
1 Introduction
Most of the models of spatial discrimination with quantity competition exhibit a
unique agglomerated equilibrium when the market space is linear and bounded.
This result crucially depends on a restriction on the admissible levels of the unit
transportation cost - restriction which is indeed imposed by many authors, in
order to ensure that for any location pairs both firms deliver positive quanti-
ties over the whole market (Hamilton et al 1989, Anderson and Neven, 1991).
However, agglomeration implies full symmetry of firms’ behaviour at all market
addresses, thus making the spatial dimension eventually irrelevant at equilib-
rium. Moreover, within the above framework, and under the same restriction
on costs, Shimizu (2002) has shown that the agglomeration result is robust to
the introduction of an element of product differentiation, and therefore that the
degree of substitutability/complementarity is immaterial in the definition of the
firms’ optimal locations.
This paper discusses the role of product differentiation when the range of

admissible values of the unit transport costs is extended to those consistent
with full market coverage by both firms at equilibrium. By allowing for higher
values of t, the existence of an additional dispersed solution with full coverage,
originally suggested by Hamilton et al, is confirmed in the case of substitute
goods for a range of the transportation costs, the width and bounds of which
are shown to depend on the degree of substitutability. Moreover, the paper
shows how the latter interacts with t in the definition of the optimal dispersed
locations.
The paper is organized as follows. In the next section we modify the stan-

dard model of spatial discrimination with Cournot competition by introducing
the Deneckere (1983) inverse demand function in order to capture product dif-
ferentiation. The solution for the Subgame Perfect Nash Equilibria (SPNE) of
the game is then followed by a brief discussion of their properties and of the
role of product differentiation. Section 3 concludes.

2 The model
In a spatial market two firms (labeled 1 and 2) are assumed to decide their
location along a segment of length l (normalized to 1 in the sequel) and then to
engage in quantity competition at all sites. Consumers are uniformly distributed
along the segment, a consumer’s location being denoted by x ∈ [0, 1]. Let a be
the location of firm 1 and 1 − b the location of firm 2 (i.e. b is the distance
of firm 2 from the right endpoint of the segment), with a + b ≤ 1. When
firms 1 and 2 deliver their product to a location x, they bear a freight cost,
linear in distance, respectively denoted by t |a− x| and t |1− b− x|. We also
assume that each firm incurs a constant and equal to zero marginal and average
cost of production. The products of the two firms may be either substitutes
or complements, so that in each address x market demand is given by pi (x) =
1 − γqj (x) − qi (x) (with j 6= i), where γ ∈ [−1, 1] (with γ 6= 0) denotes
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the degree of substitutability/complementarity between the two goods,1 and
qi (x) indicates the quantity shipped by firm i at x. As fairly standard in this
literature, we rule out the possibility of arbitrage 2.
When solving the two stage game in quantities and locations, we remove the

common assumption t < 1/2, and allow for higher values of t. In particular, our
purpose is to extend the analysis of the quantity-location game with complement
or substitute goods to all those values of t which support duopolistic competition
at equilibrium over the entire space. In a perfect substitutability framework,
i.e. when γ = 1, Chamorro Rivas (2000) has shown that the range of values
of t for which an agglomerated equilibrium with the above properties exists,
extends to t = 1, while a dispersed symmetric equilibrium arises for the range
t ∈ ]2/3, 10/11[. In what follows we investigate how different values of γ affect
these ranges and the way in which γ may, under some circumstances, interact
with t in determining the firms’ optimal locations. It must be stressed that,
since we want to concentrate on market configurations with full coverage by
both firms, we do not analyze possible equilibria entailing monopolistic areas.

2.1 The two-stage game

The two-stage game is solved backwards. The structure of the problem is such
that the decisions on quantities at a specific point x are independent of the
decisions at other points.
Given the demand function pi = 1− γqj − qi, by solving

max
wrt qi

πD1 (q1, q2, a, b, x) = (1− γq2 − q1 − t |a− x|) q1
max
wrtq2

πD2 (q1, q2, a, b, x) = (1− γq1 − q2 − t |1− b− x|) q2

we obtain the following Nash equilibrium in quantities at x:

q∗1 (a, b, γ, x) =
2− γ + γt |1− b− x|− 2t |a− x|

(2 + γ) (2− γ)
(1)

q∗2 (a, b, γ) =
2− γ − 2t |1− b− x|+ γt |a− x|

(2 + γ) (2− γ)
(2)

