CHAPTER 1: ALMOST MINIMAL BOUNDARIES

We begin with an informal presentation of the material to be di-
scussed 1n the sequel. While doing this, free use will be made of
concepts and elementary results that will be discussed more deeply

later on (especially in Chapter 3).

1.1. We fix an open set Q in :m“, n > 2, and consider sets E,F,...

whose boundaries JE,9F,... have locally finite "surface area" 1in {:

|D¢E|(A) < + VA cc Q

The quantity |D¢E|(A) may be thought of as the area (in some genera

lized sense) of 3EMA, where A is an arbitrary open an bounded set,
strictly contained in 2; indeed, it coincides with Hn_1(8Ef\A)
whenever 93E 1is, locally within @, a smooth hypersurface (section

3.1).

A basic definition and a corresponding fundamental result are now in

order.

1.2. Definition of minimal boundaries.

We say that theboundary of E is mindimafl in Q@ iff
(1.1) Do | (A) < [Dey | (A) VA cc Q, VF:FoE cc A

.e., iff any local variation of E in Q increases surface area (Fig.1).
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FIGURE 1
1.3. Regularity of minimal boundaries.
Let E have minimdal boundany in § :IEF. Then
(r1] 3*E N Q 1s an analytic hypersurface
(r,) H . [(BE~3*E) N @)= 0

Furthermore, assuming that {Eh} be a sequence of sets with minimal

boundary in §, and that {xh} be a corresponding sequence of points,

satisfying:
Eh -* Em , xh € aEh; 3h+ X € Y
then
(r;) X_ € 93E_

If in addition x_ e 3*E , then

*
(r4} X, € 9 Eh for any large h, and v (xh] + ve (x_).

E E

h o

We recall that 9*E denotes the ''reduced boundary" of E, i.e. the



collection of those points x € 3E where an approximate inner unit

normal vector UE(K) exists, and that the convergence Eh + E_ is

to be intended in the Llnc - sense on f. See section 3.1 again.

1.4. Conclusion (r1) above, which undoubtedly contains the essen-
ce of the Regularity Theorem, was proved by E. de Giorgi in 1960-61
(see [8] and [9]), and then rederived together with (r,) in 1965 by
M.Miranda (see [28]]1. Two years after, Miranda proved (r, ) and (r,)

as well, see [29]. Thus, in 1967 the Regularity Theorem for minimal
boundaries (in the form appearing above) was completely demonstrated.
In the setting of Caccioppoli sets, i.e. sets with finite surface

area, Theorem 1.3 may well be called the basic regularity result.

In the meantime, various different settings were proposed, in
which the classical questions related to Plateau's problem (the pro-
blem of finding a surface of least area among those surfaces which
span a given curve) could receive a satisfactory answer. We mention
the work of Reinfenberg ([32,33), Féderer-Fleming [14], Fleming [15],
Almgren [3], Allard [1], etc. A considerable effort was directed
toward a complete understanding of -the structure of the singularities
of minimal boundaries: the work Fleming [15], Triscari ([38], Almgren
[i] and Simons [35] culminated in the celebrated proof -first given
by Bombieri, De Giorgi and Giusti in 1969 (see [6] and also [26])-
of the minimality of the cone

<x2+...+x§

c }

C={xe1RB: xz ool + xz
1 4

(Simons' cone), which is singular at the origin. As a consequence,

the best possible estimate of the Hausdorff dimension of the singular

set OEN 3*E could be obtained by H.Federer [13], thus improving

(rz) above.



More general variational problems of ''least area' type have since been
considered, especially those concerning surfaces of prescribed mean
curvature, possibly with obstacles or subject to given constraints.

