
1 Introduction

In his 1986 paper, Esteban suggests that for many applications the size dis-
tribution of income may be usefully described by the income share elasticity,
as an alternative to the conventional density representation. This notion is
put forward as a convenient way to impose stylized-fact restrictions to be
tested against the empirical evidence, and to provide criteria for identifying
di®erent classes of distributions.
On the other hand, in many economic applications the interesting feature

to be studied is income dispersion, usually measured by indices of (¯rst or
second order) stochastic dominance. In this note we draw a link between
the two, by providing su±cient conditions on the shape of the income share
elasticity which support (¯rst or second order) stochastic dominance { that
is, such that a given shock to the income share elasticity has dispersion e®ects
as measured by stochastic dominance.
The paper's main results are presented in the next section, while conclud-

ing remarks are gathered in section 3.

2 Income share elasticity and income disper-

sion

Income is distributed over some support (ym; yM), yM > ym ¸ 0, according
to the density f(y; µ) > 0 for all y 2 (ym; yM), such that the distribution
of income is de¯ned by F : (ym; yM) £ R ! [0; 1]. The real parameter µ
measures a shift of the distribution which may be thought of as an index
of dispersion, to be made more precise below. Letting subscripts denote
derivatives, Esteban's income share elasticity is de¯ned as

¼(y; µ) = lim
h!0

d log

µ
1

¹

R y+h
y

xf(x; µ)dx

¶
d log y

= 1 +
yfy(y; µ)

f(y; µ)
(1)

and measures the relative marginal change in the share of income accruing
to class y, brought about by a marginal increase in y. A one-to-one rela-
tionship exists between ¼ and the conventional density representation of the
size distribution of income. Esteban (1986, p.443) identi¯es three restrictions
which seem well supported by empirical evidence, and can be formalized us-
ing (1): (i) the weak-weak Pareto Law, according to which ¼ approaches
some constant value ¡® < 0 as y tends to in¯nity; (ii) the existence of at
least one mode, which implies that ¼(y; µ) = 1 has at least one solution over
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the support of the distribution; and (iii) that ¼ exhibits a constant rate of
decline, implying for all y that either ¼y(y; µ) = 0, or the elasticity of ¼y(y; µ)
is a negative constant. A generalized three-parameter Gamma distribution
satis¯es all of these.1

As to stochastic dominance (SD), it is well known (e.g., Hirshleifer and
Riley, 1992, ch.3) that a change in the parameter µ identi¯es a ¯rst or sec-
ond order SD shift of the distribution whenever the following conditions are
satis¯ed for all y 2 (ym; yM):

Fµ(y; µ) · 0 (2)

for ¯rst order SD; andZ y

ym

Fµ(x; µ)dx · 0 (3)

for second order SD; both inequalities hold strictly somewhere over the sup-
port of the distribution. It is a well known fact, widely used in economic
applications, that the expected value of any increasing (increasing concave)
function is increasing in µ whenever the latter measure ¯rst (second) order
SD.
The following proposition establishes su±cient conditions on ¼, for µ to

be a ¯rst-order SD parameter.

Proposition 1 If ¼µ(y; µ) > 0 for all y 2 (ym; yM ), then µ is a ¯rst-order
stochastic dominance parameter of F (¢; ¢), that is Fµ(y; µ) · 0 for all y 2 Y .

Proof. Let ¸(y; µ) = fµ(y; µ)=f(y; µ), with f (y; µ) > 0 for all y 2
(ym; yM ). It is easily seen that ¼µ(y; µ) = y¸y(y; µ), so that ¼µ(y; µ) > 0
for all y means that ¸(y; µ) is monotonically increasing in y for any given
µ. By de¯nition

R yM
ym
¸(y; µ)f(y; µ)dy = Fµ(yM ; µ) = 0, which, f(y; µ) being

positive and the overall integral nil, implies that ¸(y; µ) takes both negative
and positive values. Since ¸(y; µ) is increasing in y, the smallest (negative)
value of y identi¯es the minimum of ¸, occurring at y = ym and, by the same
token, ¸(yM ; µ) > 0 is a maximum for ¸. Hence, there is a unique value by of
y such that ¸(by; µ) = 0. Consider now the function Fµ(y; µ) = R yym fµ(x; µ)dx,
the ¯rst derivative of which is fµ(y; µ) = ¸(y; µ)f(y; µ). Since signffµ(y; µ)g =
signf¸(y; µ)g, fµ(y; µ) vanishes at by which is the unique minimum for Fµ(y; µ).
As ¸(y; µ) is negative (positive) for y close to ym (yM ), so will be fµ(y; µ):

1Esteban points out that \the Pareto, Gamma and Normal density functions correspond
to constant, linear and quadratic elasticities, respectively" (1986, p.442).
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Fµ(y; µ) points down (up) around ym (yM ). As Fµ(ym; µ) = Fµ(yM ; µ) = 0,
Fµ(y; µ) lies below the zero line: µ is then a ¯rst order SD parameter.

