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CHAPTER 1: ALMOST MINIMAL BOUNDARIES

We begin with an informaI presentation of the materia! to be di­

scussed in the sequel. While doing this, free use will be made of

eoneepts and elementary results that will be discussed more deeply

Iater on (especially in Chapter 3).

1.1. We fix an cpen set Q in mn, TI > 2, and consider sets E,F,o ..

whose bounclaries ClE,3F, ... have local1y finite "surface area" in Q:

VA cc n .

The quantity ID$E1(A) may be thought of as the area (in some gener~

lizej sense) of ClEliA, where A is an arbitrary apen an bounded set,

strictly containerl in n; inrleed, it coincides with H 1 (ClEnA)n-
whenever aE is, locally within ,Q, a smooth hypersurface (section

3.1) •

A basic definition and a corresponding fundamental resu!t are now in

arder.

1.2. Definition of minimal boundaries.

We say tha t the boundmy of E is rn-tn-trnat in n iff

(1. 1) VA cc n, VF:F4E cc A

.e., iff any Iaeal variation of E in n increases surface area (Fig.1).
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FIGURE 1

1.3. Regularity cf minimal boundaries.

Let E have minima! boundarlY in
n

Il c JR • Then

Cl *E n n is an analytic hypersurface

Furthermore, assuming that {Eh} be a sequence of sets with minimal

boundary in a, and that {xh } be a corresponding sequence of points,

satisfying:

then

E ,
00

x
00

e Il

x
00

e dE
00

•

If in addition x e Ci*E , then
00 00

a*Eh far any large h, and

We recaI l that (j*E denotes the IIreduced boundary" of E, i.e. t~le
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collection of those points x e dE where an approximate inner unit

norma l vector vE(x) exists, and that the convergence Eh ~ E 15
00

t<' be intended m the L
1 - sense on Q. See section 3. 1 agaln.
10c

1.4. Conclusion (T,) above, which undoubtedly contains the essen­

ce of the Regularity Theorem, was proved by E. de Giorgi In 1960-61

(see [8] and (9]), and then rederived together with (r
Z

) in 1965 by

M.Miranda (see [Z8]) 1. Two years after, Miranda proved (r
3

) and (r 4 )

as well, see [29J. Thus, in 1967 the Regularity Theorem for minimal

boundaries (in the -farro appearing above) was completely dernonstrated.

In the setting of Caccioppoli sets, i.e. sets with finite surface

area, Theorem 1.3 may well be called the hasic regularity result.

In the meantime, variw 5 different settings were proposed, in

which the classica! questions related to Plateau's problem (thepro­

blem of finding a surface of least area among those surfaces which

span a given curve) could receive a satisfactory answer. We mention

the work of Reinfenberg [3Z,33J, Féderer-Fleming (14], F1eming (15],

A1mgren [3J, Allard [1], etc. A considerab1e effort was directed

toward a complete understanding of·the structure of the singularities

of minima1 boundaries: the work F1eming [15], Triscari [38], A1mgren

[2J and Simons [35J culminated in the celebrated proof -first given

by Bombieri, De Giorgi and Giusti in 1969 (see (6] and a1so [26J)-

of the minimality of the cane

C={xei : x; + •••
Z

< x 5 + •••

{S~monht conel, which is singular at the origino As a consequence,

the best possible estimate of the Hausdorff dimension of the singular

set dE .... a'E cou1d be obtained by H.Federer [13], thus improving

(r
Z

) above.



- 4 -

More generaI variational problerns of "least area" type have since been

considered, especial1y those concerning surfaces of prescribed mean

curvature, possibly with obstacles or subject to given constraints.