In this respect, the work of Almgren [4] is really impressive, for
both the deepness and the generality of the results obtained. Working
with different methods, E.Bombieri [5] and R. Schoen - L. Simon [34]
developed quite recently a simplified version of (part of) Almgren's

Regularity Theary.z

Restricting our attention to the theory of Caccioppoli sets in :mn,
we should mention the important contribution of Miranda [5Q] and
Massari [23, 24], on the obstacle problem for minimal boundaries and,
respectively, on the regularity of boundaries of prescribed mean cur
vature., These two problems will be properly discussed later on in this

chapter.

Urged by the consideration of these and other particular cases, one
1s naturally led to the search of a class of "almost minimal bounda-
ries'", for which a Regularity Theorem like Theorem 1.3 could be pro

ved. In this respect, the following definition seems quite natural:

1.5, Definition of almost minimal bnundariesS.

The boundary of E is said to be almost minimaf 1in ¢ R iff

for every A cc @ there exist T e (0,dist(A,3R)) and a:(0,T)>[ 0,+),
with o non-decreasing and 4 a(t) = o(1), such that

n-1
(1.2) ID¢EE£Bx,t} < |D¢F](Bx,t) + a(t)et

for every x € A, every t e (0,T), and every F : FAE cc Bx ¢
b J

As usual, B denotes the open n-ball with centre x and radius

X,t

t. See Fig. 2.



FIGURE 2,

1.6, The assumptions on a«a(t) are in some sense the minimal ones
we can make 1f we want to prove regularity. Indeed, let us consider
: n
a smooth hypersurface S 1in R, and let us choose R > 0 and the re-

ference system so that

Sf\QR = graph of u over Bﬁ

with u 6 CT(B&), u(0)=0, Du(0)=0. Here, QR denotes the "vertical"

cylinder

n
Qg = x = (x",x ) e R : |x'| <R, |x_ | <R)

and Bﬁ its projection on the space of the first (n-1) variables:

BY = {x' = (x ) e R™', |x'| < R} .

n-1

See Fig. 3.



FIGURE 3.

Now, given an (n-1)-ball B% c Bﬁ (with centre 0), and a function

VE.C1(Bﬁ) such that the support of u-vlies in B', we have:

.tl'

J (1+|Du|2)idx' - f (1+|]3“..='|2}i dx' <
B .
t Bt

- I[(1+|Du|2)i - 1]axt < 5 flnulzdx' < a(t)-t"!

Bl‘
Bé t

provided we take:

1 2
5w _, -sup [Du(x")[” .
Ot

a(t)

From this one easily concludes that (1.2) holds for E = epi(u), with



a function a(t) of the type described in Definition 1.5. Consequently,
any set with smooth (CT) boundary has almost minimal boundary, in

the sense of Def. 1.5.

1.7. On the other hand, we see that the cone

2

E = {x = (x,,x,) : |x.| < |x2}} c R

|

whose boundary has a singularity at 0, satisfies

|D¢E|(Bt) < IMFI[Bt) + a(t)-t VF : FeE cc B,

the best choice fot a(t) being the constant 2(2-v2) (see Fig. 4).

This also shows the 'necessity" of the assumptions on a(t).

FIGURE 4.

.8. A second important class of almost minimal boundaries is
1stituted by surfaces of prescribed mean curvature which satisfies
suitable integrability condition. To be specific, let us consider

.ven function H € L;DC(Q), together with a Local minimizen E of

the following functinnal5



(1.

L
—

# (F,A) = [D¢F|(A] + I H(x)dx
ANF

which 1is defined for any Caccioppoli set F and any A cc & . That

1s, suppose that

(1.4) .?H{E,A} < ?H(F,AJ VA cc @, V¥F : Fs E cc A.

Whenever 3EMA 1is locally of class CZ, and H 1s a continuous
function on  , we see 1mmediately that the mean curvature of JE
coincides, at any point x € 3E N Q,with H(x) (just compute the
(irst variation of 5;5). Motivated by the preceding observation,

we call the local minimizeérs of EE: "'sets of generalized mean

curvature H in Q".

