CHAPTER 4: PROOF OF THE REGULARITY THEOREM

We are now 1n a position to complete the proof of Theorem 1.9.

We split the demonstration into three steps. Firstwe treat the re-
gularity of the reduced boundary of a set with almost minimal bounda-
ry, then we consider sequences of sets with uniformly almost minimal
boundaries, and finally we discuss the Hausdorff dimension of the sin

gular points.

A general remark 1s 1in order: since the conclusions of Theor. 1.9
are of local character, it is clear that, given a set E with almost
minimal boundary in  , we can restrict our analysis to a (sufficiently
small) neighbourhood of on arbitrary point of Q (actually, the only
interesting case is when that point is in 3EMQ ). Our main assumption
will then be

n-1
t ) < al(t)-t Vx € B T

c° O O O

¥(E,B_ , Vte(0,T )

with ¢g(t) as in section 1.11. See also the remark in section 3.4.

Step 1. Given n > 2, o as 1n 1.11, and 1 satisfying 0<T<min{2_4,1/2c2}

where c, 1s the constant appearing in (3.47), we indicate by o¢* e (0,1)

the constant whose existence is granted by the Main Lemma 3.6.

Let now E c:m“, X € JE, RD e (0,1), and 0, € (0,0*) be such that:

0

R
(4.1) ©

( t a(t)dt < w ./2(n-1)

JD = n-1

n
(4.2) u(RD) <o, T /4 C,
n-1

(4.3) w(E,Bx’t) < a(t)-t Vx e Bx R and VtE(U,RD)



(4.4) w(E,B
X

(Roughly speaking, we are assuming that the excess 1is small, on a
(small) initial ball in which »E 1is almost minimal. Applying the
Main Lemma iteratively, we first show that for every integer h > 0

1t holds:

n-1
(4.5) m(E,Bx R ) < Gh Rh
o’ h
where:
h
Rh = T Rﬂ
1-1 h
(4.6) Uh = CS i21c4 u(Rh_i] + c4 ﬂn
c. =c. 1" ¢ = cott
30 71 » T4 T2

and C,»C, are as in (3.47).

In fact, (4.5) reduces simply to (4.4) when h = 0. Assuming that

(4.5) holds for a certain h > 0, and setting

-1
Fo= RoO(E-x ), B, (1) = a(Ryt) for te (0,1

we find from (4.3) and (4.5);

WCE,,B ) < B (t) -t ¥x e B., ¥t e (0,1)

"Il'

heB1) £ %

Clearly, Bh 4 a (section 3.5), while o, S0, ¢ o* V¥h: for, if h>0,then

1
T E(Rh_ i)

A

u(Rh] ¥i = 0,...,h
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since t-1a(t) is non-increasing on (0,1) (recall (us] of 1.11);hence,
from (4.6) we obtain

(4.7) o, < c T"1acah) 0,

h 3

Q
ihA
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Q
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Y

according to (4.2), and our initial assumption T < 1/2c2. We are then

precisely in the situation covered by the Main Lemma 3.6, from which
we derive
n+1 n-1 n-1

(Csu(Rh)+C4ﬁh)T = ﬂh+1T

w(Fy ,B ) < c B, (1)+c,0 T

according to (4.6). In conclusion, we find

- n-1
w(E,B ) O 41 Rh+1

X ,R

A

which is exactly (4.5), with h+1 in place of h.