In this respect, the work of Almgren [4J is really impressive, for

both the deepness and the generalityof the results obtained. Working

with different methods, E. Bombieri [S] and R. Schoen - L. Simon [34J

developed quite recently a simplified version of (part of) Almgren's

Regularity Theory.2

Restricting aUT attention te the theory of Caccioppoli sets in R
n

,

we should mention the important contribution of Miranda [30J and

Massari [23, 24], on the obstacle problem for minimalbDundaries and,

respectively, on the regularity of boundaries of prescribed rnean cur

vature. These two problerns will be properly discussed later on in this

chapter.

Urged by the consideration of these and other particular cases, one

:lS naturally led to the search of a class of "almost minimal bounda­

ries lt
, for which a Regularity Theorem like Theorem 1.3 could be pro

vedo In this respect, the following definition seerns quite natural:

1.5. Definition of almost minimal boundaries 3 .

0(1), such thatet non-decreasing andwith

The boundary of E is said to be almot.:l m..tn..tma.l :ln n c JRn iff

for every A cc n there exist T e (O,dist(A,an)) and et: (O,T)-+[ 0,+(0),

4
~(t) •

(1. 2)

for every x e A, every t e (O, T), and every F : F A E cc B
x,t

As usual, B
x,t

denotes the open n-baI l with centre x and radius

t. See Hg. 2.
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1.6. The assumptions on a(t) are in some sense the minimal ones

we can make if we want to prove regularity. Indeed~ let us consider

a smooth hypersurface S in mO, and let us choose R> o and the re­

ference system so that

Here, QR denotes the "vertical"

51"1 Q = graph of U over B'
R R

with U 6 C
T

(BR)' u(O)=O, fu(O)=O.

cylinder

= Ix = (x',x) eIR
n : Ix'l

n
< R)

R) •Ix 'I <(x" ... ,X n_,)B'-{x'=
R

and BR its projection on the space of the first (n-l) variables:

n-l
e lR ,

See Fig. 3.
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Now, glven an (n-1)-ball B~ c BR (with centre O), and a function

Ve Cl (B')
R

such tha t the support of u-v

(1+IDuI
2

)!dx' - J (1+IDvI 2
)!

B'
t

lies in Bt, we have:

dx I <-

provìded we take:

< J[(1+ IDU I2)! - lJdx'

B'
t

1 J 2~2 [Duldx'

B'
t

n-l< a(t)·t-

,,(t)
1

- 2 "'n-l .sup
B'

t

2
IDu(x')[ •

From this one easily concludes that (1.2) holds for E - epi(u), with
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a funetion a(t) of the type deseribed in Definition 1.5. Consequently,
1any set with smooth (C ) boundary has almost minimal boundary, in

the sense of Def. 1.5.

1.7. On the other hand, we see that the eone

whose boundary has a singularity at O, satisfies

VF : F. E cc B
t

the beJt choice fot a(t) being the conJt~nt 2(2-12) (see Fig. 4).

This a150 shows the "necessity" af the assumptions on a(t).

FIGURE 4 •

. 8. A second important class af almost minimal boundaries is

.lstituted by surfaces cf prescribed mean curvature which satisfies

suitable integrability condition. To be specific, let us consider

.ven funetion H e L1
1 (O), together with a loc~l m~n~m~ze4 E ofoc

che following functiona1 5
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'''H(F.A) = IO<PFllA) + f H(xldx

AlH

which is defined far aoy Cacciappali set F and aoy A cc Q • That

i s. suppose tha t

( 1 • 4) ~lE.A) .<:. ~(F.Al VA cc Q. YF: F l> E cc A.