Now, for any hall Bt cc 8, we have from (1.3),(1.4):

i ,
(1.5) .D¢Ei{Bt) < |D%:|(Bt) + I |H(x) |dx

B
t

n

1nc(ﬂ), we find (according to Hélder's inequality) that

Assuming H € L

(1.2) holds true, with (essentially)

a(t) =m;H1/n {g |H|n deTKn
t

—

More precisely, we observe that if E is a local minimizer of ﬁ%

in 2, Acc 2 , and T e (0,dist(A,3R)), then [ |H| dy 1is, for any

B
X,T

t € (0,T), a continuous function of x € A, which will then achieve

1ts maximum value at some point X, € A. Setting



(1.6) a(t) = w " 1/M

we get (1.2), with a function a(t) depending on A, non-decreasing

on (0,T) and infinitesimal at 0. We shall return to this problem later

on, in section 1.14.

We are now 1n a position to state our main result (compare with
Theorem 1.3).

1.9. Regularity Theorem for almost minimal boundaries.

Let E have almost minimal boundary in @ cZRn, in the sense of Def.

1.5. Assume in addition that a(t) (the function appearing in (1.2))
be such that

t_!u(t) is non~increasing on (O0,T)

and

T
l t_1~u1/2(t) dt < + o,

Then

(R1) 3*E N Q is a C1 hypersurface

(R,) HS[(aE~a*E) N Q=0 ¥s > n - 8.

Furthermore, assuming that {Eh} be a sequence of sets with unifoamly

almost minimal boundaries in Q@ (i.e., such that (1.2) holds for every

Eh’ with T and a(t) independent of h), and that {xh} be a corre-

sponding sequence of points, satisfying



then

(R,) x € JE

3 oo 00

If in addition x_ € 9*E_, then

*
(R4J X, € 3 Eh for any large h, and v (xhj > v (x ).

1.10. Regarding [R1), we have specifically the following estimate

of the oscillation of the unit normals to 9E

x-yl 1/ 1/2

|
2
(1.7) |UE(KJ - vE(y)I << f t (t)dt + C2|K-Y|
j

which holds for every x,y € 8*E such that |x-y| is sufficiently small.
Thus, we see that the integrability of t-1 u1/2[t] 1s an essential

ingredient of the Regularity Theorem.

The other hypotesis of the Theorem, namely, the monotonicity of

-1 : : : co
t a(t), is more a convenilience than a necessity, and it is assumed

only with the aim of simplifying calculations. At any rate, we see
that when o 1s a (non decreasing, infinitesimal at O, and) concave
function of t e (0,T), then it certainly satisfies that condition.

See Fig. 5.



o (L)

a(t) > gs(tJ

= (t/s)-al(s)
—_— ¥t €(0,s).

FIGURE 5.

The proof of Theorem 1.9 occupies the second part of the present work
Chapters 3 and 4). Before starting with the formal demonstration,it
scems appropriate to 1llustrate with examples the applicability of
the Theorem 1tself, and to discuss in some details the method of the

proof .

For convenience ot the reader, we list the assumptions on o(t)

under which Theorem 1.9 will be proved.

1.11. Complete set of hypotheses on a(t).

fu1) a : (0,1) - R is non-decreasing and bounded

(o) a(t) = o(1)

2
(us) t-Ta(t) is non-increasing on (0,1)
bo-1 172
(a,) i’ t7 o T(t)dt < + w,

1.12. Now we consider some explicit examples.

The simplest choice 1s perhaps o(t) = c.t Za; conditions above are

then all satisfied, for any ¢ > o and any o €(0,1].



. . 6
Moreover, 1in this case (1.7) becomes

(1.8) lvE{x) - vE(yJI < const '|x-Y|a

which amounts to saying that 9*E e CT’ﬂ

. In a sense, this 1s an
optimal result, since the converse is also true (and easy to prove,
see Example 1.14 (v) below); that is, if E = epi(u) with ueC]’ﬂ

then 3E 1s almost minimal, with a(t) < cnnst.tzu

For € > 0, the function

a(t) = ¢ [1gest)] 201%8)

(truncated at a suitable level, in order to save concavity), also

satisfies (u1 - u4)* On the contrary, it does not satisfy (a4) when

e = 0.

