Preface

CHAPTER 1:

CHAPTER 2:

CHAPTER 3:

CHAPTER 4:

NOTES

References

- iii -

CONTENTS

ALMOST MINIMAL BOUNDARIES

THE AREA EXCESS AND DE GIORGI'S LEMMA

SOME PRELIMINARY RESULTS AND THE MAIN LEMMA

PROOF OF THE REGULARITY THEOREM

"

29

48

76

88

90



REGULARITY RESULTS
FOR
ALMOST MINIMAL ORIENTED HYPERSURFACES IN R"

Italo TAMANINI

Preface. - This work 44 intended as an introduction to the regula
nity theory o4 ondlented boundaries 4in R" which are almost minimal
for the area funciional. 1% 4is based partly on an earlier manuschipt
which contained Zhe phroof of the main Zheornem presented below, and
partly on Lecture notes forn a course by the author at the University

of Lecce.

The reader is presumed to have some knowledge of the basic facts
concerning Caccioppold sets: sections 2.1 fto 2.4 04 the book of
Massari and Miranda (see [27] of the bibliography at the end of the

volume ) will senve the scope.

With the excepfion of a few "classical" inequalities, which proofs

can also be found in [27], the exposition is essentially self-contained.

The §inst hatlf of the wornk, Chapters 1 and 2,44 intrnoductony.
We begin by recalling Zhe [by now classical) Regularity Theorem of
minimal boundarnies, in the framework df Caccioppoli - De Glorgd
Miranda's theory. ALmost minimal boundanrdies are then defined, and a
cornresponding Regulanity Theorem Lis stafed. The remaindern of Chapten
1 {lLusthates these concepts and results with severnal examples and

applications.
A specialized vensdion of the Theorem is derived in Chaptern 2.

The proof utilizes impontani ideas of Campanate, ondiginally Antrodu

ced in the context of elliptic equations. The nole of the "area



-id -

excess" as a negulanity parameten As then emphasized, and De Glongd's
Lemma - zhe key nesult of the theony - is finally presented, in i%s

ondiginal fonrm.

An extended vension of this Lemma is obtained in Chapten 3.While
rnesults of this type are usually proved "by contradiction™ (see
however the necent paper of Schoen and Simon [34]), we have been able
to modify the oniginal angument of De Gilorngd, Zo geit a simpler direct
prood of the Lemma. Moreover this way fthe constants involved can be

explicitly computed,

The prood of the Regularity Theorem L& then completed in Chaptenr 4.
Some notes and a bibliography conclude the work. Connections with
nelated papers, notably wiith the Aimportani wornks of Almgren, Bombie
ri, and Schoen-Simon, are Aindicated, particularny at the beginning
of Chapten 1 and at the and of Chapter 2.

I am 4indebted to many coflegues and griends for a number of siimu
Lating discussions during the preparation of Zthis work. 1 am parti-
cularly grateful to U.Massarni and M.Miranda for valuable comments
and suggestions, and to E.H.A. Gonzalez forn his kind hospitality at
the Undivensity of Lecce. Without thein constant internest and encoura

gement, these notes could handly have appeared in the present form.

Finally, 1 would Like Zo thank Ms. Anna Palma for her excellent typing of the
manuseripl.,



CHAPTER 1: ALMOST MINIMAL BOUNDARIES

We begin with an informal presentation of the material to be di-
scussed in the sequel. While doing this, free use will be made of
concepts and elementary results that will be discussed more deeply
later on (especially in Chapter 3).

1.1. We fix an open set Q in mp, n > 2, and consider sets E,F,...

whose boundaries 3E,3F,... have locally finite "surface area'" in {:

ID¢EI(A) < + VA cc ©

The quantity |D¢E|(A) may be thought of as the area (in some genera

lized sense) of 3EMA, where A is an arbitrary open an bounded set,
strictly contained in Q; indeed, it coincides with Hn_1(BEf\A)

whenever 93E is, locally within ©, a smooth hypersurface (section

3.1).

A basic definition and a corresponding fundamental result are now in

order.

1.2. Definition of minimal boundaries.

We say that theboundaty of E is mindimal in Q@ iff
(1.1) [D¢E|(A) < |D¢FI(AJ VA cc Q, VF:FoE cc A

.e., iff any local variation of E in @ increases surface area (Fig.1).
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FIGURE 1
1.3. Regularity of minimal boundaries.
Let E have minimdl boundany in @ c:m“. Then
(r1) 9*E N Q is an analytic hypersurface
(r,) H _,[(3E~3*E) N a]=0

Furthermore, assuming that {Eh} be a sequence of sets with minimal

boundary in @, and that {xh} be a corresponding sequence of points,

satisfying:
Eh ~E_, X, € aEh; X,* X, € Q
then
(rq) X, € 93E_ .

If in addition x e 3*E , then
[++] oo

(r4) Xy e 3*Eh for any large h, and th(xh) + UEM(XW)'

We recall that 29*E denotes the ''reduced boundary" of E, i.e. the



collection of those points x € 3E where an approximate inner unit
normal vector vE(x) exists, and that the convergence Eh + E_ is

to be intended in the Lloc - sense on §. See section 3.1 again.
1.4. Conclusion (r1) above, which undoubtedly contains the essen-

ce of the Regularity Theorem, was proved by E. de Giorgi in 1960-61

(see [8] and [9]), and then rederived together with (r,) in 1965 by

M.Miranda (see [28])1. Two years after, Miranda proved (r;) and (r,)

as well, see [29]. Thus, in 1967 the Regularity Theorem for minimal
boundaries (in the form appearing above) was completely demonstrated.
In the setting of Caccioppoli sets, i.e. sets with finite surface

area, Theorem 1.3 may well be called the basic regularity result.

In the meantime, various different settings were proposed, in
which the classical questions related to Plateau's problem (the pro-
blem of finding a surface of least area among those surfaces which
span a given curve) could receive a satisfactory answer. We mention
the work of Reinfenberg (32,33], Féderer-Fleming [14], Fleming [15],
Almgren [3], Allard [1], etc. A considerable effort was directed
toward a complete understanding of -the structure of the singularities
of minimal boundaries: the work Fleming [15], Triscari (38], Almgren
[2] and Simons [35] culminated in the celebrated proof -first given
by Bombieri, De Giorgi and Giusti in 1969 (see [6] and also [26])-

of the minimality of the cone

C={erI-'P: x,lz + ... *+ X

(Simons' cone), which is singular at the origin. As a consequence,
the best possible estimate of the Hausdorff dimension of the singular
set 3EN 3*E could be obtained by H.Federer [13], thus improving

(rz) above,



More general variational problems of "least area' type have since been
considered, especially those concerning surfaces of prescribed mean
curvature, possibly with obstacles or subject to given constraints.

In this respect, the work of Almgren [4] is really impressive, for
both the deepness and the generality of the results obtained. Working
with different methods, E.Bombieri [5] and R. Schoen - L. Simon [34]
developed quite recently a simplified version of (part of) Almgren's

Regularity Theory.2

Restricting our attention to the theory of Caccioppoli sets in Rp,
we should mention the important contribution of Miranda [30] and
Massari [23, 24], on the obstacle problem for minimal boundaries and,
respectively, on the regularity of boundaries of prescribed mean cur
vature, These two problems will be properly discussed later on in this

chapter.

Urged by the consideration of these and other particular cases, one
is naturally led to the search of a class of '"almost minimal bounda-
ries", for which a Regularity Theorem like Theorem 1.3 could be pro

ved. In this respect, the following definition seems quite natural:

1.5. Definition of almost minimal boundaries3

The boundary of E is said to be afmost minimaf in £ ¢ R" iff

for every A cc @ there exist T e (0,dist(A,3Q)) and ¢o:(0,T)>[ 0,+=),
with o non-decreasing and 4 a(t) = o(1), such that

n-1
(1.2) |D¢E[(Bx,t) < |D¢F](Bx,t) + a(t)et

for every x e A, every t e (0,T), and every F : FAE cc Bx .

Ed

As usual, B denotes the open n-ball with centre x and radius

X,t
t. See Fig. 2.



FIGURE 2,

1.6. The assumptions on a«(t) are in some sense the minimal ones
we can make if we want to prove regularity. Indeed, let us consider
. n
a smooth hypersurface S in R, and let us choose R > 0 and the re-

ference system so that

Sf\QR = graph of u over Bﬁ

with u e C1(Bﬁ), u(0)=0, Du(0)=0. Here, QR denotes the "vertical"

cylinder

Qg = x = (x',x ) e R" : |x']| <R, |x | <R}

and Bﬁ its projection on the space of the first (n-1) variables:

)y e R™T, |x'| < R} .

[ - | -
BR = {x (x1,...,xn_1
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FIGURE 3.

Now, given an (n-1)-ball BE c Bﬁ (with centre 0), and a function

Ve C1(Bé) such that the support of u-v  1lies in B%, we have:

I (T+|Du|2)%x' - J (1+|DV[2)i dx' <
Bf
t Bé
< (Ta+ouBE - qjax < 1 J'lDulzdx' < a(t)- 7]
'
B! B
provided we take:
=1 2
alt) = 7w .sup |Du(x")|" .

n-1 B
t

From this one easily concludes that (1.2) holds for E = epi(u), with



a function a(t) of the type described in Definition 1.5. Consequently,
any set with smooth (CT) boundary has almost minimal boundary, in
the sense of Def. 1.5.

1.7. On the other hand, we see that the cone

2

E = {x = (x;,x,) : [x,] < |x2]} c R

1

whose boundary has a singularity at 0, satisfies
|D¢E|(Bt) < [DtbFI(Bt) +oa(t)-t VF : FoEcc B,

the best choice fot a(t) being the constant 2(2-v2) (see Fig. 4).

This also shows the '"necessity'" of the assumptions on a(t).

FIGURE 4.

.8. A second important class of almost minimal boundaries is
astituted by surfaces of prescribed mean curvature which satisfies
suitable integrability condition. To be specific, let us consider

1

.ven function H e Lloc(ﬁ), together with a Local mindimizen E of

the following functional5



{1.3) ﬁ;(P,A} = [D¢F](A] + I H(x)dx
ANF

which is defined for any Caccioppoli set F and any A cc @ . That

is, suppose that

(1.4 -ﬁgE,A} < F(F,A) VA cc @, V¥F : FoE cc A,

Whenever 3EMNA is locally of class Cz, and H is a continuous
function on @ , we see immediately that the mean curvature of OJE
coincides., at any point x € 3E N Q,with H(x) (just compute the
{irst variation of 5;!). Motivated by the preceding observation,

we call the local minimizérs of & : "sets of generalized mean

T

curvature H in Q".

Now, for any hall Bt cc R, we have from (1.3),(1.4):

(1.5) Do (B < ID%:l(Bt) + I [H(x) |dx

B
t

Assuming H € Ln0 (2), we find {according to Hblder's inequality) that

loc
(1.2) holds true, with (essentially)

a(t) =m;'1/“ {g ™ dax) /™
t

More precisely, we observe that if E is a local minimizer of -%;
inQ, Acc 9, and T e (0,dist(A,3)), then [ |H|™ dy is, for any
B
X,t
t € (0,T), a continuous function of x € A, which will then achieve

its maximum value at some point x_ € A. Setting

t



(1.6) alt) = w VM J 1| "ax) /"

we get (1.2), with a function «a(t) depending on A, non-decreasing
on (0,T) and infinitesimal at O. We shall return to this problem later

on, in section 1.14.

We are now in a position to state our main result (compare with

Theorem 1.3).

1.9. Regularity Theorem for almost minimal boundaries.

Let E have almost minimal boundary in Q ¢ mp, in the sense of Def.
1.5. Assume in addition that o«(t) (the function appearing in (1.2))
be such that

t"la(t) is non-increasing on (0,T)

and
T
i t a2ty dt < + =,

Then
(R1) 3*E N Q is a C.I hypersurface

(R,) HS[(aE~a*E) NQ=0 ¥s > n - 8.

Furthermore, assuming that {Eh} be a sequence of sets with uniformly

almost minimal boundaries in Q (i.e., such that (1.2) holds for every

E , with T and a(t) independent of h), and that {x,} be a corre-

sponding sequence of points, satisfying



then

(R.) x € 3JE

z o -]

If in addition x_ e 9*E_, then

(R4J X, € ] Eh for any large h, and th(xh) - vEm(xm).

1.10. Regarding (R1), we have specifically the following estimate

of the oscillation of the unit normals to 9E :

x-yl Y 1/2

|
(.7 g0 - v g [ “(0de + o lx-y|
J

which holds for every x,y € 9*E such that |x-y| is sufficiently small.

Thus, we see that the integrability of t-1 a1/2(tj is an essential

ingredient of the Regularity Theorem.
The other hypotesis of the Theorem, namely, the monotonicity of

-1 . . . co :
t oa(t), is more a convenience than a necessity, and it is assumed
only with the aim of simplifying calculations. At any rate, we see
that when a is a (non decreasing, infinitesimal at O, and) concave

function of t e (0,T), then it certainly satisfies that condition.

See Fig. 5.
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L(t)
a(t)

v

gs(t)

(t/s)-a(s)
¥t €(0,s).

v

F1GURE 5.

The proof of Theorem 1.9 occupies the second part of the present work
Chapters 3 and 4). Before starting with the formal demonstration,it
scems appropriate to illustrate with examples the applicability of

the Theorem itself, and to discuss in some details the method of the

proof.

For convenience ot the reader, we list the assumptions on a(t)

under which Theorem 1.9 will be proved.