An immediate implication of Proposition 1 concerns Esteban's ¯nding
(1986, p.444) that the family of distributions obeying all three restrictions
mentioned above2 are such that

¼(y; ¢) = ¡®+ (¯=²)y¡² (4)

with ® > 1, and ¯; ² > 0: a decrease (increase) in ® (¯) is a ¯rst order
SD shock, and accordingly raises mean income. More generally, ¯rst order
stochastic dominance clearly implies (inverse) Lorenz dominance. This can
also be seen using directly Proposition 1:

Corollary Consider two distributions f (y; µi), i = 1; 2 such that ¼1 =
¼(y; µ1) > ¼2 = ¼(y; µ2) for all y. Then f(y; µ2) Lorenz-dominates f(y; µ1).

Proof. De¯ne bfi(y) = (1=¹i)yf(y; µi) > 0, which can be treated as a
density. It is easily seen that the corresponding Esteban elasticity b¼i satis¯esb¼i = 1 + ¼i. There follows that b¼1 > b¼2 and hence, by Proposition 1,bF2(y) = R y

ym
bf2(x)dx > bF1 = R y

ym
bf1(x)dx for all y, which is equivalent to

Lorenz dominance.3

The Corollary may be convenient whenever elasticities are involved in
assessing Lorenz dominance. For example, it is well known that the distribu-
tion of post-tax income Lorenz dominates that of pre-tax income if taxation
is progressive (e.g., Lambert, 2001, p.190). This result follows immediately
if we identify i = 1 with pre-tax and i = 2 with post-tax income: it is then
readily seen that b¼1 ¡ b¼2 = 1¡R, where R is residual progression (which of
course is less than one by the de¯nition of progressive taxation).4

We now take up second order SD. The following proposition establishes
conditions on ¼ for µ to be a parameter of second order SD.

2With the proviso that the mode m is unique and satis¯es m =
³
¯
²

1

1+®

´1=²
.

3An alternative proof, not involving ¯rst order stochastic dominance, may be based on
Lambert's Lemma 8.1 (2001, p.200), according to which ifm(y) and n(y) are two attributes
of an income distribution, the m-concentration curve dominates the n-concentration curve
i® the y-elasticity of m (em, say) lower than that of n (en). In our case, let the income
distribution be f(y; µ2), and de¯ne m(y) = 1 and n(y) = f(y; µ1)=f(y; µ2) > 0: then
em = 0 and en = ¼1 ¡ ¼2, so that em < en is ¼1 > ¼2.

4More speci¯cally, given the distribution f(y) of pre-tax income, one has bf1(y) =
(1=¹)yf(y); and bf2(y) = [y ¡ t(y)]f(y)=(¹¡ T ) for post-tax income, where t(¢) > 0 is the
tax schedule and T is total tax liabilities. Then b¼1 = 1+¼ and b¼2 = R+¼. Here, ¼ is the
Esteban elasticity of f and R = y[1¡ t0(y)]=[y¡ t(y)]: See e.g. Lambert (2001, p.196-97).
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Proposition 2 Assume ¹µ ¸ 0. Then, if ¼µ(y; µ) is monotonically decreas-
ing in y and crosses zero at some ey 2 (ym; yM), µ is a second order stochastic
dominance parameter.

Proof. From Proposition 1, ¼µ(y; µ) monotonically decreasing in y im-
plies that y¸y(y; µ) is decreasing, i.e. ¸y(y; µ) + y¸yy(y; µ) < 0. Sinceey¸y(ey; µ) = 0 = ¸y(ey; µ) and ¸y(ey; µ) + ey¸yy(ey; µ) = ey¸yy(ey; µ) < 0 (all y
being positive), ey is the unique interior maximum of ¸(y; µ). By de¯nitionR yM
ym
¸(y; µ)f (y; µ)dy = Fµ(yM ; µ) = 0: hence, ¸(y; µ) takes on both positive

and negative values, which implies ¸(ey; µ) > 0. As this is the unique turning
point of ¸, there are either one, or two interior values of y where ¸(¢; µ) = 0.
(a) Suppose there is only one such value, y0 say. Then note that y0 <ey. To see this, assume to the contrary y0 > ey, so that ¸(y; µ) > 0 for