WheneVCT (lE{ìA 1S ~ocally of class c 2 , and H 1S a continuous

funetion 00 Q • we see immediately that the meao curvature of aE

coincides., at any poiot x E aE (ì n,with H(x) (just compute the

first variation of ~!). Motivated by thc preceding observation,

"'CO call the loeal minimizèrs of .~: "sets of generalized meao

curvature H In Q'I,

!\O\\', far any tlall B
t

r.:c Q, wc have from (1.3),(1.4):

( 1. 5 ) iO·EllB) < lo<p I(B l + (t
t - F t ~

IH(xlldx

Assuming H € LO) ([.:). wc find (according to Holderls inequality) that
oc

(1.2) holds true, v:ith (essentially)

.(tl
l-l/n

=w
n

~Iore precisel)', l~e observe that if E 1S a 10eal minimizer of

in Q, A cc Q , and T e (O,dist(A,an)), then f IHl n
dy lS, for any

B
x., t

-
t € (O, T), a continuous funetion of x e A, which ..... i11 then achievc

its maximum value at some point x
t

e A. Setting



(1 .6) ,,(t)
l-l/n

= w
n

- 9 -

. ( f IHlndx) l/n

B
x t ' t

we get (l.Z), with a function a(t) depending OD A, non-decreasing

OD (O,T) and infinitesirnal at O. We shal1 return to this problem later

OD, in seetian 1.14.

We are now in a position to state aUT main result (compare with

Theorem 1.3).

1.9. Regularity Theorem for almost minimal boundaries.

Let E have almost minimal boundary In O c mD, in the sense of Def.

1.5. Assume in addition that ,,(t) (the function appearing in (1.2))

be such that

-1
t ·,,(t) 1S non-increasing on (O,T)

and

Then

1S a 1
C hypersurface

H [(aE-a'E) n s'j'= o
s

Vs > n - 8.

Furthermore, assuming that {Eh} be a sequence or sets with tLl1.i.6oJLm!q

almost minimal boundaries in O Ci.e., such that (1.2) holds for every

Eh' with T and ,,(t) independent of h), and that (xh ) be a corre-

spondin~ sequence of points, satisfying
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then

e n

lf in addition

x e dE
~ ~

x~ e a*E then- ~,

•

X
h

e a*E
h

far any large h, and

'.'0. Regarding (R,l, we ha ve specifically the following estimate

of thc oscil1ation of the unit normals to aE :

(' • 7l 1/2 '/2a (tldt + c2lx-yl

which holds for every x,y e 3*E 5uch that Ix-yl is sufficiently 5ma!l.

Thus, we see that the integrability of t-l a l / 2 Ct) is an essential

ingredient of the Regularity Theorem.

The other hypotesis of the Theorem, namely, the monotonicity of

t-
1aCtJ, is more a convenience than a necessity, and it is assumed

only with the aim of simplifying calculations. At any rate, we see

that when a lS a (non decreasing, infinitesimal at 0, and) concave

funetion of t e (D,T), then it certainly satisfies that condition.

See Fig. 5.
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art) > g (t)- s

= (t/s)·.( s)

\Tt e(O,s) .
s ,.

FiGURE s.

fhe proDf of Theorem 1.9 occuples the second part of the present work

Chaptcrs 3 and 4). Befare starting with the formaI demonstration,it

SCeJ!15 approjl]"iate to illustrate with examples the applical>ility of

thc Theorem itself, and to discuss in some details the method of the

procf.

Far convenlence ot the reader, we li5t the assumptions on o.(t)

under which Theorem 1.9 wi!! be proved.

1. 11 . Complete set of hypotheses on art).

'a ) a • (0.1) ~lR is non-decreasing and bounded. 1 •

(a
2

) a(t) - o ( l )

(a
3

)
- 1 • •

(0.1)t a(t) lS non-lncreaslng on

1 -1
( t

b

1.12. Now we consider some explicit examples.

Thc simplt5t choice is perhaps ( ) 2a d"a t = c.t ; con ltl0n5 above are

thcn alI satisfied, for any c > o and any a eCO,i].
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Moreover, In this 6case Cl.7) becomes

C1. 8)

which amounts to saYlng that a*E e el,a. In a sense, this IS an

if E = epiCu)
Za

< const.t .