1.11. Complete set of hypotheses on a(t).

fa1) a : (0,1) - R is non-decreasing and bounded

(az) a(t) = o(1)

(ag) et is non-increasing on (0,1)

:
(a.) i ) WM )dt < 4w,

1.12. Now we consider some explicit examples.

The simplest choice 1s perhaps a(t) = c.t 2OL; conditions above are

then all satisfied, for any ¢ > o and any « e(O,i].



. . 6
Moreover, in this case (1.7) becomes

a
x-y |

(1.8) IvE{x) - UE(y)l < const -
which amounts to saying that 3*E e C1’a. In a sense, this is an

optimal result, since the converse is also true (and easy to prove,
1,a

see Example 1.14 (v) below); that is, if E = epi(u) with ueC

then 3E 1s almost minimal, with a(t) < const.tza

For € > 0, the function

a(t) = ¢ [1ge/t)] 201+

(truncated at a suitable level, in order to save concavity), also
satisfies (u1 - a4). On the contrary, it does not satisfy (a4) when
e = 0.

A similar behaviour is exhibited by the function

a(t) = c [1gle/t)]72 -lgle 1g(est))] 201%E)

1.13. Before giving examples of almost minimal boundaries, we in-

troduce the following functional

(1.9) W(E,A) = Do |(A) - inf {|D¢ |(A) : F2E cc A}

which is defined for every Caccioppoli set E and every A cc R,

With the aid of ¢ , the definition of almost minimdlity can be re-

stated in a more compact form, just by replacing (1.2) of Def. 1.5 by
n-1

(1.10) \U(E,Bx t) <a(t) -t ¥x € A, ¥t € (0,T).

E]



. 1-n . . ..
The quantity t ID(E,BX t) may be called "Deviation from minimality
»
of E in B ", abbreviated: Dev(E,x,t). Thus, almost minimal boundaries
3
are those boundaries whose deviation from minimality is controlled

from above, in any ball Bx oy by a suitable function of the radius

3
t, which is non-decreasing in t and infinitesimal at O.

Simple properties of the functional V¥ are stated and proved in
Chapter 3, see (3.10)-(3.13). For the present usage, we anticipate
that ¥ is non-decreasing with respect to the second variable, i.e.
w(E,A1) < w(E,Az) whenever A] c AZ'

1.74. Examples of almost minimal boundaries.

(i) Mindimal boundarnies (Def. 1.2) are evidently almost minimal,

with a(t) = 0 (and ¢ = 0).

(ii) Boundanries with prescribed generafized mean curvature.

We saw in the preceding pages that any local minimizer of the
functional ﬁ;(defined by (1.3)) in R , corresponding to a mean cur
vature function H e LTOC{Q), has almost minimal boundary in Q,
since it verifies (1.2) (or equivalently (1.10)), with a function

a(t) - given by (1.6) - satisfying (a1) and (uz) of Hypotheses 1.11.
It may happen however, that the remaining assumptions [asJ,Ludj are
not satisfied. We see this with the aid of the following example.

Consider, for n= 2, the function

5/2

(1.11) H(x) = H(x,,x,) = -Mr'1(1g(e/r)'

2

where 1 = |x| e(0,1] and M > 1. For every t € (0,1] we have

i . 2 -
|H1 dx = (#/2)JM (1g(e/t)) 4

oo v
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2 .
so that H e L°(B,). However, with a(t) = ( / |H|2dx)1/2, see (1.6),
Be
we find
1
0
thus violating condition (a4).
Nevertheless, putting
(1.12) H(x) =0 for r = |x| e (1,2]

and taking into account the symmetry of the problem, we realize im-

mediately that E at

B is local minimizer of 5; in = B

1 2’

least when M is large enough. Indeed, if
! -5/2 ;7 -1
M > [[ (1g(e/s)) ds]
)

then B1 is the unique solution to the problem >

|D¢Q(ﬁz) + £H(x)dx > min, with E c B,.
Therefore, the choice (1.11),(1.12) for H provides no counterexample
to regularity! Actually, the question whether a regularity theorem

holds for boundaries of prescribed mean curvature H e LTOC(Q) has

not been settled in full generality. We shall return to this question

P

in a moment, after discussing the general case H e L1

OC(Q),Wlth either
1T <p<n or n<pcx+»,

In the former instance, simple examples show that singularities
may appear, even in low dimension; while, on the contrary, the conclu

sions ot Theorem 1.9 hold in the latter case.
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We see this as follows: first, notice that the lipschitz function
n . .
w(x) = [x], x e R, n > 2, is a weak sofution of the non-homogeneous

minimal surface eguation

(1.13) Div Dulx) — - hx)
(1+|Dw(x) | 9)

corresponding to h(x) = (n-1)#2{x| - a flnction which belongs to the
Lebesgue class L?LcﬂRn) for every 1 < 1. By this we mean, as usual,
that

[ Dw _ 1.0

< 51 , Dé> dx = - I he¢ dx Vo e C ..
J (1+|Dw| ")

{w is of ccurse a classical C2 solution of (1.13) in rR" ~{0}). Conse
guently, the mean curvature of the graph of w (an n-dimensional car-
tesian surface in Rp+1) is summable to any power lessthan n (notice
that when n=1, the corresponding mean curvature is given by V2 ti-

mes the Dirac mass at 0).

Next, put E = epi(u) ¢ Rp, with u(x') = [x'], x' eR"', n > 2,

and consider a solution G of the following problem

|D¢G|(§1) + f H(x)dx » min, with G~B, = E <B
1 1
BIfWG
where H(x) = -¢/|x| if x € E, = 0 otherwise (c bcing a large positi

ve constant). Plainly, GﬁBI C Ef\BI, since E is convex and H vanishes

outside E. Furthermore, 0 ¢ 3G, suice from

] Ef\Bo )

E
r

|D¢EJ + { Hax < 0 (E_

which holds ¥r e (0,1) 1if ¢ is large enough, we derive
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”‘*GUETI (B.) +I Hdx < |D¢>G|(BT) + I Hdx

E
(GU r) HB_I Gt'\B1

whenever Gl"\r:zr = ¢ (see Fig. 6).

FIGURE 6.

In conclusion,G is a local minimizer of 9; in B1, with HeL™ (B

V7 < 1, and 0 is a singular point of 3G, thus showing that Theorem

1.9 (particularly, conclusion (RZ)) does not hold for boundaries of

p

prescribed mean curvature H e L1

Oc[ﬂ),w1th p < n.

On the other hand, if E is a local minimizer of 5; in @ ,

H e L?OC(Q) and p > n, and if A cc @, T < dist(A,30), x € A, t €(0,T

with

then (1.5),(1.10) and H8lder inequality yield:



V(E,B. ) <

A
I
=
jo ¥
‘<
I~
£
oo Y
1
—_
=
-t
X
+
3
1
=
S~
ge]

)‘t1~n/p'

p
L (AT)

const(n, ||H ||

| A

os(t)-tn-1

where AT = {x : dist(x,A) < T} cc @ . Since 1-n/p € (0,1) in this

¢ 1-n/p

casc, we know (recall 1.12) that a(t) = c satisfies (a1ha4j,

so that the Regularity Theorem 1.9 applies to this casec.
We can also consider mean curvature functions H belonging to more
gencral function spaces. Let us introduce e.g. the Morrey space

P,A
Lige@  (p 21,4 >0)

u € Lp’A (Q) iff u e Lp (2) and YA cc @

loc lecc
-A P
(1.14) sup (t L} lult dy) < +
XeA
o<t<diamA A Bx,t

Some elementary properties of Morrey spaces can be found in {20],

Chapter4

It should be clear by the foregoing considererations that any

local minimizer of 3; in g , with H e L1’n-1+a(g) and o > 0, sa-

loc

o
tisfies (1.10) with o(t) = const.t , so that Theorem 1.9 applies

equally well to the present situation. Notice that RAS L1,n-1+(p~n)/p’

loc
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by H6lder inequality, so that the case H € LP () with p > n appears
loc
as a particular instance in this general picture.

As previously seen, things are not so clear in the borderline ca-
n . . .
se Hel (2): in particular, we do not know yet whether conclusions
loc -

[R1) and (Rz) of Theorem 1.9 extend to local minimizers of Jﬁ, when

n
Hel (). The following example may shed some light on the question.
loc

Let E ¢ RP, n > 3, be the epigraph of a radial function u = u(r),

where r = |x'| and x' e]Rn_1. Assume that u e C1{0,+m), with deri-

vative u' > 0, and that

(1.15) u(r) =0, u'(r) » Me [0,+=]

as r » o', See Fig. 7.

/wa
-~ - w
(R \'\\
’/. ot /r_/f’ ,,}. N\
! \
I
\ \
1 \
' \
; 1 .
~
o] R T

FIGURE 7.
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If E is a local minimizer of £ in R®, with He L™ @®"), and
loc

if ER denotes the set

Ep = EN{x : x> u(R)}

then VR > u and VT >(R%u?(R))? we find (see (1.3) and Fig. 7):

0 < % (Ep,B) - F(E,B)

(1.16) N
S G I !rn-z(Hu'z(r))idr— [ Heax

n-1
E\ER

On using succesively Holder inequality and the isoperimetric inequa

lity we get

1 -1/n

(1.17) - _
[ IHldx <n e T H lan . J|D¢E‘ERI=gn(R)ID¢E\ERI

E‘ER

which, combined with (1.16), yields

R
(1.18) (-1 [1-g (R)] J T

o

n-2 3 1

(1+u'2) dr < [1+gn(R)]-Rn- .

Were M in (1.15) positive, we would deduce from (1.18)

i

[l—gn(R)]-(Hsz) < 1+g_(R) Ve €(0,M), VR < RE,

a contradiction, since gn(R) + 0 when R ~» 0 (see (1.17)).

Therefore, M = 0, thus showing that 3E is everywhere smooth.
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(iii) Minimal boundaries with a volume constraint.

It is a well-known fact that among the sets having a given measure

v in IRP, the n-ball B 1/n is the one which mi-

R of radius R = (v/mn)

nimizes surface area. A variety of (less trivial) examples of the sa
me type are usually encountered in Capillarity Theory. For instance,
one can think of a liquid drop of given mass and resting on a given
surface (as shown in Fig. 8), as a local minimizer of an "energy
functional" (whose analytic expression is, roughly speaking, the sum
of "surface terms" plus 'curvature terms'", corresponding respectively
to the surface forces - like surface tension - and body forces - like
gravity - acting on the drop) in a certain class of admissible confi

gurations, all with the same fixed mass (see e.g. [11]).

\@/
FIGURE 8

Let us now introduce the following abstract definition:

E has minimal boundary in Q with a volume constraint i44
(1.19) |D¢E|(A) < 1Dl (A) VA cc @, ¥F : FaE cc A and|FMA|=|ENA|

where |G| denotes the Lebesgue measure of G ¢ R'. The prece-
ding definition extends to '"curvature functionals'" like (1.3) in

the obvious way.



We proved in [21] that such an E satisfies (1.10) with q(t) = ct:
Theor. 1.9 then yields the recgularity of 3*E, together with the usual

estimate of the Hausdorff dimension of 3E - 3*E.

Actually, the main body of [21] was devoted to the proof of the fact,
that whenever (1.19) holds (with, of course, |[EMA| > 0 and |AN E|>0),

then two balls B_,B

] of arbitrarily small radius r .can be found,

2

such that B1 ¢ ENA and B2 c A~ E,

— -

BIO } A T

fo |
Bs —

FIGURE 9.

Assuming this, and having fixed x € 3EMA, t € (0,r), and G such
that

2 3 UB.) N 5
(1.20) BX’t cc A~(B,UB,), GeaE cc Bx’t,|G Bx,tj<|Lr\Bx :

we see that we can move BT toward B2 (in a continuous fashion, and

taking care of remaining strictly within A‘\EX .3 see Fig. 9), until
]

a new position, denoted by B is reached, such that

3’

NA = =N J = { ) ) P
| F I |[ENA|, where F GF‘BX,t,U(E-\Bx,t)UB3



From (1.19) we then derive essentially (see [21], prop. 1, for

the precise calculations):

IDogl(B, ) < DGl (B )+ f "%y, dH__ - = - |Dgg](B)
2B
(1.21) i|D¢Gl(BK t) + (n/r)lB3\ E|

(see section 1.15) to follow for the proof of this last inequality).

As the case when }GHBx ti > |EmBX t| can be trecated similarly

E] »

(just by interchanging the role of B_,B,), we see that (1.21) holds

1°

YG : GaE cc Bx . In addition, the way B3 was chosen shows that

2

"83" Ej < wntn, which, combined with (1.21), yields

n
w(E,BX,tJ < (n/r}wn t

as claimed.

(iv) Minimal boundaries with obstacles.

A second constraint we can impose on our solution is that it has

to avoid some '"'obstacle'. Stated more precisely:

E¢ has mindmaf boundary in Q with respect to the obstacle’L i44

(1.22) E>LN g and | Dog| (A) < | Do, [ (A)

VAcc 9, YVF : FAEcc A and FDOLNA.

Assuming this, and having fixed A ¢cc @ and F : FAaE cc A, we get

Dep! (A) < [Dog [ | (A
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since FUL 1is an admissible variation of E (i.e. FUL 2 LNA; see

Fig. 10).

FIGURE 10.

By virtue of the inequality

| D |(A) + D A~  |(AY < Do, |(A) + Do, |(A)
EVE, ENE, E, E,

(see [27], 2.1.2 (10}), we then find

Do | (A) - |Do | (A)

| A

Do, [(A) - [Dop [ (A

(1.23)

| A

wotL,Al
where (see (1.9)):

(1.24) y_(L,A) = |Do | (A)-inf{|Do,| (A) : Gel cc A,GcL} < w(L,A).