A similar behaviour 1is exhibited by the function

a(t) = ¢ [lge/t)] % [1ge 1g(e/t))] 2L1*&)

1.13. Before giving examples of almost minimal boundaries, we in-

troduce the following functional

(1.9) Y(E,A) = |D¢EI(A) - inf {|D¢g |(A) : Fo E cc A}

which is defined for every Caccioppoli set E and every A cc R™.

With the aid of ¢ , the definition of almost minimality can be re-

stated in a more compact form, just by replacing (1.2) of Def. 1.5 by
n-1

(1.10) W(E,B_ ) < a(t) -t Vx € A , ¥t € (0,T).

)



The quantity t n w(E,BK t) may be called "Deviation from minimality
3

of E in Bx,t”’ abbreviated: Dev(E,x,t). Thus, almost minimal boundaries
are those boundaries whose deviation from minimality is controlled
from above, in any ball Bx,t’ by a suitable function of the radius
t, which 1is non-decreasing in t and infinitesimal at O.

Simple properties of the functional ¥ are stated and proved 1in
Chapter 3, see (3.10)-(3.13). For the present usage, we anticipate
that Y 1s non-decreasing with respect to the second variable, i.e.
w(E,A1) < w(E,AZJ whenever A1 C AZ.

1.174. Examples of almost minimal boundaries.

(1) Mindimal boundaries (Def. 1.2) are evidently almost minimal,

with a(t) = 0 (and ¢ = 0).

(11) Boundardies with prescribed genernafized mean curvature.

We saw 1n the preceding pages that any local minimizer of the
functional ﬁ%(defined by (1.3)) in & , corresponding to a mean cur

vaturce function H e LTDC[QJ, has almost minimal boundary in @,

since it verifies (1.2) (or equivalently (1.10)), with a function

a(t) - given by (1.6) - satisfying (m1) and (u2) of Hypotheses 1.171.
It may happen however, that the remalning assumptions [QSJ,LuAJ are
not satisfied. We see this with the aid of the following example.

Consider, for n= 2, the function

(1.11) H(x) = H(x ,x,) = -Mr ' (lg(e/r) /"

where r Ix| e (0,1 and M > 1. For every t € [0,1] we have

‘2 . ? -
[HI ¢ dx = (v/72)M (1g(e/t)) ’

r
)
B.
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Z :
so that H € L (B1]. However, with a(t) (f |H|2dx)1/2, see (1.6),

By
we find
:
0
thus viﬂlating'cnnditiﬂn (ud).
Nevertheless, putting
(1.12) H(x) =0 for r = |x| e (1,2]

and taking into account the symmetry of the problem, we realize im-

mediately that E B is local minimizer of ¥ in { = BZ’ at

1 H

least when M is large enough. Indeed, if
T -5/2 ;7 -1
M > [I (1g(e/s)) ds|
0

then B1 is the unique solution to the problem

|D¢EKB2) + éH(x)dx - min, with E ¢ B, -

Therefore, the choice (1.11),(1.12) for H provides no counterexample
to regularity! Actually, the question whether a regularity theorem

n
luc(ﬂ) has

not been settled in full generality. We shall return to this question

p
lo

holds for boundaries of prescribed mean curvature H € L

in a moment, after discussing the general case H € L C(Q),with either

T <p<n or n«<p< + o,

In the former instance, simple examples show that singularities
may appear, even in low dimension; while, on the contrary, the conclu

sions ot Theorem 1.9 hold in the latter case.
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We see this as follows: first, notice that the lipschitz function
n : .
w(x) = |x|], x e R, n > 2, is a weak scfution of the non-homogeneous
minimal surface eguation

Dw(x)

(1.13) Div 5
(1+[Dw(x) | ")

] = h(x)

