomial and the same mini-

mal polynomial. So Lemma 5.11 has the following:

(5.13) Corollary (Theorem of Hamilton-Cayley). Let f(x) be the characteristic

polynomial of a matrix A. Then f(A) = 0.
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(5.14) Example The rational canonical forms in Mat2(F) are of the following types:

a) t = 2, d1(x) = d2(x) = x− k, (
k 0
0 k

)
,

b) t = 1, d1(x) = x2 + k1x+ k0, (
0 −k0

1 −k1

)
.

(5.15) Example The rational canonical forms in Mat3(F) are of the following types:

a) t = 3, d1(x) = d2(x) = d3(x) = x− k, k 0 0
0 k 0
0 0 k

 ,

b) t = 2, d1(x) = x− k, d2(x) = (x− h)(x− k), k 0 0
0 0 −kh
0 1 k + h

 ,

c) t = 1, d1(x) = x3 + k2x
2 + k1x+ k0, 0 0 −k0

1 0 −k1

0 1 −k2

 .

6 Jordan canonical forms

The rational canonical forms of matrices have the advantage of parametrizing the con-

jugacy classes of Matn(F) for any field F. The disadvantage is that they say very little

about eigenvalues and eigenspaces. For this reason, over an algebraically closed field, the

Jordan canonical forms are more used and better known. They can be deduced from the

primary decomposition of the F[x]-modules associated to the rational canonical forms.

(6.1) Definition For every λ ∈ F and every integer s ≥ 0 we define inductively the

Jordan block J(s, λ) setting:

J(0, λ) := ∅, J(1, λ) := (λ), J(s, λ) :=


λ 0 · · · 0
1
0
· · · J(s− 1, λ)
0

 , s > 1.
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So, for example:

J(2, λ) =
(
λ 0
1 λ

)
, J(3, λ) =

 λ 0 0
1 λ 0
0 1 λ

 , J(4, λ) =


λ 0 0 0
1 λ 0 0
0 1 λ 0
0 0 1 λ

 .

(6.2) Lemma J(s, λ) has λ as unique eigenvalue and corresponding eigenspace of

dimension 1 in Fs.

Proof J(s, λ) has characteristic polynomial (x− λ)s, hence λ as unique eigenvalue. Ele-

mentary calculation shows that 〈es〉 is the corresponding eigenspace.

(6.3) Lemma Let us consider the F[x]-module

V :=
F[x]

〈(x− λ)s〉
.

The Jordan block J(s, λ) is the matrix of µx : V → V with respect to the basis:

B′ :=
{
I + (x− λ)0, I + (x− λ)1, · · · , I + (x− λ)s−1

}
.

In particular J(s, λ) is conjugate to the companion matrix C(x−λ)s.

Proof For all i ≥ 0 the following identity holds:

x(x− λ)i = λ(x− λ)i − λ(x− λ)i + x(x− λ)i = λ(x− λ)i + (x− λ)i+1.

It follows that, for i ≤ s− 2:

µx
(
I + (x− λ)i

)
= I + x(x− λ)i = λ

(
I + (x− λ)i

)
+ I + (x− λ)i+1,

µx
(
I + (x− λ)s−1

)
= I + x(x− λ)s−1 = I + λ(x− λ)s−1 = λ

(
I + (x− λ)s−1

)
.

The last claim follows from Theorem 4.3.

13



(6.4) Corollary

(1) Let d(x) = (x− λ1)s1 . . . (x− λm)sm where λi 6= λj for i 6= j.

The companion matrix Cd(x) is conjugate to the matrix:

(6.5) Jd(x) :=

 J(s1, λ1)
· · ·

J(sm, λm)

 .

(2) Every rational canonical form C =

 Cd1(x)

· · ·
Cdt(x)

 is conjugate to

J =

 Jd1(x)

· · ·
Jdt(x)

 (Jordan form of C).

(6.6) Definition In the above notation let λ1, . . . , λm be the distinct roots of dt(x). Set:

di(x) = (x− λ1)si1 . . . (x− λm)sim , 1 ≤ i ≤ t.

The factors of positive degree among

(x− λ1)s11 , · · · , (x− λm)s1m , · · · , (x− λ1)st1 , · · · , (x− λm)stm

(counted with their multiplicities) are called the elementary divisors of J .

(6.7) Example If d1(x) = (x−4), d2(x) = (x−3)(x−4)2, d3(x) = (x−3)(x−4)3,

then the elementary divisors are: (x− 4), (x− 3), (x− 4)2, (x− 3), (x− 4)3.

So we have proved the following:

(6.8) Theorem Let F be an algebraically closed field. Two matrices A,B in Matn(F)

are conjugate if and only if they have the same Jordan form (up to a permutation of the

blocks) or, equivalently, the same elementary divisors (counted with their multiplicities).

We conclude this Section stating a useful result, not difficult to prove.

(6.9) Theorem Let F be algebraically closed and let A ∈ Matn(F). The following

conditions are equivalent:

(1) A is diagonalizable;

(2) the minimal polynomial of A has no multiple roots;

(3) every Jordan form of A is diagonal;

(4) Fn has a basis of eigenvectors of A.
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7 Exercises

(7.1) Exercise Let f : S → R be a ring homomorphism. Show that every R-module

M becomes an S-module by setting sm := f(s)m, ∀ s ∈ S, m ∈M .

(7.2) Exercise Let p be a prime. Determine, up to isomorphisms, the abelian groups

of order p4.

(7.3) Exercise Determine, up to isomorphisms, the abelian groups of order 24 and

order 100.

(7.4) Exercise Show that an euclidean domain is a principal ideal domain.

(7.5) Exercise Determine the primary decomposition and the normal form of the

abelian group M having elementary divisors 2, 2, 4, 5, 5, 3, 9. What is Ann(M)? What is

the minimal number d(M) of generators?

(7.6) Exercise Let D be a principal ideal domain and let d1, d2 be non-zero elements

in D. Show that Dd1 = Dd2 if and only if d2 = λd1 with λ invertible in D.

(7.7) Exercise Let M1 and M2 be R modules and N1 ≤M1, N2 ≤M2 be submodules.

Show that:
M1 ⊕M2

N1 ⊕N2

∼=
M1

N1
⊕ M2

N2
.

(7.8) Exercise Suppose that R is a commutative ring. Let M be an R-module, m an

element of M such that Ann (m) = {0R}. Show that, for every ideal J of R:

• Jm := {jm | j ∈ J} is a submodule of M ;

• Rm
Jm
∼= R

J as R-modules.

(7.9) Exercise Calculate eigenvalues, eigenspaces, Jordan form and rational canonical

form of each of the following matrices:
2 0 0 0
1 2 0 0
0 0 2 4
0 0 0 2

 ,


−1 0 0 0
1 2 0 0
0 1 1 0
0 0 1 4

 ,


−1 0 0 0
1 −1 0 0
3 1 −1 0
2 1 1 −1
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Chapter II

The geometry of classical groups

We denote by V a vector space over the field F. For simplicity we assume that its

dimension is finite. Our main references here will be [11], [14], [15] and [21].

1 Sesquilinear forms

Let σ be an automorphism of F with σ2 = id. Set ασ := σ(α) for all α ∈ F.

(1.1) Definition A σ-sesquilinear form on V is a map ( , ) : V × V → F

such that, for every λ, µ ∈ F and for every u, v, w ∈ V :

(1) (u, v + w) = (u, v) + (u,w),

(2) (u+ v, w) = (u,w) + (v, w),

(3) (λu, µv) = λµσ (u, v).

The form is said to be:

i) bilinear symmetric if σ = idF and (v, w) = (w, v), ∀ v, w ∈ V ;

ii) bilinear antisymmetric if σ = idF and (v, v) = 0, ∀ v ∈ V ;

iii) hermitian if σ 6= idF, σ2 = idF and (v, w) = (w, v)σ, ∀ v, w ∈ V ;

iv) non singular if, for every v ∈ V \ {0V }, there exists u ∈ V such that (u, v) 6= 0F.

(1.2) Definition V is non-singular (or non-degenerate) when the form is non-singular.

(1.3) Lemma If the form is bilinear antisymmetric, then:

(v, w) = −(w, v), ∀ v, w ∈ V.
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Proof

0 = (v+w, v+w) = (v, v)+(v, w)+(w, v)+(w,w) = (v, w)+(w, v) =⇒ (v, w) = −(w, v).

(1.4) Definition Let V, V ′ be vector spaces over F, endowed with sesquilinear forms

( , ) : V × V → F, ( , )′ : V ′ × V ′ → F.

(1) An isometry from V to V ′ is an invertible element f ∈ HomF(V, V ′) such that

(f(v), f(w))′ = (v, w), ∀ v, w ∈ V.

(2) The spaces (V,F, ( , )) and (V ′,F, ( , )′) are called isometric if there exists an

isometry f : V → V ′.

(1.5) Lemma When V = V ′, the set of isometries of V is a subgroup of AutF(V ),

called the group of isometries of the form ( , ).

The proof is left as an exercise.

(1.6) Theorem (Witt’s Extension Lemma ) Let V be equipped with a non-degenerate

form, either bilinear (symmetric or antisymmetric) or hermitian. Let U and W be

subspaces and suppose that

τ : U →W

is an isometry with respect to the restriction of the form to U and W , Then there exists

an isometry τ̂ : V → V which extends τ , namely such that τ̂U = τ .

For the proof of this important result see [1, page 81] or [14, page 367].

2 The matrix approach

Given a σ-sesquilinear form ( , ) on V , let us fix a basis B = {v1, . . . , vn} of V over F.

(2.1) Definition The the matrix J of the above form with respect to B is defined by

J := ((vi, vj)) , 1 ≤ i, j ≤ n.

Given v =
∑n

i=1 kivi, w =
∑n

i=1 hivi in V , it follows from the axioms that

(2.2) (v, w) =
n∑

i,j=1

kih
σ
j (vi, vj) = vTBJw

σ
B, ∀ v, w ∈ V.
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(2.3) Lemma J is the only matrix of Matn(F) which satisfies (2.2) for the given form.

Proof Let A = (aij) ∈ Matn(F) satisfy (v, w) = vTBAw
σ
B for all v, w in V .

Letting v, w vary in B and noting that viB = ei, 1 ≤ i ≤ n we have:

(vi, vj) = viB
TAvjB

σ = ei
TAej = aij , 1 ≤ i, j ≤ n.

We conclude that J = A.

(2.4) Lemma Let J be the matrix of a σ-sesquilinear form ( , ) on V .

(1) If σ = idF, then the form is symmetric if and only if JT = J ;

(2) if σ = idF, then the form is antisymmetric if and only if JT = −J ;

(3) if σ has order 2, then the form is hermitian if and only if JT = Jσ.

Moreover the form ( , ) is non-degenerate if and only if det J 6= 0.

(2.5) Lemma Let J ∈ Matn(F) be the matrix of a sesquilinear form on V with respect

to a basis B. Then J ′ ∈ Matn(F) is the matrix of the same form with respect to a basis

B′ if and only if J and J ′ are cogradient, namely if there exists P non-singular such

that:

(2.6) J ′ = P TJP σ.

Proof Let J ′ be the matrix of the form with respect to B′ = {v′1, . . . , v′n}. Then:

(2.7) vTBJw
σ
B = vTB′J

′wσB′ , ∀ v, w ∈ V.

Setting P :=
(

(v′1)B . . . (v′n)B
)
, we have vB = PvB′ for all v ∈ V . It follows:

(2.8) vTBJw
σ
B =

(
vTB′P

T
)
J (P σwσB′) = vTB′

(
P TJP σ

)
wσB′ , ∀ v, w ∈ V.

Comparing (2.7) with (2.8) we get J ′ = P TJP σ.

Vice versa, let J ′ = P TJP σ, for some non-singular P . Set B′ = {v′1, . . . , v′n} where

(v′i)B = Pei. Then B′ is a basis of V and vB = PvB′ for all v ∈ V . From (2.8) it follows

that J ′ is the matrix of the form with respect to B′.
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(2.9) Theorem

(1) Let J be the matrix of a sesquilinear form on V = Fn with respect to the canonical

basis B. Then its group of isometries is the subgroup:

H :=
{
h ∈ GLn(F) | hTJhσ = J

}
.

(2) Let B′ be another basis of Fn. Then the group of isometries of the same form is:

P−1HP

where P is the matrix of the change of basis from B to B′.

Proof

(1) If B = {e1, . . . , en} is the canonical basis, we have v = vB for all v ∈ V . Thus:

(v, w) = vTJwσ, ∀ v, w ∈ V.

It follows that an element h ∈ GLn(K) is an isometry if and only if:

vTJwσ = (hv)TJ(hw)σ = vT (hTJhσ)wσ, ∀ v, w ∈ Fn.

Equivalently h is an isometry if and only if

eTi Jej = eTi (hTJhσ)ej , 1 ≤ i, j ≤ n ⇐⇒ J = hTJhσ.

(2) J ′ = P TJP σ is the matrix of the form with respect to B′. For every h ∈ H we have:

(P−1hP )TJ ′
(
P−1hP

)σ = J ′ ⇐⇒ hTJhσ = J.

3 Orthogonality

Let ( , ) : V × V → F be a bilinear (symmetric or antisymmetric) or an hermitian form.

(3.1) Definition Two vectors u,w ∈ V are said to be orthogonal if (u,w) = 0F.

(3.2) Lemma For every W ⊆ V the subset

W⊥ := {v ∈ V | (v, w) = 0, ∀ w ∈W}

is a subspace, called the subspace orthogonal to W .

(3.3) Definition Let W be a subspace of V . Then W is said to be
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(1) totally isotropic (or totally singular) if W ≤W⊥;

(2) non-degenerate if rad(W ) := W ∩W⊥ = {0V }.

Clearly V non singular ⇐⇒ rad(V ) = {0V }.

(3.4) Lemma If V is non-degenerate then, for every subspace W of V :

dimW⊥ = dimV − dimW.

In particular:

(1)
(
W⊥

)⊥ = W ;

(2) the dimension of a totally isotropic space is at most dimV
2 .

Proof Let BW = {w1, . . . , wm} be a basis of W . For every v ∈ V we have:

(3.5) v ∈W⊥ ⇐⇒ (wi, v) = 0F, 1 ≤ i ≤ m.

Extend BW to a basis B = {w1, . . . , wm, wm+1, . . . , wn} of V and let J be the matrix

of the form with respect to B. From (wi)B = ei, 1 ≤ i ≤ m, it follows:

(3.6) v ∈W⊥ ⇐⇒ ei
TJvσB = 0F, 1 ≤ i ≤ m.

Since J is non-degenerate, its rows are independent. Hence the m equations of the linear

homogeneous system (3.6) are independent. This system has n indeterminates, so the

space of solutions has dimension n−m. We conclude that W⊥ has dimension

n−m = dimV − dimW.

(1) W ≤
(
W⊥

)⊥ and dim
(
W⊥

)⊥ = dim V − dimW⊥ = dimW .

(2) Let W be totally isotropic, i.e., W ≤W⊥. Then:

dimW ≤ dimW⊥ = dimV − dimW =⇒ 2 dimW ≤ dimV.

(3.7) Definition Let U,W be subspaces of V . We write V = U ⊥ W and say that V

is an orthogonal sum of U and W if V = U ⊕W and U is orthogonal to W , namely if:
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(1) V = U +W ;

(2) U ∩W = {0V };

(3) U ≤W⊥.

(3.8) Corollary If V and W are non-degenerate, then

V = W ⊥W⊥.

Moreover W⊥ is non-degenerate.

Proof Since V is non-degenerate, Lemma 3.4 gives dimV = dim W + dim W⊥. Since

W is non-degenerate, we have W ∩W⊥ = {0}. It follows V = W ⊕W⊥. Finally W⊥ is

non-degenerate as W⊥ ∩
(
W⊥

)⊥ = W⊥ ∩W = {0}.

As a consequence of Witt’s Lemma, we have the following:

(3.9) Corollary Let V be endowed with a non-degenerate, either bilinear (symmetric

or antisymmetric) or hermitian form. Then all the maximal totally isotropic subspaces

have the same dimension, which is at most dimV
2 .

Proof Let M be a totally isotropic subspace of largest possible dimension m. Clearly M

is a maximal totally isotropic subspace. Take any totally isotropic subspace U . Since

dimU ≤ m, there exists an injective F-linear map τ : U →M . Now τ : U → τ(U) is an

isometry, as the restriction of the form to U and to τ(U) is the zero-form. By theorem

1.6, there exists an isometry τ̂ : V → V which extends τ . Thus U ≤ τ̂−1(M) with

τ̂−1(M) totally isotropic as τ̂−1 is an isometry of V . If U is a maximal totally isotropic

subspace, then U = τ̂−1(M) has dimension m. By Lemma 3.4 we have m ≤ dimV
2 .

4 Symplectic spaces

(4.1) Definition A vector space V over F, endowed with a non-degenerate antisym-

metric bilinear form is called symplectic.

(4.2) Theorem Let V be a symplectic space over F, of dimension n. Then:

(1) n = 2m is even;
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(2) there exists a basis B of V with respect to which the matrix of the form is:

(4.3) J =
(

0 Im
−Im 0

)
.

Proof Induction on n.

Suppose n = 1, V = Fv, 0 6= v ∈ V . For every λ, µ ∈ F: (λv, µv) = λµ(v, v) = 0F, in

contrast with the assumption that V is non degenerate. Hence n ≥ 2.

Fix a non-zero vector v1 ∈ V . There exists w ∈ V such that (v1, w) 6= 0F. In particular

v1 e w are linearly independent. Setting w1 := λ−1w, we have:

(v1, w1) =
(
v1, λ

−1w
)

= λ−1(v1, w) = 1F.

If n = 2 our claim is proved since the matrix of the form w. r. to B = {v1, w1} is

J =
(

0 1
−1 0

)
.

If n > 2 we note that the subspace W := 〈v1, w1〉 is non-singular. Thus:

V = W ⊥ W⊥.

W⊥ is non-degenerate, hence it is a symplectic space of dimension n− 2. By induction

on n we have that n− 2 = 2(m− 1) whence n = 2m, and moreover that W⊥ admits a

basis {v2, . . . , vm, w2, . . . , wm} with respect to which the matrix of the form is

JW⊥ =
(

0 Im−1

−Im−1 0

)
.