15,

a Ct)

see Exampie 1.14 Cv) beIow); that

then aE IS almost minimal, with

optimal resuIt, since the converse is a150 true (and easy to prove,

with uec 1 ,a,

Far E > 0, the funetion

[ J-2(l+O)
aCt) = c IgCe/t)

(truncated at a suitable leve!, in arder to save concavity), a150

satisfies Ca
l

- °
4
), On the contrary, it does not satisfy (0

4
) when

E = O.

A similar behaviour is exhibited by the funetion

aCt) = c [lgCe/t)]-Z . [lgCe IgCe/t))r ZC1
+

E
) •

1.13. BefeTe glvlng examples of almost minima} boundaries, we In­

troduce the following functional

C1. 9) HE,A) = iD$EiCA) - inf (ID<ip iCA) : Fb E cc A}

which is defined for every Caccioppoli set E and every A cc mn.

With the aid of $ , the definition cf almost minimality can be re­

stated in a more compact farro, just by replacing (1.2) of Def. 1.5 by

(1.10)
n-l

<0Ct)·t Vx e A , Vt e CO,T).
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The quantity t
1

-
n ~(E.BX t) m:IY be cal1ed "Deviation from minimalit)",

of E in B li, abbreviated: Dev(E,x,t). Thus, almost minimal boundaries
x, t

are those boundaries whose deviation from minimality 1S control1ed

from above,

t, which is

in any ball B J by a suitable function of the radius
x,t

non-decreasing in t and infinitesimal at O.

Simple properties of the functional ~ are stated and proved in

Charter 3, see (3.10)-(3.13). For the present usage, we anticipate

that W is non-decreasing with respeet to the second variable, i.e.

w(E,A,) ~ w(E,A Z) whenever A, c AZ.

1.14. Examples of almost minima! boundaries.

(i) Alinimal bounda4ie6 (Def. 1.2) are evidently almost minimal,

with alt) = O (and W = O).

WC S3W in the preceding pages that any Ioeal minimizer of the

funetional 21'Hedefined by e1.3)) in S1 , eorresponding to a mean eur

vaturc funetion H e L
n
j

(0), has almost minimal boundary in S1,
oc

sinee it verifies (1.2) (or equivaIentIy (1.10)), with a funetion

alt) - given by (1.6) - satisfying (a,) and (a
Z

) of Hypotheses , .".

It may happen however, that the rcmaining assumptions (Ct.
3
J,lu4 ) are

not satisfied. We see this with the aid of thc folIowing example.

Consider, for n = 2, the funetion

(1.11) H(x) = H(x, ,xZ) =
-, -5/2

-Mr (lg(e(r)

where r = Ixl e e 0,1 J and M> 1. Far every t e (O,lJ \-1(' ha ve

(

J IHi Z
Jx = ("i2H1 Z(lg(e(t))-4

B.
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so that

we find

H € However, with a(t) see (1.6),

1 -1 /2f t al (t) dt = + 00

o

thus violating condition Ca
4
).

Nevertheless, putting

(1.12) H(x) = O for r - Ixl e (1,2]

and taking into account the symmetry of the problem, we realize im-

mediately that E = B
1

is Iaeai minimizer of in n = BZ' at

least when M is large enough. Indeed, if

1
M> [J Og(e/s))-5/2 ds] -1

o

then B, IS the un~que solution to the problem 5

Therefore, the choice (1.11),(1.12) for H provides no counterexample

to regularity! Actual1y, the question whether a regularity theorem
n

holds for boundaries of prescribed mean curvature H e Li (O) has
oc

not been settled in full generality. We shall return to this question

In a moment, after discussing the genera! case H e LP
i

(Q),with either
oc

or TI < p 2 + (lO.