If the entire market is served by the two firms at equilibrium, then at the location
stage any equilibrium pair (a, b) maximizes

ΠD1 (a, b, γ) =

Z 1

0

¡
πD1 (a, b, γ, x)

¢
dx

ΠD2 (a, b, γ) =

Z 1

0

¡
πD2 (a, b, γ, x)

¢
dx

1We recall that γ < 0 denotes complementarity, while γ > 0 denotes substitutability.
2 See, e.g. Hamilton et al. (1989) for a discussion.
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where

πD1 (a, b, γ, x) =

Ã
(2− γ + γt |1− b− x|− 2t |a− x|)2

(4− γ2)
2

!
(3)

πD2 (a, b, γ, x) =

Ã
(2− γ − 2t |1− b− x|+ γt |a− x|)2

(4− γ2)2

!
(4)

From the solution of the First Order Conditions, we obtain an agglomerate
outcome

a∗ = b∗ =
1

2
(5)

which is invariant with respect to γ, and a dispersed outcome

a
0
(γ, t) = b

0
(γ, t) =

(γ − 2) (t− 2)
4γt

(6)

where a
0
and b

0
depend negatively on γ and t. This latter configuration collapses

to that found by Chamorro Rivas, a = b = (2− t) /4t when γ = 1.
For (5) and (6) to be Nash solutions of the locations game, however, some re-

strictions on the parameters’ values must be imposed. First of all, feasibility re-
quires a+b ≤ 1 which in the case of (6) implies t ≥ tmin (γ) = 2 (2− γ) / (γ + 2).
As far as the Second Order Conditions (SOCs) are concerned, they are satisfied
at (5) for 0 < t < 2 − γ, at (6) for all non-negative values of γ. This enables
us to rule out the existence of a dispersed equilibrium when the products are
complements.
Finally, the above locations stem from profit maximization under the hy-

pothesis of full market coverage by both firms. For them to be an equilibrium
they must be consistent with this hypothesis and must be régime-change proof:
i.e., we have to observe duopolistic interaction over the entire segment at equilib-
rium, and the firms must not perceive any incentive to deviate towards location
that deliver a different coverage pattern. For this purpose, we establish the
following proposition.

Proposition 1 The agglomerated outcome is a SPNE with full market cover-
age by both firms when t < 2. The dispersed outcome is a SPNE with full
market coverage by both firms when γ > 0 and t ∈ [tmin (γ) , tcover (γ)[, where
tcover (γ) = 2 (3γ + 2) (γ − 2) / ¡γ2 − 8γ − 4¢.
Proof. See the Appendix
Therefore, on the basis of the feasibility condition, the SOCs and Proposition

1, we can fully characterize the equilibria with global duopolistic interaction.

Proposition 2 When the products of the two firms are complements (γ < 0)
the agglomerated pattern a∗ = b∗ = 1/2 is the unique SPNE for all t < 2.
When the products are substitutes (γ > 0), a = b = 1/2 is the unique SPNE
for t ∈ £

0, tmin (γ)
¤
, while it coexists with the dispersed solution a

0
= b

0
=

((γ − 2) (t− 2)) /4γt for t ∈ [tmin (γ) , tcover (γ)[.
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Proposition 2 states that a dispersed equilibrium with overall duopolistic
interaction exists (and therefore multiplicity of equilibria arises) only when the
goods are substitutes, provided that the transportation cost lies in a well-defined
range. On the contrary, agglomeration is the unique equilibrium outcome con-
sistent with complementarity. The intuition behind this result is related to the
different forces driving the choice of locations: a cost-saving effect which induces
firms to move towards the center in order to minimize transport costs, and a
strategic effect leading firms to locate further apart from each other in order to
soften competition, i.e. to exploit the advantages of serving at low costs areas
where the rival firm delivers lower quantities. Only the former effect is relevant
when the goods are complements. In this case, inspection of (1) and (2) reveals
that the output of each firm is univocally decreasing in t. For this reason the
two firms will only choose at equilibrium locations in which transportation costs
are minimized. Conversely, it is the interplay of both effects which determines
multiplicity of equilibria under the hypothesis of substitutability.