Choosing B = {v1, v2, . . . , vm, w1, w2, . . . , wm} we obtain our claim.

(4.4) Definition The group of isometries of a symplectic space V over F of dimension

2m is called the symplectic group of dimension 2m over F and indicated by Sp2m(F).

By the previous considerations, up to conjugation we may assume:

Sp2m(F) =
{
g ∈ GL2m(F) | gTJg = J

}
.

where J is as in (4.3). The subspace 〈e1, . . . , em〉, is a maximal totally isotropic space.
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5 Some properties of finite fields

In contrast with the symplectic case, the classification of the non-singular, bilinear sym-

metric or hermitian forms, depends on the field F and may become very complicated.

Thus our treatment will need further assumptions on F. Since our interest is focused

on finite fields, we will recall here a few specific facts, needed later, assuming the basic

properties. As usual Fq denotes the finite field of order q, a prime power.

Consider the homomorphism f : F∗q → F∗q defined by f(α) := α2. Clearly Kerf = 〈−1〉.

If q is odd, Kerf has order 2. In this case Imf , the set of non-zero squares in Fq, has

order q−1
2 . Moreover, for any ε ∈ F∗q \ Imf , the coset (Imf) ε =

{
α2ε | α ∈ F∗q

}
is the

set of non-squares.

If q is even, Kerf has order 1. So f is surjective, i.e., every element of Fq is a square.

(5.1) Lemma Every element of Fq is the sum of two squares.

Proof By what observed above we may suppose q odd. Consider the set

X :=
{
α2 + β2 | α, β ∈ Fq

}
.

Note that |X| does not divide q = |Fq|, since:

|X| ≥ q − 1
2

+ 1 =
q + 1

2
>
q

2
.

If every element of X were a square, X would be an additive subgroup of Fq, in contrast

with Lagrange’s Theorem. So there exists a non-square ε ∈ X. Write ε = γ2 + δ2. It

follows that every non-square is inX. Indeed a non-square has shape α2ε = (αγ)2+(αδ)2.

Aut (Fpa) = GalFp (Fpa) has order a. So Aut (Fpa) is generated by the Frobenius auto-

morphism α 7→ αp, which has has order a. It follows that Fpa has an automorphism σ

of order 2 if and only if a = 2b is even. In this case, we set q = pb, so that Fpa = Fq2 .

The automorphism σ : Fq2 → Fq2 of order 2 is the map: α 7→ αq. Moreover ααq ∈ Fq
for all α ∈ Fq2 , since (ααq)q = ααq.

(5.2) Theorem The Norm map N : Fq2 → Fq defined by N(α) := ααq, is surjective.

Proof The restriction of N to F∗q2 is a group homomorphism into F∗q . Its kernel consists

of the roots of xq+1 − 1, hence has order ≤ q + 1. Thus its image has order q − 1.
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6 Unitary and orthogonal spaces

We recall that σ denotes an automorphism of the field F such that σ2 = id. More

precisely, σ = id in the orthogonal case, σ 6= id in the hermitian case.

(6.1) Lemma Consider a non-degenerate, bilinear symmetric or hermitian form ( , ) :

V × V → F. If char F = 2 assume that the form is hermitian. Then V admits an

orthogonal basis, i.e., a basis with respect to which the matrix of the form is diagonal.

Proof We first show that there exists v such that (v, v) 6= 0. This is clear when dimV = 1,

since the form is non-degenerate. So suppose dim V > 1.

For a fixed non-zero u ∈ V , there exists w ∈ V such that (u,w) 6= 0F. Clearly we may

assume (u, u) = (w,w) = 0. If char F 6= 2, setting λ = (u,w), v = λ−1u+ w we have:

(v, v) = λ−1(u,w) +
(
λ−1

)σ (w, u) = λ−1λ+ (λσ)−1 λσ = 2 · 1F 6= 0F.

If char F = 2, the form is hermitian by assumption. So there exists α ∈ F such that

ασ 6= α. In this case, setting v = λ−1αu+ w we have (v, v) = α+ ασ = α− ασ 6= 0F.

Induction on dimV , applied to 〈v〉⊥, gives the existence of an orthogonal basis of V .

(6.2) Remark The hypothesis char F 6= 2 when the form is bilinear symmetric, is

necessary. Indeed the matrix
(

0 1
1 0

)
defines a non-degenerate symmetric form on V =

F2
2. Since (v, v) = 0 for all v, no orthogonal basis can exist.

Even the existence of an orthogonal basis is far from a complete classification as shown,

for example, by a Theorem of Sylvester ([14, Theorem 6.7 page 359]).

(6.3) Example By the previous theorem, the symmetric matrices1 0 0
0 1 0
0 0 1

 ,

−1 0 0
0 1 0
0 0 1

 ,

−1 0 0
0 −1 0
0 0 1

 ,

−1 0 0
0 −1 0
0 0 −1


are pairwise not cogradient in Mat3(R).

6.1 Unitary spaces

(6.4) Definition A space V , with a non-degenerate hermitian form, is called unitary.

(6.5) Theorem Let V be a unitary space. Suppose that, for all v ∈ V , there exists

µ ∈ F such that N(µ) := µµσ = (v, v). Then there exists an orthonormal basis of V ,

i.e., a basis with respect to which the matrix of the hermitian form is the identity.
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In particular such basis exists for F = C, σ the complex conjugation, and for F = Fq2.

Proof By Lemma 6.1 there exists v ∈ V with (v, v) 6= 0. Under our assumptions there

exists µ ∈ F such that µµσ = (v, v). Substituting v with µ−1v we get (v, v) = 1. For

n = 1 the claim is proved. So suppose n > 1. The subspace 〈v〉 is non-degenerate. It

follows that V = 〈v〉 ⊥ 〈v〉⊥. As 〈v〉⊥ is non-degenerate of dimension n − 1, our claim

follows by induction.

(6.6) Definition The group of isometries of a unitary space V over F of dimension n,

called the unitary group of dimension n over F, is indicated by GUn(F).

By Theorem 6.5, if F = C and σ is the complex conjugation or F = Fq2 , we may assume:

GUn(F) =
{
g ∈ GLn(F) | gT gσ = In

}
.

(6.7) Remark There are fields which do not admit any automorphism of order 2: so

there are no unitary groups over such fields. To the already mentioned examples of R

and Fp2b+1, we add the algebraic closure F p of Fp, as shown below.

By contradiction suppose there exists an automorphism σ of order 2 of F := F p.

Let α ∈ F be such that σ(α) 6= α. Since α is algebraic over Fp, we have that K = Fp(α)

is finite of order pn for some n. Thus K is the splitting field of xp
n −x. It follows that K

is fixed by σ and σ|K has order 2. Thus n = 2m, |K| = q2 with q = pm and σ(α) = αq.

Now consider the subfield L of F of order q4. Again L is fixed by σ and σ(β) = βq
2

for

all β in L. From K ≤ L we get the contradiction α 6= σ(α) = αq
2

= α.

6.2 Quadratic Forms

(6.8) Definition A quadratic form on V is a map Q : V → F such that:

(1) Q(λv) = λ2Q(v) for all λ ∈ F, v ∈ V ;

(2) the polar form (v, w) := Q(v + w)−Q(v)−Q(w), ∀ v, w ∈ V , is bilinear.

Q is non-degenerate if its polar form is non-degenerate.

Note that:

(6.9) Q(0V ) = Q(0F0V ) = (0F)2Q(0V ) = 0F.
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Q uniquely determines its polar form ( , ) which is clearly symmetric. Moreover

(6.10) 2Q(v) = (v, v), ∀ v ∈ V.

Indeed: Q(2v) = Q(v + v) = Q(v) +Q(v) + (v, v) gives 4Q(v) = 2Q(v) + (v, v).

It follows from (6.10) that, if char (F) = 2 , the polar form ( , ) is antisymmetric.

On the other hand, if car F 6= 2, every symmetric bilinear form ( , ) is the polar form of

the quadratic form Q defined by:

Q(v) :=
1
2

(v, v), ∀ v ∈ V.

Direct calculation shows that Q is quadratic and that

Q(v + w, v + w)−Q(v)−Q(w) = (v, w).

By the above considerations, in characteristic 6= 2, the study of quadratic forms is

equivalent to the study of symmetric bilinear forms. But, for a unified treatment, we

study the orthogonal spaces via quadratic forms.

6.3 Orthogonal spaces

(6.11) Definition Let (V,Q) and (V ′, Q′) be vector spaces over F, endowed with

quadratic forms Q and Q′ respectively. An isometry from V to V ′ is an invertible

element f ∈ HomF(V, V ′) such that

Q′(f(v)) = Q(v), ∀ v ∈ V.

The spaces (V,Q) and (V ′, Q′) are isometric if there exists an isometry f : V → V ′.

Clearly, when V = V ′, Q = Q′, the isometries of V form a subgroup of AutF(V ).

(6.12) Definition Let Q be a non degenerate quadratic form on V .

(1) (V,Q) is called an orthogonal space;

(2) the group of isometries of (V,Q), called the orthogonal group relative to Q, is

denoted by On(F, Q), where n = dimV .

Note that, in an orthogonal space, we may consider orthogonality with respect to the

polar form, which is non-singular by definition of orthogonal space.
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(6.13) Lemma Suppose char F = 2.

(1) any orthogonal space (V,Q) over F has even dimension;

(2) the orthogonal group O2m(F, Q) is a subgroup of the symplectic group Sp2m(F).

Proof

(1) The polar form of any quadratic form is antisymmetric by (6.10), hence degenerate

in odd dimension.

(2) The polar form associated to Q is non-degenerate, antisymmetric and it is preserved

by every f ∈ O2m(F, Q). Indeed:

(v, w) := Q(v + w)−Q(v)−Q(w) = Q(f(v + w))−Q(f(v))−Q(f(w)) =

Q(f(v) + f(w))−Q(f(v))−Q(f(w)) = (f(v), f(w)) , ∀ v, w ∈ V.

(6.14) Lemma Let (V,Q) be an orthogonal space of dimension ≥ 2. If Q(v1) = 0 for

some non-zero vector v1 ∈ V , then there exists v−1 ∈ V \ 〈v1〉 such that:

(6.15) Q (x1v1 + x−1v−1) = x1x−1, ∀ x1, x−1 ∈ F.

The subspace 〈v1, v−1〉 is non-singular.

Proof Q(v1) = 0 gives (v1, v1) = 2Q(v1) = 0. As the polar form of Q is non-degenerate,

there exists u ∈ V with (v1, u) 6= 0. In particular v1 and u are linearly independent. Set

v−1 := (v1, u)−1u− (v1, u)−2Q(u)v1.

Then v−1 6∈ 〈v1〉 and:

(v1, v−1) = 1, Q (v−1) = (v1, u)−2Q(u)− (v1, u)−2Q(u) = 0.

Using the assumption Q(v1) = 0 we get (6.15). The subspace is non-singular as the

matrix of the polar form with respect to {v1, v−1} is
(

0 1
1 0

)

(6.16) Definition An orthogonal space (V,Q) is called anisotropic if Q(v) 6= 0 for all

non-zero vectors v ∈ V .
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Non-singular anisotropic spaces exist.

(6.17) Example Let V be a separable, quadratic field extension of F. Then

|GalF(V )| = dimF V = 2 =⇒ GalF(V ) = 〈σ〉 , F = V〈σ〉.

The Norm map NV
F : V → F defined by:

NV
F (v) := vvσ, ∀ v ∈ V

is a non-degenerate anisotropic quadratic form on V .

More details are given in the next Lemma.

(6.18) Lemma Let f(t) = t2 + at+ b ∈ F[t] be separable, irreducible and consider

V =
F[t]

〈t2 + at+ b〉
= {x1 + x−1t | x1, x−1 ∈ F}

with respect to the usual sum of polynomials and product modulo f(t). Then :

(6.19) NV
F (x1 + x−1t) = x2

1 − ax1x−1 + bx2
−1, ∀ x1, x−1 ∈ F.

With respect to the basis {1, t}, the polar form of NV
F is the non-singular matrix

J =
(

2 −a
−a 2b

)
.

Proof Let GalF(V ) = 〈σ〉. Then t and tσ are the roots of f(t) in V . Thus

t+ tσ = −a, ttσ = b, xσ = x, ∀ x ∈ F.

It follows:

NV
F (x1 + x−1t) = (x1 + x−1t) (x1 + x−1t

σ) = −ax1x−1 + x2
1 + bx2

−1.

J is non-degenerate since Det (J) = 4b− a2 6= 0 by the irreducibility of t2 + at+ b (and

its separability when char F = 2).

(6.20) Remark If F = Fq then V = Fq2 and the map NV
F : Fq2 → Fq coincides

with v 7→ vvq = vq+1. As shown in Section 5 it is surjective. It follows that the map(
x1

x−1

)
7→ x2

1 − ax1x−1 + bx2
−1 from F2

q to Fq is surjective.

The anisotropic orthogonal spaces are only those of Example 6.17. We first show:
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(6.21) Theorem Let (W,Q) be an anisotropic orthogonal space of dimension 2.

(1) For each non-zero vector v1 ∈W there exists v−1 ∈W \ {v1} such that

(6.22) Q (x1v1 + x−1v−1) = Q(v1)
(
x2

1 + ζx2
−1 + x1x−1

)
∀ x1, x−1 ∈ F

where t2 − t+ ζ is irreducible in F[t].

(2) If the map F2 → F defined by
(
x1

x−1

)
7→ x2

1 + ζx2
−1 + x1x−1 is onto, the space

(W,Q) is isometric to (V,NV
F ), where V = F[t]

〈t2−t+ζ〉 .

In particular:

• if F is algebraically closed, no such W exists;

• if F = Fq, all orthogonal anisotropic 2-dimensional spaces are isometric.

Proof

(1) We first show that there exists w ∈ W \ 〈v1〉 such that (v1, w) 6= 0. Indeed, if

(v1, v1) 6= 0, then W = 〈v1〉 ⊕ 〈v1〉⊥ and we take w = v1 + u with u ∈ 〈v1〉⊥. If

(v1, v1) = 0, then 〈v1〉 ≤ 〈v1〉⊥ 6= W and we take w ∈W \ 〈v1〉⊥.

Now set:

v−1 := Q(v1)(v1, w)−1w, ζ =
Q(v−1)
Q(v1)

.

It follows (v1, v−1) = Q(v1) and, for all x1, x−1 ∈ F:

Q (x1v1 + x−1v−1) = x2
1Q(v1)+x2

−1Q(v−1)+x1x−1Q(v1) = Q(v1)
(
x2

1 + ζx2
−1 + x1x−1

)
.

In particular, for x−1 = 1, we get x1v1 + v−1 6= 0, whence:

0 6= Q(x1v1 + v−1) = Q(v1)
(
x2

1 + x1 + ζ
)
, ∀ x1 ∈ F.

Thus t2 + t+ ζ is irreducible in F[t], since it has no roots in F. It follows that t2 − t+ ζ

is also irreducible.

(2) There exists
(
λ
µ

)
∈ F2 such that λ2+ζµ2+λµ = Q(v1)−1. Substituting v1 with λv1+

µv−1 in point (1), we may suppose Q(v1) = 1. Then (6.22) gives Q (x1v1 + x−1v−1) =

x2
1 + ζx2

−1 + x1x−1. We conclude that the map f = W → F[t]
〈t2−t+ζ〉 defined by:

(6.23) x1v1 + x−1v−1 7→ x1 + x−1t

is an isometry in virtue of (6.19).
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Finally, suppose F = Fq and let
(
V,NV

Fq

) (
V ′, NV ′

Fq

)
be 2-dimensional anisotropic or-

thogonal spaces. Since V and V ′ are finite fields of the same order, there exists a field

automorphism f : V → V ′ such that f|Fq = id. From

f(v)f(vq) = f(vvq) = vvq, ∀ v ∈ V

we conclude that f is an isometry.

(6.24) Corollary Let (V,Q) be an orthogonal space, with V = F2m
q .

(1) There exists a basis B = {v1 . . . , vm, v−1 . . . , v−m, } of V such that either Q = Q+

or Q = Q− where, for all v =
∑m

i=1 xivi + x−iv−i ∈ V :

• Q+(v) =
∑m

i=1 xix−i;

• Q−(v) =
∑m

i=1 xix−i + x2
m + ζx2

−m, with t2 − t+ ζ a fixed, separable irreducible

polynomial in Fq[t] (arbitrarily chosen with these properties).

(2) Q+ has polar form
∑m

i=1 (xiy−i + x−iyi), with matrix J1 =
(

0 Im
Im 0

)
;

Q− has polar form
∑m

i=1 (xiy−i + x−iyi) + 2 (xmym + ζx−my−m), with matrix

J2 =


0 Im−1 0 0

Im−1 0 0 0
0 0 2 1
0 0 1 2ζ

 .

(3) (V,Q+) is not isometric to (V,Q−).

The corresponding groups of isometries are indicated by O+
2m(q) and O−2m(q).

Proof

(1) Let m = 1. If V is non-anisotropic, Lemma 6.14 gives Q = Q+. If V is anisotropic,

Theorem 6.21 gives Q = Q−. So assume m > 1.

Step 1. We claim that there exists a non-zero vector v1 ∈ V such that Q(v1) = 0.

By the same argument used in the proof of point (1) of Theorem 6.21, there exists a non-

singular 2-dimensional subspace W = 〈vm, v−m〉. We may assume that W is anisotropic.

Hence (W,Q) is isometric to
(
Fq2 , N

Fq2
Fq

)
and

Q (xmvm + x−mv−m) = xmx−m + x2
m + ζx2

−m, ∀ xm, x−m ∈ Fq

for some irreducible polynomial t2 − t+ ζ ∈ F[t].
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Take a non-zero vector w in W⊥. By the surjectivity of the norm for finite fields, there

exist u ∈ W such that Q(u) = −Q(w). Then v1 = u + w 6= 0, since W ∩W⊥ = {0}.

Moreover, from (u,w) = 0, we get: Q(v1) = Q (u+ w) = Q (u) +Q(w) = 0.

Step 2. By Lemma 6.14 there exists a non-singular 2-dimensional subspace 〈v1, v−1〉

such that Q (x1v1 + x−1v−1) = x1x−1. We get:

V = 〈v1, v−1〉 ⊕ 〈v1, v−1〉⊥ .