Next, we show that in the hypotheses (4.1)—(4.4),3{D e 9*E., To this

aim, we observe that from (3.25) and for every h,k > 0:

k-1
|v(E,B ) -v(E,B )| < .z |v(E,B )-v(E,B ) |
X oo Rk X Ry W =1%o X Ry i XorRuts
w(E,B ) 1/2
k-1 x SRy,
(4.8) < 2 L
I Do | (B )
E X Ry i1
k-1
3/2 n-1.-1/2 1/2
S ¢ (mn-1T ) ién Th+i

by virtue of (4.5),(3.31),and (4.1). See section 2.10.
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According to (4.7), we have:

Uh+i < 2c1 T u(Rh+l) + T Uﬂ
whence
k-1 k-1 k-1 .
1/2 -n. 3 1/2 h 3 1/2
ifo hai S (26T )7 kg @ Ry o)k
(4.9) R

1 h -1 1

< GerHia-o 0 F "% (tyate2r

since t_1u1/2[t) is also non-increasing, by (ﬂ3) of 1.11. By the sa-

me reason, we have also:

Rh R

h+k
(4.10) I t a1/ 2 (1)t g-r'kl t™ e /%ty at Vh,k > 0.
o =
Thus, substitution of (4.9) into (4.8) yields, for every h,k > 0
v (E,B )-v(E,B_ . )< 4(c, /v F o /EFM -y
x ,R x ,R = 1" "n-1
o’ h+k o’ h

(4.11)

*h
'I tu1u1/2(tjdt + 22720, Tn-1)--£ ~ _h/2
0

which shows that {v(E,Bx RhJ} 1s a Cauchy sequence. Calling v 1its
G!‘

limit, we find
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P Ry -1
0 <1 - |vl=1lim < lim (2w _, 0,) = 0
- h~++ |D¢E|(Bx R )  hr+e

o’ h
by (4.5),(3.31),(4.1) and (4.7).

Now, let t € (U’Rn)’ and call h = h(t) the unique, non-negative

integer, for wich

Rh+1 < t < R]_1

TAN

Arguing as above (see 1n particular (4.8), (4.9),(4.10), and (4.11)),

we find
4,12 r .
( ) &J[E,Bx :Rh) 1/2
IU'U{E:BK t)lg Pu-U(E,Bx )’ + 2 o
o’ o’ |D¢ ’ (B , )
| E KD Rh+1 _!
-1 R ) L
< 4(C1f*ﬂ_13£-(2-'ﬂ ‘gfz-n‘(]_ ). h 1{£/z(r)dr+3.z3/2§11) LJUZ
O

(h+1) /2

1/2
a 6‘1’

A
(]
|
—_—

r (r)dr + ¢

T ﬂ1/2(rjdr + cﬁ(t/Rﬂ)i ,

where CcsCq depend only on n and T.

In conclusion, see (3.2), we have v = uE(xﬂ], i.e. X, € 3*E as

claimed. Similarly, in the same hypotheses (4.1)-(4.4) we can prove

that 8E = §E in a neighborhood of x,.



For, let N > 1 be such that g, < 0 T (see (4.7)), and set

§ = (1—T)TN Rm < R

Then, for every x € B we have B c B , whence:
X ,6 N+1 N
0 X, T R x ,T R

(TN+]RG]1_H .w(E,B

by virtue of (4.5). Accordingly, we are again 1n the situation con-
sidered at the very beginning of Step 1, 1.e. (4.1)-(4.4) all hol

with X and R replaced by any x € Bx ﬁrWaE and, respective
D!

N
R = 1 * Rn < Rn' It follows from the preceding discussion that

x € 9a*E, for any such x. Moreover, see (4.12), for every anErWBx 5
D.‘I

and cvery t € (0,R), we have:

-1 1

s ] 7o Peydrae (t/R)

(4.13) fvE[xJ—u(E,Bx

Using (4.13), we can easlly show that v, varies smoothly on 3E near

E

X . To this aim, we put ¢, 6 = TZR/Z < §/2 and, given X,y € aErWBK

o 1 :ﬁ

o’ 1]

with x # y, we denote by h the unique, positive integer for which

h+2
(4.14) ' R < |x-y| < Y

: h '
Then we define s = (1-T) 1t R, t = ThR, so that B < B It

follows from (3.25) that
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- V(E,B .,

nA

|U(E,Bx 5)

L)