In the former instance, simple examples show that singularities

may appear, even in low dimen~ion; while, on the contrary, the conclu

sions ot Theorem 1.9 hold in the latter case.
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We see this as follows: first, natice that the lipschitz funetion

w(x) = Ixl. x e
n
lRJn~2, IS a (ceak 6ofution of the non-homogeneous

minimal surface equation

(1.13) Div Dw(x)
= h(x)

T < 1. By this we mean, as usual JLebesgue class

corresponding to h(x) = (n-l»V2lxl - • fùnction which belongs to the

L
Tn ORn) floe or every

that

Dw • D~> dx - - f h~ dx v~ e

(,~ is of CCllrse a classica! C2 501ution of (1.13) in ]R." ,(O}). Canse

guently,the rnean curvature of the graph of w (an n-dimensionaI car-
n+ 1 .

te5:an surface In m ) 1S summable to any power lessthan n (nati ce

that when n=1, the corresponding mean curvature is given by li ti­

mes the DiTac mass at O).

Next. put E = epiCu) c R", with u(x l
) = Ix'j, Xl

5and consider a solution G of the following prohlem

n-l
elR ,n>2,

ID~Glcii1) + I H(x)dx + mIn. with G-B = E - B,
B,I"1G

1

,,,he re H(x) = -cl Ix I if x e E. = O othenvise (c bC'ing a large positi

ve constant). Plainly, GI"1B c E1"1 Bl • since E 1S convex .nd H vanishes
1

outside E. Furthermore, O è aG, suice from

ID~EI + f Hdx < O (E - H'lB )-r o l'
l'

, •
Er

"hich holds \lr e (0,1) if c 15 large E'nough, \\'e dE'rive
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+ J" Hdx <

(GUEr)nB,

Hdx

whenever = (il (see Fig. 6).

,
•

I ' I

I

o

FIGURE 6.

E

ln conclusion,G 1S a Iaeai minimizer of ~ in B" with HeL Tn (B

Vr ( 1, and O is a singular point of aG, thus showing that Theorem

1.9 (particularly, conclusion

prescribed mean curvature H e

(R Z)) does not hold for boundaries of

LP
1 (n), with p < n.oc

On the other hand, if E is a Iaeal minimizer of '~ln n , with

H. LP
1 (n) and p > n, and if A cc n, T < dist(A,an), x • A, t .(O,Toc

then (1.5), (1.10) and H51der inequality yield:
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1-l/p
< w

n Il H Il p
L (B )x,t

n-n/p
t

< const(n,

n-l
_ a(t)·t

where Ar = {x : dist(x,A) < T} cc n . 5ince l-n/p e (0,1) in this

case, we know (reca)} 1.12) thnt art) l-n/p "f"
= c·t sa!IS Ies

so that the Regularity Theorem 1.9 applies to this casco

We can a150 consider meaTI curvature funetions H belonging to more

generaI {tlnetion spaces. Let us introduce e.g. the MOTTey space

(p>l,À~O):

li E
LP,>. (n) iff U E LP (n) and VA cc n "•

loe loc

(1.14) (t
-À

A~B
lul P dy)suI' < + 00

xeA
o<t<diamA x,t

Some elementary properties of MOTTey spaces can be found In [20J,
4Chapter .

It should be clear by the foregoing considereratlons that any

laeaI minimizer of ~ in Q , with H E L',n-l+o CQ ) and a > O~ sa­
loe

tisfics (1.10) with a (t) =
a

consLt . so that Theorem 1.9 aprIies

equally wel] to thc present 55.luarion. Notic~ that c: L',n-l+(p-n)/p ,
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by Holder inequality, so that the case H € LP CO) with p > TI appears
loc

as a particular instance in this generaI picture.

As previously seen, things are not so c1ear ln the borderline ca-

se H e L
U (Q): in particular, we do not know yet whether conclusions
loc

(R,) and (Rz) af Theorem 1.9 extend to Iocai minimizers of ~. when

n
H e L CQ). The following example may shed some light on the questiono

loc

Let E c R
n

, n ~ 3, be the epigraph of a radiaI function u ~ u(r).

where r = Ix'l and Xl E ~n-l. Assume that u e Cl(O'+~)J with deri­

vative u' > O, and that

(1.15) u(r) -+ O J u' (T) -+ M € [O,+""J

as r ~
+o • See Fig. 7.