By induction, 〈v1, v−1〉⊥ has a basis B′ = {v2 . . . , vm, v−2 . . . , v−m, } such that the re-

striction of Q to 〈v1, v−1〉⊥ is either Q+ or Q−. This gives (1).

(2) Routine calculation using (1).

(3) V is a direct sum of mutually orthogonal 2-dimensional spaces:

V = 〈v1, v−1〉 ⊥ · · · ⊥ 〈vm, v−m〉

with the further property (vi, vi) = 0, 1 ≤ i ≤ m− 1. For Q+ we have also (vm, vm) = 0,

so that 〈v1, . . . , vm〉 is a totally isotropic space of largest possible dimension m = n
2 (see

Lemma 3.9). For Q− the space W = 〈v1, . . . , vm−1〉 is totally isotropic. It follows:

W ⊕ 〈vm, v−m〉 = W⊥.

Let Ŵ be a totally isotropic space which contains W . Then

W = W +
(
Ŵ ∩ 〈vm, v−m〉

)
= W + {0} = W

since 〈vm, v−m〉 is anisotropic. We conclude that W = Ŵ , i.e., W is a maximal isotropic

space of dimension m− 1. So Q+ and Q− cannot be isometric.

(6.25) Theorem Let (V,Q) be an orthogonal space, with V = F2m+1
q , q odd. There

exists a basis of V such that the matrix of the polar form is one of the following:

(6.26) I2m+1 =

1
. . .

1

 , J =
(
I2m

ε

)
,

where ε is a fixed non-square in F∗q (arbitrarily chosen with this property). The two

polar forms I2m+1 and J give rise to non-isometric orthogonal spaces, but their groups

of isometries are conjugate, hence isomorphic. Both groups are indicated by O2m+1(q).
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Proof We first show that, if an orthogonal space V over Fq, has dimension > 1, then there

exists v1 ∈ V with (v1, v1) = 1. By Lemma 6.1, there exists v1 such that (v1, v1) 6= 0.

Thus (v1, v1) = ρ2 or (v1, v1) = ρ2ε for some ρ ∈ F∗q . Substituting v1 with ρ−1v1, if

necessary, we have (v1, v1) ∈ {1, ε}. If (v1, v1) = ε, set λ2 + µ2 = ε−1. Again by Lemma

6.1, applied to 〈v1〉⊥, there exists v2 ∈ 〈v1〉⊥ such that (v2, v2) 6= 0. If (v2, v2) = 1, we

substitute v1 by v2. If (v2, v2) = ε, we substitute v1 by λv1 + µv2.

Now we prove our claim. If m = 1 we can take B = {v1} with (v1, v1) ∈ {1, ε}. If m > 1

we take v1 with (v1, v1) = 1. Then V = 〈v1〉 ⊥ 〈v1〉⊥ and our claim follows by induction

on dimV applied to 〈v1, v2〉⊥.

I2m+1 and J define non isometric spaces because the dimension of a maximal isotropic

space are, respectively, m and m − 1. So J is not cogradient to I2m+1. Also εI2m+1 is

not cogredient to I2m+1, otherwise we would have εI2m+1 = P T I2m+1P , a contradiction

as ε2m+1 = det (εI2m+1) is not a square. Since, over Fq, there are only 2 non-isometric

orthogonal spaces, J is cogredient to εI2m+1. Now I2m+1 and εI2m+1 have the same

group of isometries, since:

hT (εI2m+1)h = εI2m+1 ⇐⇒ hT I2m+1h = I2m+1.

We conclude that the groups of isometries of I2m+1 and J are conjugate.

7 Exercises

(7.1) Exercise Show that SL2(F) = Sp2(F) over any field F.

(7.2) Exercise Let (V,Q,F) be an orthogonal space. Suppose V = V1 ⊥ V2.

Show that, for each v = v1 + v2 with v1 ∈ V1, v2 ∈ V2:

Q(v) = Q(v1) +Q(v2).

(7.3) Exercise Let V be a quadratic extension of F and 〈σ〉 = GalF(V ).

Show that the map NF : V → F, defined by NV
F (v) := vvσ is a quadratic form on V .

(7.4) Exercise In Lemma 6.18 show that the quadratic form

NV
F (x1 + x−1t) = x2

1 − ax1x−1 + b
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has matrix J =
(

2 −a
−a 2b

)
with respect to the basis {1, t}.

(7.5) Exercise Say whether the matrices

J =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 , J ′ =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0


are cogredient. In case they are, indicate a non-singular matrix P such that P TJP = J ′.

(7.6) Exercise Let V be an anisotropic 2-dimensional orthogonal space over Fq, q odd.

Show that there exists a basis for which the polar form has matrix:
(

1 0
0 −ε

)
, where ε is

a non square in Fq.

(7.7) Exercise Let q be odd. Show that −1 is a square in Fq if and only if

q ≡ 1 (mod 4).

(7.8) Exercise Let q be odd and ε ∈ Fq be a non-square. Show that the matrices(
1 0
0 1

)
,

(
1 0
0 ε

)
are not cogredient (equivalently define non-isometric orthogonal spaces).

(7.9) Exercise Let q be odd and ε ∈ Fq be a non-square. Show that the matrix J =(
0 1
1 0

)
is respectively cogredient to(

1 0
0 1

)
if q ≡ 1 (mod 4),

(
1 0
0 ε

)
if q ≡ 3 (mod 4).

(7.10) Exercise Let W be a totally isotropic subspace of an orthogonal space V . Sup-

pose

V = W ⊕ U

with U anisotropic. Show that W is a maximal isotropic subspace of V .

(7.11) Exercise Let q be odd, V = Fnq be a quadratic space, with n = 2m. Using the

classification of quadratic spaces given in this Chapter, show that there exists a basis of

V with respect to which the polar form has matrix J1 or J2 where

J1 =
(

0 Im
Im 0

)
, J2 =


0 Im−1

Im−1 0
1
−ε

 .
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Chapter III

The finite simple classical groups

Apart from the general reference given in the Introduction, in this Chapter we mainly

refer to [5], [11], [15], [22].

1 A criterion of simplicity

(1.1) Definition A subgroup M of a group G 6= {1} is said to be maximal if M 6= G

and there exists no subgroup M̂ such that M < M̂ < G.

If M is maximal in G, then every conjugate gMg−1 of M is maximal in G. Indeed

gMg−1 < N < G =⇒ M < g−1Ng < G.

Let G be a subgroup of Sym(X). For any α ∈ X, the set

Gα := {x ∈ G | x(α) = α}

is a subgroup, called the stabilizer of α in G. If β = g(α) then Gβ = gGαg
−1.

(1.2) Definition Let k ∈ N. G ≤ Sym(X) is called:

• k-transitive if, for any two k-tuples of pairwise distinct elements in X:

(α1, . . . , αk) , (β1, . . . , βk)

there exists g ∈ G such that g(αi) = βi, 1 ≤ i ≤ k;

• transitive if it is 1-transitive;

• primitive if it is transitive and Gα is a maximal subgroup of G for (any) α ∈ X.
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To prove that G is transitive on X it is enough to fix γ ∈ X and show that, for any

α ∈ X, there exists g ∈ G such that g(γ) = α. Actually a more general fact holds:

(1.3) Lemma Let G ≤ Sym(X) and (γ1, . . . , γk) be a fixed k-tuple of distinct elements

in X. If, for every k-tuple (α1, . . . , αk) of distinct elements in X there exists g ∈ G such

that g(γi) = αi, 1 ≤ i ≤ k, then G is k-transitive.

Proof Given (α1, . . . , αk), (β1, . . . , βk) let g1, g2 ∈ G be such that:

g1(γi) = αi, g2(γi) = βi, 1 ≤ i ≤ k.

Then g2g
−1
1 (αi) = βi, 1 ≤ i ≤ k.

(1.4) Lemma If G ≤ Sym(X) is 2-transitive, then G is primitive.

Proof Let Gα < H ≤ G, with α ∈ X. We want to show that H = G. To this purpose,

choose h ∈ H \Gα and set β = h(α). So β 6= α. Now take any g ∈ G. If g(α) = α, then

g ∈ H. Otherwise g(α) = γ 6= α and there exists h ∈ G such that
(
h(α), h(β)

)
= (α, γ)

since G is 2-transitive. In particular h ∈ Gα < H. Moreover, from h(β) = γ we get

hh(α) = g(α). Thus g−1hh ∈ Gα < H. From hh ∈ H it follows g ∈ H. So G = H.

(1.5) Definition The derived subgroup G′ of an abstract group G is the subgroup

generated by all commutators x−1y−1xy := (x, y), i.e.,:

G′ :=
〈
x−1y−1xy | x, y ∈ G

〉
.

If N is a (normal) subgroup of G, then G
N is abelian if and only if G′ ≤ N .

(1.6) Definition A group S 6= {1} is simple if its normal subgroups are {1} and S.

The following Theorem provides a fundamental tool by which the simplicity of the clas-

sical groups can be proved.

(1.7) Theorem (Iwasawa’s Lemma). A subgroup S of Sym(X) is a simple group when-

ever the following conditions hold:

• S is primitive;

• S = S′, i.e., S is perfect;
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• the stabilizer Sα of (any) α ∈ X contains a normal abelian subgroup A such that

S is generated by the conjugates of A, i.e., S = AS := 〈As | s ∈ S〉.

Proof X = {s(α) | s ∈ S}, by the transitivity of S. Let N be a normal subgroup of S.

If N ≤ Sα, every x = s(α) ∈ X is fixed by sNs−1 = N , whence N = {id}. So assume:

(1.8) N 6≤ Sα.

Since Sα normalizesN , the product SαN = NSα is a subgroup of S. Moreover Sα 6= NSα

in virtue of (1.8). By the maximality of Sα in the primitive group S we get

(1.9) SαN = S.

From the assumptions S = AS , A normal in Sα and N normal in S, it follows:

S = AS = ASαN = AN ≤ NA ≤ S.

Thus S = NA and

S

N
=
NA

N
∼=

A

A ∩N
abelian =⇒ S′ ≤ N.

Finally, from S′ = S we conclude S = N .

2 The projective special linear groups

2.1 The action on the projective space

(2.1) Definition The group of n×n invertible matrices, with entries in F, is called the

general linear group of degree n over F, and indicated by GLn(F) or GLn(q) if F = Fq.

We recall that, over the field F, a matrix is invertible if and only if it has non-zero

determinant. By the Theorem of Binet, the map

(2.2) δ : GLn(F)→ F∗ such that A 7→ detA

is a homomorphism of groups. Clearly δ is surjective. Its kernel, consisting of the

matrices of determinant 1, is called the special linear group of degree n over F and is

indicated by SLn(F) or SLn(q) if F = Fq. It follows GLn(F)
SLn(F) ∼ F∗. In particular:

(2.3)
|GLn(q)|
|SLn(q)|

= q − 1.
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The center Z of GLn(F) is defined as

Z := {z ∈ GLn(F) | zg = gz,∀ g ∈ GLn(F)} .

Z consists of the scalar matrices. Via the homomorphism g 7→ Zg we have:

GLn(F) // GLn(F)
Z

:= PGLn(F) (projective general linear group)

SLn(F) // SLn(Z)Z
Z

:= PSLn(F) (projective special linear group).

Note that:
SLn(Z)Z

Z
∼=

SLn(F)
Z ∩ SLn(F)

.

From the above considerations:

(2.4) |PGLn(q)| = |GLn(q)|
q − 1

= |SLn(q)| , |PSLn(q)| = |SLn(q)|
(n, q − 1)

.

Consider the projective space X := P (Fn), namely the set of 1-dimensional subspaces

of Fn. The group PGLn(F) acts on X in a natural way. Indeed, the map

ϕ : GLn(F) −→ Sym(X)

g 7→
(
〈v〉
〈gv〉

)
is a homomorphism with Kernel Z = {λIn | λ ∈ F∗}. It follows that

PGLn(F) =
GLn(F)
Z

∼= Imϕ ≤ Sym(X).

So, up to the isomorphism induced by ϕ:

PSLn(F) ≤ PGLn(F) ≤ Sym(X).

(2.5) Lemma For n ≥ 2 the group PSLn(F) is a 2-transitive subgroup of Sym(X).

Proof Let {e1, . . . , en} be the canonical basis. Given a pair (v1, v2) of linearly indepen-

dent vectors, there exist s ∈ SLn(F) and λ ∈ F such that (se1, se2) = (λv1, v2). Indeed,

we may extend {v1, v2} to a basis {v1, v2, . . . , vn} of Fn and consider the matrices:

b =
(
v1 v2 . . . vn

)
, s =

(
det b−1v1 v2 . . . vn

)
.

Then s ∈ SLn(F) and se1 = λv1, with λ = det b−1, se2 = v2 . It follows

(〈se1〉 , 〈se2〉) = (〈v1〉 , 〈v2〉).

By Lemma 1.3 the group PSL2(F) is 2-transitive on X.
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2.2 Root subgroups and the monomial subgroup

(2.6) Lemma Each of the maps from (F,+) to (SL2(F), ·) defined by

t 7→
(

1 t
0 1

)
, t 7→

(
1 0
t 1

)
,

is a group monomorphism.

Proof Straightforward calculation.

We interpret and generalize this Lemma. As usual we denote by ei,j the n× n matrix

whose entries are all 0, except the entry (i, j) which is 1. Note that e2
i,i = eii and e2

i,j = 0

for i 6= j. It follows that the map fij : (F,+)→ (SLn(F), ·) such that, for all t ∈ F:

t 7→ exp (teij) = I + tei,j ,

is a group monomorphism for all i 6= j.

(2.7) Definition For i 6= j the image of fij, namely the subgroup {I + tei,j | t ∈ F} is

called a root subgroup. Its elements I + tei,j are called elementary transvections.

More generally, each of the maps (Fn−1,+, 0)→ (SLn(F), ·, In) defined by:

(2.8) v 7→
(

1 vT

0 In−1

)
, v 7→

(
1 0
v In−1

)
, ∀ v ∈ Fn−1

is a group homomorphism. Since the additive group Fn−1 is generated by the subgroups

Fei, 1 ≤ i ≤ n − 1, the images of the maps in (2.8) are generated by elementary

transvections.

For n ≥ 3, every elementary transvection is a commutator. Indeed:

(2.9) (ei,j , ej,k) = ei,k whenever |{i, j, k}| = 3.

Any matrix whose columns are the vectors of the canonical basis (in some order) is called

a permutation matrix. The map Sym(n)→ GLn(F) such that

σ 7→ πσ :=
(
eσ(1) . . . eσ(n)

)
is a monomorphism whose image is the group Sn of permutation matrices. For n ≥ 2,

the determinant map δ : Sn → 〈−1〉 is an epimorphism with kernel Sn ∩ SLn(F).

If char F 6= 2, then Ker δ ∼= Alt(n) has index 2 in Sn. If char F = 2, then Ker δ = Sn.

Sn normalizes the group of diagonal matrices D ' (F∗)n. In fact, for all i, j:

(2.10) πσ ei,j π
−1
σ = eσ(i),σ(j).
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(2.11) Definition The product M := DSn of the diagonal and permutation subgroups

is called the standard monomial group.

The monomial subgroupM consists of the matrices whose columns are non-zero multiples

of the vectors of the canonical basis (in some order). Clearly

M

D
∼= Sym(n).

(2.12) Lemma M ∩ SLn(F) is generated by elementary transvections.

Proof Suppose first n = 2. Then M = DS2 = D

〈(
0 1
−1 0

)〉
. By the modular identity:

M ∩ SL2(F) = (D ∩ SL2(F))
〈(

0 1
−1 0

)〉
=
{(

α 0
0 α−1

)
| α ∈ F∗

}〈(
0 1
−1 0

)〉
.

So the claim is true by the following identities:

(1)
(
α−1 0

0 α

)
=
(

1 0
α− 1 1

)(
1 1
0 1

)(
1 0

α−1 − 1 1

)(
1 −α
0 1

)
;

(2)
(

0 1
−1 0

)
=
(

1 0
−1 1

)(
1 1
0 1

)(
1 0
−1 1

)
.

Then, for n ≥ 2, the result follows easily. In fact Sym(n) is generated by transpositions

and each matrix diag
(
α1, . . . , αn−1,

∏n−1
i=1 α

−1
i

)
in D ∩ SLn(F) can be written as

(
α1, . . . , 1, α−1

1

)
. . .
(
1, . . . , αn−1, α

−1
n−1

)
.

(2.13) Lemma The group SLn(F) is generated by the elementary transvections.

Proof Fix A = (ai,j) ∈ SLn(F). We have to show that A is a product of elementary

transvections. There exists an entry ah,k 6= 0. Let d = diag(−1, 1, . . . , 1) and note that,

if h 6= 1, then dπ1h ∈ M ∩ SLn(F). Similarly, if k 6= 1, then dπ1k ∈ M ∩ SLn(F). If

ah,k 6= a1,1, by Lemma 2.12 we may substitute A with A′ = π1hAπk1, or A′ = Adπk1 or

A′ = dπ1hA according to h 6= 1, k 6= 1, or h = 1, k 6= 1 or h 6= 1, k = 1. Thus:

A′ =
(
α ∗
∗ ∗

)
, α = ±ah,k 6= 0.

Again by Lemma 2.12 we may substitute A′ with:

A′′ = diag
(
α−1, α, 1, . . . , 1

)
A′ =

(
1 vT

w B

)
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where v, w ∈ Fn−1, B ∈ SLn−1(F). By (2.8), we may substitute A′′ with:(
1 0
−w 1

)
A′′
(

1 −vT
0 I

)
=
(

1 0
0 B′

)
, B′ ∈ SLn−1(F).

The claim now follows by induction on n.

2.3 Simplicity and order

(2.14) Theorem PSLn(F) is simple, except when n = 2 and F = F2 or F = F3.

Proof S = PSLn(F) is a 2-transitive subgroup of Sym(X) by Lemma 2.5, where X =

P(Fn) is the projective space. Hence S is a primitive subgroup of Sym(X) by Lemma

1.4. The preimage in SLn(F) of the stabilizer S〈e1〉, namely the group{(
det a−1 vT

0Fn−1 a

)
| a ∈ GLn−1(F), v ∈ Fn−1

}
contains the normal abelian subgroup

A :=
{(

1 vT

0 I

)
| v ∈ Fn−1

}
.