} 11/2

y,t

H*D¢E|(Bx,

-m(E,B

2

)

S

Hence, repeating the preceding argument, and using (4.13), we get

t
[V (x) - uﬁfy)l < c, J T
0
where, as usual, c, and Cq depend

ThR, we find from (

—
—

ling that t

) [ x-y
IuE(x) - UE(y)|§ c,T I

O

wich proves the continuity of the

particular, when a(t) < const. t

o,a/2

v 1s of class C (see also

E

To conclude with the first part

only to show that in the case when

X, € 9*E M @, then it is possible

-(4.4) all hold. This is certainly

(see sections1.5, 1,11, and 1.13),

+

t o , whenever x € 3*E

Zero as +

Step 2. Now, given ¢ as in 1,1

pose that

I
(4.15) w(Eh,Bx,t) < a(t)-t

o2 eyar seg(e/my'?

only on n and t. Finally, recal-

4,1Q0) and (4.14):

r-1u1f2(r)dr+c T-1(|x-—yl/R)i

8

In

normal vector v,.. on aEﬁBx

O

E ?G'].

o

for g € (0,1), we obtain that

section 1.12).

of the Regularity Theorem, we have

3E 1is almost minimal in § and

to pick R_ and 7, such that (4.1)-

true, because of almost minimality

and since t1-nm(E,Bx t} tends to

¥

(recall (2.206)).

1, TG e (0,1), and X e]Rn, we sup-
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Moreover, we assume Eh > Em on BXG’ZTD. If xh € aEh and
+ M > M
X X_ € Bx T then clearly Bx T Eh Bx T Em Y¥re(0,d),
0" O h o
with d = T - |x -x |. Furthermore, B c B whenever r < d/2
0 o Xyl xm,d

and h is large enough. Frcm (3.32) we get immediately X € oE , as
required. Next, we assume X € B*Em , and fix 1 and ¢* as in Step

o0

1. Reasoning possibly on subsequences of {Eh}, we can choose 1e(0,d)

and hD > 1 such that Yh > hu'

r
(T la(t)de < ow L /2(n-1)
J = -1
0
n
alr) < ot f4c1
1-n -n-1
(4,106) r w(E ,B ) < 2 o
@’ "X _,r° =
|Xh - x_|< r/2
-n-2 N
r1 n Jr |¢E - ¢E|dHn-1 é z o
h T
9B
X_,T

As a consequence of the almost minimality of BEh, we derive from

(4.16) and (3.17)

r1_“m(Eh,B ) < 2 o* and B c B ¥h > h
X ,r’ = X =

Hence:

w(E, ,B_ ) <o (/)"
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by virtue of the monotonicity of w . Thus, for every h > h , we see

= O
that Eh,xh,rfz, and o* are precisely in the situation already discus

sed at the beginning of Step 1: we get, in particular, x, € 3*E ¥h

h h h
while (see (4.13)):

O

v

t

-1 1/2 3
CS I s o (5)d5+c6(2t/r]

(4.17) |v

A

(xh)-ufB B ) |

2
h’ xh:t Yh : hD’ ?tE(D,r/ )

Ey

0

Similarly, observing that E_ is also almost minimal (because of (4.15)

and (3.12)), we obtain

3

(4.18) [vp (x )-V(E_,B )¢ c vte(0,r/2).

oo oo ?

E

t
c Is-1u1/2(s)ds+c6(2t/r)
QO

Moreover, 1t s1 not difficult to show that

(4.19) ﬁ{?suplu(Eh,Bx ,t)-u(Bm,Bx ,t)|§ cgu(t) for a.e. t e (0,r/2).
+ © h 0
This follows e:g. by inserting
D¢Eh(me,t) D¢Em(B m’t}
s u(Eh’Bx tJ , and
Do | (B ) co? D¢, | (B )
Eh xh,t Eh Xt
as intermediate points between U(Eh,B ) and Vv(E ,B ), and
xh,t ®7 X »t

then by using (3.19),(3.16) and almost minimality to estimate the

four partial distances.