2.2 The properties of the equilibrium locations

Equilibria (5) and (6) exhibit some quite common properties. By evaluating at
(6) the optimal quantities (1) and (2) over the entire market, it is easy to check
that the so-called quantity median property is verified.3 Moreover, when the
conditions for multiplicity are met, the profits of the two firms turn out to be
higher at the dispersed solution rather than at the agglomerated one (Chamorro
Rivas, 2000).
The most relevant feature of the model, however, is that the dispersed equi-

librium is actually influenced by the degree of substitutability. While low trans-
portation costs leave no role for substitutability at the unique agglomerated
equilibrium, at the dispersed equilibrium observed for t ∈ [tmin (γ) , tcover (γ)[
the degree of substitutability matters. First of all, γ clearly influences the
threshold values tmin (γ) and tcover (γ), and the width of the above interval. As
γ decreases from 1 to 0 (in the limit), tmin (γ) increases from 2/3 to 2, and
tcover (γ) increases from 10/11 to 2. Moreover, since d (tcover (γ)− tmin (γ)) /dγ
is always positive for γ > 0, the above interval progressively shrinks, clearly
collapsing in the limit to t = 2. Therefore, for each value of γ we have a dif-
ferent range of values of t supporting the dispersed equilibrium: the lower is
γ, the narrower is the interval [tmin (γ) , tcover (γ)[, but the higher are both its
threshold values: an appropriate degree of imperfect substitutability makes high
levels of t (up to t = 2) consistent with duopolistic interaction over the entire
market both at the agglomerated and at the dispersed equilibrium.
Inspection of (6) shows that for t < 2, the optimal distance from the end-

points is decreasing in γ for given t, and decreasing in t for given γ: the lower

3The quantity median property (each firm sells an identical total quantity at the left and
at the right of its location) has been first proved by Hamilton et al (1989) in a framework of
perfect substitutability and uniform distribution of consumers. It has been extended by Gupta
et al (1997) to a variety of symmetric distributions. Gupta et al (2004) verify this property
in a circular city context, while Pal and Sarkar (2002) prove it for multistore competition.
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is product substitutability, the lower is the incentive of firms to separate from
each other; the higher is the transportation costs, the wider is the distance sep-
arating the two firms at the dispersed equilibrium. Figure 1 synthesizes these
results. It shows the optimal distance from the endpoints as a function of γ, for
given values of t, the inner curves being associated to higher levels of the latter.
The SPNE values of a (= b), evaluated for each γ and t, are those comprised in
the shaded area. For example, all points in the vertical segment AB represent
firm i’s optimal locations when γ = γ0, as t varies from tmin (γ0) to t

cover (γ0),
while the interval [γ0, γ

0] is the range of values of γ which supports a dispersed
equilibrium with full market coverage by both firms, when t = 6/5.

3 Final remarks
In this paper we have extended the analysis by Shimizu (2002) who argues that
the degree of product substitutability doesn’t alter the equilibrium solution in
locations when firms compete on a linear city and the unit transportation cost is
upper bounded at t = 1/2. This restriction ensures full market coverage by both
firms from all pairs of locations; it is therefore a sufficient, but not a necessary
condition for duopolistic interaction over the entire market at the SPNE loca-
tions. By deriving the less restrictive necessary conditions, we show that when
the products are substitutes, the dispersed solution, coexisting with the agglom-
erated one, is indeed affected by the degree of substitutability. As goods become
less substitutable, the distance between the firms at the dispersed equilibrium
narrows, while the range of values of t consistent at equilibrium with full market
coverage by both firms shrinks and shifts upwards. Imperfect substitutability
softens competition: from the one side both firms may profitably reach distant
locations even in the presence of high transportation costs; from the other side
firms may interact from closer locations at the dispersed equilibrium. Shimizu’s
result turns out to be a special case; it applies when the agglomerated equilib-
rium is unique, i.e., for a subset of the admissible values of t when the goods
are substitutes, for all admissible t when the goods are complements.
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Appendix
Consider the dispersed solution a