y < y0, and ¸(y; µ) < 0 for y > y0; then Fµ(y; µ) =
R y
ym
fµ(x; µ)dx > 0 for

all y: indeed, its ¯rst derivative is fµ(y; µ) = ¸(y; µ)f (y; µ) and f(y; µ) > 0
implies signffµ(y; µ)g = signf¸(y; µ)g: fµ(y; µ) vanishes at y0, which is the
unique maximum for Fµ(y; µ), with fµ(y; µ) positive (negative) for y lower
(higher) than y0. Thus Fµ(y; µ) points up (down) around ym (yM ) and, as
Fµ(ym; µ) = Fµ(yM ; µ) = 0, it lies above the zero line. But this contradicts
the assumption ¹µ ¸ 0, since it implies trivially ¹µ < 0. Hence, indeed y0 <ey, and so ¸(y; µ) < 0 for y < y0, and ¸(y; µ) > 0 for y > y0. Now we
can apply the same reasoning, and take the function Fµ(y; µ). Its derivative
fµ(y; µ) obeys signffµ(y; µ)g = signf¸(y; µ)g and vanishes at y0, the unique
minimum for Fµ(y; µ). As ¸(y; µ) is negative (positive) for y lower (higher)
than y0, so will be fµ(y; µ): Fµ(y; µ) points down (up) around ym (yM). As
Fµ(ym; µ) = Fµ(yM ; µ) = 0, Fµ(y; µ) lies below the zero line: µ is then a ¯rst
(and hence second) order SD parameter.
(b) Consider now the case where there exist two values of y, y1 < y2

say, such that ¸(y1; µ) = ¸(y2; µ) = 0. Then (i) ey 2 (y1; y2); (ii) ¸(y; µ) <
0 for y =2 (y1; y2) and ¸(y; µ) > 0 for y 2 (y1; y2). As signffµ(y; µ)g =
signf¸(y; µ)g, the same goes for fµ(y; µ): thus Fµ(y; µ) is decreasing around
ym, and has a negative minimum in y1; also, it is decreasing around yM , as
Fµ(yM ; µ) = 0 and y2 identi¯es a positive maximum. This implies `single
crossing', as there is only one value y¤ 2 (y1; y2) such that Fµ(y

¤; µ) = 0.
De¯ne now S(y; µ) =

R y
ym
Fµ(x; µ)dx, so that obviously Sy(y; µ) = Fµ(y; µ).

Since there is single crossing at y¤ (where Sy(y
¤; µ) = 0) and Syy(y

¤; µ) =
fµ(y

¤; µ) > 0, y¤identi¯es the unique turning point, which is minimum. As
S(ym; µ) = 0 and ¹µ ¸ 0 implies S(yM ; µ) · 0, S(y; µ) always lies below the
zero axis and µ is an index of second order SD. If ¹µ = 0 = S(yM ; µ), it is a
(inverse) mean preserving spread.
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In analogy with Proposition 1, one implication of Proposition 2 is that it
throws a bridge between the income share elasticity and Lorenz dominance.
While obviously the discussion of Proposition 1 applies also to case (a) of
the proof (which actually delivers ¯rst order SD), case (b) is connected with
Shorrocks' generalized Lorenz dominance: as is well known, if the function
S(y; µ) used in the proof does not change sign, generalized Lorenz curves
never intersect (e.g., Lambert, 2001, p.55).5

3 Concluding remarks

The notion of income share elasticity can have useful economic applications,
for example when dealing with the relationship between income distribution
and the price elasticity market demand (Benassi et al., 2002). In this note
we have outlined the relationship between (¯rst and second order) stochastic
dominance, and the way income share elasticity depends on the distribution
parameters; this also allows to see some related implications in terms of
Lorenz dominance.
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5This can be directly seen by de¯ning the generalized Lorenz curve as L(p; µ) =R p
0
y(p; µ)dp, where y(p; µ) satis¯es F (y; µ) = p so that dp = f(y; µ)dy + Fµ(y; µ)dµ.

By implicit di®erentiation, yµ(p; µ) = ¡Fµ(y(p; µ); µ)=f(y(p; µ); µ) so that Lµ(p; µ) =R p
0
yµ(p; µ)dp = ¡

R p
0
Fµ(y(p; µ); µ)=f(y(p; µ); µ)dp = ¡

R y
ym
Fµ(y; µ)dy = ¡S(y; µ). As es-

tablished above, the latter is positive in case (b) of the proof of Proposition 2.
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