It follows that the projective image of A is abelian and normal in S〈e1〉.

The group A is generated by the elementary transvections

{I + tE12 | t ∈ F} , . . . , {I + tE1n | t ∈ F} .

By (2.10), every elementary transvection I + tei,j is conjugate to I + tE1,2 under DSn ∩

SLn(F). Thus the conjugates of A generate SLn(F) by Lemma 2.13. Hence the conjugates

of the projective image of A generate PSLn(F) = S.

Finally suppose |F| 6= 2, 3 if n = 2. Then SLn(F) = SLn(F)′, whence S = S′: this fact

follows from (2.9) for n ≥ 3, from Lemma 2.12 for n = 2.

Our claim is proved in virtue of Iwasawa’s Lemma (Theorem 1.7 of this Chapter).

For |F| = 2 and |F| = 3 we have, respectively, |X| = 3 and |X| = 4. Thus PSL2(2) ≤

Sym(3) and PSL2(3) ≤ Sym(4) cannot be simple.

(2.15) Theorem When F = Fq is finite, we have:

|PSLn(q)| =
1

(n, q − 1)
q
n(n−1)

2 (q2 − 1) · · · (qn − 1).
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Proof The columns of every matrix
(
v1 . . . vn

)
of GLn(F) are a basis of Fn and,

vice versa, the vectors of every basis {v1, . . . , vn} can be taken as columns of a matrix

in GLn(F). So |PSLn(q)| equals the number of basis of V = Fnq .

For v1 one can choose any vector in V \ {0}: here there are qn − 1 choices.

Once v1 is fixed, v2 must be chosen in V \ 〈v1〉: hence there are qn − q choices.

Then v3 must be chosen in V \ 〈v1, v2〉: this gives qn − q2 choices. And so on. . . Thus:

|GLn(q)| = (qn − 1) (qn − q)
(
qn − q2

)
. . .
(
qn − qn−1

)
= q

n(n−1)
2

n∏
i=1

(
qi − 1

)
.

The claim follows from (2.4).

3 The symplectic groups

By Theorem 4.2 of Chapter II, up to conjugation under GL2m(F), we may define the

symplectic group Sp2m(F) as

Sp2m(F) =
{
g ∈ GL2m(F) | gT

(
0 Im
−Im 0

)
g =

(
0 Im
−Im 0

)}
.

Direct calculation shows that Sp2(F) = SL2(F).

(3.1) Theorem Let m ≥ 2. Then:

(1) Sp2m(F) is generated by the following matrices and their transposes:(
Im + tei,j 0

0 Im − tej,i

)
1 ≤ i < j ≤ m

t ∈ F ,

(
Im tei,i
0 Im

)
1 ≤ i ≤ m
t ∈ F ;

(2) Sp2m(F)′ = Sp2m(F) is perfect, except Sp4(F2) ∼= Sym(6);

(3) the center of Sp2m(F) is the subgroup generated by −I.

In particular Sp2m(F) ≤ SL2m(F) by (1).

For the original proof of (1) see [18]. The rest can be proved by direct calculation.

(3.2) Definition The projective image of Sp2m(F), namely the group

Sp2m(F)Z
Z

∼=
Sp2m(F)
Sp2m ∩Z

=
Sp2m(F)
〈−I〉

is called the projective symplectic group and indicated by PSp2m(F).
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PSp2m(F), being a subgroup of PSLn(F), acts on the projective space X = P (Fn).

Since all vectors are isotropic, all 1-dimensional subspaces 〈v〉 and 〈w〉 are isometric. By

Witt’s extension Lemma there exists g ∈ Sp2m(F) such that 〈gv〉 = 〈w〉. So PSp2m(F)

is transitive on X. Again by Witt’s Lemma , the stabilizer of 〈v〉 in PSp2m(F) has 3

orbits on X, namely:

{〈v〉} , {〈w〉 | (v, w) = 0} , {〈w〉 | (v, w) 6= 0} .

Using this information, one can prove the following

(3.3) Lemma PSp2m(F) is a primitive subgroup of Sym(X), where X = P (Fn).

(3.4) Theorem Assume m ≥ 2 and F 6= F2 when m = 2. Then PSp2m(F) is simple.

Proof (sketch) Under our assumptions, the group S = PSp2m(F) is perfect, by point

(2) of Theorem 3.1, and acts primitively on the projective space X = P (Fn) by the

previous Lemma. In order to apply Iwasawa’s Lemma to S, it is convenient to suppose

that Sp2m(F) is the group of isometries of

J ′ =
(
J1

J2

)
, where J1 =

(
0 1
−1 0

)
, J2 =

(
0 Im−1

−Im−1 0

)
The linear preimage of the stabilizer S〈e1〉 of 〈e1〉 fixes 〈e1〉⊥ = 〈e1, e3, . . . e2m〉 and

induces the group Sp2(m−1)(F) on 〈e1〉
⊥

〈e1〉 . So it consists of the matrices:

(3.5)


 α β αuTJ2c

0 α−1 0T

0 u c

 | 0 6= α, β ∈ F, u ∈ F2m−2, c ∈ Sp2m−2(F)

 .

Noting that  α β αuTJ2c
0 α−1 0T

0 u c

−1

=

 α−1 −β −uTJ2

0 α 0T

0 −αc−1u c−1


it is not difficult to check that the abelian group :

A =


 1 γ 0T

0 1 0T

0 0 I2m−2

 | γ ∈ F


is normal in the preimage of S〈e1〉 described by (3.5). One can also show that the

conjugates of A generate Sp2m(F). So the projective image of A is an abelian, normal

subgroup of S〈e1〉, whose conjugates generate S. Our claim follows from Theorem 1.7.
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(3.6) Theorem |PSp2m(q)| = 1
(2,q−1) q

m2
(q2 − 1)(q4 − 1) · · · (q2m − 1).

Proof Each matrix of Sp2m(q) is a basis {v1, . . . , vm, v−1, . . . , v−m} of F2m such that

(vi, v−i) = vTi Jv−i = 1, (vi, vj) = vTi Jvj = 0 j 6= −i.

0 6= v1 can be chosen in (q2m − 1) ways (as (v, v) = 0 for all v.

For any fixed v1, the vector v−1 can be chosen in q2m−1 ways. Indeed it must satisfy

(3.7) (v1, v−1) = vT1 Jv−1 = 1.

The space of solutions of the homogeneous equation in 2m indeterminates

vT1 Jv−1 = 0

has dimension 2m− 1. Hence the system (3.7) has q2m−1 solutions.

Fn = 〈v1, v2〉 ⊥ 〈v2, . . . , vm, v−2, . . . , v−m〉 .

Applying induction to the number of symplectic basis of 〈v2, . . . , v−m〉 we get

|Sp2m(q)| = (q2m − 1)q2m−1
(
q(m−1)2(q2 − 1)(q4 − 1) · · · (q2(m−1) − 1)

)
.

4 The orthogonal groups

Given an orthogonal space (V,Q), with V = Fn, we consider its group of isometries:

(4.1) On(F, Q) := {h ∈ GLn(F) | Q(v) = Q(hv), ∀ v ∈ Fn} .

Any h ∈ On(F, Q) preserves the non-degenerate symmetric bilinear form

(4.2) (v, w) := Q(v + w)−Q(v)−Q(w), ∀ v, w ∈ Fn.

Thus, if J denotes the matrix of (4.2) with respect to the canonical basis, we have:

(4.3) hTJh = J, ∀ h ∈ On(F, Q).

It follows, in particular, (deth)2 = 1, i.e., deth = ±1 for all h ∈ On(F, Q).
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Suppose first char F 6= 2. By the considerations at the beginning of Section 6.2, the

isometries of J are precisely the isometries of Q. So we have the alternative definition:

(4.4) On(F, Q) :=
{
h ∈ GLn(F) | hTJh = J

}
, char F 6= 2.

In On(F, Q) there are matrices of determinant −1, as the reflections defined below. So

the group of orthogonal transformations of determinant 1, namely the group

SOn(F, Q) := On(F, Q) ∩ SLn(F)

has index 2 in On(F, Q).

Now suppose char F = 2. By Lemma 6.13 of Chapter II, we have n = 2m and

(4.5) O2m(F, Q) = SO2m(F, Q) ≤ Sp2m(F).

(4.6) Definition For each w ∈ Fn with Q(w) 6= 0, the reflection rw is the map

v 7→ v − (v, w)
Q(w)

w, ∀ v ∈ Fn.

It is immediate to see that rw ∈ On(F, Q). Moreover:

(4.7) Theorem

(1) the orthogonal group On(F, Q) is generated by the reflections;

(2) the center of On(F, Q) is generated by −I.

But we are more interested in generators of the derived subgroup of On(F, Q), since this

is the group whose projective image is generally simple.

(4.8) Definition Ωn(F, Q) denotes the derived subgroup of On(F, Q) and PΩn(F, Q)

its projective image in PGLn(F).

Clearly Ωn(F, Q) ≤ SOn(F, Q). It can also be shown that:

|SOn(F, Q) : Ωn(F, Q)| ≤ 2.

(4.9) Theorem Let m ≥ 2. Write v =
∑m

i=1 (xiei + x−ie−i) if v ∈ F2m,

v = x0e0 +
∑m

i=1 (xiei + x−ie−i) if v ∈ F2m+1.

• If Q(v) =
∑m

i1
xix−i, then Ωn(F, Q) := Ω+

n (F) is generated by the following ma-

trices and their transposes:(
Im + tei,j 0

0 Im − tej,i

)
,

(
Im t (ei,j − ej,i)
0 Im

)
, t ∈ F, i < j ≤ m.
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• If Q(v) = x2
0 +

∑m
i1
xix−i and char F 6= 2, then Ωn(F, Q) is generated by the

following matrices and their transposes:

1 0 0
0 Im + tej,i 0
0 0 Im − tei,j

 ,

 1 0 −teTi
2ei Im −t2ei,i
0 0 Im

 , t ∈ F, j < i ≤ m.

Note that the matrices of the corresponding polar forms are respectively

J2m =
(

0 Im
Im 0

)
, J2m+1 =

2 0 0
0 0 Im
0 Im 0

 .

In what follows, let t2 + t+ ζ be an irreducible polynomial in F[t], with roots α 6= α in

K := F(α).

(4.10) Lemma Consider the space (F2, Qζ) with Qζ(v) = x2
1 + x1x−1 + ζx2

−1 for each

v =
(
x1

x−1

)
. Set P =

(
1 −α
1 −α

)
. Then

O2(F, Qζ) = P−1O+
2 (K)P ∩ SL2(F)

where O+
2 (K) is the group of isometries of Q, with Q(v) = x1x−1.

In particular, up to conjugation:

• O+
2 (q) =

〈(
β 0
0 β−1

)
,

(
0 1
1 0

)〉
with β of order q − 1;

• O−2 (q) =

〈−αγ+αγ−1

α−α
ζ(γ−γ−1)
α−α

−γ+γ−1

α−α
αγ−αγ−1

α−α

 ,

(
1 1
0 −1

)〉
with γ ∈ Fq2 of order q + 1.

Proof We pass from the canonical basis {e1, e2} of K2 to the basis B =
{
P−1e1, P

−1e2

}
.

For any v as in the statement, its coordinate vector vB with respect to B becomes:

vB = Pv =
(
x1 − αx−1

x1 − αx−1

)
.

With this change of coordinates, the form Q such that Q(v) = x1x−1 becomes Qζ , as:

Q(Pv) = (x1 − αx−1) (x1 − αx−1) = x2
1 + x1x−1 + ζx2

−1 = Qζ(v).

Since O+
2 (K) preserves the quadratic form Q, its conjugate P−1O+

2 (K)P preserves Qζ .

Indeed, let A ∈ O+
2 (K). Then, for all v ∈ K2:

Qζ (v) = Q (Pv) = Q (APv) = Q
(
PP−1APv

)
= Qζ

(
(P−1AP )v

)
.
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The rest follows by calculation.

(4.11) Remark The space (F2, Qζ) is anisotropic, but (K2, Qζ) is not, since t2 + t+ ζ

is reducible over K. In fact, by the previous Lemma, (K2, Qζ) is isometric to (K2, Q).

When n = 2m, let t2 + t+ ζ = (t− α)(t− α) be as in the Lemma 4.10 and set

Qζ =
m∑
i=1

xix−i + x2
m + ζx2

−m.

Ωn(F, Qζ) is a subgroup of a conjugate of Ω+
n (K). Indeed, let S = diag (In−2, P ) with P

as in Lemma 4.10. then:

Ωn(F, Qζ) = S−1Ω+
n (K)S ∩ SLn(F).

Recall that, when F = Fq then, up to conjugation:

Ωn(Fq, Qζ) = Ω−n (q).

For n ≥ 3 the center of Ωn(F, Q) is Ωn(F, Q) ∩ 〈−I〉. Thus the projective image

PΩ+
2m(F, Q) :=

Ωn(F, Q)
Ωn(F, Q) ∩ 〈−I〉

.

(4.12) Theorem The groups PΩ+
2m(q), PΩ−2m(q), for all q and m ≥ 3, are simple.

The groups PΩ2m+1(q), for q odd and m ≥ 2, are simple.

The proof is based on Iwasawa’s Lemma, since PΩ+
2m(F, Q) is perfect and acts as a

primitive group on the set of isotropic 1-dimensional subspaces.

|PΩ2m+1(q)| = 1
(2,q−1) q

m2
(q2 − 1)(q4 − 1) · · · (q2m − 1)∣∣PΩ+

2m(q)
∣∣ = 1

(4,qm−1) q
m(m−1)(q2 − 1)(q4 − 1) · · · (q2m−2 − 1)(qm − 1)∣∣PΩ−2m(q)

∣∣ = 1
(4,qm+1) q

m(m−1)(q2 − 1)(q4 − 1) · · · (q2m−2 − 1)(qm + 1).

5 The unitary groups

Let F have an automorphism σ of order 2 and f be a non-singular hermitian form on Fn

with matrix J with respect to the canonical basis. The unitary group is defined as:

GUn(F, f) =
{
g ∈ GLn(F) | gTJgσ = J

}
.
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In particular, when F = Fq2 or F = C and σ is the complex conjugation, we may assume

J = I by the classification of hermitian form over these fields.

The center Z of GUn(F, f) consists of the scalar matrices αI such that

αασ = 1.

In particular the center of GUn(q2) has order q + 1. (Exercise).

SUn(F, f) := GUn(F, f) ∩ SLn(F).

The projective image of SUn(F, f) in PGLn(F), namely the group

PSUn(F, f) :=
SUn(F, f)Z

Z
∼=

SUn(F, f)
SUn(F, f) ∩ Z

is called the projective special unitary group.

(5.1) Lemma SL2(q) ∼= SU2(q2).

Proof Let γ ∈ Fq2 be such that γq−1 = −1. Then J =
(

0 γ
−γ 0

)
defines a non-singular

hermitian form. Direct calculation shows that, for all a, b, c, d ∈ Fq2 such that ad−bc = 1,(
a c
b d

)
J

(
aq bq

cq dq

)
= J ⇐⇒ a, b, c, d ∈ Fq.

(5.2) Theorem For n ≥ 3 the groups PSUn(F) are simple, except when (n,F) = (3,F4).

Again the proof is based on Iwasawa’s Lemma and the primitive action on the set of

1-dimensional isotropic subspaces.

In the finite case:

∣∣PSUn(q2)
∣∣ =

1
(n, q + 1)

q
n(n−1)

2 (q2 − 1)(q3 + 1)(q4 − 1) · · · (qn − (−1)n).

6 The list of finite classical simple groups

Up to isomorphisms, the list is the following:

• PSLn(q) = An−1(q), n ≥ 2, except PSL2(2) ∼= Sym(3), PSL2(3) ∼= Alt(4);

• PSp2m(q) = Cm(q), m ≥ 2, except PSp4(2) ∼= Sym(6);
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• PSp4(2)′ ∼= Alt(6);

• PΩ2m+1(q) = Bm(q), q odd, m ≥ 2;

• PΩ+
2m(q) = Dm(q), PΩ−2m(q) = 2Dm(q), m ≥ 3;

• PSUn(q2) = 2An−1(q), n ≥ 3, except PSU3(4) ∼= 32.Q8.

The lower bounds for n and m above are due to exceptional isomorphisms, such as:

• SL2(q) ∼= Sp2(q) ∼= SU2(q2);

• Ω±2 (q) ∼= C q∓1
(2,q−1)

(cyclic group);

• PΩ+
4 (q) ∼= PSL2(q)× PSL2(q);

• PΩ−4 (q) ∼= PSL2(q2);

• PΩ+
6 (q) ∼= PSL4(q);

• PΩ−6 (q) ∼= PSU4(q2);

7 Exercises

(7.1) Exercise Let G be a subgroup of Sym(X), g ∈ G and α, β ∈ X. Show that, if

β = g(α) then Gβ = gGαg
−1.

(7.2) Exercise

• Let N be a normal subgroup of G such that the factor group G
N is abelian. Show

that G′ ≤ N .

• Let N be a subgroup of G such that G′ ≤ N . Show that N is normal and G
N is

abelian.

(7.3) Exercise Assuming αβγ = 1, write

α 0 0
0 β 0
0 0 γ

 and

0 α 0
0 0 β
γ 0 0

 as products

of elementary transvections.

(7.4) Exercise Show that the map
(
F2,+, 0

)
→ (SL3(F), ·, I) defined by:

(
t1
t2

)
7→

1 0 0
t1 1 0
t2 0 1
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is a homomorphism of groups. Write the matrix on the right (and its transpose) as a

product of elementary transvections.

(7.5) Exercise Show that SL2(F) = SL2(F)′ except when |F| = 2, 3.

(7.6) Exercise Show that the center Z of SLn(F) consists of scalar matrices.

(7.7) Exercise Show that: |Z ∩ SLn(q)| = (n, q − 1).

(7.8) Exercise Show that any matrix m ∈ Matn(F) is conjugate to its transpose.

(Hint: start from a companion matrix) and deduce that:

• any symplectic transformation g ∈ Sp2m(F) is conjugate to g−1 under GL2m(F);

• any orthogonal transformation g ∈ On(F, Q) is conjugate to g−1 under GLn(F).