(n-1)¥2|x| - a function which belongs to the

corresponding to h(x)

Lebesgue class ﬁ?;cﬂﬁn) for every 1 < 1. By this we mean, as usual,
that
{ Dw _ 1 n
< " , Dé> dx = - J ho dx Vo e C R .
J (1+|Dw| )

(w is of ccurse a classical C2 solution of (1.13) in Rr" ~{0}). Conse

guently, the mean curvature of the graph of w (an n-dimensional car-

. : n+1, . :
teslan suriace in R ) is summable to any power lessthan n (notice

:nat when n=1, the corresponding mean curvature is given by V2 ti-
mes the Dirac mass at 0).

1

Next, put E = epi(u) ¢ R, with u(x') = |x'}, x! e R"” , N > 2,

>

and consider a solution G of the following problem

Do | (B,) + H(x)dx -+ min, with G~B, = E <B
' 1 1 1
B, NG
where H(x) = -c¢/|x| if x e E, = 0 otherwise (c becing a large positi

ve constant). Plainly, GF‘\B1 ¢ ENB since E is convex and H vanishes

-Il

outside E. Furthermore, 0 ¢ 3G, suice from

EﬁBG )

r , T

Doy | + { Hdx < 0 (E
Yoor
r

which holds ¥r e (0,1) 1f ¢ 1s large enough, we derive
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(EI) " I’ Hdx < |n¢G](ﬁT) ¥ I Hdx

I .
P*GLJETi
(GLJEr)rWB1 GAB

:

@ (see Fig. 6).

whenever GNE
2T

FIGURE 6.

In conclusion,G 1s a local minimizer of 9; in B1, with HeL' " (B

¥Vt < 1, and 0 1s a singular point of oG, thus showing that Theorem
1.9 (particularly, conclusion (RZ]) does not hold for boundaries of

prescribed mean curvature H e L?ﬂciﬂl,with P < n.

On the other hand, if E is a local minimizer of *ﬁa in @ , with

H e L?GC(Q] and p > n, and if A cc @, T < dist(A,3R), x € A, t €(0,T

then (1.5),(1.10) and H6lder inequality yield:



V(E,B_ ) < Hldy < w TP ¢ /P
X,t P
LY (B )
x,t ’
< const(n, |[[H |] . J*t1"n/p'tn-1
L (ATJ
= u(t)-tn-1

where Aq = {x : dist(x,A) < T} ¢c @ . Since 1-n/p € (0,1) in this

1-n/p

casc, we know (recall 1.12) that a(t) = c-t satisfies {u1=u4},

so that the Regularity Theorem 1.9 applies to this casec.

We can also consider mean curvature functions H belonging to more

gencral function spaces. Let us introduce e.g. the Morrey space

P @) (2 1,0 3 0)

loc
u € Lp"'}h () 1ff u e Lp (2) and VA cc @
locC loc
-\ p
(1.14) sup (t L1 lult dy) < + =
xeA
o<t<diamA A Bx,t

Some elementary properties of Morrey spaces can be found in [20],
Chapterq.

It should be clear by the foregoing considererations that any

1T,n-1+0

local minimizer of % in g , with H e L (@) and o > 0, sa-

H loc

: : . . ]
tisfies (1.10) with @(t) = const.t , so that Theorem 1.9 applies

equally well to the present situation. Notice that R~ L1,n-1+(p~n]/p

loc



by H6lder inequality, so that the case H € LP () with p > n appears
loc

as a particular instance in this general picture.

As previously seen, things are not so clear in the borderline ca-

se H e Ln (): 1in particular, we do not know yet whether conclusions

loc -
[R1) and (R,) of Theorem 1.9 extend to local minimizers of fﬁ, when
n
HelL (). The following example may shed some light on the question,
locC

Let E ::m“, n > 3, be the epigraph of a radial function u = u(r),

where r = |x'| and x' E]Rn_i. Assume that u e C1{0,+m), with deri-

vative u' > 0, and that

(1.15) u(r) >0, u'(r) > Me [0,+e]

as r + o', See Fig. 7.