On taking the supremum of the left-hand side of (1.23), as F varies

neely among the local- variations of E in A, we get in conclusion:
y g

(1.25) V(E,A) < ¥ (L,A) < w(L,A).

Thus, we realize that in any ball B cc® the deviation from mini-
mality of E (a solution of the lecast area problem with obstacle L)
is controlled by the deviation from minimality of the obstacle itsclf!

(see 1.13).

Therefore, whenever 3 L is almost minimal in @ , the same is true
for 98E. In fact, in view of example (v) immediately following, by
using (1.25), the Regularity Theorem 1.9, and (essentially) the fact
that a sct with minimal boundary in Rn, which in addition contains
a half space, is ifself a half space (see [307], Theor. 1), we can
prove that if 3L 1is of class CT’a in 2 (0 <a< 1), then 3E 1is
likewisce of class CT’u in a neighbourhood of 3L. We refer to se-
ction 3 of [37] for a deeper analysis of the regularity of minimal

boundaries with obstacles.

We remark that the result just quoted holds for o = 0 as well
(sce {30|, Theor.2). The proof in this case requires speccial attention,
and in fact that result cannot be deduced directly from (1.25) and
Theor. 1.9 uzlonc (the reason being that the deviation from minima-
lity of a set with C1 boundary cannot be controlled, in general, by a '"good"
function a(t) - in particular, one satisfying (a4] of Hypotheses
i.11; see example (v) below). The case g = 1 also requires a spe-
cial analysis, see [7]. Finally, we remark that the regularity result
just quoted does not generally hold, for obstacles with lipschitz
boundary (in constrast to what happens in the "cartesian case" ,see

e.g. [10,16,18]).

To sec this, merely consider the lipschitz cone
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_ 8 2 2,3
L =1{xeR : xg > (x1 oo, 4 x?] }

which is contained in Simons'cone C (see 1.4): although C has mini-
mal boundary in R (and thus also with respect to L), 3C 1is not

lipschitz (not even a local graph near 0 € 3LMN3JC.

{(v) Smooth hypersurfaces

We saw in section 1.6 that whenever 3E 1is of class C1, then JE
is in particular an almost minimal boundary. Generally however, the
function «a(t) which controls the deviation from minimality of E does
not satisfy the integrability hypothesis {a4) of 1.11. Here we have

a simple example of such a situation.

Consider the function u : (-1,1) = (0,1) defined by

t
I [1gce/s)] " ds when t e (0,1)

o]

-
\u(t)
!

‘P(O)

and put E = epi(u) ¢ m?, so that 8 E 1is of class C1 in the open

0, u(t) = u(-t)

1

square Q = (-1,1)2.

e e I APS

VIS . 4
: ,"I / ’ ] '//
\ ,--)W

FIGURE 171,
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Setting Qt = (-t,t)z, we find (see Fig. 11):

t
v(E,Q) = 2 J{[1+(1g(e/s))“2}l - 1} ds
0

that is 4, w(E,Qt) ~ t[lg(e/t)]_z. Consequently, the function con-

trolling the deviation from minimality of E is essentially

a(t) = [lgle/)]™?

which does not satisfy fa¢) (recall 1.12).

Things are better in the case when 9E is of class C1’a

when (locally) 23E = epifu), with u e C10Rn-1) and

O<a<l, i.e.

>

t1.26) [Du(y') - Du(z')| < Ljy'-z"|%.

In this case, arguing as in 1.6, we find

[ (1+ pul®? ax' - [ eyt ax < 3 f o fax
B! B! B!
t t t
1 2. n-1 2o
272 %nn Lt -t
(recall we are assuming Du(o) = 0), so that ’
W(E,By I < c.h7Ivee whenever Eec® .

As the preceding example (iv) indicates, this fact is of considerable
importance in connection with the obstacle problem for minimal boun-

daries. Also recall the remark following (1.8).

We conclude the present section with the short prcof of an ine-

quality, which find application in several cases (see [36], scction 1),



and which was used in Example 1.14 (iii) above.

1.15. An isoperimetric inequality.8

Given a ball BR of radius R in R" and a subset L of BR’ there
holds:

(1.27) . 6, dH . < Do [TBL) + (n/R) L]

f
R
Equality holds in (1.27) iff either L = @ or L = BR.

Proog. Clearly, (1.27) is homogeneous in R, hence it suffices to
prove it when R=1. Assuming this, we apply the Gauss-Green Theorem

to the vector field ¢(x) = ¢L(x)-x, X € Rn, thus obtaining

I

f ¢L(x)dHn_1(x) n f ¢L(X)dx + <x,D¢L(x)>
9B B B
1 1 1
(1.28)

<n L] + |Dy | (B)

which is (1.27) for R = 1. Recalling that (see [27], 2.3):

(1.29) D¢, = v, H ;Do | = H

L L n—1}a*L n-

1la*L
we conclude that equality holds in (1.28) only if
= - (= - *Jﬂ
<x,vL(x)> 1 Hn—T a.e on 3*I 81
which is possible only when

Ix] =1 H - a.e. on B*LﬁB}

i.e., only when Hn_T(B*Lf\B1) = 0. This last assertion implies tha



L is equivalent either to the empty set or to B1 itself.
The converse being obvious, we are done . From (1.27), observing

that L ¢ BR implies |L| < W Rn, we deduce

1/n
n

(n-1)/n

|L| VL ¢ B,

(1.30) I ¢, dH___ 5|D¢L|(BR)+nw
3B,

still with equality iff either L = @ or L = BR. We see in. addition

that the only bounded sets 2 c R" for which the inequality

1/n (n-1)/n
[
(1.31) J o dan1 < |D¢L|(Q) + ne IL|
1Y
holds, for every choice of Le¢§@ , are exactly the n-balls. Tobe

convinced, put L = @ in (1,31) and recall the isoperimetric inequa-
lity:

1/n {(n-1)/n
(1.32) IDop| > nw "7 |E|

which is valid for every bounded E c.Rn, with equality iff E 1is
an n-ball. See [27], 2.2.2(2).
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CHAPTER 2: THE AREA EXCESS AND DE GIORGI'S LEMMA

In this section we shall be primarily concerned with some key ideas
underlying the proof of Theorem 1.9. Techniques and concepts relevant
to that proof will be introduced in a rather 'natural" way, by working

out an explicit example in Regularity Theory.

2.1. As we showed in the preceding chapter, in the case when a(t)
- the function éontrolling the deviation from minimality - is of the
following type:

a(t) = ct®® , 0<a< i

then we have an ''optimal regularity result', in the sense that

JE € C1’u=>Dev(E,x,t) < ct20l

(2.1)
Dev(E,x,t) < ctza=> 3*E € C1’a
See 1.12 and 1.14 (v). The appearance of the xeduced boundary 3*E
in the last implication is unavoidable, on the account of the existence
of minimal cones with singularities. In the special case when JE
is already known to be of class C1, we have then clearly a perfectly
symmetric situation:
(2.2) if oE e CI, then OE e Ci’a@=: Dev(E,x,t) < ctZu

It seems convenient to give the simple (relative to that of Theor.
1.9) proof of this fact, one reason being that while doing this we
will quickly meet a certain regularity parameter, which will play a

basic role in the subsequent sections.

To begin with, we introduce a new class of function spaces, inclu-

ding both the Morrey spaces Lp’l(ﬂ) (see (1.14)) and the Hb6lder spaces
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2.2. Definition of Campanato spaces.

Given: Q open and bounded in Rn, p>1, x> 0;

we say that

u eﬁpp’k(QJ iff uel? (@) and sup (t~ I |u-ux t|p dy) < +
xefl ?
o<t<diam@ Qr‘Bx

3

where u (also denoted {ul is the average of u on B
x,t X,t xX,t

2 » b

-1
ux,t - {U}x,t - |Bx,t| I u(y)dy.
Bx,t
A basic fact about Campanatospaces is that &?p,k is isomorphic
to Co,(A-n)/p, provided A e(n,n+p] and 30 satisfies a suitable

regularity condition (e.g. a9 1is locally lipschitz). See [20]},
Chapter 4, Theor. 1.6.

2.3. For convenience of the reader, we now recall an elementary

property of averages:

if A cc Rn, u e LZ(A), and u, = |ﬁ«|-‘I i udx, then
2 2 2 2
(2.3) j|u—uA| dx = [ (Ju|” - U, Jdx < ju=yTdx Vi e R
A A A

along with some simple facts about harmonic functions:

: n 1.2
if B = Bx R ¢ R, ueC (B), and v is the harmonic function
»

associated with u on B, i.e. satisfying 10



Av = v =0 in B
xX.X.
i
(2.4)
v = u on 9B
then
2 2
(2.5) [ <Du,Dv>dy = [ |Dv|“ dy < [ [Du|® dy
B B B
2 2 *2
(2.6) [ |bu-Dv|®dy =f (|Du|”- |Dv|“)dy
B B
(2.7) {Du]x,R = {Dv}x,r Vr e(0,R]
(2.8) p~(n+2) I {Dv *{DV}X r|z dy 1is a non-decreasing
B
X,T

function of r € (O0,R).

Assertions (2.5) to (2.7) are easy consequences of the Gauss-Green
Theorem. As for (2.8), observe that any weak solution w of a homogeneous
elliptic partial differential equation with constant coefficients:

W = 0

ai' X.X
] i%5

satisfies
2 2 2
I |w - {w}s| < c1(s/t)n+ I [w-{w}tl

BS Bt

for a suitable constant <, (depending on the ellipticity constant ané



on n), and for every s,t : 0 < s < t; see [20], Chapter 4, Lem-
ma 2.2.
The fact that ¢, = 1 when w s3 harmonic requires additional care:

1
its proof may be based upon a classical result about the uniform ap-
proximation of harmonic functions by means of homogeneous harmonic

polynomials (as in [8]; see e.g. [27], 2.5.2, prop. 1).
Finally, we list two elementary algebraic inequalities

2 .2

(2.9) a’-b? < 2¢1sb%)?

CTasadt o i s @bl

(2.10) a’-b% < z(1+a5y} - [(1+a2)i - (1+b2)i]

A

both valid V¥a,b e R(the proof is a straightforwan calculation),
together with the following result (see [17], Lemma 2.2):

2.4, A useful Lemma.

For any choice of the constants a,a,R with a>o, a»*B >0, it is
possible to find two new constants € =e(a,a,B) > 0 and c=c (a,a,B)>0
such that, whenever w : (0,T) » (0,+») is a non-decreasing function,

satisfying

(2.11) w(s) < a [(s/D% + ]+ w(t) + bt?

for some T > 0 and some b > 0, and for every s,t : 0<s<t<T, then

it holds:
(2.12) w(s) < c[(s/0)® wi) + bs?

still for every s,t : 0 < s <t < T.

The proof of Lemma 2.4 goes as follows: fix Yy e€(B,a) and T1€(0,1)
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so that ZaTa < TT, and the define

e = & , -‘.:-T =TB(TB-TY).
Given s,t : 0 < s <t < T, consider t' = t, s' = 1t, and apply (2.11)
to obtain

w(tt) < a(Ta+e) w(t) + st < tYw(t) + st

in view of our initial assumptions. By induction:

T(k+1)Y'b}(tJ + bts TkB' Tj (Y'B) Vks>u

O —_

e =

w(1k+1t)5 j

whence

(2.13) w(Tkt) < TkB(TB—TY]-1'(w(t)+st) Y k>0,

Since 0 < s < t, there will exist a unique k > 0 s.t. Tk+1t£5<1kt,

so that Tk < T-]'(S/t). In conclusion, we get

w(s) < w(tt o) <c [(s/t)Bw(t)+bsB]
by (2.13), the monotonicity of w , and the choice of c.

2.5. At this point, we dispose of all the ingredients needed for
the proof of (2.2). Notice that the validity of the implication ==>
in (2.2) has already been shown in Example 1.11 (v), hence we con-
centrate on the reverse implication.

To be specific, let us consider a function u of class 01 in o-

me (n-1)-ball BéT = {x' e R [x'| < 2T} , and let us assume that

(2.14) p = sup {|[Du(x")| : x' e BéT} <1



- 34 -

We fix x'eB+ and s,t : 0 < s <t < T, and denote by Qr the cylinder

Q= {y =(y',y ) e R :ly'=x'|<r, |y -utx)| <1},

by E the epigraphof u over BéT’ and by v the harmonic function asso

ciated with u on B;, (see (2.4}).

, t
Txh

E
/ w
\_/ AT
: Qe
L] N .;.':_ o : >
o} x! h-1

T 27 /

i oo

x,&
FIGURE 12.

By using successively (2.3),(2.6),(2.7),(2.8),(2.9),(2.10),(2.3),
(2.5) and (2.7), we find 1!

