CHAPTER 3: SOME PRELIMINARY RESULTS AND THE MAIN LEMMA

Having prepared the way in the preceding chapter, we nov undertake
a formal proof of Theorem 1.9. As a starting point, it scems convenient

to bring together various notations and definitions already met on the

preceding pages.

; n . : i ' !
3.1. In the following, R will denote Euclidean n-dimensional spa-
ce over the real numbers IR, endowed with the standard inner product

. - . . n
= *] 5 n is an integer not less than 2. Points in R

,+> and norm
will be denoted by x,y,z; measurable sets by E,F,G; compact sets by

K; open scts by A and @; open balls by B. When we want to specify the
center x and the radius t of B, then we write Bx ¢ Projection of
points or sets in R" onto the first n-1 variablés will always be de
noted by a "prime", such as x',A',B', and so on. Hence, in particular,
= fy'-x'| < t) if B = Bx,t'
n-1

we have x = Gx',xn) and B' :{Y'Em]

The symbol "0" however, will denote the origin of both R" and R
(and, of course, the real number "zero™): which one of them, will be

clear from the context., We shall also abbreviate Bt and B% for B0 "
b ]

and Bé i respectively.

Whener F,G c m“, the notation Fcc G means that the closure of F
is a compact subset of G, while F 4G denotes the symmetric difference
(FUG)N (FNG), The characteristic function of a set E ¢ m@ will be
denoted by ¢p - Convergence of a sequence {Eh} to E in Q always
means the L1 ()~convergence of the corresponding characteristic
ioc
functions, i,e.:

(3.1) E_ = E locally in Q iff [|¢
- h A E

(x)~¢E(x)|dx + 0 VAcc Q.
h
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We saythat E is a Caccloppot 4 set iff the distributiona) gradient

D¢E = {ﬂ1¢E,...,Dn¢E) of ¢E 1s a4 Radon vector measure wWith Tocally

finite total variation |D¢EI:

Do 1(A) < + VA cc R"

We have of course

]D¢FI(Q) = sup {[ dive(x)dx :¢ e c;(ﬂam"),[¢[ < 1}
E
for cvery open set  of m"; according to the Gauss-Green thecorem,

we thus get
- M
Do | (2) H o, (3EMg)

whenever 3ENg is sufficiently smooth. Here, for cvery yeal s > 0,
Hq denotes the s-dimensional] Hausdor{f measure on ‘R“. We also sct
(see [12], 2.10.2).

6, = TS % )/ T(s/2+1)

When k is a positive integer, Wy yields precisely the k-dimensiona)

tlausdorfr measurce of the unit ball in mk. ¢

The relevant facts about Caccioppoli sets can be found in (19] and
in the recent book [27]. For our purposes, it suffices o recall that

every Caccioppoli set E possesses, at | D¢E[ = almost all points
X € 9E, an unit inner normal vector \%Cx), defined through the foil-

lowing relation:

(3.2) vp(x) = ii2+ VEB )



where fof short:
D¢E(G)
(3.3) V(E,G) = —
ID¢EI(G)

whenever G cc R". The collection of points x where such a limit
exists and has unit length, is commonly known as the reduced boundany
of E, denoted by 3*E. See also (2.27). We remark explicitely, that
when speaking of a Caccioppoli set E, we let 9L denote the boun-
dary of E in the measure-theoretical sense, i.e.

=y 1 . o -ﬁ
(3.4) x € 9E iff 0 < meas (E Bx,t) < meas {Bx,t) Vt>0.

Whenever x e 3*E, we have (see [19], Theorem 3.8, or (27], 2.3€23")):

. 1-n N
(3.5) lim ¢t |D¢E|(Bx,t) = W

trot n-1

We use vector addition and multiplication to define translations

. . . no,.
and homothetic transformations in R . Thus:

E + X, = {x:x-xo € E} and tE ={x:th1x e E} ,

n
for EcR, X e R” and ~ t>0.
Clearly, whenever E is a Caccioppoli set, then so are E+x0 and tE,

and for every G cr" it holds:

: o GJh=1
(3.6) ’D¢E+x0‘(6*x03 = Do 16, [ne 16 = ¢ ne | (G).

Analogous relations hold for the measures Di¢E’ i=1,...,n, as well

as for the following non-negative measures:

(3.7) | UE - [D¢Ef: Dn¢E




n

(3.8) B 3 |D¢E|~ (.2

2,4
151 (Bytg) )

s - 1 mE(G) = |D¢E[(G) = |D¢ETG)| s, ¥G cc R". We shall preferably

write w(E,G) instead of wE(G]. All these measures are obvioulsy
invariant under orthogonal transformations.