FIGURE 7.
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If E is a local minimizer of & 1in R", with He L™ @®"), and
loc

if ER denotes the set

= n *
ER EM{x : x> u(R)}
then VR > u and VT >(R%+u?(R))® we find (see (1.3) and Fig. 7):

0 < #,(Bp,B) - F(E,B)

(1.16)

0
=

n-1 R n-2 2 3
R -(n-1)mn_ l T (1+u'“(r)) “dr- I H(x)dx

E%ER

On using succesively Holder inequality and the isoperimetric inequa

lity we get

(1.17) -1 -1/n _
[ lax < a7 ) D6, |zg_(R) Doy . |

n
E*ER L (EMER) R R

which, combined with (1.16), yields

1

idrli [1+gn(R)]-Rn" .

R n-2 2
(1.18) [n-1)[1-gn(R)] J r “(1+u'’)
0

Were M in (1.1S5) positive, we would deduce from (1.18)

1

[1-gn(R)]-(1+52) < 1+g_(R) Ve e(0,M), VR < R,

a contradiction, since gn(R] - 0 when R+ 0 (see (1.17)).

Therefore, M = 0, thus showing that 3E is everywhere smooth.
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(111i) Minimal boundaries with a volume constraint.

It is a well-known fact that among the sets having a given measure

v in IRF, the n-ball B_ of radius R = (v/mn]1/n is the one which mi-

R
nimizes surface area. A variety of (less trivial) examples of the sa
me type are usually encountered in Capillarity Theory. For instance,
one can think of a liquid drop of given mass and resting on a given
surface (as shown in Fig. 8), as a local minimizer of an "energy
functional” (whose analytic expression is, roughly speaking, the sum
of "surface terms' plus ''curvature terms', corresponding respectively
to the surface forces - like surface tension - and body forces - like
gravity - acting on the drop) in a certain class of admissible confi

gurations, all with the same fixed mass (see e.g. [11]).

\@/
FIGURE 8

Let us now introduce the following abstract definition:

E has minimal boundary in @ with a volume consthaint 44
(1.19) |D¢EI(A) < |D¢F|(A) VA cc @, YF : FaE cc A and|FNA|=|ENA|

where |G| denotes the Lebesgue measure of G ¢ R'. The prece-
ding definition extends to "curvature functionals" like (1.3) in

the obvious way.



We proved in [21] that such an E satisfies (1.10) with 4(t) = ct:
Theor. 1.9 then yields the regularity of 3*E, together with the usual

estimate of the Hausdorif dimension of 3E N\ 3*E.

Actually, the main body of [21] was devoted to the proof of the fact,
that whenever (1.19) holds (with, of course, |EMA| > 0 and |AN E|>0),

then two balls B_,B

1 of arbitrarily small radius r can be found,

2

such that B1 ¢ ENA and B2 c A~ E.

e

—— .

BZO } A N

T ,*’
B, .

FIGURE 9.

Assuming this, and having fixed x € 3EMA, t € (0,r), and G such
that

7 — :
(1.20) Bx,t cc A~(B,UB,), GaE cc Bx,t’lcﬁBx,t]{ILﬁBx .

we see that we can move BT toward B2 (in a continuous fashion, and

taking care of remaining strictly within Aﬂuﬁx .3 see Fig. 9), until
p ]

a new position, denoted by B 1s reached

39 , such that

lFNA| = |ENA]|, where F = (GNB,_ ) U(E~B_ _)UB

, T 3



From (1.19) we then derive essentially (see [21], prop. 1, for

the precise calculations):

[Dogl(B, o) < [Dogl (B, )+ f *EUB, dH 0 7 - [Deg] (Bg)
2B,
(1.21) <|Do .| (B ) + (n/1)|ByN E |

-

(see section 1.15) to follow for the proof of this last inequality).