IDu-{Du} |% < {|Du-{pu} . < 2 (|Du-Dv|%+2 {|Dv-{Du},|?
fIpu-our 17 < fimu-io <2 fiov-tou),

5 3 S s

<2 I(LDu|2-|Dv|2 . 2J|Dv-{Dv}s|2
t

S



- 35

<2 I(IDUIZ-I{Du}tiz) 2 ((Juy |*-pvi?)

i~

I A

since:

(2.15) (|Du|2—|{Du}tlz)2:<Du+{Du}t, Du-{Du}t>2 < 4p2|Du—{Du}

by Cauchy-Sch

In conclusion, we have in view of (2.14),

(2.16) j
B',
x',s
Now, if
(2.17)

+

1
2
t

+

4(1+|{Du}t

+

t

B

t

( (;Du|2-[(Du}t;2)2+2(s/t)“‘

4(1+|{Du}tiz)i .I[(1+]{Du}t|2)

t

: A [(1+ |Du|2)i-(1+ ]Dvlz)i] +

J
t

J

t

v 20s/0)™ I|Dv-{Dv}t|2
t

4{1+[{Du}t|2)*ﬂm+|nu|2>i - G+ pouy Dy

1

t

P oaeovHi

J
t

warz  inequality and (2.14),

Ipu-toud |2 < 4 (ep? yE,Q 2 (s/0)™ T ep?] £

v(E,Q.) <

ct

n-1+2a

R 0 <a< 1

2 2
S apv - oy 1)

2
20t (Ipu-touy 1%+ 26s/0™ T (g oouy 1%

2
¢!

(1.9), and (2.3):

2
]Du—{Du}t|

L]
x',t
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then, setting

(2.18) W) = § Dus () |
B!,
x',r
we get from (2.14),(2.16),(2.17):
(2.19) w(s) < 4-25 ctn-}+2a - 2[(s/t)n+1+p2]. w(t) Vs,t:0<s<t<T
and thus also
(2.20) w(s) < const.s"T*ée ¥se(0,T)

by virtue of Lemma 2.4, provided p 446 sufficiently small.

Consequelty, if

(i) (2.17) holds uniformly, for every cylinder Qt with center at
points (x',u(x')) and radius t, such that |x'| < T and

te(0,T);

(ii) p is sufficiently small, depending on a (see (2.19) and Lem-

ma 2.4);
then
(2.21) ( |Du-{Du}t]2 < const.¢"T1H2e Vx':|x'|< T, ¥te(0,T).
Byt

In view of the isomorphism between Campanato and H&6lder spaces

n éPZ,n-1+2a

(particularly 12’ betwee and c%°¢ see 2.2), we get

»

. . T,a .0,
in conclusion that u e C (B T/Z)'
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2.6. Conditions (1) and (ii) above are clearly satisfied in the
case under consideration. Indeed, whenever E ¢ RrR" has, in some open set
2 , a locally smooth (of class C1) boundary 3E, which in addition
is almost minimal in § (Def. 1.5), with gqg(t) = ct20L and 0<g<1,
then we can always arrange things so that (i) and (ii) above - with
p defined by (2.14), and with u giving a local parametrization of
(a piece of) 3EMNQ , see 1.6 and Fig. 3 - are satisfied. The pre-
ceding discussion then shows that J3E if of class C1’u in @ , thus

concluding the proof of (2.2).

The key role of the quantity [ |Du~{Du}r|2 as a regularity
B 1
r

parameter has also been stressed by the preceding discussion, see

(2.18) - (2.21). Now, as the calculations above show, we have 13
2 - 2 2 2 2
2eph [ (e A pour 158 < [ gpuptopmey 19 <
B! B'
r r
(2.22)

< 2(1-?2)_1(1+p2)£

- 2 2

[ [asu e pouy S
B!

r
whenever p < 1. The integral in the left-hand side of (2.22) can be
rewritten in terms of E (recall that E = epi(u), with UEC] and p<1),

because of the following relations (see [19], 3.4 and 4.10):

D;d,(BL xR) = D:¢:(Q) = [ Dyuly dy’ i=1,....,n-1
Bl
T
(2.23)
D ¢og(BL xR) =D ¢5(Q) =H (B
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which imply that

2
Dog(@)] = [ C1+[(Du} |9 ey
Bl

T

while clearly

Degl@ = | Gelpul?tay:
Br

It is then apparent that the quantity

IDeglQ) - IDe(Q )|

also represents a fundamental regularity parameter.This justifies

the following definition.

2.7. Definition of the Excess.

n . .
For every A cc R and every Caccioppoli set E c¢ R" we put

(2.24) w(E,A) = D la) - Ipecayl .
The quantity tj-n -w(E,Bx t) is usually known as the "area excess
of E in B ", denoted by Exc(E,x,t). Compare with (1.9), and the

x,t "’

definition following (1.10)}.

Just as Y was an "index of minimality'", so is w an "index of
flatness'": for, it is clear that if 9E is {£Lat near one of its points

(so that we can assume that aEnBT = {x e Bix_ = 0}),then (see (2.23)

and Fig. 13):
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w(E,B.) = |D¢E\(BTJ - D ¢ (B) = 0

FIGURE 13.

Reciprocally, if O e 3E and w(E,BT) = 0, then, on choosing the

reference system so that
D. = v i=1,...,n-1;
1¢E(BT) 0 when i=1, ,n=-1; Dn¢E(BT) >0

we get (see (1.29)):

( - = = (n)
0 < dHn_1 ]D¢EKBT) Dn¢E(BT) J VE dHn_1
* *
3 E"BT 3 E"BT
Consequently
(n)_ : *E N
vE = 1 Hn_i_a.e. on o*E BT

which implies,in view of known results (see e.g. [19], Theor. 4.8),

that

S T . )
oE BT {x e BT Px 0}.
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Here we have a few illustrative examples:

2
(i) for the cone E = {|x1] < xzi} ¢ R™ (see 1.7) one has

Dev(E,0,t) = 2(2-V/2)
Exc(E,0,t) = 4
(ii) for Simons'cone C = {x$+...+xi < xg +...+x§} c R8 (see 1.4)

one has instead

Dev(C,0,t) = 0
Exc(C,0,t) = const.>0

1+q

(iii) for the epigraph E={x2 > |x1| } ¢ mz, with 0<a<1 (see 1.14

(v)) one has finally4

Dev(E,0,t) = Exc(E,0,t) ~ cdtza.

The following proposition shows that some of the features exhibited

by the preceding examples are of a general nature:

2.8. Proposdtion.

For every Caccioppoli set E c R" we have

(2.25) 0 < Dev(E,x,t) < Exc(E,x,t) < t1_n |D¢E](Bx t) Vxémn,Vt>0.
Furthermore:
(2.26) Exc(E,x,t) = o(1) ¥x e 3*E.
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Proo4. Let B = Bx ¢ be an arbitrary n-ball, and F : Fg E ¢cc B. Then

-1 -1
¢p(B) = J¢E(y)(Y-x)t dH . (y) = [ (y)(y=-x)t" dH__ (y)=D¢(B)

SE aB

whence

IDoL [ (B)-[Doy (B)|= [Dop|(B)-[Do.(B)| >|Dop|(B)-|Dop[(B)

and (2.25) follows at once.

Now, recall that x e 9*E iff

(v) |D¢E|(Bx,t) > 0 ¥t > 0
Do (B )
(2.27) (v))  lin E Xt =y (x)  exists, and
++
t+0 |D¢E|(Bx,t3
(v,) IvE(X)I = 1

3

when this is the case, one has mereover (see (3.5)):

(2.28) |D¢E[(Bx’t) Ve ot

Conclusion (2.26) is then clear, since
1-n

(2.29) Exc(E,x,t) = t |D¢EIEBx t) 1 -

2.9. We have just seen that x e 3*E implies Exc(E,x,t) - 0 as
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t > 0. When is the converse true? (i.e., under what additional as-
sumptions does the infinitesimal character of the excess at a given

boundary point imply the existence of the "normal" v at that point?).

E
This is a crucial point of our program. We begin our analysis by

considering a simple counterexample.

Let E = {x3 > ré} < m?, with r = (x? + xg)i (Fig. 14)
AN X3
Af2

-

| S

N

! N

: \

! \

! \

: : >

Ol r(® t

FIGURE 14.

Then O € 3E, and

r(t) !

~ .

[-|D¢E|(Bt) 2 | r(1+1/4r) “d
o)

It

2
D1¢E£Bt) D2¢E(Bt] =0, D3¢Eth) = qar (t)

1
with r(t) = K1+4t2)2—TJ . We immediately check that

o —

., r(t) ; 5
(2.30) Exc(E,0,t) =t ° [2m £ r(1+1/4r)*dr-nr“(t)] + 0 as t=0,



- 43 -

and that there cxists

Dé_(B_)
(2.31) ve(0) = lim —E t _ger’
t+o |D¢E|[BtJ
llowever, !vE(o)[ = 0 implies that O ¢ 3*E (recall (2.27)). It

follows ftrom (2.29), (2.30) and (2.31) that

lim t 2 |Do_[(B) = 0 ,
E t
t=0

a fact that could also be checked directly.

2.10. Now, let us suppose that x € 9E and that (contrary to what

happens in the preceding example) there 'holds
(2.32) Do |(B_ ) > ¢ t vt € (0,T)
E X -

with <, > 0. We anticipate (see prop. 3.4) that every set with almost

minimal boundary does satisfy (2.32).

[t follows from (2.29), (2.32) that {4 Exc(E,x,t) = o(1) and vE(x)

exists, then (& has unit Length, and consequently x € Z*E. [n order
to be sure of the existence of vE(xl, we employ the following

nequality

G, ) e (G ' 56
Dy (G Dy (G) w(B,6,)  |1/2

(2.33) — - < 2 |—

' - 1 ~
DG Do (G,) Do 1(G)

which holds ¥G. e G, ¢ R" with |Do

2

Fi{G]) > 0 (see [27},2.5.4 (1)).
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From (2.32) and (2.33) we deduce

Dé_(B ) D¢ . (B_ ) _ -
(2.34) | E _Xx,s . E Xt L 2 511/2 (t7s) P2 e (B x, 1)
| hs
| !D¢E'{Bx,s’ |D¢E!(Bx’g |
for every s,t : 0<s<t«<T.

Now consider the abstract situation in which a given function

v (0,T) B, ¢ R" satisfies

(n-1)/2

(2.35) [v(s) - v(t)[< (t/s) g(t) Vs,t:0<s<t<T,

with g(t) = o(1). Observe that (2.34) is a special case of (2.35).

A simple calculation shows that the function

v(t) =(sen lg lg(e/t), cos 1lg lg (ec/t)), 0O<t<«]

satisfies (2.35) with T = 1, n=2, and g(t) = v2/1g(e/t) = o(1).

Nevertheless, a(t) has no limit as t = o.

Condition (2.35)impliecs the existence of that limit, provided

: : o .14 .
we have a reasonable '"quantitative" hypothcs1s1 , regarding the con

vergence of g(t) to O. This is the case for instance when g(t) < ctu,

o >0; indeed, given te(0,T) and t €(0,1), for every h,k > 1 we find,

on the account of (2.35):

k=1 hei+1 h+i
.

t) - v(t “t)]

e
e i
o}

v Ko v ) < v

(2.36) ¢ L(1md/2 h+

3
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Cta_#1-n)/2 Tha ol

| A
neAg
~

o hao
const (c,t,n,a) .t T

I A

which shows that {v(Tht)}h is a Cauchy sequence in mﬁ, for every
t e (0,T) and every Tt € (0,1). Put
(2.37) v = 1im vz~ B Dq
ol
h++oo
and observe that ¥Vt e (0,T/2) there exists (and is unique) an integer

h = h(t) > 1 such that

(2.38) 27D iy
with in addition
(2.39) lim h(t) = + « |
t+o*
Consequently
S PN I NTE RN PN Y INTC A SRR C3Y
E I 1" " |+ C_2(11—1)/Z'tc¢

by virtue of (2.35) and (2.38). From (2.37), (2.39) we then find

Uo = lim wvw(t)
t+0

thus proving our assertion.



2.11. We deduce from the foregoing considerations that when the

set E, the point x € 9E, and the radius T > 0 are such that:

Do (B ) > ¢ ! vt e (0,T), with c. > 0, and
Exc(E,x,t) = 0 as t = O, in a certain ''controlled may"
2a

(e.g., as t ), then x € 9*E.

It is not difficult to show that the first condition is satisfied,
whenever 3E 1is almost minimal. The point is that almost minimality
implies the second condition as well, at Least when the excess, conr-

responding to the indtial radius T, 44 convendently small. 1>

This fundamental result was originally proved by E.De Giorgi for

minimal boundarics,in the form of the following lemma.

2.12. Lemma (De Giorgi [8,9])

For every n > 2 therc exists a constant o = o(n) >“0 such that

n . .
whenever the set E ¢ R, the point x € 9E, and the radius t > 0
satisfy

o (E,B ) =0
X

2t

)

Exc(E,x,2t) < 0

then:
Exc(E,x,t) < o/2.

The iterative character of this result is apparent: a repeated
application of the lemma yields the right estimation of the excess,
which in addition turns out to be uniform in a neighbourhood of
the given point. One derives from this the regularity of the set

of boundary points, where the initial value of the excess is bounded
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by o

A lemma of this sort is at the root of the various Regularity
Theorems which extended De Giorgi's work: see [28,23,19,27], where
the proof of such a result is obtained "by contradiction', as it was

the case for the proof of Lemma 2.12 in De Giorgi's paper [8].

Moreover, a similar result is among the main tools in the Regu-
larity Theory for almost minimal currents (and varifolds): see [4,5],
where the proof is still obtained '"by contradiction", and [34], where

a more direct proof is developed.

[t will be our aim in the next chapter to give a direct proof of
a variation of Lemma 2.12, which will prove particularly useful for

the demonstration of Theorem 1.9.



CHAPTER 3: SOME PRELIMINARY RESULTS AND THE MAIN LEMMA

Having prepared the way in the preceding chapter, we nov undertake
a formal proof of Theorem 1.9. As a starting point, it scems convenient

to bring together various notations and definitions already met on the

preceding pages.