FIGURE 7.
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1n JRn, wi th H e Ln ORo), and
loe

E
R

= E n {x : x
n

> u (R))

then VR > v and VI >(R2+u 2(R))1 we find (see (1.3) and Fig. 7):

(1.16)
n-l

R -(n-O",
n-l

R n-2 2 ll T (l+u' (T)) dT- f
E.....ER

H(x)dx

On uS1ng succesively Holder inequality and the isoperimetric 1neqU!

lity we get

(1. 17) f IHldx
E-E

R

-1 -1 In
< n '"n

which. combined with (1.16). yields

(1.18)
R
J Tn- 2(1+u,2)ldT <

o

Were M 1n (1.15) positive. we would deduce from Cl.18)

VE e(O,M), VR < R •
E

a contradiction. since g (R) ~ O when R + O
n

(see (1.17)).

Therefore, M = 0, thus showing that aB is everywhere smooth.
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(iii) Minimal bounrlaries with a volume constraint.

It is a wel1-known fact that among
n

v In lR , the n-ball BR cf radius R =

the sets having a given measure

(v/w) l/n is the one which mi­
n

nimizes surface area. A variety of (less trivial) examples of the sa

me type are usually encountered In Capillarity Theory. Far instance,

arre can think of a liquid drop of given mass and resting 00 a glven

surface (as shown in Fig. 8), as a 10ea1 minimizer of an Ilenergy

functional" (whose analytic expression is, roughly speaking, thc SUffi

of " surface terms" plus "curvature terrns", corresponding respectively

to the surface forces - like surface tension - and body forces - like

gravity - acting on the drop) in a certain class of arlrnissible confi

gurations, alI with the same fixed mass (see e.g. [11]).

FIGURE 8

Let us now introduce the following abstract definition:

(1. 19) VA cc n, VP : Pc.E cc A andIFr1AI=IErlAI

where IGI denotes the Lebesgue measure n
cf G c lR . The prece-

ding definition extends to "curvature functionals" like (1.3) in

the obvious way.
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We provcù in [21J that such ;ln E satisfies (1.10) with a.Ct)::: et:

Theor. 1.9 thcn yields the regularit}' of a*E, together with the usual

estimate of the Hausdorff dirncnsion of aE" a*E.

Actually, tho main body of [21J "as devoted to the proof of the f.ct,

that "honover (1.19) holds (with, of course, IE(lAI > O and lA' EI>O),

then two balls B, ,8
2

of arbitrariIy small radiu5 r ,CDn be found,

such tha t B
1

c E nA and B
2

c A - E.

, - -•• - - ~

~O
,

\ A ,"""---Jl
%~}:;

I /,

\
,

1'8 I /
'. , 3 I,

\ , / "

~~--'. " 1 ,. ....;;; /

E.-- ......

FIGURE 9.

Assumlng this, and having fixed x € aEnA, t E (D,r), and G sueh

that

(1.20) B
x,t

Gl>E cc B , IGn B I< lE n Bx,t x,t x,t

we see that wc cnn move B, toward 8
2

(in a continuou$ fashion, and

taking care of remalnlng stl"ictly within A'" B ; see
x,t

Fig. 9), until

a new position, dcnoted by 8
3

, 15 reachcd. sueh that

F_fGnB !U(E<B )UB
3

,
x,t x,t
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From (1. 19) \.;e then derive essentially (see [211, prop. l, [or

the precise calculations):

Cl.21)

I D~EICB )x,t f
aB

3
<ID~ \CB ) + (n/r)IB3 ' El- G x,t

dII .
n-l

esee section

As the case

1.15) to follo\\'

,,'hcn IcnB I >
x t -,

far thc proof

IEnB I con
x t,

of this 1a5t ineqlI31ity).

be tl'cotcd similill"1)'

interchanging the role

n
w t ,
n

which, combined with (1.21). yiclds

of B, ,E 2). wc see that ('.21) holds

the way B
3

was chosen shows thatB . In addition,
x,t

cc

(just by

't'C: C .. E

." CE B ) < (n/r)w t
n

• , tx, n

as claimcd.