As the case when |GMB 1:I > |ErﬁBx tf can be trecated similarly
X 2

b 2

B?), we see that (1.21) holds

(just by interchanging the role of B],

¥G : GaE cc Bx . In addition, the way B3 was chosen shows that
- [Bg~ Ej < mntn, which, combined with (1.21), yieclds
n

w(E’Bx,tj < [n/r}mn t
as claimed.

(1v) Minimal boundaries with obstacles.

A second constraint we can i1mpose on our solution 1s that it has

to avoid some "obstacle'". Stated more precisely:

E¢ has minimal boundary in 9 with respect to the obstacle L {44

(1.22) ED>L N g and | Dog| (A) < [ Do | (A)

VA cc g, VF : FaAE cc A and FDOLMNA.

Assuming this, and having fixed A ¢cc © and F : FaE cc A, we get

|
Dol (A) < [Dor | (A)
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since FUL 1s an admissible variation of E (i.e., FUL 2 LNA; see

Fig. 10).

A n

R

e -
} l|—|.—--".— "l-x

ary V4,
| TS F.
URTSQ
/' /
X \, /N
1 S oo 7
E \' e 7

|

FIGURE 10.

By virtue of the inequality

| D¢ | (A) + D¢ o |(A) < [Do, |(A) + [Dé. |(A)
E1'~..JE2 E1 E2 ET E2

(see [27], 2.1.2 (10)), we then find

Do (A - Do | (A) < Do, [(A) - [Dopp | (A)

(1.23)
gwﬂ(L,A)

where (see (1.9)):

(1.24) ¢U(L,A] = |D¢L|(A)-inf{|D¢G|[A) : GaL cc A,GcL} < ¢(L,A).



On taking the supremum of the left-hand side of (1.23), as F varies

neely among the local- variations of E in A, w¢ get in conclusion:
i g

(1.25) V(E,A) < ¥ (L,A) < (L,A).

Thus, we realize that in any ball B ccQ the deviation from mini-
mality of E (a solution of the least area problem with obstacle L)

is controlled by the deviation from minimality of the obstacle itsclf!

(see 1.13).

Therefore, whenever ¢ L is almost minimal in @ , the same is true
for 9E. In fact, in vicw of example (v) immediately following, by
using (1.25), the Regularity Theorem 1.9, and (essentially) the fact
that a sct with minimal boundary 1in :m“, which in addition contains
a half space, is ifself a half space (seec [30], Theor. 1), we can
prove that if 8L 1s of class CT’“ in € (0 <a< 1), then 3E 1s

T in a neighbourhood of 3L. We refer to se-

likewise of class C
ction 3 of [37]| for a deeper analysis of the regularity of minimal

boundaries with obstacles.

We remark that the result just quoted holds for o = 0 as well
(see {30}, Theor.2). The proof in this case requires special attention,
and in fact that result cannot be deduced directly from (1,25) and
Theor. 1.9 ulonc (the recason being that the deviation from minima-
lity of a sct with C1 boundary cannot be controlled, in general, by a "'good"
function «a(t) - in particular, one satisfying [u4] of Hypotheses
i.11; sec example (v) below). The case o = 1 also requires 4 spe-
cial analysis, see [7]. Finally, we remark that the regularity result
jurt quoted does not generally hold, for obstacles with lipschitz
boundary (in constrast to what happens in the '"cartcsian case" ,see

e.g. [10,16,18]).

To sece this, merely consider the lipschitz cone



L = {x ERS::{B::- {x$+ +x§)i}

which is contained in Simons'cone C (see 1.4): although C has mini-
mal boundary in R" (and thus also with respect to L), 39C 1s not

lipschitz (not even a local graph near 0 € 3LM3JC.

(v) Smooth hypersurfaces

We saw in section 1.6 that whenever ©8E 1is of class CT, then JE
is in particular an almost minimal boundary. Generally Thowever, the

function «a(t) which controls the deviation from minimality of E does
not satisfy the integrability hypothesis {a4J of 1.11. Here we have
a simple example of such a situation.