3.1. In the following, R” will denote Euclidean n-dimensional spa-
ce over the real numbers IR, endowed with the standard inner product

. - . : n
<+,+> and norm ] ; n is an integer not less than 2. Peints in IR

will be denoted by x,y,z; measurable sets by E,F,G; compact sets by
K; open scts by A and ©; open balls by B. When we want to specify the
center x and the radius t of B, then we write B ¢ Projection of

. : n . : i .
points or sets in R onto the first n-1 variables will always be de

noted by a "prime", such as x',A',B', and so on. Hence, in particular,

n-=1

we have x = Gx',xn) and B' :{y'em] fy'-x'| <t) if B = B ’

X,t
The symbol "0" however, will denote the origin of both R" and mﬁ“1
(and, of course, the real number '"zero"): which onc of them, will be

clear from the context. We shall also abbreviate Bt and B% for B0 +

and Bé i respectively.

Whener F,G c_m“, the notation Fce G means that the closure of F
is a compact subset of G, while F 4G denotes the symmetric difference
(FUG)N (FNG), The characteristic function of a set E ¢ m? will be

denoted by g Convergence of a sequence {Eh} to E in 2 always

. 1 - C
means the L () -convergence of the corresponding characteristic
ioc

functions, i.e.:

(3.1) E_ =+ E locally in @ iff [|¢. (x)=¢.(x)|dx » 0 VAccQ.
h A Ep E
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We saythut E is a Caccdoppoli set iff the distributional gradient

D¢E = {ﬂ1¢E,...,Dn¢B) of ¢E 1s a Radon vector measure with Tocally
finite total variation |D¢EI:

Do 1(A) < + VA cc R"

We have of course

]D¢FI(Q) = sup {[ dive(x)dx :¢ e C;(Q}Rn),[¢[ < 1)
E
for every open set  of m"; according to the Gauss-Green thcorem,

we thus get
- =
Do | (2) B _,(RENgQ)

whenever 3ENg is sufficiently smooth. Here, for cvery yeal s » i,

Hq denotes the s-dimensionai Hausdorff measure on .Rn. We also set
(see [12], 2.10.2).

e % )/ T(s/2+1)

When k is g positive integer, Wy yields precisely the k-dimensional

tHlausdorfr Measurce of the unit ball in mk. ¢

The relevant facts about Caccioppoli sots can be found in [19] and
in the recent book [27]. For our purposes, it suffices o recall that

every Caccioppoli set E possesses, at | D¢E| = almost all points

X € 9E, an unit inner normal vector \%Cx), defined through the fol-

lowing relation:

(3.2) vp(x) = iiZ* VEB, )



where fof short:
D¢E(G)
(3.3) V(E,G) = —
|D¢EI(G)

whenever G cc R". The collection of points x where such a limit
cxists and has unit length, is commonly known as the reduced boundany
of E, denoted by 3*E. See also (2.27). We remark explicitely, that
when speaking of a Caccioppoli set E, we let 9L denote the boun-
dary of E. in the measure-theoretical sense, i.ce,

(3.4) x € 9E iff 0 < meas (EMB_ ) < meas (B ) V>0,
%yt x,t

Whenever x e 3*E, we have (see [19], Theorem 3.8, or [27], 2.3(23")):

. 1-n
(3.5) lim t ID¢E|(Bx,t) =

tro+ ]

We use vector addition and multiplication to define translations

. . . noou
and homothetic transformations in R . Thus:

E + xo = {x:x-xo € E} and tE ={x:t-?x & EY ,

n
for EcR, x_eR" and = t>0.
Clearly, whenever E is a Caccioppoli set, then so are E+x0 and tE,

and for every G cr" it holds;

- N = |
(3.6) ID¢E+XOI(G+xO) = 1Dopl (6, Do 16 = ¢ ne | (G).

Analogous relations hold for the measures Di¢E’ 151 o o ;T HE WOTL

as for the following non-negative measures:

(3.7) | HE = [D¢E|; Dn¢E




n

(3.8) W, = ID¢EI~ ¢ %

2,4
181 (Byog) )

“i.e. mE(G) = |D¢EI[G) = |D¢ETG)| s, ¥G cc R". We shall preferably

write w(E,G) instead of wE(G]. All these measures are obvioulsy
invariant under orthogonal transformations.

1-1

We recall that the quantity t n m(E,Bx t) is usually called the

3
excess, see section 2.7. Finally, we recall the definition of the fun

ctional ¢ {(see 1.13):
(3.9)  W(E,A) = [DO | (A) - inf{|D4.[(A) : FoB cc A} , A cc R

which is also invariant under translations and orthogonal tran-

sformations, while clearly

(3.10) OCtE,tA) = "7 u(E,A) Vt > 0

we have in addition (see [37]):

(3.11) Ap €A, cc R => W(E,A) < W(E,A,) VE
(3.12) E, > E  locally in A ==> y(E,A) < lim infy(E, ,A)
h - + =
Eh + E 1locally in A
(3.13) SN |D¢E I(Aj) » |D¢EI(AT),
V(E, ,A) + Y(E,A) h

for every Ay cc A such that A, is open‘and [Dop| (3A,) = 0.

For, assuming 'A] ¢ A, we get

2

jD¢E|(Ag-inf{]n¢F|(AT):FnE cc A]}=]D¢E!(A2)-inf{]D¢F|(AZJ:FAE cc Aq}



which proves (3.11).

As for (3.12), if Eh + E in A and F is such that FaE cc A, then

(reasoning possibly on a subsequence of [Eh}},'we can pick an open

subset Az of A, with lipschitz boundary, satisfyingf

(3.14) FeE cc A, cc A, |D¢EA (3A2)=|D¢E|(3A2)=0 Vh, 3£I¢Eh—¢E|dHn_]*0.

_ 2
y . 4o 3 f : - § - ~ -1‘ (“ ” 3
Setting Ih (Eh Az) u (J Az) we find

Do, 1CAY = Do [(A~A+ [ {¢p ~¢ R +[Do | (A,)

h h h
BAZ

from which, observing that FhA Bh cc A, we get

(3.15)  w(E ,A) > |D¢E

|TA) - D¢ |(A)=|D¢,.
h i R

=10l iny)- Loy -oglan,

BAZ

I
By letting h - + » we then find for every F such that FesE cc A:

lim inf (B, ,A) > [Do | (A))-|De | (A)) = |D¢EI{A}—ID¢FI(A}

h =+ + o

(recall (3.14) and the lower semicontinuity of |[D¢.)(A) with respect

to the local convergence in A), and from this (3.12) follows at once.

Finally, assume that Eh + E in A and that w(Eh,A) +~ Y(E,A), and

fix A1 cc A such that A1 is open and |D¢E|(BA1) = 0. Then choose

F,AZ, and Fh as above, with in addition A1 cc AZ' By (3.15) we get

i (E,A) lim Y(E

h +4e2

AY > lim sup |D¢E |(A2)-|D¢F|(A2)

h h=+ + h

IR

lim sup |Dé, | (A »1lim inf |Dé, |(A2~ﬁ1)—|D¢F|'CA2')
hovr s h h +4 @ h



| W

. yii \.-. = 3
;}T fuz |D¢EhI(A1) + |D¢E|(Az A1) |D¢F](A2-

3

1

111111: 54 IDd:EhI(AT) - Dol (A)) + [DoL|(A)-1Do | (A)

which holds VF : FaE cc A. When combined with (3.9), this. gives

3y LY

1]

1im sup |D¢E |D¢é|(k1]

| (AJ) < |D¢ | (A)
howew by 17 LRI

by our assumptions. Since

IDég 1 (A}) < Bim inf Do, [(A))
h + + o h .

.By semicontinuity, we obtain eventually (3.13).
We now establish’ some helpful inequalities, involving ¥ and w

See also Prop. 2.8.
!

3.2. Lemma.

If EI’EZ are Caccioppoli sets in Rn, and B is an n-ball, ‘then

r ) .
!(B]+J ]¢E or |<:th1

(3.16) W(E;,B)-¥(E,,B) <IDé, [(B) - (Do
| 2 a2

1 : E

; - - ( -
(3.17) w(ET,B) w(EZ,B) < m(Ei,B) m(Ez,B) + 2 JT¢£1 ¢E2|dHn_1
B

“Proof. First we remark that for any Caccioppoli set F ¢ mﬁ,_the

term - ;
i ¢F d”n—l
IB

denotes the integral of the <nnex trace of F over 3B (see e.g. [19],

t

]

Chapter 2). Given such an F, we set fdr B = Bx and t1e (0,1):
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P o M
1T (¥ BX,Tt) v (Ei\ Bx,tt)

so that:

IDmFTl(B ) < IDég {(Bx,t)—{|D¢F|—|D¢E (B, ~B )+

X,t 2 T X,1t

/ = ;
¥ J |¢E2 ¢F| dnn-1
3

BX,Tt

Assuming F A E] cc Bx ¢ r We get easily:
b

[Dog €8 - IDep|(B) ¢ [Dog (B -[Day [(B) + w(E,,B)

; - ' - ( i
(IDop 1= Doy DB, (SB[ ey - eglan
2 % 2 1
aB :
X,ct
_' o

Hence, letting 7t + 1 and taking the supremum over sugh F's, we
find |

(3.18) ~ W(ELBY < Doy [(B) - [Dgy |(B)+¥(E,,B) +.f'¢ﬁ ¢ laH__
1 2 172
3B
which is exactly (3.16).
Now, since
= - { -

(3.1%) Do (B) J d Do = | t o) (y-x)dH L (y)

B aB

X,t X,t

for every Caccioppoli set IN?RH, we have

(3.20) IDeg (BI] ~IDoy (B)] < [ 1og -0y |aH
1 |

n-1
2 - 1 2



« BB w

Adding (3.18) and (3.20), and rearranging;-we get (3.17).

3.3. The follow1ng inequality was proved in Section 2.5 and 2.6
(see especially (2. 16), (2.22) and (2.23)):

(3.21)  w(B,Q) < 29(E,Q,)+2(1-p") " [(s/0)™ Tup? o (E,Q,)

It holds V¥s,t : 0<s<t<T, under the following assumptians:16

(3.22)' ' E

i

;I x'| < T, x> u(x'y}

i .

(3.23) Q.= {x : |[x'| < r, Ix_ - ulo)| < r)

where ueC1(B%) is such that

(3.24) ' p = sup {|[Du(x")| : Ii'l < T} < 1

We conclude this section by recalling two further relations, which

are proved e.g. in (27), 2.5.4 (1) and 2.5.1; respeciively:

| - w(E,G,) 1/2
(3.25) IU(E,G]) - U(E,GZH <2 .
LIRS

(which holds for every Caccioppoli set E ¢ Rn, and evéryH‘G1 c G2 ee R"

such that |D¢E|(G1) > 0. See (2.33) and (3.3))

[ [, 100+s0m0 - oplrecty-x Jdn,_ o]
< x"l
(3

. . _ t
< 2[e!™ Do 1B, )-s! nID¢EI(Bx,S}ﬂh—1) i r Do [ (B ddr]



w BB =

T .
e pegla -s"TMDeL] (B d+tn=1) [ rTG(E,B, dr] ,
3 b ] 5 Li

which. is valid for every Caccioppoli set E ¢ m“, every point Xx eimn,
and every s,t : 0 < 5 < t, This last inequality will be used in the
next section to establish some fundamental area and volume density

ratio bounds for (a special class ‘of) almost minimal boundaries.

3.4, Proposdidion.
; - : g 1 e
Suppose we are given a Caccioppoli set E ¢ R" and a non-negative

function a(t), defined on (0,1) and satisfying

(3.27) i't_1 a(t)dt < + .

ff for some point x and some radius t € (0,1) it holds

(3.28) CWEB ) < a{t).t“fT

17
then for the same x,t we also have:

A

‘ . -, 1-n Clen ' :
(3.29) T e [ B ) < et + na /2

If (3.28) holds for every t € (U,To), with To fixed in (0,1), then

t
(3..30) t]"n|D¢E|(BK t)+(n-1)- f r_ia{r}dr is a non-decreasing
- . ’ O

function on (O,TO)'

Finally, assuming that (3.28) holds for every X € Bjc T and évery
. ’ : O# ‘0

t e (O,To)ifhen we have:
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.t
(5.31) ¢ Moo i) “poy =00 [ 1 acryar
o]

3

-

n — N >
(3.32) 7, min{meas (E Bx,t)’ meas(Bx {~E

v

£
wn—im_ l r a(r)dr

both vx e BEnBx 5 Vte{O,To}. In this case moreover assuming that
y O’ o s "
' a(t) is non—decreasing and infinitesimai at 0, if we set
(3:33) E, = t“1(E—x)
! _ h = Th M

for x e 3ENp and ¢
: X ,T
. 0’ "o

pt0. then a subsequence of {Eh} will conver

ge to a minimal cone € ¢ RE with 0 e 3C,

Remank .

Satisfying (3.27) (see Def. 1.5 and 1.13), then a convenient T0 can

be found so that (3.28) holds vx e Bx and Vt e (G,To). Accor-

o

dingly, (3.29)-(3.32) a1y hold Vx e angBx, 7> ¥te (0,T)). Also
. _ 0’ o
notice that (3.27) is weaker than (a4) of section T.11.

Proof. (see section 2 of [37] for the Special case a(t) = ctza).