(7.9) Exercise Let Fn be an orthogonal space with respect to Q. Show that, for every

0 6= w ∈ Fn the reflection rw is a linear transformation of determinant −1, and an isom-

etry of Q. Write the matrix of rw with respect to a basis w,w2, . . . , wn where w2, . . . , wn

is a basis of 〈w〉⊥.
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Chapter IV

Some facts from representation
theory

This deep and important theory cannot be developed in these notes. We just give some

basic results and refer, for a systematic exposition, to books like [6], [7], [13].

1 Irreducible and indecomposable modules

We consider the space Fn of column vectors as a left module over the ring Matn(F) with

respect to the usual product of matrices. Let A be a subset of Matn(F).

(1.1) Definition A subspace W of Fn is A-invariant if AW ≤W , i.e., if:

aw ∈W, ∀ a ∈ A, ∀ w ∈W.

Clearly W is A-invariant if and only if it is FA-invariant, where FA denotes the linear

subspace of Matn(F) generated by A. Moreover, when A is a subring of Matn(F), then

W is A-invariant if and only if it is a module over A.

(1.2) Lemma Let F ≤ K, a field extension. If w1, . . . , wm are linearly independent

vectors of Fn, then they are linearly independent in Kn.

Proof There exists P ∈ GLn(F) such that Pwj = ej , 1 ≤ j ≤ m. So assume
∑m

i=1 kiwi =

0, with ki ∈ K. Multiplying by P we get
∑m

i=1 kiei = 0, whence k1 = · · · = km = 0.

A subspace W of Fn can be extended to the subspace W ⊗F K of Kn defined as the

subspace of Kn generated by any basis B = {w1, . . . , wm} of W , namely:

W ⊗F K =


m∑
j=1

kjwj | kj ∈ K

 (tensor product).
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B is a basis of W ⊗F K, by Lemma 1.2. Thus, if W is an A-module, also W ⊗F K becomes

an A-module via the action:

a
m∑
j=1

kjwj =
m∑
j=1

kj awj ∀ a ∈ A.

(1.3) Definition Let A be a subring (or a subgroup) of Matn(F) and W be an A-

invariant subspace of Fn. The A-module W is said to be:

(1) indecomposable, if there is no decomposition W = W1⊕W2 into proper A-invariant

subspaces W1,W2;

(2) irreducible, if the only A-invariant subspaces of W are {0Fn} and W ;

(3) absolutely irreducible, if W ⊗F K is irreducible for any field extension K of F.

Accordingly, a subring (or a subgroup) A of Matn(F) is said to be:

• indecomposable, if Fn is indecomposable as an A-module;

• irreducible, if Fn is irreducible as an A-module;

• absolutely irreducible, if Fn is absolutely irreducible as an A-module.

Clearly an irreducible group is indecomposable. The converse is not true in general, as

shown in Example 1.5 below. It is true when G is finite and F has characteristic p where

p = 0 or p does not divide |G| (see Theorem 1.11).

(1.4) Example The subgroup G of GL2(R), generated by the matrix g =
(

0 1
−1 0

)
, is

irreducible but not absolutely irreducible.

Indeed g has no eigenvalue in R. Thus R2 has no 1-dimensional G-submodule. But g

has eigenvalues in C. Thus, for example,
〈(

1
i

)〉
is G-invariant in C2.

(1.5) Example The subgroup G =
{(

1 t
0 1

)
, | t ∈ F

}
of GL2(F) is reducible, but in-

decomposable, for any field F.

G is reducible because 〈e1〉 is G-invariant. Suppose R2 = 〈v1〉 ⊕ 〈v2〉 where each 〈vi〉 is

G-invariant. Then v1, v2 should be a basis of eigenvectors of G. Since every g ∈ G has

only the eigenvalue 1, one gets Gv1 = v1, Gv2 = v2, whence the contradiction G = I.
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(1.6) Example The subgroup G of GL2(R), generated by the matrices

g1 =
(

1 0
0 −1

)
, g2 =

(
0 1
1 0

)
is absolutely irreducible.

Indeed the only 1-dimensional g1-invariant subspaces are its eigenspaces, namely 〈e1〉

and 〈e2〉, but they are not g2-invariant.

(1.7) Lemma Matn(F) is absolutely irreducible for any field F. Moreover its center Z

coincides with the field FIn of scalar matrices.

Proof Set A = Matn(F) and let {0} 6= W be an A-invariant subspace of Kn, where K is

a field extension of F. Take 0 6= w ∈ W . Then there exists a non-zero component αi of

w. From ei,i ∈ A, it follows that ei,iw = αiei ∈W . Hence ei ∈W . Considering in A the

permutation matrices π(i,j) we get that π(i,j)ei = ej ∈ W for 1 ≤ j ≤ n. So W contains

the canonical basis, whence W = Kn.

By direct calculation one sees that a matrix commutes with all matrices eij ∈ Matn(F)

if and only if it is scalar.

(1.8) Theorem Let G be one of the following classical groups:

SLn(F), SUn(F), Spn(F), n = 2m, Ωn(F, Q).

Then FG = Matn(F), except when G = Ω2(F, Q). In particular G is absolutely irreducible

and its centralizer in Matn(F) consists of the scalar matrices.

Proof One can see that in each case, provided G 6= Ω2(F, Q), the group G contains n2

linearly independent matrices (for instance the generators of these groups given in the

previous Chapter). Hence the subspace FG generated by G coincides with Matn(F),

which is absolutely irreducible.

(1.9) Lemma (Schur’s Lemma) Let A ≤ Matn(F) be irreducible. Then

C = CMatn(F)(A) := {c ∈ Matn(F) | ca = ac, ∀ a ∈ A}

is a division algebra over FIn. In particular, if commutative, C is a field.
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Proof It is easy to see that C is a subalgebra of Matn(F), which contains Z = FIn.

Consider a non-zero matrix c ∈ C. The subspace cFn is A-invariant, as:

a (cFn) = (ac)Fn = (ca)Fn = c(aFn) ≤ cFn, ∀ a ∈ A.

0Matn(F) 6= c =⇒ cFn 6= {0Fn}. It follows cFn = Fn, by the irreducibility of A. Since the

multiplication by c is surjective, it is injective. Thus c has inverse c−1. Clearly c−1 ∈ C.

Up to here we considered the natural Matn(F)-module Fn. But we may also consider

the left regular module Matn(F) Matn(F) and compare these two modules.

(1.10) Lemma Let A be a subring of Matn(F), acting irreducibly on Fn, and let {0} 6=

W ≤ Matn(F) be a minimal A-invariant subspace, in the regular action of Matn(F) on

itself. Then there exists a vector ei of the canonical basis such that Fn = Wei. Moreover

W is isomorphic to Fn, as an A-module. In particular dimFW = n.

Proof Choose 0 6= w ∈W . Then w has a non-zero column wei. The subspace Wei of Fn

is such that A(Wei) ≤ Wei. From wei ∈ Wei it follows Wei 6= {0}. Hence Wei = Fn,

by the irreducibility of A. Finally, the map f : W → Fn defined by w 7→ wei is an

F-isomorphism such that f(aw) = af(w) for all a ∈ A.

(1.11) Theorem (Maschke) Let G ≤ GLn(F) be a finite group, where F has charac-

teristic 0 or a prime p which does not divide |G|. Then every G-invariant subspace W

of Fn has a G-invariant complement.

Proof Let Fn = W ⊕ U , where U is an F-complement of W , and call π : Fn → U the

projection. Consider ψ : Fn → Fn defined by:

ψ(v) :=
1
|G|

∑
x∈G

x−1π(xv), ∀ v ∈ Fn.

The image of ψ, namely ψ(Fn), is G-invariant, since for all g ∈ G and v ∈ Fn:

ψ(gv) :=
1
|G|

∑
x∈G

x−1π(xgv) =
1
|G|

g
∑
x∈G

(
g−1x−1

)
π(xgv) = gψ(v).

Moreover, from u− π(u) ∈W for all u ∈ Fn, it follows that:

v − ψ(v) =
1
|G|

∑
x∈G

x−1xv − 1
|G|

∑
x∈G

x−1π(xv) =
1
|G|

∑
x∈G

x−1 (xv − π(xv)) ∈W.
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Thus v = (v − ψ(v)) + ψ(v) for all v ∈ Fn, gives Fn = W + ψ(Fn).

For all w ∈W and all x ∈ G we have π(xw) = 0. So ψ(w) = 0, whence ψ(v−ψ(v)) = 0,

for all v. This gives ψ2 = ψ and W ∩ψ(Fn) = {0}. Indeed, from w = ψ(v) ∈W ∩ψ(V ),

we have ψ(v) = ψ2(v) = ψ(w) = 0.

We conclude that ψ(Fn) is a G-invariant complement of W in Fn.

2 Representations of groups

(2.1) Definition Let H be an abstract group.

(1) A representation of H of degree n over F is a homomorphism f : H → GLn(F).

The representation f is said to be irreducible if Fn is an irreducible f(H)-module.

(2) The character χ of f is the map χ : H → F such that

χ(h) := tr(f(h)), ∀ h ∈ H.

(3) Two representations fi : H → GLn(F), i = 1, 2 are said to be equivalent if there

exists P ∈ GLn(F) such that

(2.2) Pf1(h) = f2(h)P, ∀ h ∈ H.

Since conjugate matrices have the same trace, equivalent representations have the same

characters.

(2.3) Definition Let H be an abstract group. The group algebra FH is defined as

follows. The elements of H are a basis of FH as a vector space over F. The product in

FH is the extension, by linearity, of the product in H.

In particular, by definition, the elements of FH are the formal linear combinations∑
h∈H

αhh, αh ∈ F

with a finite number of non-zero coefficients. By definition, dimF FH = |H|.

The extension to FH, by linearity, of any representation f : H → GLn(F) gives rise to

an algebra homomorphism f : FH → Matn(F). Vice versa, if f : FH → Matn(F) is an

algebra homomorphism, its restriction fH : H → GLn(F) is a representation of H.
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(2.4) Remark If f : H → GLn(F) is a representation, then Fn is an H-module with

respect to hv := f(h)v, for all v ∈ Fn. Vice versa, if Fn is an FH-module, the map

f : H → GLn(F) such that f(h) =
(
he1 . . . hen

)
is a representation.

(2.5) Lemma Two representations f1 : H → GLn(F) and f2 : H → GLn(F) are

equivalent if and only if the corresponding FH-modules Vi = Fn are isomorphic, i = 1, 2.

Proof Suppose first that f1 and f2 equivalent and let P ∈ GLn(F) be as in point (3) of

Definition 2.1. Then the the multiplication by P , namely the map µP : V1 → V2, is an

FH-isomorphism. Indeed µP is F-linear and, for all v ∈ Fn and all h ∈ H:

µP (f1(h)v) = Pf1(h)v = f2(h)Pv = f2(h)µP (v).

Vice versa, if there exists an FH-isomorphism σ : V1 → V2 and P ∈ GLn(F) is the matrix

of σ with respect to the canonical basis, then Pf1(h) = f2(h)P for all h ∈ H. Thus f1

and f2 are equivalent.

Given two representations fi : H → GLni(F), i = 1, 2, we may consider their sum,

namely the representation f : H → GLn1+n2(F), defined by:

f(h) :=
(
f1(h) 0

0 f2(h)

)
, ∀ h ∈ H.

Set Mi = Matni(F). Clearly the subspace

M1 ⊕M2 :=
{(

A1 0
0 A2

)
| A1 ∈ Matn1(F), A2 ∈ Matn2(F)

}
is an f(H)-module. Moreover the projections

πi : M1 ⊕M2 → Matni(F)

are f(H)-homomorphisms. In particular f(H) Ker πi = Ker πi, for i = 1, 2.

(2.6) Lemma In the above notation, suppose that the representations

fi : H → GLni(F), i = 1, 2

are irreducible and inequivalent. Let 0 6= M be a minimal subspace of M1 ⊕M2 such

that f(H)M = M . Then either π1(M) = 0 or π2(M) = 0.

Proof Suppose, by contradiction, M 6≤ Ker πi, for i = 1, 2. It follows that the f(H)-

module Ker πi ∩M is zero, i = 1, 2, by the minimality of M . Thus the restrictions

πi|M : M → πi(M), i = 1, 2
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are F-isomorphisms. In particular n1 = n2 = dimFM . Again by the minimality of

M , each πi(M) is a minimal fi(H)-submodule of Matni(F). It follows from Lemma

1.10 of this Chapter, with A = fi(H), W = πi(M), that there exist fi(H) isomorphisms

τi : πi(M) ∼= Fni , i = 1, 2. Thus τ2τ
−1
1 : Fn1 → Fn2 is a isomorphism of the f1(H)-module

Fn1 onto the f2(H)-module Fn2 , a contradiction.

Note that, if G is a group and V is a G-module, then GW ≤W if and only if GW = W ,

for any subspace W of V . Indeed W = 1GW ≤ GW .

(2.7) Theorem Let fi : H → GLni(F) be irreducible pairwise inequivalent representa-

tions of a group H, with F algebraically closed. Suppose that mi ∈ Matni(F), 1 ≤ i ≤ s,

are such that
s∑
i=1

tr (mifi(h)) = 0F, ∀ h ∈ H.

Then each mi = 0Matni (F), for i = 1, . . . , s.

Proof Induction on s. Suppose s = 1 and put n = n1, f = f1. The set

M = {m ∈ Matn(F) | tr(mf(h)) = 0, ∀ h ∈ H}

is a subspace. Moreover f(H)M = M since for all h1, h ∈ H, m ∈M :

tr(f(h1)mf(h)) = tr(f(h) f(h1)m) = tr(f(hh1)m) = 0.

We want to show that M = {0Matn(F)}. If this is false, we may choose a non-zero

subspace U of M of minimal dimension with respect to the property f(H)U = U . By

Lemma 1.10 we have dimU = n and Uv = Fn for some v. If {u1, . . . un} is a basis of U ,

then {u1v, . . . unv} is a basis of Fn. Up to conjugation we may suppose that

{u1v, . . . unv} = {e1, . . . , en} (canonical basis).

For all w ∈ Fn we consider the matrix Aw with columns Awei = uiw, i.e.,:

Aw =
(
u1w . . . unw

)
.

Let λw be an eigenvalue of Aw, with eigenvector
∑n

i=1 ρiei 6= 0Fn . Then:

0Fn = (Aw − λwI)
n∑
i=1

ρiei =

n∑
i=1

ρi (Aw − λwI) ei =
n∑
i=1

ρi (uiw − λwuiv) =
n∑
i=1

ρiui (w − λwv) .
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It follows that the vectors

u1(w − λwv), . . . , un(w − λwv)

are linearly dependent. Hence the space U(w−λwv), generated by them, has dimension

less then n. Since it is f(H)-invariant, the irreducibility of Fn gives:

U(w − λwv) = {0Fn} ,∀ w ∈ Fn.

In particular ui(ej − λejv) = 0Fn for all i, j. Thus, setting λej = λj :

(2.8) uiej = λjuiv = λjei, 1 ≤ i, j ≤ n.

This tells us:

ui =
(
λ1ei . . . λnei

)
, 1 ≤ i ≤ n.

0 = tr(ui idG) = tr (ui) = λi, 1 ≤ i ≤ n.

And now (2.8) gives that ui has all columns equal to zero, hence ui = 0Fn for all i-s,

against the assumption that u1, . . . , un are linearly independent. We conclude M =

{0Matn(F)} and the first step of induction is proved.

Now suppose s > 1. Set n =
∑s

i=1 ni and consider the sum f : H → GLn(F) of the

representations fi, defined by:

f(h) :=

f1(h)
. . .

fs(h)

 , ∀ h ∈ H.

Let M be the following subset of Matn1(F)⊕ · · · ⊕Matns(F):

M :=

m =

c1

. . .
cs

 | tr (mf(h)) =
s∑
i=1

tr (cifi(h)) = 0, ∀ h ∈ H

 .

Clearly M is an f(H)-invariant subspace and we want to show that M = {0Matn(F)}.

If this is false, we may choose a non-zero subspace U of M of minimal dimension with

respect to the property f(H)U = U . By the assumption that the representations fi :

H → GLni(F) are irreducible and pairwise inequivalent, Lemma 2.6 tells us that πi(U) =

0Matni (F) for at least one i. We may suppose i = 1. This means that, for allu1

. . .
us

 ∈ U
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we have u1 = 0Matn1 (F). It follows

0F =
s∑
i=1

tr (uifi(h)) =
s∑
i=2

tr (uifi(h)) , ∀ h ∈ H.

By induction u2 = · · · = us = 0, whence U =
{

0Matn(F)

}
, a contradiction.

(2.9) Corollary Let fi : G → GLni(F), i ≤ s, be pairwise inequivalent, absolutely

irreducible representations of a group G with k conjugacy classes. Then s ≤ k.

Proof We may suppose F algebraically closed. Choose representatives g1, . . . , gk of the

conjugacy classes of G and consider the s vectors of Fk:

v1 =

tr (f1(g1))
. . .

tr (f1(gk))

 , . . . , vs =

tr (fs(g1))
. . .

tr (fs(gk))

 .

Suppose
∑s

i=1 αivi = 0Fn for some αi ∈ F. It follows

s∑
i=1

αi tr (fi(gj)) =
s∑
i=1

tr (αifi(gj)) = 0F, 1 ≤ j ≤ k.

Every g ∈ G is conjugate to a gj and tr(g) = tr(gj). Thus:

s∑
i=1

tr (αi fi(g)) = 0F, ∀ g ∈ G.

By the previous Theorem αi = 0 for all i ≤ s. This means that the vectors v1, . . . , vs

are linearly independent in Fk. We conclude s ≤ k.

(2.10) Theorem Let G be a subgroup of GLn(F) and denote by FG the linear subspace

of Matn(F) generated by G. The following conditions are equivalent:

(1) G is absolutely irreducible;

(2) FG = Matn(F) (equivalently, dimF FG = n2);

(3) G is irreducible and CMatn(F)(G) = FIn.