(iv) Minimal boundaries with obstacles.

A second constraint we can Impose on aUT solution 15 that it has

to avoid some "obstacle". Stated more precisely:

C1.22) and

VA cc n J VF : F A E cc A and FC'LnA.

Assuming this, and having fixed A cc n and F F j\ E cc A, we get
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since FU L lS an arlrnissible variation of E (Le. FU L :> LnA; see

Fig. 10).

L

['
~ '- A, \.

•
\

,

I
I

Sl.

FIGURE 10.

By virtue of the inequality

ID$E vE I (A) + ID$E n E I (A) < ID$E I CA) + ID$E I (A)
1 2 1 2 1 2

(see [27J, 2.1.2 (10)), we then find

(1. 23)
< I/J CL ,A)- o

whe re (see (1. 9)) :
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On taking the supremum of thc lcft-hand side of (1.23), :15 F Val"ICS

6Jte.e.-Cy among the Ioeal· vari<ltions of E in A, \V'c gct in eonelusion:

(1.25) < • (L,A) < .(L,A).
o

Thus, wc realize that In any ball B cc n thc deviatlon from nllnl~

mality of E (a solution of thc least area problem with obstacle L)

is eontrolled by the deiiation from lilinimality of thc obstaclc lt~clf!

(see 1.13).

Therefore, whenever a L 15 almost minimal in n , thc same is true

for aE. In faet, in vicw of example (v) immediatcly fol10wiog, by

using (1.25), thC' Regularity Theorem 1.9, and (esscntially) thc Eact

that a set with minima} boundary In mn , whieh in addition contains

il halE space, is l[sclf a halE spaec (see ~O], Theor. 1), \V'c can

prove that if aL is of class Cl,a in n (O < a< 1), then aE 15

l o
like~is0 of class C'in a nC'ighbourhood of aL. We refer to se-

etion 3 of r37 I for a deeper analysis of thc regularity of minima]

bOtlndaries with obstaeles.

Wc remark that the result just quoted holds for a = O as weli

(see \30\, Theo1'.2). The proof in this case requiresspeeial attention,

and ill faet that result ca~~ot be deduced direetly from (1.25) and

Theor. 1.9 ulonc (the reason ht:i.ng that the deviation from minima­

lity of il set with C' boundary c:moot be controlled, in generaI, by a "gooo"

funetion o.(t) - in partieular, one satisfying (0.4) of Bypotheses

j .11; sec cxample (v) below). Thc ease o. = 1 al~ o requires a spe­

eiai analysis, see [71. Finally, we remark that the regularity result

jl'f:"t qlloted does ~ot gener:l.lly hold, for obstaeles with lipschitz

boundary (in eonstrast to \"hat happens in the "enr tesian case" ,see

c.g. [10,16,18]).

To see this, rnercly eonsider the lipschitz eone
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8L = Ix e lR ; x
8

>
2

Ix 1 +

which is contained in Simons'cone C esee 1.4): although C has mIni­

mal boundary in ffin (and thus a150 with respect to L), ac IS not

lipschitz (not even a Ieeal graph neo!" O e élL()aC.

Iv) Smooth hypersurfaces

We saw in section 1.6 that whenever dE 15 of class then dE

IS In particular an almost minimal boundary. Generally however, the

funetion a(t) which controls the deviation from minimality of E does

not satisfy the integrability hypothesis la4) of 1.11. Here ~e have

a simple example of such a situation.

Consider the funetion u ; (-l,l) ~ (0,1) defined by

r t
[lg(e/s)]-l ds\u(t) = f when t e (0,1)

I o

lu (O) = O, u(t) = u (-t)

and put E = epiCu) C lR
2

, so that Cl E 15 of class C' In the open

square ~ = (_1,1)2.