1-1

We recall that the quantity t o m(E,Bx t) is usually called the

3
excess, see section 2.7. Finally, we recall the definition of the fun

ctional ¢ {(see 1.13):
(3.9)  w(E,A) = [DOLI(A) - inf(ID4.[(A) : FoE cc A} , A cc R

which is also invariant under translations and orthogonal tran-

sformations, while clearly

(3.10) OCLE,tA) = "7 u(E,A) Vt > 0

we have in addition (see [37]):

(3.11) Ap €A, cc R => W(E,A) < W(E,A,) VE
(3.12) E. > E  locally in A ==> y(E,A) < lim infy(E, ,A)
h + + =
Eh + E 1locally in A
(3.13) => Do, 1(A)) ~ [De l(A)),
¢(Eh.A) + Y (E,A) h

for every Ay cc A such that A, is open‘and [Dop| (3A,) = 0.

For, assuming 'A] ¢ A, we get

2

IiDdJEI(A}}-inf{]ch;Fl(AT):FnE cc A]}=]D¢E[(A2)-inf{]D¢F|(AZJ:FnE cc Aql



which proves (3.11).

As for (3.12), if Eh + E in A and F is such that FaE cc A, then

(reasoning possibly on a subsequence of {Eh}},'we can pick an open

subset Az of A, with lipschitz boundary, satisfying:

(3.14) FeE cc A, cc A, |Dq>13}]1 (3A2)=|D¢E|(3A2}=o Vh, 3;{1¢Eh-¢E|dnn_1+o.

. 2
4 o e 3 g : b1 = ~ -1l r-‘ [ M
Setting Ih (Eh Az) U (3 Az) we find

'”“’Fh““ = |D¢Eh|m-n2}+ [ [¢Eh~¢EldHn_1+ID¢F|(A2)

BAZ

from which, observing that FhA Bh cc A, we get

(3.15)  w(E,,A) > [D¢

h h |
BAZ

By letting h + + » we then find for every F such that FesE cc A:

lim inf (B, ,A) > Do | (A)-[De (A = [DoL] (AI-[Do|(A)

h =+ + o

(recall (3.14) and the lower semicontinuity of |[Dé¢.)(A) with respect

to the local convergence in A), and from this (3.12) follows at once.

Finally, assume that E, ~ E in A and that  W(E, ,A) > ¥(E,A), and

fix A1 cc A such that A1 is open and |D¢E|(BA1) = 0. Then choose

F,hz, and Fh as above, with in addition A1 cc AZ' By (3.15) we get

(E,A) = lim y(E, ,A) > 1im sup | Doy | (A))- Dol (A)

h 40 h= + h

IR

lim sup |Dé. | (AXlim inf |D¢. | (A~A_)-|ID¢_I(A.)
i E e E, 2™ F'*"2



| W

tim sup |D¢>F

~ A i )
Al h](A1) + |D¢E|(A2 A1J |D¢FI(A2.

3

1

;iT iuz |D¢Eh|(ﬂ1) = ]D¢E|(A]) + |D¢E](A}“|D¢F|(AJ

which holds VF : FaE cc A. When combined with (3.9), this. gives

3y LY

1]

1im sup |D¢E |D¢é|(k1)

| (A) < |Dé | (A,)
ho»ew Oy 1T LB

by our assumptions. Since

IDsg (A < tim inf Doy [(A))
h+ + ® h .

.By semicontinuity, we obtain eventually (3.13).
We now establish’ some helpful inequalities, involving ¥ and w

See also Prop. 2.8.
!

3.2. Lemma.

If EI’EZ are Caccioppoli sets in Rn, and B is an n-ball, then

r ) :
!(B]+J ]¢E or |<:th1

(3.16) W(E,,B)-¥(E,,B) <IDé [(B) - [D¢
| 2 a2

1 : E

; - - ( -
(3.17) w(ET,B) '\U(EZ,B] < m(Ei,B) m(Ez,B) + 2 JT¢E1' ¢EzldHn—T
OB

"Proof. First we remark that for any Caccioppoli set F ¢ mp,_the

term - :
i ¢F dlin_1
9B '

denotes the integral of the .nner trace of F over 3B (sece e.g. [19],

X,t

b

Chapter 2). Given such an F, we set fdr B =B and te (0,1):



- B

P = M
1T (F Bx,rt) v (Ei\ Bx,Tt)

so that:

|D¢FTI(B ) < IDép }(Bx,t)—{|D¢F|—|D¢E (B, ~B )+

X,t 2 T X,1t

f = ;
* J |¢E2 ¢F| e
0

BX,Tt

Assuming F A E] ccC Bx cr We get easily:
b

[Dog 18B) - [P (B) ¢ IDg 1(BY -IDoy, [(B) + ¥(E,,B)

(
- - ~ + e d"
{|D¢F‘| 1Dd)]i |)(Bx,t Bx,Tt) J -l?E ¢EI. n-1
2 . 2 1.
aB .
X,ct

Hence, letting 1 -+ 1 and taking the supremum over sugch F's

, we
find
(3.18) - W(ESB) < |D¢E | (B) - ID¢ |(B)+¢{B2,B} +II-¢E ~$ ]di{n_1
1 2 1 2
oB
which is exactly (3.16).
Now, since
(3.18) Do (B) = aDo, =t e () y-xaH ()
F I F ] B e n-1-
B 3B
x,t X,t

for every Caccioppoli set F(?RP, we have

(3.20) IDog (B)] -IDéy (B] < [ fop " =-¢y |aH
1 .

n-1
2 - 1 2



o

Adding (3.18) and (3.20), and rearranging;-we get (3.17).