Proof

(1) =⇒ (2) Substituting F with its algebraic closure, if necessary, we may suppose F

algebraically closed. Let g1, . . . , gm be a basis of FG and consider the orthogonal space
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FG⊥ with respect to the bilinear form (g1, g2) = tr(g1g2) (see (3.7) in the Exercises of

this Chapter). Since this form is non-degenerate, FG⊥ has dimension n2 −m. Thus, if

m < n2, there exists a non-zero matrix m such that trmg = 0 for all g ∈ G, in contrast

with Theorem 2.7.

(2) =⇒ (3) Any G-invariant subspace would be Matn(F)- invariant, against the irre-

ducibility of Matn(F). The last claim follows from the fact that the center of Matn(F)

consists of scalar matrices.

(3) =⇒ (1) [6, Theorem 29.13].

Point (1) of the following Lemma explains why, in the study of classical groups, one is

interested in the groups of isometries of non-degenerate forms. By point (2) an absolutely

irreducible group can fix at most one form, necessarily non-degenerate, up to scalars.

(2.11) Lemma Let J ∈ Matn(F) be such that JT = Jσ (σ a field automorphism), or

JT = −J and let G ≤ GLn(F) be a group of isometries of J , namely

gTJgσ = J, ∀ g ∈ G.

(1) if det J = 0, then G is reducible;

(2) if G is absolutely irreducible, and J ′ is such that gTJ ′gσ = J ′ for all g ∈ G, then

J ′ = λJ for some 0 6= λ ∈ F.

Proof

(1) The 0-eigenspace W of J is non-zero. W is Gσ-invariant, since:

Jgσw =
(
g−1
)T
Jw = 0 =⇒ gσw ∈W, ∀ g ∈ G, w ∈W.

From the fact that W is Gσ-invariant, it follows that W σ−1
is G-invariant.

(2) JgσJ−1 =
(
g−1
)T = J ′gσJ ′−1 for all g gives J ′−1J ∈ CMatn(F) (Gσ) = FIn.

3 Exercises

(3.1) Exercise Let K be a field extension of F. Show that any subset {w1, . . . , wm} of

Fn which is linearly independent over F is also linearly independent over K.

(3.2) Exercise Let G = GL4(F) and W = 〈e1, e2〉 ≤ F4. Determine:
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i) the stabilizer GW of W in G;

ii) the kernel of the restriction map defined by h 7→ hW for all h ∈ GW ;

iii) the group (GW )W induced by GW on W .

(3.3) Exercise Let W ≤ Fn, G ≤ GLn(F). Suppose that dim W = m > n
2 and that

GW acts irreducibly on W . Show that W is the only GW -invariant subspace of dimension

m. Deduce that CG(GW ) ≤ GW .

(3.4) Exercise Show that CMat2(F) (SL2(F)) = FI2.

(3.5) Exercise Show, by induction on n, that CMatn(F) (SLn(F)) = FIn.

Hint. For n ≥ 3, start with any (n−1)-dimensional subspace W . Consider its stabilizer

H in SLn(F) and note that HW ∼= GLn−1(F) acts irreducibly on W . Deduce that, for

every c ∈ CMatn(F) (H) and for every w ∈W

cw = λcw, λc ∈ F.

Take another (n− 1)-dimensional subspace W ′ 6= W . Again, for all w′ ∈W ′:

cw′ = µcw
′, µc ∈ F.

The conclusion follows easily from Fn = W +W ′.

(3.6) Exercise Show that the map ( , ) : Matn(F)×Matn(F)→ F defined by:

(3.7) (A,B) := tr(AB)

is bilinear and that it is non-degenerate.

(3.8) Exercise Let G = Sym(3) and set:

σ = id +(123) + (132) + (12) + (13) + (23),

τ = id +(123) + (132)− (12)− (13)− (23),

ρ1 = id +(12)− (13)− (123), ρ2 = id +(23)− (13)− (132),

ζ1 = id +(12)− (23)− (132), ζ2 = id +(12)− (13) + (123)− (132).

i) Show that, with respect to the product j(fg) := (jf)g for j ∈ {1, 2, 3}, f, g ∈ G :

CG = Cσ ⊕ Cτ ⊕ (Cρ1 + Cρ2)⊕ (Cζ1 + Cζ2)

is a decomposition of the group algebra CG into 4 minimal left ideals.
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ii) Calculate explicitly the representations fi of G afforded by these ideals and show

that they are irreducible (Clearly it is enough to write fi(12) and fi(13) for i =

1, 2, 3).

iii) Show that 3 of them, say f1, f2, f3 are inequivalent, of respective degrees 1, 1, 2.

iv) Conclude that f1, f2, f3 are the only irreducible representations of G over C (use

Corollary 2.9).
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Chapter V

Groups of Lie type

1 Lie Algebras

Our main references here will be [10] and the book of R. Carter[5].

(1.1) Definition A Lie algebra L is a vector space L, over a field F, endowed with a

bilinear map L× L→ L :

(x, y) 7→ [xy] (Lie product)

for which the following conditions hold. For all x, y, z ∈ L:

(1) [xx] = 0;

(2) [x[yz]] + [y[zx]] + [z[xy]] = 0 (Jacobi identity).

By (1) any Lie product is anticommutative, namely [xy] = −[yx]. Indeed:

0 = [(x+ y)(x+ y)] = [xx] + [xy] + [yx] + [yy] = [xy] + [yx].

(1.2) Definition Let B = {x1, . . . , xn} be a basis of L over F. The structure constants

of L (with respect to B) are the elements akij ∈ F defined by:

[xixj ] =
n∑
k=1

akijxk.

Every Lie product over L is determined by its structure constants by the bilinearity.

(1.3) Definition

(1) A subspace I of L is called an ideal if [ix] ∈ I for all i ∈ I, x ∈ L;
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(2) L is simple if L 6= {0} and it has no proper ideal.

(1.4) Definition A linear map δ : L→ L is called a derivation if it satisfies

δ([yz]) = [δ(y)z] + [yδ(z)], ∀ y, z ∈ L.

(1.5) Example For each x ∈ L the derivation adx : L→ L defined by:

adx(y) := [xy], ∀ y ∈ L.

The linearity of adx is an immediate consequence of the bilinearity of the Lie product.

The map adx is a derivation by axioms (1) and (2) of Definition 1.1 of Lie product.

(1.6) Definition Let L, L′ be Lie algebras over F. A map ϕ : L → L′ is called a

homomorphism if, for all x, y ∈ L:

ϕ([xy]) = [ϕ(x)ϕ(y)].

An isomorphism is a bijective homomorphism. An isomorphism ϕ : L → L is called an

automorphism of L. The group of automorphisms of L is indicated by Aut(L).

2 Linear Lie Algebras

An associative algebra A, over a field F, is a ring A, which is a vector space over F,

satisfying the following axiom. For all λ ∈ F and for all x, y ∈ A:

λ(xy) = (λx)y = x(λy).

(2.1) Lemma Let A be an associative algebra over F. Then A is a Lie algebra with

respect to the product defined by:

(2.2) [x, y] := xy − yx, ∀ x, y ∈ A.

Proof Routine calculation.

(2.3) Definition Let V be a vector space over F.

(1) The associative algebra EndF(V ), considered as a Lie algebra with respect to the

product (2.2), is called the general linear Lie algebra and indicated by GL(V );
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(2) the matrix algebra Matn(F), considered as a Lie algebra with respect to (2.2), is

indicated by GLn(F);

(3) GLn(F) and its subalgebras are called the linear Lie algebras.

Let B be a fixed basis of V = Fn. The map ΦB : GL(V ) ' GLn(F) such that ΦB(α) is

the matrix of α with respect to B is an isomorphism of Lie algebras. Thus:

GL(Fn) ' GLn(F).

A basis of GLn(F) consists of the matrices having 1 in one position and 0 elsewhere,

namely the matrices:

{eij | 1 ≤ i, j ≤ n} .

The structure constants, with respect to this basis, are all ±1 or 0. More precisely:

(2.4) [eij , ek`] := eijek` − ek`eij = δjkei` − δ`iekj .

Conjugation by a fixed element of GLn(F) is an automorphism of the associative algebra

Matn(F) and also of the Lie algebra GLn(F), as shown in the following:

(2.5) Lemma For a fixed g ∈ GLn(F), let γg : GLn(F)→ GLn(F) be defined by:

γg(m) := g−1mg, ∀ m ∈ GLn(F).

Then γg is an automorphism of the Lie algebra GL`+1(F).

Proof γg is linear since, for all m1,m2,m ∈ GLn(F), λ ∈ F:

g−1(m1 +m2)g = g−1m1g + g−1m2g

g−1(λm)g = λg−1mg
.

γg preserves the Lie product, i.e., [g−1m1g, g
−1m2g] = g−1[m1,m2]g. In fact:

g−1m1gg
−1m2g − g−1m2gg

−1m1g = g−1 (m1m2 −m2m1) g.

γg is bijective having γg−1 as its inverse.

(2.6) Lemma The trace map tr : GLn(F)→ GL1(F) is a Lie algebras homomorphism.

In particular its kernel is a subalgebra, indicated by A`.

Proof For all a, b ∈ GLn(F), λ ∈ F:

tr(a+ b) = tr(a) + tr(b),

tr(λa) = λ tr(a),

tr([a, b]) = tr(ab− ba) = tr(ab)− tr(ba) = 0 = [tr(a), tr(b)].
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3 The classical Lie algebras

We give an explicit description of the classical Lie algebras over C.

3.1 The special linear algebra A`

A` is the subalgebra of GL`+1(C) consisting of the matrices of trace 0, namely the kernel

of the trace homomorphism tr : GL`+1(C)→ GL1(C).

A basis of A` is given by the matrices:

(3.1) {ei,i − ei+1,i+1 | 1 ≤ i ≤ `} ∪ {eij |1 ≤ i 6= j ≤ `+ 1} .

Thus, for the dimension of the special linear algebra, we get:

(3.2) dimC (A`) = (`+ 1)`+ ` = `2 + 2`.

(3.3) Theorem PGL`+1(C) ≤ Aut(A`).

Proof By Lemma 2.5, for all g ∈ GL`+1(C), the inner automorphism

γg : GL`+1(C)→ GL`+1(C)

is an automorphism of the Lie algebra GL`+1(C). For all m ∈ A` we have tr(γg(m)) =

tr(m) = 0, i.e., γg(A`) ≤ A`. Since A` has finite dimension and γg is injective, we get

γg(A`) = A`. So the restriction of γg to A` is an automorphism of A`. Hence we may

consider the homomorphism γ : GL`+1(C) → Aut (A`) defined by: g 7→ γg. The kernel

of γ is the subgroup Z of scalar matrices. We conclude that:

PGL`+1(C) :=
GL`+1(C)

Z
' Im γ ≤ Aut(A`).

3.2 The symplectic algebra C`

Let us consider the antisymmetric, non-singular matrix:

(3.4) s =
(

0 I`
−I` 0

)
.

The symplectic algebra C` is the subalgebra of GL2`(C) defined by:

C` := {x ∈ GL2`(C) | sx = −xT s}.
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Partitioning x into `× ` blocks, we have that x ∈ C` if and only if it has shape:

x =
(
m n
p −mT

)
with n = nT , p = pT symmetric.

Thus, a basis of C` is given by the matrices:

(3.5)
{(

eij 0
0 −eji

)
| 1 ≤ i, j ≤ `

}
∪

(3.6)
{(

0 eii
0 0

)
| 1 ≤ i ≤ `

}
∪
{(

0 eij + eji
0 0

)
| 1 ≤ i < j ≤ `

}
∪

(3.7) {the transposes of (3.6)}.

So, for the dimension of the symplectic algebra, we obtain:

(3.8) dimC C` = `2 + 2
(

l +
`(`− 1)

2

)
= 2`2 + `.

(3.9) Theorem PSp`+1(C) ≤ Aut(C`).

Proof Let Sp2`(C) be the group of isometries of s in (3.4). Thus

sg =
(
g−1
)T

s, ∀ g ∈ Sp2`(C).

Take γg as in Lemma 2.5. Then γg(x) = g−1xg ∈ C`, for all x ∈ C`. Indeed:

s
(
g−1xg

)
= gT sxg = gT

(
−xT s

)
g = −gTxT

(
g−1
)T

s = −
(
g−1xg

)T
s.

So the restriction of γg to C` is an automorphism of C`. Hence we may consider the

homomorphism γ : Sp2`(C) → Aut (C`) defined by: g 7→ γg. The kernel of γ is the

subgroup 〈−I〉 of symplectic scalar matrices. We conclude that:

PSp`+1(C) :=
Sp2`(C)
〈−I〉

' Im γ ≤ Aut(C`).
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3.3 The orthogonal algebra B`

Let us consider the symmetric, non-singular matrix:

(3.10) s =

 1 0 0
0 0 I`
0 I` 0

 .

The orthogonal algebra B` is the subalgebra of GL2`+1(C) defined by:

B` := {x ∈ GL2`+1(C) | sx = −xT s}.

Partitioning x into blocks, one has that x ∈ B` if and only if it has shape

x =

 0 −vT1 −vT2
v2 m n
v1 p −mT

 with n = −nT , p = −pT antisymmetric.

Thus the orthogonal algebra B` has basis:

(3.11)


 0 0 0

0 eij 0
0 0 −eji

 |1 ≤ i, j ≤ `
∪

(3.12)


 0 −eTi 0

0 0 0
ei 0 0

 |1 ≤ i ≤ `
 ∪


 0 0 0

0 0 eij − eji
0 0 0

 |1 ≤ i < j ≤ `


∪ {the transposes of 3.12} .

We conclude that the dimension of this orthogonal algebra is given by:

(3.13) dimC B` = `2 + 2
(
l +

`(`− 1)
2

)
= 2`2 + `.

(3.14) Theorem Let G ≤ GL2`+1(C) be the group of isometries of s in (3.10). Then

ZG

Z
≤ Aut(B`)

where Z denotes the group of scalar matrices.

The proof is the same as that of Theorem 3.9.
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3.4 The orthogonal algebra D`

Let us consider the symmetric, non-singular matrix:

(3.15) s =
(

0 I`
I` 0

)
.

The orthogonal algebra D` is the subalgebra of GL2`(C) defined by:

D` := {x ∈ GL2`(C) | sx = −xT s}.

Partitioning x into blocks, one has that x ∈ D` if and only if it has shape:

x =
(
m n
p −mT

)
with n = −nT , p = −pT antisymmetric.

Thus the orthogonal algebra D` has basis:

(3.16)
{(

eij 0
0 −eji

)
|1 ≤ i, j ≤ `

}
∪

(3.17)
{(

0 eij − eji
0 0

)
|1 ≤ i < j ≤ `

}
∪ {their transposes} .

We conclude that the dimension of this orthogonal algebra is given by:

(3.18) dimC D` = `2 + 2
`(`− 1)

2
= 2`2 − `.

(3.19) Theorem Let G ≤ GL2`(C) be the group of isometries of s in (3.15). Then

ZG

Z
≤ Aut(D`)

where Z denotes the group of scalar matrices.

The proof is the same as that of Theorem 3.9.

4 Root systems

Let L be a finite dimensional simple Lie algebras over C. By the classification due to

Killing and Cartan, L is one of the 9 algebras denoted respectively by:

(4.1) A`,B`, C`, D`, E6, E7, E8, F4, G2.

There exists a set Φ = Φ(L) such that L admits a decomposition

(4.2) L = H ⊕
⊕
r∈Φ

Lr (Cartan decomposition)

where H is an `-dimensional abelian subalgebra (namely [h1h2] = 0 for all h1, h2 ∈ H)

and, for each r ∈ Φ, the following conditions hold:
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(1) Lr = Cvr for some vr ∈ L, i.e., Lr is a 1-dimensional space;

(2) [hvr] = r(h)vr with r(h) ∈ C, for all h ∈ H;

(3) the map ad vr : L→ L is nilpotent;

(4) there exists a unique s ∈ Φ (denoted by −r) such that 0 6= [vrvs] ∈ H.

(4.3) Remark Fix y ∈ L. Recalling that ad y(x) := [yx], for all x ∈ L, we have:

• adh(H) = {0} for all h ∈ H since H is abelian.

• vr is an eigenvector of adh, with eigenvalue r(h), by point (2) above.

Every r ∈ Φ may be identified with the linear map r : H → C defined by h 7→ r(h).

Clearly r is an element of the dual space H∗ of H, by the bilinearity of the Lie product.

Moreover different elements of Φ give rise to different maps. So:

Φ ⊆ H∗.

Now, consider the bilinear, symmetric form: L× L→ C defined by

(x, y) := tr(adx ad y) (Killing form).

Since this form is non-degenerate, its restriction to H ×H induces the isomorphism of

vector spaces ϕ : H → H∗ where, for each h ∈ H:

ϕ(h) (h) := tr(adh adh), ∀ h ∈ H.

Identifying each r ∈ Φ with its preimage in H, we may assume:

Φ ⊆ H.

It can be shown that Φ contains a C-basis

Π = {r1, . . . , r`} (fundamental system)

of H such that every r ∈ Φ :

(1) is a linear combination of elements in Π with rational coefficients;

(2) these coefficients are either all positive, or all negative.
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Property (2) defines an obvious partition of Φ into positive and negative roots:

Φ = Φ+ ∪̇ Φ−.

By property (1), Φ is a subset of the real vector space:

HR := Rr1 ⊕ · · · ⊕ Rr` ' R`.

HR is an euclidean space with respect to the Killing form as scalar product:

(x, y) := tr(adx ad y), ∀ x, y ∈ HR.

The length of a vector x ∈ HR and the angle x̂y for x, y ∈ HR \ {0} are defined by:

|x| :=
√

(x, x), cos x̂y :=
(x, y)
|x| |y|

.

(4.4) Definition The numbers Ars are defined by:

Ars :=
2(r, s)
(r, r)

, ∀ r, s ∈ Φ.

It turns out that all Ars are in Z. In particular, if r, s ∈ Φ are linearly independent and

r + s ∈ Φ, then Ars = p− q where 0 ≤ p, q ∈ N and

(4.5) −pr + s, . . . , s, . . . , qr + s

is the longest chain of roots through s involving r.

(4.6) Example Take the root system Φ with Φ+ = {r1, r2, r1 + r2, 2r1 + r2}.