1 Jl
l'e',' / ' ,'/ /7I ,/' / t' /, .

..... , I ' l' /
~, > ,,

/ / ' I ,/, ,
, ' i--~.. '1,

O ~

e-"
Q,t

-_ .. ._~ ..-

FIGURE 11.
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2

= (-t,t) J we
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find (see Fig. 11):

t

lj>(E,Qt) = 2 !l[1+(lg(e/sll- 2Jl - 1l ds

o
-2

t[lg(e/t)] . Consequently, the function con-

trolling the deviation from minimality of E is essential1y

,,(t) =
-2

[ 19(e/t)]

which does not satisfy ("4,) (recall 1.12).

Things are better in the case when aI is of class C1JQ~ O<a<l. I.C.

when (locally) aE = epi(u), with u e Cl (lRn-1) and

I 1. 26) IDu(y') - Du(z')1 < L,t y'-z' l''·

In this case, argulng as in 1.6. we find

1dx I <
2

dx' - f (1+IDvI2) l

B'
t

f IDu 1
2dx '

B'
t

1 2 n-l 2"
(-w Lt ·t

2 n-l

(recaiI we are assuming Du(o) = O),

n-l+2a
lj>(E,B t) < C.tx -,

7
so tha t

whenever é'lEeC 1 ,a.

As the preceding example (iv) indicates, this faet i5 of eonsidcl"able

importance in conneetion with the obstacle problem for minimal boun~

darles. Aisa recall the rernark following (1.8).

We conclude the present section with the short J1Tcof of an ine­

quality, which find applicarlon in severa! cases (see 1.36J. seetion lJ.
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and which was used In Example 1.14 (iii) above.

1 • 1 5. AIl i 5 o p.oc-,r-,i",m"c,-t"r:...=.ic"---,i"n.oe.oq"u"a"l,,l,,·t"y,-,-.
8

Given a ball BR of radius R

holds:

n
In R and a subset L of BR' there

(1.27) (

~B
R

(n/RlILI

Equality holds in (1.27) iff either L = Q) or L = BR'

Pltoo6. Cl(-'arly, (1.27) 15 homogeneous in R, hcnce it suffices to

prove it whcn R=1. Assunling this, wc aprIy thc Gauss-Green TheorcDI

to thc vcctor field ~(x) = ~L(x).x. x € mI1
, thus obtaining

f $L(xldH -1 (xl
aB n

1

(1.28)

which 15 (1.27) far R = 1. Recalling that (sce [27j, 2.3):

(1.29) D$r = vL Il -1 I ' ID$L I = Il -1 l
~ il a*L 11 a*L

we concluùe that equality holds In (1.28) only if

which 15 possiblc only when

H
n

_
1

- a.t". on a*L(ìB,

Ix I = 1 H 1 - a. e. onn-

l.e., anI)' \\'hen H Ca*LllB) = O. This LJ.st assertion implies tha
il - l 1
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L lS equivalent either to the empty set or to B, itself.

The converse being obvious,

that implies < w
n

\\le a re done.

R
n

we deduce•

From (1. 27), observing

(1.30) dH <IDt I (B )+nwl!n ILI (n-1)!n
n-l - L R n

stilI with equality iff either L = ~ or L = BR' Wc see in. addition

that the only bounded sets n c IRTI for which the inequality

+ nwl!n ILI (n-l)!n
n

(1.31) f t L dHn _ l ~ IDtLI (D)

aD
holds, for cvery choice of L c n , are exactly the n-bal1s. Tobe

convinced, put L = n in (1.31) and recaI! the isoperimetric inequa­

l i t Y:

(1.32) nwl!n IEI(n-l)!n
n

which is valid for every boundcd E c IR
n

, with equality iff E 15

an n-ballo See [27], 2.2.2(2).