3.3. The f0110w1ng inequality was proved in Section 2.5 and 2.6
(see especially (2. 16), (2.22) and (2.23)):

(3.21)  w(B,Q) < 29(E,Q,)+2(1-p) " [(s/6)™ Tup? *w(E,Q,)

It holds Vs,t : 0O<s<t<T, under the following assumptians:16

f3.223' ' E

i

{x o x'| <, x, > ulx')}

i .

(3.23) Q.= {x : |x'| <r, !xn - u(o)|<¢ r)

where ueCT(B%) is such that

(3.24) ' p = sup {|Du(x")| : |x'] < T} < 1

We conclude this section by recalling two furfher”relatiops; which
are proved e.g. in [27i, 2.5.4 (1) and 2.5.1; respeciively:

| - [ w(EG) 1/2
(3.25) ]U(E,G]) - U(E,GZH 2 — .

&t

D 6,)

(which holds for every Caccioppoli set E ¢ R" and ever H‘G ¢ G, ¢c R
Gl ; y RP » Yy 1 2

such that ID¢E'(G1) > 0. See (2.33) and (3.3))

[ ;B [op(x+s(y-x) - ¢E(x+t£y—XJ!dHﬁ_1(yJJ
‘ %1
(3

: t
no, : 5
< 2t Do I8, )-s n|D¢EI(BX,SH11—1) i r Do [ (B pldr]



w BB =

T .
e T eyl s, -s' Dol (B, D+(n-1) [ THCE,B, dr]
3 ¥ 5 L

which. is valid for every Caccioppoli set E ¢ Rn, every point Xx eimn,
and every s,t : 0 < s < t, This last inequality will be used in the
next section to establish some fundamental area and volume density

ratio bounds for (a special class ‘of) almost minimal boundaries.

3.4, Proposdidion.
; - ; ; 1 s g
Suppose we are given a Caccioppoli set E ¢ R" and a non-negative

function a(t), defined on (0,1) and satisfying

(3.27) - i't_1 a(t)dt < + .

1f for some point x and some radivs t e (0,7) it holds

_ | ' n-1
(3.28) 8 w(E,Bx t) < a(t)-t

»

17
then for the same x,t we also have:

A

‘ . -, 1-n i rx ' :
(3.29) o TN Deg (B ) < alt) + na /2

If (3.28) holds for every t € (U,To), with To fixed in (0,1), then

t
(3..30) tl"n|D¢E|(BK t)+(n-1)- f r_la{r}dr is a non-decreasing
- . ’ 0

function on (O,TO)'

Finally, assuming that (3.28) holds for every X e Bjc T and évery
. ’ : 0# ‘0

t e (O,To)ifhen we have:
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.t
(3:31) t]_n[D¢EL(Bx ¢ 2w, ~(-1) j rla(rydr
o]

3

-

n — N >
(3.32) 7, min{meas (E Bx,t)’ meas(Bx {~E

v

L
mn—Im_ l r a(r)dr

both vx e BBﬁBx 7 VtE(U,To}. In this case moreover assuming that
: o s o i "
' a(t) is non—decreasing and infinitesimail at 0, if we set
(3:33) E, = t-I(E—x)
¥ _ h = “h ,

for x e 3ENp and ¢
: X ,T
. 0’ o

pt0, then a subsequence of {Eh} will Conver

‘ge to a minimal cone € ¢ R? with 0 e aC,

Evidently; when E has almost minimalbeundary in Q,with xoeﬂ and a(t)

Satisfying (3.27) (see Def. 1.5 and 1.13), then a convenient T0 can

be found so that (3.28) holds Vx e Bx and Vt ¢ (G,To). Accor-

T
o’ o

dingly, (3.29)-(3.32) a1y hold vx e angBx, 7> ¥te (0,T)). Also
. _ 0’ o
notice that (3.27) is weaker than (a4) of section 1,711,

Proof. (see section 2 of [37] for the Special case a(t) = ctza).

Frbm'(sszs)-and.(s.gj we get VT e (0,1).

' . n=1 .
at)t > ID¢El£qutJ - mln{[D¢EUB ’Ttl(Bx’tJ,|D¢E\B I(Bx’tJ}
: X ,x,Tt_
(3-36) > Ipg,| (B, )-1De s AL -m.in:f[ Or dHn_,_,[wa)dHH}
IB_, Tt B
X X,1t

1 N |
- - t
L ’D¢E (Bx,TtJ 2 nwn(’r )



= BE

‘rom wich we get (3.29), by letting T %+ 1.

{3.30) follows easily from (3.26), (3.27) and (3.28). If x e a*EﬁBx .
O,

then (3.5),(3.27) and (3.30) imply (3.31). For a generic point X in

3E, (3.31) follows by approximation, since 93E = 9*E.