Consider the function u : (-1,1)y - (0,1) defined by

t

u(t) = J Mgle/s)] " ds when t e (0,1)
ﬁ 0
u(0) = 0, u(t) = u(-t)

and put E = epi(u) c]RZ, so that 9 E is of class C1 in the open

square Q = (-1,1)2.

”h
4 JL
T 7
Sk ,
Q e - 4
O >
Qt

FIGURE 11,
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Setting Qt = (-t,t}z, we find (see Fig. 11):

t
v(E,Q) = 2 J{[H(lg(e/s))uz}i - 1} ds
0

that is 4, w(E,Qt)fu t[lg(e/t)]-z. Consequently, the function con-

trolling the deviation from minimality of E is essentially

o (t) = [1gle/t)]™°

which does not satisfy (a¢) (recall 1.12).

Things are better in the case when 9JE is of class C1’ﬂ, O<a<l, i.e.

when (locally) B@8E = epi(u), with u e C1GRn-1} and

11.26) [Du(y') - Du(z"')| < Ljy'-z"|%.

In this case, arguing as in 1.6, we find

[ (1+ pul®)? ax - (+pv 5 axt < 2 [ i 2ax
B‘I‘ Bl Bi
t t t
1 2 n-1 2a
< 2 “n-1 L 't
(recall we are assuming Du(o) = 0), so that 7
W(E,B, t) < c.tn_“zDt whenever oE € Cj’Ct

As the preceding example (iv) indicates, this fact is of considerable
importance in connection with the obstacle problem for minimal boun-

daries. Also recall the remark following (1.8).

We conclude the present section with the short prcof of an ine-

quality, which find application in several cases (see [36], section 1),



and which was used 1n Example 1.14 (iii) above.

1.15. An 1isoperimetric inequality.

Given a ball B. of radius R 1in mﬁ and a subset L of B there

R R’
holds:

(1.27) f ¢L dHn—T f-IIM%;rIBR} + (n/R) |L|
0B
R
Equality holds 1in (1.27) iff either L = ® or L = BR.
Proog. Clearly, (1.27) 1s homogeneous 1n R, hence 1t suffices to
prove 1t when R=1. Assuming this, we apply the Gauss~Green Theorem

to the vector field ¢(x) = ¢L[x)-x, X € Pﬁ, thus obtaining

f o, (x)dH . (x) = n f ¢, (X)dx + 1 <x,D¢, (x)>
°% B, B,

(1.28)
<n |L| + |Dg | (B,)

which 1s (1.27) for R

1. Recalling that (see [27], 2.3):

(1.29) D¢ v, H , Do, | = H

L L n—1la*L n-

ML
we conclude that equality holds in (1.28) only it

< > = ] H - a.c. *[,MB
t,uJ[x} . a.e on 9 :

which is possible only when

x| = 1 H - a.e. on 3*LMB
n-1 |

0. This last assertion implies tha

i.e., only when H _(3*LMB_)
n-1 T



L 1s equivalent eilther to the empty set or to B1 1tself.

The converse being obvious, we are done . From (1.27), observing
n

that L ¢ By implies IL| < w R, we deduce
1/n (n-1)/n
(1.30) J ¢, dH 5|D¢L|(BR)+nmn L | VL ¢ B
BBR

still with equality 1iff either L = @ or L = BR' We see in. addition

that the only bounded sets Q@ ¢ R' for which the inequality

< IDg (@) + ma! /M oD/

(
(1.31) J ¢|L dHn_1

o 52
holds, for every choice of Le¢@ , are exactly the n-balls. Tobe

convinced, put L = € 1n (1.31) and recall the 1soperimetric inequa-
lity:

m]/n |E|{n-1)/n

(1.32) [Dép | > nw_

which 1is valid for every bounded E c;m“, with equality 1ff E 1s
an n-ball. See [27], 2.2.2(2).