Combining (4.17),(4.18), and (4.19) we get immediately the conver-
(x_J.

gence of v [xh) toward VE

Eh -

As a by-product of the preceding discussion, we obtain that whenever
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the open se A contains the singular points of JE_, then it also
contalins the singular points of BEh, for h large enough. More pre-

cisely, denoting by I, the singular set 9E

h ~ 3*Eh, from the assumption

h

r N KeA

oo

(K compact ¢ B ), we derive immediately that
X

, T
0’ 0

EhﬁK ~ A

for cvery sufficiently large h. This, in turn, 1implies that

(4.20) H (2, MK) 2 limsup H_(Z, MK)

h -+ o

where, for every real s > 0 and every X c R" we de

o0
oo

. : S
1nf{i£T (diam A,)" : A. open, X c ;U

-5

HSEK) = w_ 2 . Ai}

(sce [13], p. 767, and [27], 2.6.4).
We end this part by recalling two general facts concerning H:

(see [12], 2.10.2 and 2.10.19 (2), and [27], 2.6.4):

(4.21) H:[X} = 0 1f and only 1if HS(X) = 0
. -1 -5 ® ..M -5
(4.22) llmsuf w, t HS(K Bx,t] > 2 for H5 a.e. xeX.
t = 0

Step 3. To conclude the proof of the Regularity Theorem, we have

only to show that Hs(zEr\n) = 0, whenever E has almecst minimal boundary

in cR" and s > n - 8, with:
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y = 3E N 3*E.
E

This follows easily by "blowing-up'" at singular points (see the
final part of Prop. 3.4), and then by using known results concerning
the existence and non-existence of singular minimal cones in ]Rn, for

which we refer the reader to [Zf], sections 2.6 and 2.7.

By (4.22), assuming that E satisfies:

n-1
(4.23) w(E’Bx,t)-ﬁ a(t).t ¥x e Bx T ¥Vt e (U,TDJ
o’ 0
and that
M
(4.24) HS(EE Bx T ) > 0,
o’ o

we can choose x e L VB and a sequence éth , satisfying
E xn’Tu * h-

© oA -s-1_s
(4.25) tn¢0 and HS(EE Bx,th) > mSZ th Vh.

. -1 . .
Setting Eh =ty (E-x), and passing to a subsequence 1if necessary,

we find (in view of Prop. 3.4) that {Eh} converges to a minimal

cone Cu c ]Rn, for which

. “y N
'(4.26) HS(EC B1) > 0,

0
by virtue of (4.20) and (4.25). This way, starting from a set E c R"
with almost minimal boundary (see (4.23)) and satisfying (4.24), we
obtain a minimaf cone CD with the same property, namely:
(4.27) C, <R and H_(z, NB,) > 0

0 s C
s
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(see 4.26) and (4.21)). Now, it is well known that minimal cones in
R" have smooth boundary up to dimension 7 (included}. Thereflore, if

0, then necessarily n > 8.

(4.24) holds for a certain s

Y

On the account of Simon's cone C ::mg (see 1.4), we see that (4.27)

may really hold, when n = 8 and s = 0.

On the other hand, if (4.27) holds with s > 0, then we can repeat
the above procedure, blowing-up BCG near a singular point different
from the vertex, thus getting a minimal cyfinden Q = C, x R, with the

1

property that HS[EQJ > 0. In such a case however, the transversal
section C] of Q would 1likewise be a minimal cone 1n ;m“'l, with

tn addition:

HS-3[EC1] > 0

An easy induction then shows, that 1f (4.24) holds with s

0 uv

a non-negative integer), then there exists a minimal cone Cm

satisfying

From the preceding discussion, we see that (4.24) implies s n-8,

A

In viewof the preceding considerations, this concludes the proof of the

Regularity Theorem.