Now, arguing as in (3.34) and using (3.31) we find Vt e (O,To):

: = d-n__.
wn"1—(nﬁ1} r a(r)dr < a(t)+t mln{g @EdHn"1,_£(1m¢Ehﬁkk1}

B

Bx’t x,t

0 ——

On rearranging and integrating between 0 and t we obtain:

t s
PE [lo -te1) r () dr-acs)]s" ds

O O

H

min{meas EMB 8, meas( B
X, X

| t t
=wn_1tn/n+{1/n—1)tn l T 1'r:z(r)dr-.("l/—n) l " 1u(r)dr

t
3[mn_1fn - I r_1a(r)dr] -t

0

n

which proves (3.32).

Finally, for Eh as in (3.33), r > o, and h sufficiently large

(so that rty < TO) we have,in view of (3.6),(3.29) and the new assum

ptions on «a{t):

. _,1«n n-1 |
(3.35) o dthI{Br)—th Do | (Bx,rth) <1 (O(T yem® /2) -

Hence, a subsequence of E, (not relabeled) will converge to some li-

mit set C, locally in R". On the other hand, we have (see (3.10)):
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- ]_n N - n—‘!
(3.36) V(B ,B) = t, w(n,sx’rth) <alrt) ¢ ox
by (3.28), so that
(3.37) | v(C,B ) = 0 Vr > 0

in view of (3.12), that is, C has minimal boundary in R" (Def.12).

From (3.26);(3.37) and (3.13) we deduce

|D¢Ei (B) =+ IDoc | (B) for a.e. r > 0

or (see (3;3§)J:'

1-n ‘ ' 1-n ‘ :
(3.38)__-- (rt.) _|D¢E|(Bx,rth} + oy qu:I(Br] for a.e. r>0,

as h + + o,
Setting:

(3.39) o b= pim [¢'7T IDo | (B
t+o? o

ol

((3.30) shows that the limit in question exists, while (3.29) and

(3.31) give upper and lower boun&s for b), we conclude that

1-n ’ :
{3.40) r |Q¢c|(Br) = b e [wnf1, nwnjz ] for a.e. r > 0.

Substitution of (3.37) and (3.40) into (3.26) then yields

[ 18cCsyd - oney) | di_ ) = 0

3B1

for almost every t > 0, and almost every s e-(O,t), thus proving
that C is (equivalent to) a minimal cone, with O € 3C (see (3.4) and

(3.40)).
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3.5. The main result of the present chapter is the following Lem-

ma 3.6, which extends De Giorgi's Lemma of section 2.12.

Its proof will be achieved by comparing the given set E with level

sets L of a suitable mollification of ¢E - much as in the briginal

paper of De Giorgi  [8], using however a more direct argument, The
results contained in sections 3.2 and 3.4 then show.that the compa-
rison surface 9L is appropriately "close" to 3E. The area excess
of 3L being nicely controlled (section 3.3), this yields the desi-

red estimation of the excess of OE.

A few properties of mollifiers are now in order. We introduce the

following "tent function"

(3.41) n(x) = c(n)+max {1-}x|,0}, with c(n) = (n+0/wn

first considered by E. Giusti [19], chapter 7. Clearly,n is a non-ne
gative, symmetric, Lipschitz-continuous mollifier, whose integral is
T and whose support coincides with the wunit ball in R". We set as
- 1 ny .
usual, for € > 0 and g ? LlocGR -
' -n -1
nECK) = ¢ nle x)
(3.42) ; _
8 (x) = (g'n ) (x) = fn_(x-y)g(y)dy

. % " . n .
Then, whewever F is a Caccioppoli set in R , € >0, and £ = ¢p * n
‘ € :

2
we have
(3.43)_, f€ is Qf class C1
(3.44) E , S
[ 1o - ¢pl ax < e “Dép| (B, ) | vt > 0
B .

t



f Y
(3.45) !Dfaldx < [D¢F!(Bt+€3 Vi>o

J
B
t

(3.46) if 0 <t < 1/n and letz < fc[x) <1 - nztz, then dist(x,s8F)<(1-t)e.
See [19], Lemma 7.1 and 7.2, for the simple proof.

From now on- we suppose that a(t) satisfics (a1)—(u4} of section 1.171.

We also introduce the notation B ¢ o to indicate a non-decreasing

function B , defined on (0,1), and satisfying 0 < B(t) < alt) Vte(0,1).

We are now is a position to state and prove the following result

(compare with Lemma 2.12).

.

3.6. Main Lemma.
—<2xn Lemma .

“d )
Fon any n > 2, any &« cs 4n 1.11, and any T e (0,2 7)), thene exists
a constant o* = o*(n,a,1) e (0,1), such that wheneven Fc m”,o e(0,0%} |

and B { o satisdy the following hypotheses:

n-1

(M1) w(F,Bx’t) < B(t) « t Vx e B1, Vt e (0,1)
(HZ} w(F,BTJ <o
then:
N n+1
(3.47) m(F,BTJ < LIB{IJ + CZOT

where €y»C, are positive constants, depending only on the dimension n,

Proof. Without loss of generality, we can assume that 1D¢F (Bl)l =

= D ¢.(B,), so that (see (3.7)) : w(F,B,) = Mp(Bl). We split the



.

proof into three steps.