Frbm'(sszs)-and-cs.gj we get VT e (0,1):

' _.n-1 ) '
at) it > ID¢El£qutJ - mln{[D¢EUB ’Ttl(sx’t),ln¢E\B I(Bx’tJ}
: X ,x,Tt_
(3.34) > fD¢EI(Bx’t)—|D¢E]{Bx’t\Bx,TtJ—minII ¢EdHh_}{[U_¢E)dHn_i}
IB_, Tt B
X X,1t

1 N T |
- - t
2 lD¢E (Bx,TtJ 2 nwn(T )



w B e

‘rom wich we get (3.29), by letting e s [

{3.30) follows easily from (3.26), (3.27) and (3.28). If x e a*EfWBx i
O,

then (3.5),(3.27) and (3.30) imply (3.31). For a generic point x in

3E, (3.31) follows by approximation, since 93E = 9*E.

Now, arguing as in (3.34) and using (3.31) we find Vt e (O,To):

: = d-n__.
w =13 x7a(n)dr ¢ a(t)et mln{g @EdHn"1,_£(L4%)&kk1}

B

Bx’t x,t

0 ——

On rearranging and integrating between 0 and t we obtain:

t s
t\E)}i f[wnw1~(nu1) f r“1u(r)dr—a(s)]5n*1ds

o] o]

H

min{meas EMB 8, meas( B
X, X

=gt/ (/e i r e (r)dr-L1/n) L " larar

t
3[mn_1/n - I r_1a(r)dr] oD
0

which proves (3.32).

Finally, for Eh as in (3.33), r > o, and h sufficiently large

‘(so that rty < T ) we have,in view of (3.6),(3.29) and the new assum

ptions on «a{t):

. _,1«n n-1 |
(3.35) |LI%FJ£Br)—th ID¢EI(Bx,rth) <1 (0T yem® /2) -

Hence, a subsequence of E. (not relabeled) will converge to some li-

mit set C, locally in R". On the other hand, we have (see (3.10)):



w: BY =

_— 5 . _n-1
(3.36) V(BB =t w(L’Bx,rth) <alrt) -+ x
by (3.28), so that
(3.37) | ¥(C,B ) = 0 Vr > 0

in view of (3.12), that is, C has minimal boundary in Rr" {Def.1.2).

From (3,26);(3.37) and (3.13) we deduce

|D¢Ei (B.) = |Doc|(B,) for a.e. r > 0
or (see (3.35)):'
(3.38) - (rt.3"™ |ng ﬁ(B y > oMo ey Bor wm mp
’ 5 h . B X,Tt, % T Al ?
as h + 4 oo,
- Setting o |

G390 b= [0 e )]

t+0+ : X,t 2

((3.30) shows that the limit in question exists, while (3.29) and

(3.31) give upper and lower boun&s for b), we conclude that

1-n , f
{3.40) r |p¢c|(Br) = b e [mnf1, nwn/Z ] for a.e. r > 0.

Substitution of (3.37) and (3.40) into (3.26) then yields

[ 18cCsyd - dn(ey) | i (v) = 0

3B1

for almost every t > 0, and almost every s e-(O,t), thus proving
that C is (equivalent to) a minimal cone, with O € 3C (see (3.4) and

(3.40)).
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3.5. The main result of the present chapter is the following Lem-

ma 3.6, which extends De Giorgi's Lemma of section 2.12.

Its proof will be achieved by comparing the given set E with level

sets L of a suitable mollification of ¢E - much as in the briginal

paper of De Giorgi [8], using however a more direct argument., The
results contained in sections 3.2 and 3.4 then show,that the compa-
rison surface 9L 1is appropriately "close" to JE. The area excess
of 3L being nicely controlled (section 3.3), this yields the desi-

red estimation of the excess of OFE.

A few properties of mollifiers are now in order. We introduce the

following "tent function"

(3.41) n(x) = c(n) max {1-}x|,0}, with c(n) = (n+D/wn

first considered by E. Giusti [19], chapter 7. Clearly,n is a non-ne
gative, symmetric, Lipschitz-continuous mollifier, whose integral is
T and whose support coincides with the wunit ball in R". We set as
: 1 n, .
usual, for € > 0 and g ? LlocﬂR K-
' -n -1
nECX) = ¢ nle x)
(3.42) ; _
g (x) = (g%n ) (x) = fﬂefx-YJg(y)dY

i . " . n N
Then, whewever F is a Caccioppoli set in R, ¢ > 0, and f = bp * n_
’ € ;

o4
we have
(3.43)_, fE is Qf class C1
(3.44) ; =
j 1£_ - opl dx < ¢ Do | (B, ) | vVt > 0
B .

t



r | _
(3.45) j }Dfaldx < [D¢F|(Bt+sj Yt>o
B
t

(3.46)  if 0 < t < 1/n and nt? < £.00 < 1 - n®e?, then dist(x,sm)<(1-t)e.
See [19], Lemma 7.1 and 7.2, for the simple proof.

From now on- we suppose that a(t) satisfics (a1)—(a4} of section 1.171.

We also introduce the notation B ¢ o to indicate a non-decreasing

function B , defined on (0,1), and satisfying 0 < B(t) < alt) Vte(0,1).

We are now is a position to state and prove the following result
(compare with Lemma 2.12).

.

3.6. Main Lemma.
—2<xn Lemma .,

Fon any n > 2, any « ¢4 in 1.11, and any 7 e (0,2"4), thene exists
a constant o* = o*(n,a,1) e (0,7), such that wheneven Fc m“,o e(0,0%} |

and B { o satisdy the following hypotheses:

(H.) WF,B. ) < B(t) o ¢N) VX e B, Vt e (0,1)
1 xX,t’ = 1
(HZ} w{F,B1) <o
then:
N n+1
(3.47) m(F,BTJ < LIB(I) + CZOT

where €ys¢, are positive constants, depending only on the dimension n,

Proof. Without loss of generality, we can assume that 1D¢F (Bl}l =

= D ¢.(B,), so that (see (3.7)) w(F,B,) = uF(B]). We split the
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proof into three steps.

Step 1. Given n and ¢ as above, we prove first the existence of a
constant oxée (0,1) and of a function g (O,G%L]'*(U,?), with
g(o) = o(1) (oﬁé and g depending on n and @), such that whenevex

F e rY and ce({),o#] Aaldsgy:

n-1
_(h1J w(F,BX,t) < a(t)-t _ Vx e B1, Vt e (0,1)
Ulz) M(F,B_I) & LIF(B,I] <o
then
D f(x) i )
(3.48) — e 5 1-8(0)  VxeB - x| < 1-201/200-1) .
IDF (x) | 1 - -
no < {(x)<l-n"o
whene
(3.49) = # = 4
* : - ¢F T]E » E = 0 .

We observe that when o > 4 n, the set of points ‘in (3.48) is empty,

. ; . i . ; T=n
so that there is Nothing to prove in this case. Thus,. we assume g<4 H

In addition, we observe that
FS'SB) D L(x) = jqe{x-y)d D ¢.(y) and |Df (x) | ;an(x—y)dlD¢F](y}

since, by definition, f(x) =Inc(x-yj¢F(y)dy. Hence, (3.48) will be

proved if we can show that

(3.51) [0 =y dup () <g (o) [n.G=y)d o] ()

for any «x satisfying
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2 (n~ 5 2
(3.52) Ixf & pege Pl 202 £(x) <1 - n%*

L

To this aim, we define for x  as in (3.52) and o e (0,41-n3:

-1
Yy=1-go" and G = B . = B

We observe that, from (3.41},{3.42):.

(3.53) [ n, Geoydducy) < ctme ™My (6) < zc(nJc‘1o“*‘ca(1J+nmn/z)
G - -

by virtue of (h1),(3.29), and the monotonicity of g ((a?] of 1.11); on

the other hand, from (3.46) and the assumption ¢ < 4?“n we conclude,
that for every x as in (3.52) it is possible to find z € 3F such that

Ix-2z1 < (1~0)¢c, Therefore:

(0 (x- ) (n)e " |
jnc(x y)g IUﬁJ'(YJ > ¢(n)e (0/2)'D¢FI(Bx,(1vo/ZJEJ

i ) -n
(3.54) > c(n)e (a/2) ID¢FJ(BZ,06/2)
-1 . oe/2 _ _
> cln)e (o/2) [mn~1—(n—13 I t alt)dt]
(8]

by (3.31). in view of .11, (aaj, we can certainly choose oﬁke(ﬂ,i)
such that

O#F
(3.55) f toalt)dt < w  /2(n-1)

o]

Hence, from (3.54) we derive

(3.56) [reCenddiDer 60y ety 2 TR g



- H4 -

Combining (3.53) and (3.56) we obtain:

(3.57) ) n+2 -1 [ _ .
énetx yldug(y) < 2 o1 8100) | n_(x y)d|Do|(y)
where
(3:58) gl(o} = {a(1) + nwn/ZJU :
Now, put
5= 2 and D= sEhE

X,ye

Due to the boundedness of D, we can find a finite number of points

in D, wich we call ZT""’Zh’ with the property that:

h
59 B np = if i j D . B
(3.59) 2., 6c 2 ,6e @ if 1 # j, and D ¢ 191 2., 26¢
We write Bi,t for Bzi’t (i=1,...,h), and observe that B i, 26e < Bx,g
whence
: h
{ = -
(3.60) J ne (x y)duF(y) éjﬁ][ HE(X Y)duF(Y)
x,Ye" Bi,Zﬂa
h
{ < { -
(3.61) J e DLl 2 1, | M (xy)diDeL] (y)
B Bi,Gs
P
For every i = 1,...,h, we find
( —y -0 - x- ‘ .
(3.62) | InE(x }JduF(y) < cln) e (1+28 -|x zilld ”P(Bi,zse)

i,28¢
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; N . ) ) TR e e % 2
(3.63) | n_(x y]de¢F|()) > c(n)e (1-8-|x Zi|/L) !D¢F](Bi,6s)
B s -

i,4d¢

> cm)2 e "

i ¢”1(1m5-fx-zijxe)

(here, we used again (3.31), and the assumtion (3.55)) Since

T i
,Ix—zil & Alsg: "y , we have 1—5—[x-zillc s ¢ | g- 0"1]/2 >0

llence, taking the quotient of (3.62) over (3.63), we find

~1 n+2 -1 1-n
( -y . - :
(3.6.4) {J ng{xndur_(y)} {I n, (x y)d|D¢Fl(y}) <7 w (26e) ”l'f(Bi,z.sE)
b i,28¢ §,B1 ,8E
‘which ‘holds for each i = Tyews,he
Now we put s = 28¢ = o M+ (see (3.49), t = U]/Z(n—})’ and use

definition (3.7) together with (3.30), to deduce that:

T1-n 1-n T-n
s UF{Bi,s} -5 |D¢F‘(Bi,s) -8 Dn¢F(Bi,sJ

t
1+n -1 1-n
(3.65) <t [D¢F|(Bi’t)+(n-1) I v a(r)dr-s ”n¢F(Bi,_J

S

t
I-n ¢ -1 1- RE ~
t uF(Di’t)+(n—1} [ ra(r)dr+ [t nDn¢F(Bi,tJ—s “nn¢F(Bi’S)J

[N

We have Bi : © B1, hence the first term in the right-hand side of the

H
. . . 1 :
last lnequality is not larger than o /2, by (hz) and our assumptions.

On the account of (3.19),(3.26) the term in square brakets is easily
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estimated by

1,
21/2[t1-n

t
T-n =
|D¢F|(Bi,t)ms ;n¢F](Bi’S)+(n-1). i r ]D@Fl(Bi’r)dr ]

1/2
T-n
[

t
'|-u.n -1
t |D¢FI(Bi,t)ms ]D¢p](ﬁi’s)+(n-]} I r 'm(F,Bi,r)dr ]

S
As before,

1-n _ . T-n 1-n
t [D¢F|(Bi ) o=t T (B, )+t D #p(B. ) <o +g

y 7 = n-1
. @5 a consequence of (3.19). Therefore, from [hTJ and (3.31) we get

1-n 1-n -'/2 S -1
t ]D¢F|(Bi t)-s |D¢F|(Bi SJ <o +(n-1) [ r a(r)dr.
H 3 & )

Similarly, from (hT) and (3.29) we get

T t t
f r-n!D¢F[(Bi Jdr < f r'T(a(r)+nwn/2)dr=2“'nmn1g(t/s}+ f r_1a(r}dr',
S _ ? S s
t t
-n_ .. -1
[r W(E,B, Jdr < [ r a(r)dr.
s ’ T s

Collecting terms and going back to (3.65) we find, for each 1=1,...,h:

.1-n
] uF{Bi

3

t
§) < 01/2+(n—13 [ laceydr «
Q
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1/2
(3.66)

t
+ 2[01/2+(n—i] f rh1u(r)dr+2_

](n—l)nmn lg(t/s)]|
0

t ; 1/2
'[01/2+(n—1) f r_Iu[r)dr ]
0

Recalling that s = 0n+5, t = U]/2(n—l}

» we derive from {3.66),(3.64),
(3.60) and (3.61)

(3.67) p n (x—y)dur(y) ¢ 22 1 g,(0) [ q (x-y)d|Dé | (y)
£ ¢ n-1 *2 B € T

B . N, E

X,Ye

where

172(n~1)

. 1/2(n-1) _ 1/2
g,(0) =0/ %4 (n-1) r: r &(r}dr+2‘Lﬁ1/2+(n~1)fﬁ r Ta(r)dﬂ N
) o
(3.68)
1/2(n-1)

o /2
.[a]/2+(n—1) j r_1a(r)dr-2h1(n—?)nuh(2n2+8n~l1)-1301/2(n-1) J

)

On adding (3.57) and (3.67), we get (3.51) with

2 -1 .
glo) = M W Lg?(o) + gzio)] .