0
= b

0
= (γ − 2) (t− 2) /4γt. We have already

verified that it satisfies the SOCs for all non-negative values of γ, and the
feasibility requirements for t ≥ tmin = 2 (2− γ) / (γ + 2). Now we have to
check under which conditions it is also consistent and deviation-proof. Since
the locations corresponding to (6) respectively maximize (3) and (4), which
assume duopolistic interaction over the entire market, consistency requires that
from those locations both firms deliver positive quantities at all sites. Given
that the site in which each firm delivers the lowest quantity is the opposite
endpoint of the market segment, this requirement is met if, e.g., the quantity
delivered by firm 1, q∗1 = [2− γ + γt |1− b− x|− 2t |a− x|] / (2 + γ) (2− γ) is
positive in x = 1, when evaluated at (6). This is actually verified for t < tcover =
2 (3γ + 2) (γ − 2) / ¡γ2 − 8γ − 4¢, with tcover > tmin for γ ∈ (0, 1].4
Therefore, in the case of substitutability, there is an interval of values of t

for which the dispersed solution is consistent. For it to be a SPNE, however, we
have to prove that for these values of t there is no incentive for one of the two
firms to deviate, thus generating a different pattern of market coverage (with
monopolistic areas for one or both firms). For this purpose we first notice that, if
firm 2 chooses b

0
= (γ − 2) (t− 2) /4γt, for t ∈ £tmin, 2 ¡γ − γ2 + 2

¢
/ (3γ + 2)

¤
,

the decisions of firm 1 are such that:

(i) if a ∈ ](10t+ 6γ − 12− γt) /8t, (3γt+ 2t+ 2γ − 4) /4γt], the entire market
is covered by both firms and profits of firm 1 are

Π1 (a, γ, t) =

Z 1

0

¡
πD1 (a, b

∗ (γ, t) , γ, t, x)
¢
dx (A1)

(ii)if a ∈
i
1
tγ

³
(2− t) γ−22γ − 2 + γ + 2t

´
, (10t+ 6γ − 12− γt) /8t

i
, firm 2 (but

not firm 1) is monopolist in a segment external to its location and at the extreme
of its market side; profits of firm 1 are therefore

Π1 (a, γ, t) =

Z ρ1

0

¡
πD1 (a, b

∗ (γ, t) , γ, t, x)
¢
dx (A2)

(iii) if a ∈
i¡
2t+ 3γt− 4− 2γ + 2γ2¢ /4γt, 1tγ ³(2− t) γ−22γ − 2 + γ + 2t

´i
, both

firms are monopolist in a segment external to their location and at the extreme
of their market sides; in this case we have that

Π1 (a, γ, t) =

Z ρ2

0

¡
πM1 (a, γ, t)

¢
dx+

Z ρ1

ρ2

¡
πD1 (a, b

∗ (γ, t) , γ, t, x)
¢
dx (A3)

(iv) if a ∈ £0, ¡2t+ 3γt− 4− 2γ + 2γ2¢ /4γt¤, both firms are monopolist in a
segment in their market side which includes their locations, so that

Π1 (a, γ, t) =

Z ρ3

0

πM1 (a, t, x) dx+

Z ρ4

ρ3

¡
πD1 (a, b

∗ (γ, t) , γ, t, x)
¢
dx (A4)

4We would have obtained the same condition by setting q∗2 > 0 in x = 0.
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where the options (iii) and (iv) are viable only if t > 2
¡
γ − γ2 + 2

¢
/ (3γ + 2),

a threshold value which belongs to [tmin, tcover],5 and

ρ1 =
12− 6γ − 3γt− 2t+ 8at

4 (2− γ) t
, ρ2 =

2− γ − 2t+ (t− 2) γ−22γ + γta

(γ − 2) t

ρ3 =
γ − 2 + 2t− (t− 2) γ−22γ + γta

(γ + 2) t
, ρ4 =

2− γ + γt− 1
4 (t− 2) (γ − 2) + 2ta
(γ + 2) t

are the relevant boundary points between the sections of the segment with
different coverage configurations, Clearly, πM1 (a, t, x) = (1− t (a− x) /2)2 is
the monopoly profit at a location x.
By substituting for πD1 (a, b

∗ (γ, t) , γ, t, x) and πM1 (a, t, x) in the above ex-
pressions, it is easy to check that for both intervals of t the profit function
is continuous overall. Moreover, tedious but straightforward calculations show
that the profit functions (A2), (A3) and (A4) have no local maxima in their
domain. This implies that the maximum a

0
= (γ − 2) (t− 2) /4γt of the profit

function (A1) is not only consistent (i.e. belongs to the domain of that function),
but is also a global maximum.
A similar procedure can be applied also to the agglomerated equilibrium.

5Notice that for t = 2
¡
γ − γ2 + 2

¢
/ (3γ + 2), the lower bound of the interval in (ii) is

equal to zero.
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Figure 1. The pattern of the dispersed equilibrium
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