Step 1. Given n and ¢ as above, we prove first the existence of a
constant oxée (0,1) and of a function g (O,O%LJ'*(U,?), with
g(o) = o(1) (Gﬁé and g depending on n and @), such that whenevex

F e rY and ce({),o#] Aaldsfy:

n-1
C(h) w(F,Bx,t) S alt)er] Vx e B1, Vt e (0,1)
(}12) M(F,B_I) & LIF(B,I] <o
Zhen
D f(x) .
(3.48) — 3 1-g(6)  VxeB - x| < 1-201/200-1) .
IDf (x) | ’ - 5
o < f(x)<1-n"0" |
whene
G 4
(3.49) I = b *n_ € = 0 .
3 £

We observe that whehn o> 4 n, the set of points ‘in (3.48) is empty,

. ; . i . ; T=n
so that there is hothing to prove in this case. Thus,. we assume g<4 H

In addition, we observe that

FS'SU) D £(x) = Iqe{x-y)d D ¢.(y) and |DF (x) | ;Insfx—yldlD¢F](y}

since, by definition, f(x) =Inc(x-yj¢F(y)dy. Hence, (3.48) will be

proved if we can show that

(3.51) InE(x—y)duF(y)<gE0) fnz[x-y)d [Dog | (y)

for any «x satisfying
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2 (n- 2 2
(3.52) Ix} % 1ezg’ /2R 22 F(x) < 1 - n’6®

L

To this aim, we define for x  as in (3.52) and o e {0,41-n3:

Yy = 1 - on+] and G = B - B
X,¢€ X,Ye
We observe that, from (3.41),[3.42):.
(3.53) [ 0, Gey)du(y) < c{nif_nﬁn+1uF(GJ < zc(nJc"1o“+1(a(1J+nmn/z)
G - -

by virtue of (h1),(3.29), and the monotonicity of g ((a?] of 1.11); on

the other hand, from (3.46) and the assumption ¢ < 4?-n we conclude,
that for every x as in (3.52) it is possible to find z € 8F such that

Ix-2z1 < (1~0)¢c, Therefore:

( a . =1
(1 oydd Dal () > cnye /D PRl (B (1 o/2)e)

- . -n
(3.54) > c(n)e (a/2) 1”¢F1(Bz,oe/2)
-1 . oe/2 _ _

> cinle "(0/2) [“'1-1"(“'”I t alt)dt]

] T o
by (3.31). 4n view of .11, (aaj, we can certainly choose oﬂée(O,T)
such that

O#
(3.55) f toalt)dt < /2(n-1)

o]

Hence, from (3.54) we derive

(3.56) CreenddiDep 60y el 2 TG g
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Combining (3.53) and (3.56) we obtain:

(3.57) ) n+2 -1 I _ Y
énetx W) g 275, g te) | n tx y)d|Do|(y)
where
(3.58) g!(o} = (a(1) + nwn/ZJU .
Now, put
s =o™'/2 and D - sFNB

X,ye

Due to the boundedness of D, we can find a finite number of points

in D, wich we call ZT""’Zh’ with the property that:

h
"9 ﬁ - L . - D .
(3.59 Bzi,ﬁc Bzi,éa @ if 1 # j, and c 191 ]?521,26E
-1 - i = b4 \ B
We write Bi,t for Bzi,t (i=1,...,h), and observe that i, 26e c Bx,g
whence
: h
B r - -
(3.60) J ne (x y)duFEy) éjizf nE(x Y}dpP(Y)
x,Ye' Bi,Zﬂa
h
{ B { -
(3.61) Joome G el 2 [ M (xy)diDeL ] (y)
B Bi,ﬁe
X,E
For every i = 1,...,h, we find
( - =N -|5x- . _
(3.62) | .nE(x })dup(y) S cn) e (1+28 -|x zi|/@ UP(Bi,ZGE)

Bi,zaa
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; . ( ~ . e L _ .
(3650 1 n (x=y)afDe, [(y) > c(ne " (1-6-]|x 2 17e) Do 1By ()
B i .

i,4d¢

> cmy2”ly "

» ¢h1£1h6—fx-zi]/e)

(here, we used again (3.31), and the assumtion [5.55)) Since

r -
,Ix—zil & {T=g" ") , we have 1—5—Ix—zillc g gl | § = 0'1]/2 >0

llence, taking the quotient of (3.62) over (3.63), we find

( . . _ ~1 n+2 -1 L 1=n
(3.64) {J ng{x yldup(y))- f n, (X deID¢FI(y}) <7 w(26e) “F(Bi,26e
B 1,2¢¢ §,B1 ,8e
‘which holds for each i = T,¢2.,h.
. 2(n-
Now we put s = 28¢ = o M+ (see (3.49), t = o]/ (n }), and use

definition (3.7) together with (3.30), to deduce that:

T1-n 1-n T-n
s UF{Bi,s} =5 ID¢F‘(Bi,s) -8 Dn¢F(Bi,5J

t
1+n -1 1-n
(3.65) <t f”¢F|(Bi,t)*(“"3 f r a(r)dr-s ”n¢F(Bi,s)
S
t]—n ¢

L[N

P et ol - :
Hp(D; )+ (1) { ra(r)dr+ [t HDH¢F(Bi,tJ $ nDn¢F(Bi’S)J

We have Bi . C B1, hence the first term in the right-hand side of the

H
) . . 1 :
last inequality is not larger than o /2, by (hz) and our assumptions.