84 nnd.g2 given by (3.58) and (3.68). In order to assure that g
1s infinitesimal at 0, the only point to check is the following:

_ 1/2(n-1) 2
(3.69) lim, (-1g o'/2(m-T)y o 7707 a(r)dr = o
g-+o o

Now, the monotonicity of g implies that
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1/2(n~1

1/2(n-1) 1

o -1 -1 5..1/2, 1/2(n-1) a1 172

(_TgUT/Z(n—1}] .J r oa(r)d: g(! r dr)ea ‘(o ) J r o “(r)dr
0 J20-1) 0

1 1/2(n=-1)
gl (r)dr). Jf o r_TaVz(r)dr
o

A

(jf
1/2(n-1)
g

and (3,69) follows from 1.1, (34).

A
We can then choose 9 €(0,1) such that (3.55) holds and, in addi

tion, such that

glo) < 1 Vo<og

From (3.50), (3.51) we deduce (3.48), thus concluding the proof of

the first step.

Step 2. According to Step 1, assumtions (h1j and (hz)'imply

an(x)

7o EeoT

>1 - g(g) > 0

for every x as in (3.52), provided ¢ e (O,Gﬁﬁ. At this point, we
can start on the study of the level sets of the function f, defined
by (3.49). T0 this end, we also assume

(3.71) o ¢ 280170

so that in particular 7/8 < 1-201/2{n_1) and 1—2n232 > 3/4. For

Ael0,1] we define

(3.72) Ly = {x : f(x) ;’ A}
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2
and ‘observe that, according to (3.70), for every A € (n 02, 1—n2023,

N . . }
B, [hEB7/8 : f{x) = A}

g - ; n-1 ;
1s the graph, over a certain open set Ai ¢ R , of a certain

: . 1 : ; y
function u, € C (Ai ). Denoting by UA(X) the unit inner normal to

LA at xeaLA » Wwe have also; :

v (x) = — DECO)

S = (I+|DuA(x')]2)_1/2-(—DUA(X‘),1)
IDf (x) |

- 3 N ;
for cvery x e 3L B?/8,1.e. X

A (x',uA(x')J, with x' e Ai . As a

consequence, (3.70) yields pi < g(c](2—g(o))(1—g(o)l_2, VXe(n202,1-n202),
where:
= L) - t 1
(3.73) P, = 5up{[DuA(x )| v xt e Al }
I'é particular, we get
(3.74) © Py gt whenever  g(d) < 1-(1erl)”1/2

On the other hand, it is not difficult to show, that if for every

such A BLA passes "sufficiently close to the origin", while being "fiat

enough', then each domain Ai contains an (n-1)-dimensional ball of

fixed radius. For example, let us suppose that for a fixed

A E(nzoz, I—nzoz} it holds:

M
{3.75} BLA B1/8 £ 0
3 z . 1 T L I L]
We already know that AA 2 B?/S and [ul(x )| < 778 wx' e AA

‘Moreover, if & is chosen in such a way that

(3.76) 8(0) < 1-4 01772 _ 4349
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(recall that g is infinitesimal at 0), then (3.74) yields

Cs: 1) Py

A

1/4.

Now, according to (3.75), we pick 7 € aLAr\B1/8’ i.e. z = (z',uA(z'J)
with z' e Ay, lz'| < 1/8, and luA(z')I < 1/8. If x' is any other

point in Ai , then
(3.78) luh[x’Jl < lu)'(z')l + p}\(‘x'! + |2'}) < 3/8

swhile, if x'edA!

N then (x',uA(x'})eaB7/8, hence (3.78) yields

x| > 7/8 - Iuk(x'Jl > 1/2

and we conclude immediately that B{/z c Ai

Thus, see (3.71) and (3.76), if ¢ satisfies

# . 8(1-n)

(3.79) 0 < 0" ,0 < 2

A

, and g(o) < 1-4.1771/2

with 0#: and g as in Step 1, and if in addition BLkiﬁ B]/SI# P for a
certain X e fnZU?, 1—n202), then (see also (3.78)):

' 1 v 3 mn - Nept { -
(3.80) B.1/2 < AA ? B?/B and LA a]/z BLA {31/2 X R ‘37/8

= {x : x'" e Bi/2,kn = u, (x"))

where 6]/2 denotes the cylinder of radius 1/2 around the origin,i.e.

Y = .

In the same hypotheses, from (3.78) we get also ’UA(UJI < 5/32, so that
qu(OJI *r < 1/2 whenever r < 1/4,. Thus, setting

(3.81) QA = @ {x:|x')<r, |xn-uA(0)| <r}
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(compare with (3.23)), we obtain from (3.80) and (3.77):

N OV [By (- & b r 'Y 1e
(3.82) ALV B e L, NV [Blx(~1/2,1/2)] (x:x'eB!,x =u, (x')} 8Lf\QAJ

for every r e (0,1/4). Finally, we can easily check that

1/4).
Ql,r ¢ By Vr e (1/8,1/4)

Step 3. We are now ready to conclude the proof of the Main lLemma.

As in Step 2, we denote by ¢ a positive number satisfying (3.79), by

A a number in the interval [0,1}, and by LA the corresponding level

est of the function £ = Op * n. s with € = 64.

According to the preceding assumptions (sce the implications fol-
lowing (3.71), we have in particular:
(3.83) 1 - 2n202 > 3/4

Furthermore, it is easy to c¢heck that

' 1 : 1
f - = {|+= f - ; =1 =
(3.84) ] dx ﬁ¢Lk¢F|dx J|f ¢F|dx, J dA Jd’& ¢F|d1in_] J |£ ¢ngﬂn_]
0 B B 0 2B aB
(here, only the fact that f lies between 0 and 1 really matters).

Finally, we recall the following '"coarea formula':

(3.85) f’|n¢L_|cBJdA = [Ip£Co Jax
A
o B
(see [19], theorem 1.23, or [28], theorem 1.6).

From (3.17) we get for all t < 1 and almost all A e [0,1]:

w(F,By) ¢ V(F,B) wELATBt)+2£B |¢LA ~opldn

" which, integrated over (r,2t7), yields:



. _1{
(3.86) w(F,B.) 5 8(1) + w(L,,B, )+2t i |¢Li‘¢E ldx,
BT/B

because of the monotonicity of w and ¥, our hypothesis (H ), and the
fact we are assuming T < 2 4. We now suppose that aLfﬁ B2T # @, for

every X € (n202,1 n20 ): othefwise, we would have m(LA,B2 ) = 0 for

some of such A's, and the proof of the Lemma would obvlous]y be 0331or.
 We are then precisely in the situation discussed in Step 2 (sce 3. 75)).
Hence, according to (3. 77), (3.80), and (3.82), ‘we derive from (3:21) ;

w(LA’BZ%

A

oy ) € 20(L,,0Q, ) +

(3.87)

-+

2(1-p§)_1[(2?/t)n+1+Pi]w(LA,QA )

for every i e (nzoz,T-nzcz) and every t e(27,1/4).

Recalling (see the last assertion of Step 2) that QA g B B3t
YVt e (1/8,1/4), we get from (3.86),(3.87): '

2,-1 n+1 2 '
m(F,BfJ < 3{1)+2w(LAsB3t)+2(1-PA) [(ZT/t] +p3]w(LA’BSt] +

(3.88)
- "'T 3
+ 21 I ,¢LA-¢Fldx

BT/S

which holds for any t € (1/8,1/4) and any 1) e (nzgzj1-n2c2).
To focus on the real substance of the proof, it seems now conve-
nient to adopt the following '

Convention. Throughout be rest of the pPresent section, ¢ will
denote constants not necessarily. the same at any occurence., Similarly,

c(n) will denote a generdc positive constant, depending only on n.



- 73 -

We remark that all these constants (in particular, cI(n),c (n) in

(3.97)) are easily computable.

We use again (3.17) to estimate w(LA’BSt} in (3.88), thus getting

for- t,\ as before:

N+
.!.

2
g[F,BT) < B(1) + Cw{LA’B3t]+CL{2T/t} pl]w(F’BSt) +

(3.89)
-1
{ - { &
+C | '¢LA ¢F|dHnw1+2T J|¢LA-¢FIdx

T Bi/8
since P, & 1/4 (see (3.77)).
Next, in addition to (3.79), we assume that o also sut. . o-
(3.90) glo) < 1 - [1e(160)171/2

From (3.74) we obtain pi (16T)n+1, and thus the third term in the

1A

right-hand side of (3.89) can be estimated by c(n) cTn+1, in view of
(HZ)ﬁ

To estimate the second term in the right-hand side of (3.89) we use

instead (3.16), which yieIds, in view of (H1):

-

| (B -[Dép{(B,) +£B [6, -op|dH .

WL, ,B) < BLT) + [Dg,

A

Going back to (3.89) we find

! y ' +1
w(F,B ) ¢ cB(1)+c(n)ot" wcliDhy, 1B~ [Deg| (B +

-1
{ —
+ cJ |¢LA ¢F ]dHn_1 + 21 I | ¢ _¢F] dx

L
aBt B1/B
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for every ¢t €(3/8,3/4) and every X € (nzoz,l—nzoz), By integrating
in A we get ((3.83), (3.84), and (3.85)):

B

w(F,B ) < cﬁ(?)+c(n)01n+1+c[j lDf(XJfdx“lﬁ%l(BtJJ+C(n]02 I_ IDE (x) dx +
Be 3/4

fo [ If-epldn v (e/n [ If~oglax

9B, Bi/e

for every t e (3/8,3/4). Finally, by integrating ih t we obtain:

- 3/4
w(F,B_ ) < c8c1)+c(n)0T“*’+cj aeC [ Ipee) lax-1no_lcp.yy »
1 = F t
. 3y B
t
(3.97)
+ c(n) ol [ o) lax « ¢ [ t£20, laxs (c/) [ |£-6_ |ax
Bs/4 Baja - Bys

Now, (3.16) implics that for all t < 1 and almost all ) e |b,]];

—¢Fldﬁn i

. W f
e, ) <Ipg, I8 )+w(r,B) f IéLA

A
Bt
from which, integrating first in A e [0,1], and then in te(0,3/8), we

find, on the account of (3.84), (3.85) ang (H1J:

(3.92) j e o 1B~ I IDf (x) |dx)dt < (3/8)B(1)+ f lf—¢Fldx

0 Bt B3/8

Moreover, setting h(x) = max {3/4-x 1,0} , we find easily that

3/4
(3.93) f h(x) [Df (x) |dx = j dt [inf(x)ldx

o Bt'.
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3/4

w [
f h(x)d[Dg | (x) = ] |D¢Fi(Bt}dt

(o]

since the level sets ({x : h(x) > t} of h are empty whenever t > 3/4

and coincide with B3/4 whenever 0 < t < 3/4, We notice that h is

" ; 2 : . . 1
Lipschitz-continuous, with Lipschitz constant 1 » S0 that [hxp ~h| <¢ .
e 2

Therefore, recalling (3.50), we find:

(3.94) (h(x) [DEG)dx ¢ ((heng) (¥)d Doy [ &) <o (Do | (B, )+ (hiy)d D, | ¢y
= € i F = F 1 F
In conclusion, from (3.92),(3.93), and (3.94), we get:
' . 4 _
( dt(f [Df(x)|dx~|D¢F{(Bt)} < (3/8)8(1)+¢ Do | (B, )+ J | £- ¢y |dx

5/8 B, B3/8

which, combined with (3.91) and (3.44), (3.45), yields:

(3.95) m(F,BT) §c3(11+;jhioin+1+cgz|D¢F|(B])'[02+§(h)+02/TJ-

By (H]} and (3.29) we have |D¢F|(B1J < E(i)+nmn/2. Hence, assuming
that .
(3.96) | T
we gét from (3.95)
n+1
(3.97) m[F,BT} < c1(n)8(1) + Cz(n)cr

as required.Lemma 3.6 is then completely proved, provided we choose

c* € (0,1) such that each ¢ < o* satisfies (3.?9),{3{903, and (3.96),






CHAPTER 4: PROOF OF THE REGULARITY THEOREM

We are now in a position to complete the proof of Theorem 1.9.

We split the demonstration into three steps. Firstwe treat the re-
gularity of the reduced boundary of a set with almost minimal bounda-
ry, then we consider sequences of sets with uniformly almost minimal
boundaries, and finally we discuss the Hausdorff dimension of the sin

gular points.

A general remark is in order: since the conclusions of Theor. 1.9
are of local character, it is clear that, given a set E with almost
minimal boundary in @ , we can restrict our analysis to a (sufficiently
small) neighbourhood of on arbitrary point of Q (actually, the only
interesting case is when that point is in 38EMgQ ). Our main assumption
will then be

n-1
t ) < al(t)-t vx e B_ T

o° 0 0" 0

W(E,B_ , Vte(0,T )

with g(t) as in section 1.11. See also the remark in section 3.4.

Step 1. Given n > 2, o as in 1.11, and <+ satisfying 0<T<min{2—4,1/2c2]

where c, is the constant appearing in (3.47), we indicate by ¢* e (0,1)

the constant whose existence is granted by the Main Lemma 3.6.

