or, equivalently, when

$$n_h \gamma_h^{1-\sigma} \sum_{j=1}^h n_j \gamma_j^{1-\sigma} + n_h \gamma_h^{1-\sigma} n_{h+1} \gamma_{h+1}^{1-\sigma} - n_{h+1} \gamma_{h+1}^{1-\sigma} \sum_{j=1}^h n_j \gamma_j^{1-\sigma} > 0$$
(40)

Expression (40) is true when

$$\frac{\sum_{j=1}^{n} n_{j} \gamma_{j}^{1-\sigma}}{\sum_{j=1}^{h-1} n_{j} \gamma_{j}^{1-\sigma}} > \frac{n_{h+1} \gamma_{h+1}^{1-\sigma}}{n_{h} \gamma_{h}^{1-\sigma}}$$

1

We substitute n_{h+1} from (21) and we obtain

$$l \equiv \frac{\sum_{j=1}^{h} n_j \gamma_j^{1-\sigma}}{\sum_{j=1}^{h-1} n_j \gamma_j^{1-\sigma}} > \frac{L_R \gamma_{h+1}^{1-\sigma}}{a \gamma_h^{1-\sigma}} = \frac{L_R}{a} \left(\frac{\gamma_h}{\gamma_{h+1}}\right)^{\sigma-1}$$

where the left term in the inequality, l, is always larger than 1. Therefore, given that $\gamma_{h+1} < \gamma_h$, we may at least state that $b_h > b_{h+1}$ is true, when $\frac{L_R}{a} \left(\frac{\gamma_h}{\gamma_{h+1}}\right)^{\sigma-1} < l$. That is when

$$1 < \left(\frac{\gamma_h}{\gamma_{h+1}}\right)^{\sigma-1} < \frac{a}{L_R}l \tag{41}$$

Expression (41) says that when the process innovation produces a reduction in γ which is not relatively high, then b_i decreases.

Appendix B

Following Grossman and Helpman (1991, p. 63) we define the index of the manufactured output

$$D \equiv \left(\sum_{m=1}^{i} n_m x_m^{\alpha}\right)^{\frac{1}{\alpha}}$$

where $\alpha = \frac{\sigma-1}{\sigma}$, while the ideal price index of final goods is p_D .

The gross domestic product (GDP), G, is defined as the sum of the value added in manufacturing and in the R&D sector

$$G \equiv p_D D + v_i \dot{n}_i$$

We know from Grossman and Helpman (1991, p. 63) that the growth of the real GDP is equal to a weighted average of the growth rates of the manufactured good index, g_D , and of the research output, g_i , with weights given by sector's value shares. In particular, the manufactured goods share is given by $\theta_D \equiv p_D D / (p_D D + v_i \dot{n}_i)$. Thus the growth rate of the real GDP is

$$g_G = \theta_D g_D + (1 - \theta_D) g_a$$

We need to compute g_D for a given value of b_i .

Using (29), (26) and (17), we rewrite D as follows

$$D^{\alpha} \equiv \sum_{m=1}^{i} n_m \left(\frac{\alpha b_m}{n_m \gamma_m}\right)^{\alpha} w^{-\alpha} = \sum_{m=1}^{i} n_m \left(\frac{\alpha \frac{-n_m \gamma_m^{1-\sigma}}{\sum_{j=1}^{i} n_j \gamma_j^{1-\sigma}}}{n_m \gamma_m}\right)^{\alpha} w^{-\alpha} =$$
$$= \sum_{m=1}^{i} n_m \left(\alpha \frac{\gamma_m^{-\sigma}}{\sum_{j=1}^{i} n_j \gamma_j^{1-\sigma}}\right)^{\frac{\sigma-1}{\sigma}} w^{-\alpha} = \frac{\alpha \frac{\sigma-1}{\sigma} \sum_{m=1}^{i} n_m \gamma_m^{1-\sigma}}{\left(\sum_{j=1}^{i} n_j \gamma_j^{1-\sigma}\right)^{\frac{\sigma-1}{\sigma}}} w^{-\alpha} =$$
$$= \alpha^{\alpha} \left(\sum_{m=1}^{i} n_m \gamma_m^{1-\sigma}\right)^{\frac{1}{\sigma}} w^{-\alpha} = \alpha^{\alpha} \left(\sum_{m=1}^{i} n_m \gamma_m^{1-\sigma}\right)^{1-\alpha} w^{-\alpha}$$

Therefore

$$D^{\frac{\alpha}{1-\alpha}} \equiv \alpha^{\frac{\alpha}{1-\alpha}} \left(\sum_{m=1}^{i} n_m \gamma_m^{1-\sigma} \right) w^{-\frac{\alpha}{1-\alpha}}$$

and totally differentiating the previous expression, we obtain

$$\frac{\alpha}{1-\alpha}D^{\frac{\alpha}{1-\alpha}-1}\dot{D} = -\frac{\alpha}{1-\alpha}\alpha^{\frac{\alpha}{1-\alpha}}w^{-\frac{\alpha}{1-\alpha}-1}\dot{w}\left(\sum_{m=1}^{i}n_{m}\gamma_{m}^{1-\sigma}\right) + \alpha^{\frac{\alpha}{1-\alpha}}w^{-\frac{\alpha}{1-\alpha}}\gamma_{i}^{1-\sigma}\dot{n}_{i}$$
$$g_{D} = -\hat{w} + \frac{1-\alpha}{\alpha}\frac{n_{i}\gamma_{i}^{1-\sigma}}{\left(\sum_{m=1}^{i}n_{m}\gamma_{m}^{1-\sigma}\right)}g_{i}$$
$$g_{D} = -\hat{w} + \frac{(1-\alpha)}{\alpha}b_{i}g_{i}$$

We know from (17) that

$$\hat{w} = -\hat{V}_i$$

Since for any given value of b_i we know that $\hat{V}_i = 0$, we derive that

$$g_D = \frac{(1-\alpha)}{\alpha} b_i g_i$$

Moreover, given our normalization for manufacturing expenditure, we know that $E = p_D D = 1$ and

$$\theta_D = \frac{1}{1 + \frac{1}{V_i}g_i} \tag{42}$$

Expression (42) tells us that the manufactured goods share, θ_D , is constant if V_i is constant. We know that V_i is constant only if b_i does not change. Consequently, the real GDP growths at the following rate

$$g_G = \left[\theta_D \frac{(1-\alpha)}{\alpha} b_i + (1-\theta_D)\right] g_i$$

which is constant when b_i is constant, given that we know from (37) that also g_i is constant.