On the account of (3.19),(3.26) the term in square brakets is easily
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estimated by

14
2]/2[1:1-“

t
T-n -n
|D¢F|(Bi,tJ~s fD¢F](Bi,S)+(n-1)- i r ]D@F[(Bi’r)dr ]

1/2
T-n
[

t
1+n —1
t |D¢F](Bi,t}»s ]D¢p][Bi,S)+(n—]} I r 'w(F,Bi,r)dr ]

S
As before,

1-n . TI-n 1-n
t [D¢F|(Bi )=t Tu (B, )+t Dn¢F(Bi,t) <o o

. @5 a consequence of (3.19). Therefore, from [hTJ and (3.31) we get

S
t1““|D¢F|(Bi t)-s]"“|D¢F|(Ei J <o -1y v la(rydr.
’ » o

Similarly, from (hT) and (3.29) we get

T t t

f r-n!D¢F[(Bi,r]dr < r_T(a(r)+nwn/2)dr=2 ]nmnlg(t/s}+ { r'1a(:)dr‘,
5 : S s

t t

f r_nw(F,Bj rJdr < r_Ia(r}dr.

s o T s

Collecting terms and going back to (3.65] we find, for each 1=1,...,h:

.1-n
] uF{Bi

3

t
5) < 01/2+(n—1) f r_]a{r)dr +
0
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1/2 E -1 1/2
(3.66) + 2{a" “4(n-1) [ v a(r)dre2 [n—!)nmn lg(t/s)]|
0

t : 1/2
'[01/2+(n—1} f 1‘_Iu[1‘)dl‘]
0

Recalling that s = Un+5, t = 0]/2(]]_1}

» we derive from {3.66),(3.64),
(3.60) andg (3.61)

(3.67) [ e (X=y)du(y) < Rl e g,(0) [ n (x-y)d Do, [ (y)
£ : n-1 *2 5 € I
B - I o
X,Ye
where
172(n-1) ) 1/2(n-1) _ 1/2
gZ(U) ='01/2+(n-1) r r {ridr+2- ch]/z-t(n»-”fﬁ T Tafr)dr] .
0 0
(3.68)
1/2(n-1) -
o] 1/2
-[0]/2+(n—1) J( 1‘_13(1")(11*—2.'1{n—?)nmn(2nz+8n~]1)-130”2(n-” J
0

On adding (3.57) and (3.67), we get (3.51) with

2 -1 .
glo) = 2 © Lg?(o) ‘ gz(o)] .

8, rmd.g2 given by (3.58) and (3.68). In order to assure that g

1s infinitesimal at 0, the only point to check is the following:

. 1/2(n-1) 2
(3.69) lim| (-1g o'/2(n=1)y """ Gt -
ag-+o

Now, the monotonicity of g implies that
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1/2(n-1
1/2(n-1) 1
0 LN -1, 5..1/2. 1/2(n-1) -1.1/2
(_1gﬂ1/2(n—1}] _! r oa(r)dr g([ r dr)ea ‘(o ) I r o “(r)dr
J
o 2 (8]
‘ 01/2(1‘1 1)
1 1/2(n-1)
< (Jf + o yar). Jf ? r o ryar
5 172(n-1) o

and (3.69) follows from 1.11, (ad].

#

We can then choose ¢ €(0,1) such that (3.55) holds and, in addi
tion, such that
glo) < 1 ¥ o< o

From (3.50), (3.51) we deduce (3.48), thus concluding the proof of

the first step.

Step 2. According to Step 1, assumtions (h1j and (hz)'imply

an(x)

U 50} Df(x) |

>1 - g(o) > 0

for every x as in (3.52), provided ¢ e (O,Gﬁﬁ. At this point, we
can start on the study of the level sets of the function f, defined
by (3.49). T0 this end, we also assume

(3.71) o g 28010

so that in particular 7/8 < 1-201/2{n_1) and 1—2nzcz > 3/4. For

Ael0,1] we define

(3.72) Ly = {x : £(x) ;’ by
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2

2
and ‘observe that, according to (3.70), for every A € (n 02, 1-n 023,

N = v . =
BLA B7 [hEB7 f({x) Al

/8 /8

g - ; n-1 ;
1s the graph, over a certain open set Ai ¢ R , of a certain

: . 1 : ; ,
function u, € C (Ai ). Denoting by uA(x) the unit inner normal to

LA at KEBLA » Wwe have also; *

. DECX)
IDf (x) |

v, . (x) =

. = (I+|Du}t(x'J]2)_1/2-(—DUA(X‘),1)