Let now E ¢ Rn, X, € 3E, Ro e (0,1), and g, € (0,0*) be such that:

R
o}

(4.1 (¢ a()dt < w L /2(n-1)
Jo = "n-1

n
(4.2) a{Ro) < o, T /4 <,

(4.3) W(E,B_ ) < a(t)-t" ¥x e B and Vte(0,R )
X,t = X o]

]
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(4.4) w(E,B
X

(Roughly speaking, we are assuming that the excess is shall, on a
(small) initial ball in which »E is almost minimal. Applying the
Main Lemma iteratively, wec first show that for every integer h > 0

it holds:

n-1
(4.5) m(E,Bx R ) < Gh Rh
o’ h
where:
h
Rh = T Ro
i-1 h
(4.6) oh = c3 ig1c4 a(Rh_i) + c4 00
c.=c. U ¢ =1l
30071 * 4 T2

and c,,C, are as in (3.47).
In fact, (4.5) reduces simply to (4.4) when h = 0. Assuming that

(4.5) holds for a certain h > 0, and setting

-1
Fyo= Ry (B-x_), B (t) = a(Ryt) for te (0,1}

we find from (4.3) and (4.5);

IR NORE Vx e B, ¥t e (0,1)

n81) ¢ %

Clearly, By ¢ o (section 3.5), while oy g o ¢ o* Vh: for, if h>0,then

i
T U(Rh_ i)

A

a(Ry) ¥i = 0,...,h
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since t-1a(t) is non-increasing on (0,1) (recall (as) of 1.11);hence,

from (4.6) we obtain

h .
-1 i-1
(4.7) g, < C.T a(Rh) i§1(c2t) +C

h = "3
according to (4.2), and our initial assumption T < 1/2c2. We are then
precisely in the situation covered by the Main Lemma 3.6, from which
we derive

n+1 n-1 n-1
w(Fh,BT) < cish(1)+C20hT = (csa(Rh)+c40h)r = 011"

according to (4.6). In conclusion, we find

: n-1
M(E’Bx R ) < “h+1 Rh+1
o’ 'n+l

which is exactly (4.5), with h+1 in place of h.

Next, we show that in the hypotheses (4.1)—(4.4),x0 e 9*E. To this

aim, we observe that from (3.25) and for every h,k > 0:

k-1
|v(E,B ) -v(E,B Y| < .z |v(E,B )-v(E,B )]
xo’Rh+k xo’Rh = 1=0 xO’Rh+i+1 xo’Rh+i
o1 wCE,Bx R ) 1/2
(4.8) <2 .1 o hrd
|D¢E| (B R )
o’ h+i+1
k-1
< 23/2( n T) 1/2 z 01/?
= n-1 i=0o "h+i

by virtue of (4.5),(3.31),and (4.1). See section 2.10.
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According to (4.7), we have:

Opai < 2c1 T a(Rh+i) + T o,
whence
k-1 k-1 k-1 .
1/2 -n. % 1/2 1 i/2
i=o oh+i N [ZC1T ) iéo (Rh+i)ﬂk co) ’ 50
(4.9) 1 Rh -1 1 h/2

f t o /2(t)dt+ZT

Rh+k

-1 .1/2

since t o (t) is also non~increasing, by (as) of 1.11., By the sa-
me reason, we have also:
R R
h h+k
(e.10) £ a2 (t)at gr'kl t a2ty at Vh,k > 0.
o =
Thus, substitution of (4.9) into (4.8) yields, for every h,k >0
v (E,B )-v(E,B. o )|< 4Cc,/u._ 0P o /E LT
x ,R x ,R = 1" "n-1
o’ h+k o’ h
(4.11)
'I tu1a1/2(t)dt . 2S/Z(wn_1_[n-1)-£ . Th/2
)
which shows that {v(E,Bx )} is a Cauchy sequence. Calling v its

o’Rh

limit, we find
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E.B
v xo’Rh) -1
0 <1 - |v]l=lim < lim (2w

hose |DOg| (B, p ) B
o’ h

by (4.5),(3.31),(4.1) and (4.7).

Now, let t e (O,Ro), and call h = h(t) the unique, non-negative

integer, for wich

Rh+1 < t < Rh

Arguing as above (see in particular (4.8), (4.9),(4.10), and (4.11)),

we find
(4.12) w(E,B 1/2
( xo’Rh) /
Iv-v{E,Bx g Iv-u(E,Bx Rh) + 2
© ° |D¢EI(Bx0’Rh+1)
} 1/2-n 1Ry a2 3/2 n-1.-3 h/2
< 4(c1/<%_1) (2-D. 1 L(1-1). I r ol f(r)dr+3.27 ¢ ) ¢
o
Rh+1
< cs j r-1a1/2(r)dr + ce TE}H”/Z
0
ft
1 T o Pmyar v e ar)?
o
where Cg,Cq depend only on n and T,

In conclusion, see (3.2), we have v = vE(xo), i.e. x e J*E as

claimed. Similarly, in the same hypotheses (4.1)~(4.4) we can prove

that 3E = 9*E in a neighborhood of Xg.



-1
g T (see (4.7), and set

For, let N > 1 be such that o o

A

N

§ = (1—T)TN R < R
o o

Then, for every x € Bx 6 we have B N+ 1 cB N , whence:

(TN+IRO)1—1‘1 -w(E,B

by virtue of (4.5). Accordingly, we are again in the situation con-
sidercd at the very beginning of Step 1, i.e. (4.1)-(4.4) all hol
with X and R, replaced by any x e Bx 6f73E and, respectivce

O’

R =1 R « RO. It follows from the preceding discussion that

x € 9*E, for any such x. Moreover, see (4.12), for every xeaEfWBx
O,

and cvery t € (0,R), we have:

(4.13) r‘\JE(XJ"\)(E,Bx 5 J r a]/z(r)dr+(:6{t/R]1/2

Using (4.13), we can easily show that v, varies smoothly on 3E near

E

X To this aim, we put 61 = TZR/Z < §/2 and, given x,y € aEfWBX
0’7

with x # y, we denote by h the unique, positive integer for which

h+2
(4.14) IR < gxey] < TR,

. h .
Then we define s = (1-T)-7t R, t = ThR, so that Bx cB It

follows from (3.25) that
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|v(E,B_ ) - v(E,B

X,s y;t)|§

Hence,

t
Ve = vel < ey f

o
where,

as usual, c_, and g

7

ling that t =

_p Ix-
- Vg (y)|< ¢ - f

o

IvB(X)

wich proves the continuity of the normal vector Vg

particular, when a(t) < const. - t

o,a/2

is of class C (see also

VE

To conclude with the first part

only to show that in the case when
*E N

X, € 3*E 2,

-(4.4) all hold. This is certainly

then it is possible

repeating the preceding argument,

-1 1/2

depend only on n and T.

th, we find from (4.1Q) and

Ww(E,B_ ) |1/2

y,t

2
1Dog] (B, )

and using (4.13), we get

(r)dr +c (t/R) 1/2

Finally, recal-

(4.14):

-1 1/2 3

e x-y | 7R)

(r)dr+c8T

on 3ENB In

x0,61

for ¢ € {0,1), we obtain that

section 1.12).

of the Regularity Theorem, we have
3E is almost minimal in @ and

to pick R0 and o, such that (4.1)-

true, because of almost minimality

(see sections1.5, 1.11, and 1.13)}, and since t m(E B ] tends to
zero as t - 0+, whenever x e 3*E (recall (2.26)).
Step 2. Now, given ¢ as in 1.11, 'I'o e (0,1), and X, e]Rn, we sup-
pose that
n-1
(4.15) w(Eh,Bx,t) <alt)-t Vxeon’To, Vte(O,To), ¥h > 1
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Moreover, we assume Eh -+ Ew on BXO’ZTO. If Xy € 3Eh and
M N
Xh > x € Bx T then clearly Bx T Eh - Bx r Enn ¥re (0,d),
" o h o
with d = T - |x -x |. Furthermore, B c B whenever r < d/2
o 0 Xyt xw,d

and h is large enough. Frem (3.32) we get immediately x € 3E , as
o =]
required. Next, we assume x_¢€ B*EUo , and fix 1t and ¢* as in Step

1. Reasoning possibly on subsequences of {Eh}, we can choose 71e(0,d)

and h > 1 such that Vh > h :
o = = 0
T -1
't "a(t)dt < w ,/2(n-1)
JO = n....'l

alr) < G*Tn/4c1

1

(4.16) r' ""Ww(E ,B ) < 2 o

Y xm,r =

|xh - x_|< r/2
-n-2 N
r1 " j |¢E - ¢E|dHn~1 sl g
h o
9B
X _,T

As a consequence of the almost minimality of BEh, we derive from

(4.16) and (3.17)

rlnnw(Eh,B ) <2 “o* and B c B ¥h > h
x ,v’ = 2

m’ h! oo

Hence:

w(E, ,B_ ) <o (/)"

-h,r/Z
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by virtue of the monotonicity of w . Thus, for every h > ho, we see

that E r/2, and o* are precisely in the situation already discus

h**h’
sed at the beginning of Step 1: we get, in particular, X, € B*Eh ¥h > ho’
while (see (4.13)):

t 1172
h(xh)-vah,Bxh,t)lg ce I s o “(s)ds+c, (2t/1)

3

(4.17) |v Vh > h, Vte(0,r/2)

E
e}

Similarly, observing that E_ is also almost minimal (because of (4.15)
and (3.12)), we obtain

t

(x,)-V(E,,B, t)|§ Ce Is-1a1/2(s)ds+cé2t/r)

o]

3

(4.18) |v ¥te(0,1/2).

E

o ow?

Moreover, it si not difficult to show that

(4.19) 11msup|v(Eh,Bx t)-v(Em,B

) I< cga(t) for a.e. t e (0,1/2).
h=+ o h? -

X, T

This follows e:g. by inserting

D¢Eh(me,t) D¢Em(wa,t)
, V(E_,B ) , and
Doy (B ) Xt Do, (B )
h *ne h X
as intermediate points between v(Eh,Bx t) and v(Em,Bx t), and

h? o?
then by using (3.19),(3.16) and almost minimality to estimate the

four partial distances.

Combining (4.17),(4.18), and (4.19) we get immediately the conver-
(x_).

gence of v (xh) toward VE

h 0

As a by-product of the preceding discussion, we obtain that whenever

E
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the open se A contains the singular points of 9E_, then it also
contains the singular points of aEh, for h large enough. More pre-

cisely, denoting by Ih the singular set aEh\ B*Eh, from the assumption

z_ N XKeA

(K compact < Bx ), we derive immediately that

o’To
EhanA

for cvery sufficiently large h. This, in turn, implies that

(4.20) H (2, M K)

v

o
: N
limsup Hs(fh K)

h »+

where, for every real s > 0 and every X ¢ R" we de

0
=]

. . s
1nf{i§T (diam A;)” : A, open, X ¢ .U, Ai}

o -s
HS(X) = wSZ
(sce [13], p. 767, and [27], 2.6.4).

We end this part by recalling two general facts cecncerning H:

(see [12], 2.10.2 and 2.10.19 (2), and [27], 2.6.4):

(4.21) H:(X) =0 if and only if H_(X) = 0

. -1 -5 @ ) s
(4.22) limsup wo t HS(X Bx ) > 2 for Hs -~a.e. xeX.

+
t + o0

s L

SZep 3. To conclude the proof of the Regularity Theorem, we have

only to show that HS(ZEr\Q) = 0, whenever E has almcst minimal boundary

in @ ¢ Rn and s > n - 8, with:
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= 3E ~ 3*E.
EE

This follows easily by '"blowing-up'" at singular points (see the
final part of Prop. 3.4), and then by using known results concerning
the existence and non-existence of singular minimal cones in IR?, for

which we refer the reader to [27], sections 2.6 and 2.7.

By (4.22), assuming that E satisfies:

n-1
(4.23) w(E,Bx,t) < a(t).t ¥x e Bx T ¥t e (O,To)
o’ o
and that
m
(4.24) HSEXE Bx T ) > 0,
o’ o

we can choose x e £ N Bx

E and a sequence {th', satisfying

]

o] 0]
© N -s-1_s
(4.25) tn+0 and Hs(zE Bx,th) > w 2 th Vh.

Setting Eh = tﬁl(E-x), and passing to a subsequence if necessary,

we find (in view of Prop. 3.4) that {Bh} converges to a minimal

cone C0 c JRn, for which

. "z N
'(4.26) HS(EC B1) >0,
o
by virtue of (4.20) and (4.25). This way, starting from a set E c R"
with almost minimal boundary (sece (4.23)) and satisfying (4.24), we

obtain a minimaf cone Co with the same property, namely:

n

M
(4.27) Co c R and HS(ZC B1) > 0

o]
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(see 4.26) and (4.21)). Now, it is well known that minimal cones in
R" have smooth boundary up to dimension 7 (included}. Therefore, if

(4.24) holds for a certain s > 0, then necessarily n > 8.

On the account of Simon's cone C ¢ RS (see 1.4), we see that (4.27)

may really hold, when n = 8 and s = 0.

On the other hand, if (4.27) holds with s > 0, then we can repeat
the above procedure, blowing-up BCO near a singular point different

from the vertex, thus getting a minimal cyfindexr Q = C, x R, with the

1
property that HS(ZQ) > 0. In such a case however, the transversal
scction C] of Q would 1likewise be a minimal cone in mﬁ'l, with

in addition:

s-1 CT
An easy induction then shows, that if (4.24) holds with s > m (m
a non-negative integer), then there exists a minimal cone Cm c_m“"m,

satisfying

From the preceding discussion, we see that (4.24) implies s n-8,

A

In view of the preceding considerations, this concludes the proof of the

Regularity Theorem.
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