Set s = r1 + r2, t = 2r1 + r2.

r, s Longest chain p, q Ars

r1, r2 r2, r2 + r1, r2 + 2r1 0, 2 −2
r1, r1 + r2 −r1 + (r1 + r2) , (r1 + r2) , (r1 + r2) r1 1, 1 0
r1, 2r1 + r2 −2r1 + (2r1 + r2) , −r1 + (2r1 + r2) , t 2, 0 2
r2, r1 r1, r1 + r2 0, 1 −1
r2, r1 + r2 −r2 + (r1 + r2) , (r1 + r2) 1, 0 1
r2, 2r1 + r2 2r1 + r2 0, 0 0 .

The Cartan matrix of L, with respect to a basis {r1, . . . , r`} of HR, is defined as:

(4.7) A :=
(

2(ri, rj)
(ri, ri)

)
, 1 ≤ i, j ≤ `.

A basis {r1, . . . , r`} of HR can be normalized into the basis {hr1 , . . . , hr`}, where:

hi :=
2ri

(ri, ri)
, 1 ≤ i ≤ `.
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4.1 Root system of type A`

Let{e1, . . . , e`+1} be an orthonormal basis of the euclidean space R`+1.

The following vectors of R`+1 form a fundamental system of type A`:

Π =

−e1 + e2︸ ︷︷ ︸
r1

, −e2 + e3︸ ︷︷ ︸
r2

, . . . ,−e` + e`+1︸ ︷︷ ︸
r`

 .

The full root system has order `(`+ 1) and is as follows:

Φ = {−ei + ej , | 1 ≤ i < j ≤ `+ 1}︸ ︷︷ ︸
Φ+

∪̇ {ei − ej , | 1 ≤ i < j ≤ `+ 1}︸ ︷︷ ︸
Φ−

.

All roots r ∈ Φ have the same length |r| =
√

2 (for this root system).

Cartan matrix: 

2 −1 0 0 0 . . . 0
−1 2 −1 0 0 . . . 0
0 −1 2 −1 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . −1 2 −1
0 0 0 . . . 0 −1 2

 .

4.2 Root system of type B`

Let {e1, . . . , e`} be an orthonormal basis of the euclidean space R`.

The following vectors form a fundamental system of type B`

Π =

e1 − e2︸ ︷︷ ︸
r1

, e2 − e3︸ ︷︷ ︸
r2

, . . . , e`−1 − e`︸ ︷︷ ︸
r`−1

, e`︸︷︷︸
r`

 .

The full root system has order 2`2 and is as follows:

Φ = {ei ± ej , ei | 1 ≤ i < j ≤ `}︸ ︷︷ ︸
Φ+

∪̇ {−ei ∓ ej , −ei | 1 ≤ i < j ≤ `}︸ ︷︷ ︸
Φ−

.

For all r ∈ Φ we have |r| ∈ {
√

2, 1}. So there are long and short roots. E.g. the ri-s,

i ≤ `− 1, are long, r` is short.

Cartan matrix: 

2 −1 0 0 0 . . . 0
−1 2 −1 0 0 . . . 0
0 −1 2 −1 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . −1 2 −1
0 0 0 . . . 0 −2 2

 .
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4.3 Root system of type C`

Let {e1, . . . , e`} be an orthonormal basis of the euclidean space R`.

The following vectors form a fundamental system of type C`

Π =

e1 − e2︸ ︷︷ ︸
r1

, e2 − e3︸ ︷︷ ︸
r2

, . . . , e`−1 − e`︸ ︷︷ ︸
r`−1

, 2e`︸︷︷︸
r`

 .

The full root system has order 2`2 and is as follows:

Φ = {ei ± ej , 2ei | 1 ≤ i < j ≤ `}︸ ︷︷ ︸
Φ+

∪̇ {−ei ∓ ej , −2ei, | 1 ≤ i < j ≤ `}︸ ︷︷ ︸
Φ−

.

For all r ∈ Φ we have |r| ∈ {
√

2, 2}. Here the ri-s, i ≤ `− 1, are short, r` is long.

Cartan matrix: 

2 −1 0 0 0 . . . 0
−1 2 −1 0 0 . . . 0
0 −1 2 −1 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . −1 2 −2
0 0 0 . . . 0 −1 2

 .

4.4 Root system of type D`

Let {e1, . . . , e`} be an orthonormal basis of the euclidean space R`.

The following vectors form a fundamental system of type D`

Π =

e1 − e2︸ ︷︷ ︸
r1

, e2 − e3︸ ︷︷ ︸
r2

, . . . , e`−1 − e`︸ ︷︷ ︸
r`−1

, e`−1 + e`︸ ︷︷ ︸
r`

 .

The full root system has order 2`(`− 1) and is as follows:

Φ = {ei ± ej | 1 ≤ i < j ≤ `}︸ ︷︷ ︸
Φ+

∪̇ {−ei ∓ ej | 1 ≤ i < j ≤ `}︸ ︷︷ ︸
Φ−

.

As in the case of A` all roots have the same length. For this system |r| =
√

2.

Cartan matrix: 

2 −1 0 0 0 . . . 0
−1 2 −1 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 0 . . . −1 2 −1 −1
0 0 0 . . . −1 2 0
0 0 0 . . . −1 0 2

 .
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5 Chevalley basis of a simple Lie algebra

Let L = H ⊕
⊕

r∈Φ Lr be a simple Lie algebra over C, with fundamental system Π.

Chevalley has proved the existence of a basis of L

(5.1) {hr | r ∈ Π} ∪ {er | r ∈ Φ} (Chevalley basis)

where H =
⊕

r∈Π Chr and Lr = Cer for each r, satisfying the following conditions:

• [hrhs] = 0, for all r, s ∈ Π;

• [hres] = Arses, for all r ∈ Π, s ∈ Φ, with Ars as in Definition 4.4;

• [ere−r] = hr, for all r ∈ Φ;

• [eres] = 0, for all r, s ∈ Φ, r + s 6= 0 and r + s 6∈ Φ;

• [eres] = ±(p+ 1)er+s, if r + s ∈ Φ, with p as in (4.5).

In particular, with respect to a Chevalley basis, the multiplication constants of L are all

in Z, a crucial property for the definition of the groups of Lie type over any field F.

(5.2) Lemma Suppose that L is linear and that H consists of diagonal matrices. Then,

for each r ∈ Φ, we have e−r = eTr .

Proof For all h ∈ H, adh (er) = her − erh = r(h)er. The condition h = hT gives:

adh
(
er
T
)

= her
T − erTh = (erh− her)T = −r(h)erT .

(5.3) Example Chevalley basis of A1.

A1 = C
(

1 0
0 −1

)
︸ ︷︷ ︸

hr1

⊕ C
(

0 1
0 0

)
︸ ︷︷ ︸

er1

⊕ C
(

0 0
1 0

)
︸ ︷︷ ︸
e−r1

.

Let h =
(
a 0
0 −a

)
∈ H. With respect to the above basis:

(adh)|〈er1 ,e−r1〉 =
(

2a 0
0 −2a

)
=⇒

{
r1(h) = 2a
−r1(h) = −2a
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Since 2a = tr
(

ad
(

1/4 0
0 −1/4

)
adh

)
, the Killing form allows the identification:

r1 =
(

1/4 0
0 −1/4

)
.

Normalized basis of H:

h1 :=
2r1

(r1, r1)
=

2r1

tr(ad r1)2
=

2
1/2

r1 = 4r1 =
(

1 0
0 −1

)
.

Root system: Φ = {r1, −r1}.

(5.4) Example Chevalley basis of A2.

A2 = Chr1 ⊕ Chr2︸ ︷︷ ︸
H

⊕ Cer1 ⊕ Cer2 ⊕ Ces ⊕ Ce−r1 ⊕ Ce−r2 ⊕ Ce−s

where:

hr1 =

1 0 0
0 −1 0
0 0 0

 , hr2 =

0 0 0
0 1 0
0 0 −1

 , er1 =

0 1 0
0 0 0
0 0 0

 , er2 =

0 0 0
0 0 1
0 0 0



es =

0 0 1
0 0 0
0 0 0

 , e−r1 = eTr1 , e−r2 = eTr2 , e−s = eTs .

We justify and complete the notation. Let h =

a 0 0
0 b 0
0 0 −a− b

 ∈ H.

With respect to the above ordered basis:

adh|〈er1 , er2 , es〉 =

a− b 0 0
0 a+ 2b 0
0 0 2a+ b+ +



=⇒


r1(h) = a− b
r2(h = a+ 2b
s(h) = 2a+ b

giving s = r1 + r2.

Since

a− b = tr

ad

1/6 0 0
0 −1/6 0
0 0 0

 adh

 , a+ 2b = tr

ad

0 0 0
0 1/6 0
0 0 −1/6

 adh


the Killing form allows the identifications:

r1 =

1/6 0 0
0 −1/6 0
0 0 0

 , r2 =

0 0 0
0 1/6 0
0 0 −1/6

 .
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Normalized basis of H:
{

2r1
(r1,r1) = hr1 ,

2r2
(r2,r2) = hr1

}
with hr1 , hr2 as above.

Root system Φ = Φ+ ∪ Φ−, with

Φ+ = {r1, r2, r1 + r2} , Φ− = { −r1, −r2, −r1 − r2} .

(5.5) Example As fundamental system of A` one may take the `+ 1× `+ 1 matrices

er1 = e1,2, er2 = e2,3, . . . , er` = e`,`+1.

(5.6) Example Chevalley basis of C2.

C2 = Chr1 ⊕ Chr2︸ ︷︷ ︸
H

⊕ Cer1 ⊕ Cer2 ⊕ Ces ⊕ Cet ⊕ Ce−r1 ⊕ Ce−r2 ⊕ Ce−s ⊕ Ce−t

where:

hr1 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 , hr2 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , er1 =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 −1 0

 ,

er2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 , es =


0 0 0 1
0 0 1 0
0 0 0 0
0 0 0 0

 , et =


0 0 2 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

e−r1 = eTr1 , e−r2 = eTr2 , e−s = eTs , e−t = eTt .

We justify and complete the notation. Let h =


a 0 0 0
0 b 0 0
0 0 −a 0
0 0 0 −b

.

With respect to the above ordered basis:

(adh)〈er1 ,er2 ,es,et〉 =


a− b 0 0 0

0 2b 0 0
0 0 a+ b 0
0 0 0 2a



=⇒


r1(h) = a− b
r2(h) = 2b
s(h) = a+ b
t(h) = 2a

giving
{
s = r1 + r2

t = 2r1 + r2.

Since

−a+ b = tr

ad


−1/12 0 0 0

0 1/12 0 0
0 0 1/12 0
0 0 0 −1/12

 adh

 ,
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2a = tr

ad


1/6 0 0 0
0 0 0 0
0 0 −1/6 0
0 0 0 0

 adh


the Killing form allows the identifications:

r1 =


−1/12 0 0 0

0 1/12 0 0
0 0 1/12 0
0 0 0 −1/12

 , r2 =


1/6 0 0 0
0 0 0 0
0 0 −1/6 0
0 0 0 0

 .

(r1, r1) = 1
6 , (r2, r2) = 1

3 , (r1, r2) = −1
6 . Cartan matrix

(
2 −2
−1 2

)
.

Normalized basis of H:
{
hr1 = 2r1

(r1,r1) , hr2 = 2r2
(r2,r2)

}
with hr1 , hr2 as above.

Root system: Φ = {r1, r2, r1 + r2, 2r1 + r2, −r1, −r2, −r1 − r2, −2r1 − r2}

The non-trivial products of basis elements are written below. They agree with the

conditions for a Chevalley basis given at the beginning of this Section, and also with the

values of Ars given in Example 4.6.

[ ] er1 er2 er1+r2 e2r1+r2 e−r1 e−r2 e−r1−r2 e−2r1−r2

hr1 2er1 −2er2 0 2e2r1+r2 −2e−r1 2e−r2 0 −2e−2r1−r2

hr2 −er1 2er2 er1+r2 0 e−r1 −2e−r2 −e−r1−r2 0

[ ] er1 er2 er1+r2 e2r1+r2 e−r1 e−r2 e−r1−r2 e−2r1−r2

er1 0 er1+r2 2e2r1+r2 0 hr1 0 −2e−r2 −e−r1−r2

er2 −er1+r2 0 0 0 0 hr2 e−r1 0
er1+r2 −2e2r1+r2 0 0 0 −2er2 er1 hr1+r2 e−r1

e2r1+r2 0 0 0 0 −er1+r2 0 er1 h2r1+r2

e−r1 −hr1 0 2er2 er1+r2 0 −e−r1−r2 −2e−2r1−r2 0
e−r2 0 −hr2 −er1 0 e−r1−r2 0 0 0

e−r1−r2 2e−r2 −e−r1 −hr1+r2 −er1 2e−2r1−r2 0 0 0
e−2r1−r2 e−r1−r2 0 −e−r1 −h2r1+r2 0 0 0 0

6 The action of exp ad e, with e nilpotent

Let L be a linear Lie algebra over C and e ∈ L. Consider the map ad e : L→ L, defined

as x 7→ [ex]. The following identity, which can be verified by induction, holds:

(6.1)
(ad e)k

k!
(x) =

k∑
i=0

ei

i!
x

(−e)k−i

(k − i)!
, ∀ k ∈ N.
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In particular, if e is a nilpotent matrix, then ad e is nilpotent and we may consider the

linear map:

exp ad e :=
∞∑
k=0

(ad e)k

k!
.

(6.2) Lemma Let L be a subalgebra of the general linear Lie algebra GLn(C) and let

e ∈ L be a nilpotent matrix. Then, for all x ∈ L:

(6.3) exp ad e(x) = (exp e)x (exp e)−1.

In particular the map exp ad e : L→ L is an automorphism of L.

For the proof, based on (6.1), see [5, Lemma 4.5.1, page 66]. The conclusion follows

from Lemma 2.5 of this chapter.

In the next two examples we give a proof of (6.3) in the most frequent cases.

(6.4) Example Let e2 = 0. Then exp e = I + e. Moreover:

ad e : x 7→ [e, x] = ex− xe
(ad e)2 : x 7→ [e, ex− xe] = −2(exe)

(ad e)3 : x 7→ [e,−2exe] = 0.

Thus exp ad e = I + ad e+ 1
2 (ad e)2 and:

exp ad e(x) = x+ (ex− xe)− exe = (I + e)x (I − e) = (exp e)x (exp e)−1 .

(6.5) Example Let e3 = 0. Then exp e = I + e+ 1
2e

2. Moreover:

ad e : x 7→ ex− xe
(ad e)2 : x 7→ [e, ex− xe] = e2x− 2exe+ xe2

(ad e)3 : x 7→ [e, e2x− 2exe+ xe2] = −3e2xe+ 3exe2

(ad e)4 : x 7→ [e,−3e2xe+ 3exe2] = 6e2xe2

(ad e)5 : x 7→ [e, 6e2xe2] = 0.

Thus exp ad e = I + ad e+ 1
2 (ad e)2 + 1

6 (ad e)3 + 1
24 (ad e)4 and

exp ad e(x) = x+ (ex− xe) +
(

1
2
e2x− exe+

1
2
xe2

)
− 1

2
(
e2xe− exe2

)
+

1
4
e2xe2 =

(
I + e+

1
2
e2

)
x

(
I − e+

1
2
e2

)
= (exp e)x (exp e)−1 .
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7 Groups of Lie type

Let L be a simple Lie algebra over C, with Chevalley basis as in (5.1):

{hr | r ∈ Π} ∪ {er | r ∈ Φ} .

For all r ∈ Φ and for all t ∈ C, we set

(7.1) xr(t) := exp (t ad) er

(7.2) Definition The Lie group L(C) is the subgroup of Aut(L) generated by the auto-

morphisms (7.1), namely the group:

L(C) := 〈xr(t) | t ∈ C, r ∈ Φ〉.

Since the structure constants are integers, it is possible to define a Lie algebra F⊗ZL = LF

over any field F. The matrix representing xr(t) with respect to a Chevalley basis has

entries of the form ati where a ∈ Z and i ∈ N. Interpreting a as an element of F, one

can identify xr(t) with an element of Aut (LF) and define the group L(F) as

L(F) := 〈xr(t) | t ∈ F, r ∈ Φ〉 (the group of type L over F).

The identifications are as follows (see Section 3):

• A`(F) ∼= PSL`+1(F);

• B`(F) ∼= PΩ2`+1(F, f) where f is the quadratic form: x2
0 +

∑`
i=1 xix−i;

• C`(F)(F) ∼= PSp2`(F);

• D`(F) ∼= PΩ2`(F, f) where f is the quadratic form:
∑`

i=1 xix−i.

• 2A`(F) ∼= PSU`+1(F);

• 2D`(F) ∼= PΩ2`(F0, f) where F has an automorphism σ of order 2, with fixed field

F0, and f is the form
∑`−1

i=1 xix−i + (x` − αx−`) (x` − ασx−`), α ∈ F \ F0.

The consideration of groups of Lie type allows a unified treatment of important classes

of groups, like finite simple groups. According to the Classification Theorem, every finite

simple group S is isomorphic to one of the following:

• a cyclic group Cp, of prime order p;
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• an alternating group Alt(n), n ≥ 5;

• a group of Lie type L(Fq), where L is one of the algebras in (4.1);

• a twisted group of Lie type iL(Fq), namely the subgroup of L(Fqi) consisting of

the elements fixed by an automorphism of order i of L(Fqi);

• one of the 26 sporadic simple groups.

8 Uniform definition of certain subgroups

Let L be a simple Lie algebra over C, with Cartan decomposition

L = H ⊕
⊕

r∈Φ⊆H
Cer.

We describe some kinds of important subgroups, which may be defined in a uniform way.

8.1 Unipotent subgroups

For each r ∈ Φ, the map

(8.1) t 7→ xr(t) :== exp (t ad er)

is a monomorphism from the additive group (F,+) into the multiplicative group L(F).

(8.2) Definition

• The image of the monomorphism (8.1) is denoted by Xr and called the radical

subgroup corresponding to the root r;

• the subgroup generated by all radical subgroups corresponding to positive roots is

denoted by U+ ;

• the subgroup generated by all radical subgroups corresponding to negative roots is

denoted by U−.