- . N -
for cvery x e 3L B?/S,I.E. X

A (x',ux{x')J, with x' e Ai . As a

consequence, (3.70) yields pi < g(c](Z—g(o))(1—g(o}J_2, VXe(nzaz,I-nzaz),
where:

(3.73) p, I 5up{[DuA(x ) v x' e AA }

I particular, we get

(3.74) . P, <t whenever glo) < 1~(i+t2)_1/2

On the other hand, it is not difficult to show, that if for every

such A BLA passes "sufficiently close to the origin", while being "“fiat

enough', then each domain Ai contains an (n-1)-dimensional ball of

fixed radius. For example, let us suppose that for a fixed

A e(nzoz, l—n2021 it holds:

M
{3.75} BLA B1/8 # 0
3 z . 1 T L] I 1
We already know that AA ¢ B?/S and [ul(x )| < 7/8 wx' e AA

:Moreover, if & is chosen in such a way that

(3.76) 8(0) < 1-4 0177172 _ 9299
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(recall that g is infinitesimal at 0), then (3.74) yields

C5: 1) Py

A

1/4,

Now, according to (3.75), we pick 7 € BLAfWB1/8, i.e. z = (z',uA(z'J}
with z' e Ay, lz'| < 1/8, and luA[z‘)I < 1/8. If x' is any other

point in Ai , then
(3.78) o, T g Juy 2] PyCix"] + [2']) < 3/8

+while, if x'edA!

N then (x',uA(x'J}eaB7/8, hence (3.78) yields

x| > 7/8 - Iuk(x'JI > 1/2

and we conclude immediately that B;/z c Ai

Thus, see (3.71) and (3.76), if ¢ satisfies

# 8(1-n)

(3.79) 0 <o ,0 < 2

A

» and g(o) < 1-4.7771/2

with o#: and g as in Step 1, and if in addition BLkiﬁ B]/SI# P for a
certain X e (HZUQ’ 1—n202), then (see also {(3.78):

' 1 v 3 n = Nept ¢ -
(3.80) B.1/2 < AA ? B?/B and LA a]/z BLA {31/2 X B ‘B7/8

= {x : x'" e Bi/z’kn = u, (x"))

where 6]/2 denotes the cylinder of radius 1/2 around the origin,i.e.

") " .

In the same hypotheses, from (3.78) we get also ]uA(U)] < 5/32, so that

{uA{OJ] *r < 1/2 whenever r < 1/4, Thus, setting

(3.81) QA = 7 {x:|x')< r, |xn—uA(0)| < 7T}
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(compare with (3.23)), we obtain from (3.80) and (3.77):

M M ' - ars 7 2 ' -
(3.82) QLA Br c BLX [Brx( 1/2,1/2}] [X.X'EB;,xn UA(X )} 8L£1Qkﬂ

for every r e (0,1/4). Finally, we can easily check that

1/4).
Ql,r ¢ By Vr € (1/8,1/4)

Step 3. We are now ready to conclude the proof of the Main lLemma.

As in Step 2, we denote by ¢ a positive number satisfying (3.79), by
A a number in the interval [0,1}, and by L, the corresponding level

: N -4
est of the function f = op * n. s with € = ¢,

According to the preceding assumptions (sce the implications fol-

lowing (3.71), we have in particular:

(3.8%) 1 - 2n%6% 5 3/4

Furthermore, it is easy to c¢heck that
' 1 -
( - = {|f- (¢ -~ - =1 {f-
(3.84) ] dx J]¢L}\¢F|dx J|f ¢F|dx, I dA Jd’& ¢F|d1in_] J |f q,F‘dHn_]
o B B 0 2B aB

(here, only the fact that f lies between 0 and 1 really matters).

Finally, we recall the following '"coaréa formula':

(3.85) f’| Doy, | (BYAN = (IDECx) fax
A
0 B
(see [19], theorem 1.23, or [28], theorem 1.6).

From {(3.17) we get for all t < 1 and almost all A € [O,T]:

Q(F,Bt} < w(F,Bt) + w(LkTBt}+2£B |¢LA "¢FIdHn;1
\‘ t . )

" which, integrated over (r,27), yields:
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- -1
(3.86) w(F,B.) < 8(1) + w(L,,B, )+2t f |¢Li‘¢E ldx,
BT/B

because of the monotonicity of  and ¥, our hypothesis (H ), and the
fact we are assuming T < 2 4. We now suppose that aLfﬁ BZT # @, for

every i e (n202,1 n20 ): othefwise, we would have m(LA,B2 ) = 0 for

some of such A's, and the proof of the Lemma would obvlous]y be 0331or.
 We are then precisely in the situation discussed in Step 2 (sce 3.75)).
Hence, according to (3. 77), (3.80), and (3.82), ‘we derive from (3.21):

w(LA’BZ%

A

0l Qy 5o PLyLQ) )

(3.87)

-+

zu-;:i)“[(zwt)“”mi]w(LA,QA )

for every i e (nzoz,T-nzcz) and every t €(27,1/4).

Recalling (see the last assertion of Step 2) that QA - B3t
Vt e (1/8,1/4), we get from (3.86),(3.87): '

2, -1 n+1_ 2 '
w(F,B ) < B{1)+2¢(LA,B3t)+2(1-pA) [(2¢/¢) +p)‘]w(LA,B3t] +

(3.88)
w1 :
+ 27 I ,¢LA—¢Fldx

BT/S

which holds for any t € (1/8,1/4) and any ) e (nzgzj1-n202).
To focus on the real substance of the proof, it seems now conve-
nient to adopt the following

Convention. Throughout be rest of the present section, ¢ will
denote constants not necessarily. the same at any occurence, Similarly,

c(n) will denote a generdc positive constant, depending only on n,
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We remark that all these constants (in particular, c1(n},c2(n) in

(3.97)) are easily computable.

We use again (3.17) to estimate w(LA’BSt} in (3.88), thus getting

for- t,\ as before:

S n+
.!.

2
Q[F,BT) < B(1) + cw{LA’B3t]+CL(2T/t) pA]w(F’BSt) +

(3.89)
-1
{ -4 I -
+ C | i¢LJ\ ¢l“|dHn"1+2T J“JL;L -¢F|dx

T Bi/s
since P, & 1/4 (see (3.77)).
Next, in addition to (3.79), we assume that o also Sut. ..s:
(3.90) glo) < 1 - [1+160)"" 1712

From (3.74) we obtain pi

1A

(161)n+1, and thus the third term in the
right-hand side of (3.89) can be estimated by c(n) cTn+1, in view of
(HZ)ﬁ

To estimate the second term in the right-hand side of (3.89) we use

instead (3.16), which yieIds, in view of (H,):

-

V(LysB) < BOT) + Doy [(B-[Dg|(B,) +£B l6, -opldH .

A A

t

Going back to (3.89) we find

H . " +1
w(F,B ) < cB(1)+c(n)ot" +c[|D¢Lk|th1—|D¢F|th>] *

-1
[ -
* |¢LA op [dH .+ 21 I |¢L_¢ | dx
3B B » F
t 1/8



- 74 -

for every t €(3/8,3/4) and every X € (nzoz,l—nzoz). By integrating
in X we get ((3.83), (3.84), ang (3.85)):

w(F,B ) < cﬁ(])+c(n)61n+1+c[j lDf(X)fdx“lh%](Bt3J+CfnJGZ I_ IDE(x) |dx +

Bt B3/4

ve f [£-¢pldH v (c/7) ] | £~ ]dx

aBt B1/8

for every t e (3/8,3/4). Finally, by integrating ih t we obtain:

| 2 8 _
w(F,B ) < c8(1)+c(n)oT“*’+cj dt ( { I Df(x) ldx- Ipo [(B.)) +
1 = F t
. Vg B
t
(3.91)
+ c(n)U2 J lDf(x)'dx + ¢ I 'fi¢F[dx+(c/TJ I ffﬁ¢F|dx
Bs/4 Bsja - Bys

Now, (3,16) implies that for all t < 1 and almost all X e |b,]];

—¢F]dHn

- {
D 1(B,) §ID¢LAI(Bt}+¢EF,BtJ e
. )
Bt
from which, integrating first in A e [0,1], and then in te(0,3/8), we

find, on the account of (3.84), (3.85) ang (H1J:

A

(3.92) j s Qo 1B [ DEE) lax)dae < (3/8) 8(1ys [ le-6, lax

0 Bt B3/8

Moreover, setting h(x) = max{3/4-|xl,0} , we find easily that

' 3/4
(3.93) { h(x) IDf (x) Jdx = j dt I[Df(x)ldx

o) Bt.
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3/4

a [
f h(x)d|Dg | (x) = ] |D¢Fi(Bt)dt

o]
since the level sets ({x : h(x) > t} of h are empty whenever t > 3/4

and coincide with B3/4 whenever 0 < t < 3/4, We notice that h is

Lipschitz-continuous, with Lipschitz constant 1 » S0 that [hxn -h| 504.
e p

Therefore, recalling (3.50), we find:

(3.94) [h(x) [DF(x)|dx < I(h«ne)(y)d|D¢F|€Yi 504ID¢F!(B,)+Ihﬁy3dID¢plfy)
In conclusion, from (3.92),(3.93), and (3.94), we get:

' . 4
( dt(f IDf(x)|dx~|D¢F{(Bt)} < (3/8)8(1)+g Do | (B )+ f |-y |dx

/8 By | B3/8

which, combined with (3.91) and (3.44), (3.45), yields:

(3.95) m(F,BT) §c3(11+%(hfgin+1+cgz|D¢F|{B])'[02+§(h)+02/TJ-

By (Hi} and (3.29) we have |D¢F|(B1J

A

B(i)+nmn/2. Hence, assuming

that .

(3.96) | o< !

we gét from (3.95):

(3.97) w(F,B ) ¢ c (mp(1) + cz(n)mm.1

as required.Lemma 3.6 is then completely proved, provided we choose
c* € (0,1) such that each ¢ < o satisfies (3.?9),(3r903, and (3.96),