Thus:
Xr = {xr(t) | t ∈ F} ' (F,+)

U+ = 〈xr(t) | t ∈ F, r ∈ Φ+〉

U− = 〈xr(t) | t ∈ F, r ∈ Φ−〉 .
U+, U− (and their conjugates in L(F)) are called unipotent subgroups. By definition

L(F) =
〈
U+, U−

〉
.

(8.3) Example In A`(F) identified with PSL`+1(F):

80



• Xr is the projective image of the group {I + tei,j | t ∈ F} for some i 6= j,

• U+ is the projective image of the subgroup of upper unitriangular matrices,

• U− is the projective image of the subgroup of lower unitriangular matrices.

8.2 The subgroup 〈Xr, X−r〉

For each r ∈ Φ, the group 〈Xr, X−r〉 fixes every vector of the Chevalley basis (5.1) except

er, hr, e−r. Multiplying er by an appropriate scalar, if necessary, we may assume:

• xr(t) (er) = er;

• xr(t) (hr) = hr − 2t er;

• xr(t) (e−r) = −t2 er + t hr + e−r;

• x−r(t) (er) = er − thr − t2e−r;

• x−r(t) (hr) = hr + 2t er;

• x−r(t) (e−r) = e−r.

(8.4) Theorem There exists an epimorphism ϕr : SL2(F)→ 〈Xr, X−r〉 under which:

(8.5)
(

1 t
0 1

)
7→ xr(t),

(
1 0
t 1

)
7→ x−r(t).

Proof The group SL2(F) has a matrix representation of degree 3, deriving from its action

on the space of homogeneous polynomials of degree 2 over F in the indeterminates x, y.

With respect to the basis −x2, 2xy, y2, we have:

(
1 t
0 1

)
7→

1 −2t −t2
0 1 t
0 0 1


(

1 0
t 1

)
7→

 1 0 0
−t 1 0
−t2 2t 1

 .

These are the matrices of the action of xr(t) and x−r(t) restricted to 〈er, r, e−r〉 by the

formulas before the statement.

81



8.3 Diagonal and monomial subgroups

In SL2(F), for all λ ∈ F we have:

(
λ 0
0 λ−1

)
=
(

1 0
λ−1 − 1 1

)(
1 1
0 1

)(
1 0

λ− 1 1

)(
1 −λ−1

0 1

)
.

Hence, for all r ∈ Φ and all λ ∈ F we set:

hr(λ) := ϕr

((
λ 0
0 λ−1

))
= x−r(λ−1 − 1) xr(1) x−r(λ− 1) xr(−λ−1).

(8.6) Definition The diagonal subgroup H of L(F) is defined by

(8.7) H := 〈hr(λ) | 0 6= λ ∈ F, r ∈ Φ〉.

The group H normalizes both U+ and U−.

(8.8) Definition The product U+H is called a Borel subgroup and is denoted by B+.

Similarly the product U−H is denoted by B−.

(8.9) Example Identifying A`(F) with the projective image of SL`+1(F):

• B+ is the image of the group of upper triangular matrices of determinant 1,

• B− is the image of the group of lower triangular matrices of determinant 1.

In SL2(F) we have:(
0 1
−1 0

)
=
(

1 0
−1 1

)(
1 1
0 1

)(
1 0
−1 1

)
.

Hence, for all r ∈ Φ we set:

nr = ϕr

((
0 1
−1 0

))
= x−r(−1) xr(1) x−r(−1).

(8.10) Definition The (standard) monomial subgroup N of L(F) is defined by:

(8.11) N := 〈hr(λ), nr | r ∈ Φ, λ ∈ F〉 .

H is a normal subgroup of N .

(8.12) Definition The factor group W (L) := N
H is called the Weyl group of L.
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W (A`) ' Sym (`+ 1) ,

W (C`) ' W (B`) ' C`2 Sym (`) ,

W (D`) ' C`−1
2 Sym (`) .

(8.13) Example In the orthogonal algebra B1 over C, with Φ = {r,−r} and basis

hr =

0 0 0
0 −2 0
0 0 2

 , er =

 0
√

2 0
0 0 0
−
√

2 0 0

 , e−r =

 0 0 −
√

2√
2 0 0

0 0 0


we have:

xr(t) = I + ter +
t2

2
e2
r =


1

√
2 t 0

0 1 0

−
√

2 t −t2 1

 ; x−r(t) = xr(t)T ;

hr(λ) = x−r(λ−1 − 1) xr(1) x−r(λ− 1) xr(−λ−1) =

1 0 0
0 λ−2 0
0 0 λ2

 ;

nr = xr(1)x−r(−1)xr(1) =

−1 0 0
0 0 −1
0 −1 0

 ;

h−r(λ) = hr(λ)−1, nr = n−1
r ;

H = 〈hr(λ) | r ∈ Φ, λ ∈ C∗〉 =


1 0 0

0 µ 0
0 0 µ−1

 | µ ∈ C∗
 ;

N = 〈hr(λ), nr | r ∈ Φ λ ∈ C∗〉 =


−1 0 0

0 0 µ−1

0 µ 0

 | µ ∈ C∗
 ;

W =
N

H
∼=

〈−1 0 0
0 0 1
0 1 0

〉 ∼= Sym(2).

(8.14) Example Identifying A`(F) with the projective image of SL`+1(F):

• H is the image of the subgroup of diagonal matrices of determinant 1;

• N is the image of the subgroup of monomial matrices of determinant 1;

• the factor group N
H is isomorphic to the symmetric group Sym(`+ 1).
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9 Exercises

(9.1) Exercise Let ϕ : L → L′ be a homomorphism of Lie algebras. Show that its

kernel is an ideal.

(9.2) Exercise Let L be a Lie algebra and x ∈ L. Show that the map adx is a

derivation.

(9.3) Exercise Write a basis of C2 and a basis of C3.

(9.4) Exercise Show that C`(F) is a Lie subalgebra of GL2`(F).

(9.5) Exercise Write a basis of B1 and a basis of B2.

(9.6) Exercise Write a basis of D2.

(9.7) Exercise Verify formula (6.3) assuming e4 = 0.
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Chapter VI

Maximal subgroups of the finite
classical groups

Here the main references are [1], [2] and [15].

1 Some preliminary facts

(1.1) Definition Let 1 6= G be a group. A subgroup M of G is said to be maximal if

M 6= G and there exists no subgroup H such that M < H < G.

IfG is finite, by order reasons every subgroupH 6= G is contained in a maximal subgroup.

If M is maximal in G, then also every conjugate gMg−1 of M in G is maximal. Indeed

gMg−1 < K < G =⇒ M < g−1Kg < G.

For this reason the maximal subgroups are studied up to conjugation.

(1.2) Lemma Let G = G′ and let M be a maximal subgroup of G. Then:

(1) M contains the center Z of G;

(2) M
Z is maximal in G

Z ;

(3) the preimage in G of every maximal subgroup of G
Z is maximal in G.

Proof

(1) Suppose Z 6≤ M . Then M < ZM gives ZM = G, by the maximality of M . Hence

M is normal in G and the factor group G
M is abelian. In fact:

G

M
=
ZM

M
∼=

Z

M ∩ Z
.
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It follows G′ ≤M , a contradiction, as we are assuming G′ = G.

Points (2) and (3) follow from the fact that the subgroups of G
Z are those of the form K

Z ,

where K is a subgroup of G which contains Z.

(1.3) Lemma If Z(G) = {1} then G is isomorphic to a subgroup of Aut(G).

Proof For every g ∈ G the map γ : G → G defined by x 7→ gxg−1 is an automorphism

of G (called inner). Consider the homomorphism ϕ : G → Aut(G) defined by: g 7→ γ.

Ker ϕ = Z(G). Thus, under our assumption, G ∼= ϕ(G) ≤ Aut(G).

2 Aschbacher’s Theorem

Let G0 be one of the following groups, with the further assumption that it is simple:

PSLn(q), PSUn(q2), PSp2m(q), PΩ±2m(q), PΩ2m+1(q).

Suppose that G is a group such that G0 / G ≤ Aut(G0). By the subgroup structure

theorem due to Aschbacher, every maximal subgroup H of G, not containing G0, belongs

to a class in the table below:

Rough description of the classes of maximal subgroups

C1 Stabilizers of subspaces

C2 Stabilizers of decompositions V = ⊕ti=1Vi, dimVi = m

C3 Stabilizers of prime degree extension fields of Fq

C4 Stabilizers of tensor decompositions V = V1 ⊗ V2

C5 Stabilizers of prime index subfields of Fq

C6 Normalisers of symplectic− type r − groups, (r, q) = 1

C7 Stabilizers of decompositions ⊗ti=1 Vi, dimVi = m

C8 Classical subgroups

S Almost simple absolutely irreducible subgroups

N Novelty subgroups
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The 8 classes Ci = Ci(G) consist of “natural” subgroups of G, which can be described in

geometric terms. Class N exists only for G0 = PΩ±8 (pa) or G0 = PSp2m(2a)′ (see [4]).

We will describe the structure of the groups in some of these classes in the case:

G = G0 = PSLn(q).

It is easier to describe the linear preimages of such groups. To this purpose we set

V = Fn, with canonical basis {e1, . . . , en}, and G = SLn(q).

3 The reducible subgroups C1

If W is a subspace of V , then its stabilizer GW := {g ∈ G | gW = W} is a subgroup

of G. If W ′ is a subspace of V and dim W = dim W ′, there exists g ∈ G such that

gW = W ′. It follows that GW ′ = gGW g
−1. So, if W is a subspace of dimension m, up

to conjugation we may suppose:

W = 〈e1, . . . , em〉 , GW =
{(

A B
0 C

)
| det(C) = det(A)−1

}
.

To see its structure we factorize GW as follows:

(3.1) GW = U Cq−1 (SLm(q)× SLn−m(q))

where

U =
{(

Im B
0 In−m

)
| B ∈ Matm, n−m(q)

}
∼= (Fq,+)m(n−m)

U / GW ,

Cq−1 =



α 0 0 0
0 Im−1 0 0
0 0 α−1 0
0 0 0 In−m−1

 | α ∈ F∗q

 ∼=
(
F∗q , ·

)
cyclic, and

SLm(q)× SLn−m(q) =
{(

X 0
0 Y

)
| X ∈ SLm(q), Y ∈ SLn−m(q)

}
.

Actually we may suppose m ≤ n
2 since, considering the transpose of GW , namely

GTW =
{(

A 0
BT C

)
| det(C) = det(A)−1

}
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we obtain the stabilizer of a subspace of dimension n−m ≥ n
2 , namely of:

〈em+1, . . . , en〉 .

(3.2) Definition The groups in class C1 are called parabolic subgroups.

They are the only subgroups in the classes Ci, 1 ≤ i ≤ 8, which contain a Sylow p-

subgroup of SLn(q), q = pa. When W is chosen as above, the Sylow p-subgroup consists

of the upper unitriangular matrices, namely:


1 ∗ . . . ∗
0 1 . . . ∗

. . . ∗
0 0 . . . 1

 .

4 The imprimitive subgroups C2

Let n = mt, 1 ≤ m < n and consider a decomposition D of V as a direct sum

V = V1 ⊕ · · · ⊕ Vt

of t subspaces Vi, all of the same dimension m.

(4.1) Definition The stabilizer NGLn(q)(D) of the above decomposition is the subgroup

of G which permutes the spaces Vi among themselves, i.e.,

NGLn(q)(D) := {g ∈ G | gVi = Vj , 1 ≤ i, j ≤ t} .

We study first the structure of NGLn(q)(D). Up to conjugation we may assume:

V1 = 〈e1, . . . , em〉 , . . . , Vt =
〈
e(t−1)m+1, . . . , en

〉
.

For each g ∈ NGLn(q)(D), let ϕg be the permutation induced by g on the set {V1, . . . , Vt}.

The map
ϕ : NGLn(q)(D) → Sym(t)

g 7→ ϕg

is a homomorphism and

Kerϕ =
t⋂
i=1

GVi =



A1

A2

. . . . . . . . .
At

 | Ai ∈ GLm(q)

 ∼= GLm(q)t.

Denote by H the subgroup of GLt(q) consisting of all permutation matrices.
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Then the group:

Ĥ := H ⊗ Im = {h⊗ Im | h ∈ H} ≤ GLn(q)

permutes the Vi-s in all possible ways. Hence Ĥ ≤ NGLn(q)(D) and

ϕ(Ĥ) = Sym(t).

It follows:

NGLn(q)(D) = (Kerϕ) ϕ
(
Ĥ
)
∼= GLm(q)t Sym(t) = GLm(q) o Sym(t).

Finally we have to determine NG(D) = NGLn(q)(D) ∩ SLn(q). To this purpose, let

σ =

 0 1
−1 0

In−2

 .

Then 〈σ,Alt(t)〉 is a subgroup of NG(D) which maps onto Sym(t). It follows that

NG(D) = (Kerϕ ∩ SLn(q)) 〈σ,Alt(t)〉 .

Note that Kerϕ ∩ SLn(q) can be factorized as the product of the group:

B1

B2

. . . . . . . . .
Bt

 | Bi ∈ SLm(q)

 ∼= SLm(q)t

and the group


diag(α1, . . . , 1)
diag(α2, . . . , 1)

. . .

diag
(

(
∏t−1
i=1 αi)

−1, . . . , 1
)
 | αi ∈ F∗q


is isomorphic to (Cq−1)t−1. Thus:

NG(D)
SLm(q)t (Cq−1)t−1

∼= Sym(t).

Equivalently:

NG(D) = SLm(q)t (Cq−1)t−1 . Sym(t) (non− split extension).

(4.2) Remark For m = 1, the subgroup NGLn(q)(D) coincides with the standard mono-

mial subgroup.
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5 The irreducible subgroups C3

(5.1) Lemma Let K be a subfield of the field F. Two matrices A,B ∈ Matn(K) are

conjugate under GLn(K) if and only if they are conjugate under GLn(F).

Proof The rational canonical forms CA e CB of A and B respectively lie in Matn(K).

If A,B are conjugate under GLn(F), we have CA = CB. Hence A and B are conjugate

also under GLn(K), having the same rational canonical form. The converse is obvious.

(5.2) Lemma Matn(q) contains a self-centralizing subalgebra R ∼= Fqn. Moreover

NGLn(q)(R)
CGLn(q)(R)

∼= GalFq (Fqn) ∼= Cn (cyclic group of order n).

Proof Let p(t) be an irreducible polynomial of degree n in Fq[t]. Denoting by A its

companion matrix, we obtain the subring:

Fq[A] = FqIn + FqA+ · · ·+ FqAn−1 ∼=
Fq[t]
〈p(t)〉

∼= Fqn .

Since Fnq is an irreducible A-module, the centralizer C of A in Matn(q) is a field. The

multiplicative group C \ {0} is generated by a matrix B ∈ Matn(q). Since the minimal

polynomial of B has degree ≤ n, the dimension of C over Fq does not exceed n. We

conclude that C = Fq[A]. Thus we take R = Fq[A].

The Jordan form of A in Matn(qn) is JA = diag
(
ε, εq, . . . , εq

n−1
)

where ε is a root of p(t)

in Fqn . It follows that JA is conjugate to (JA)q in GLn(qn). By the previous Lemma,

there exists g ∈ GLn(q) such that g−1Ag = Aq. Clearly g normalizes R. Moreover the

automorphism γ : R → R such that X 7→ g−1Xg for all X ∈ R, has order n. Hence it

generates the Galois group GalFq (Fqn).

Finally, let y be an element of the normalizer of R in GLn(q). The map ν : R→ R such

that X → y−1Xy for all X ∈ R, is a field automorphism. The scalar matrices, which

form the subfield of R of order q, are fixed by ν. We conclude that ν ∈ GalFq (Fqn).

The subgroups of class C3 are N(R) ∩ SLn(q), where N(R) is defined as in the previous

Lemma.
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6 Groups in class S

They arise from absolutely irreducible representations of simple groups. We give only

some examples.

6.1 The Suzuki groups Sz(q) in Sp4(q)

The Suzuki groups 2B2(q) = Sz(q) are simple groups of order q2(q − 1)(q2 + 1), with

q = 22r+1, r ≥ 1. They were discovered by M.Suzuki in 1960. Sz(q) was originally

defined as the subgroup of SL4(22r+1) generated by:

(6.1) T :=


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


and by the groups:

(6.2) Q :=




1 0 0 0
αr 1 0 0
β α 1 0

α2r+1 + αrβ + β2r αr+1 + β αr 1

 | α, β ∈ Fq

 .

T and Q fix the symplectic form T . Hence Sz(q) is a subgroup of Sp4(q), with respect

to T . For q ≥ 8 it is a maximal subgroup.

6.2 Representations of SL2(F)

Let F be a field of characteristic p ≥ 0 and V be the vector space of homogeneous

polynomials in two variables x, y, of degree d− 1, over F. Every matrix

A =
(
a11 a12

a21 a22

)
∈ Mat2(F)

acts in a natural way on the basis B =
{
xd−1, xd−2y, . . . , yd−1

}
of V , via:

xiyj 7→ (a11x+ a21y)i (a12x+ a22y)j .

Call α : V → V the extension by linearity of this action. The homomorphism

(6.3) hd : SL2(F)→ SLd(F)

such that each A ∈ SL2(F) maps to the matrix of α with respect to B, is a representation

of degree d of SL2(F). This representation is absolutely irreducible whenever 0 < d ≤ p

(see also [3]). When d is even and F = Fq, with q appropriate, it gives rise to maximal

subgroups of Spd(q).
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(6.4) Example For d = 4, the homomorphism h4 : SL2(F)→ SL4(F) acts as:

(6.5)
(
a b
c d

)
7→


a3 a2b ab2 b3

3a2c a2d+ 2abc 2abd+ b2c 3b2d

3ac2 2acd+ bc2 ad2 + 2bcd 3bd2

c3 c2d cd2 d3

 .

7 Exercises

(7.1) Exercise Let W and W ′ be subspaces of Fn. Show that there exists g ∈ SLn(F)

such that gW = W ′ if and only if they have the same dimension.

(7.2) Exercise In Mat3(7) find a field of order 73, its centralizer and its normalizer.

(7.3) Exercise Show that the representation (6.5) fixes a symplectic form.

(7.4) Exercise Write explicitly an absolutely irreducible representation of SL2(7) of

degree 6, fixing a symplectic form.
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