or, equivalently, when

$$
\begin{equation*}
n_{h} \gamma_{h}^{1-\sigma} \sum_{j=1}^{h} n_{j} \gamma_{j}^{1-\sigma}+n_{h} \gamma_{h}^{1-\sigma} n_{h+1} \gamma_{h+1}^{1-\sigma}-n_{h+1} \gamma_{h+1}^{1-\sigma} \sum_{j=1}^{h} n_{j} \gamma_{j}^{1-\sigma}>0 \tag{40}
\end{equation*}
$$

Expression (40) is true when

$$
\frac{\sum_{j=1}^{h} n_{j} \gamma_{j}^{1-\sigma}}{\sum_{j=1}^{h-1} n_{j} \gamma_{j}^{1-\sigma}}>\frac{n_{h+1} \gamma_{h+1}^{1-\sigma}}{n_{h} \gamma_{h}^{1-\sigma}}
$$

We substitute n_{h+1} from (21) and we obtain

$$
l \equiv \frac{\sum_{j=1}^{h} n_{j} \gamma_{j}^{1-\sigma}}{\sum_{j=1}^{h-1} n_{j} \gamma_{j}^{1-\sigma}}>\frac{L_{R} \gamma_{h+1}^{1-\sigma}}{a \gamma_{h}^{1-\sigma}}=\frac{L_{R}}{a}\left(\frac{\gamma_{h}}{\gamma_{h+1}}\right)^{\sigma-1}
$$

where the left term in the inequality, l, is always larger than 1 . Therefore, given that $\gamma_{h+1}<\gamma_{h}$, we may at least state that $b_{h}>b_{h+1}$ is true, when $\frac{L_{R}}{a}\left(\frac{\gamma_{h}}{\gamma_{h+1}}\right)^{\sigma-1}<l$. That is when

$$
\begin{equation*}
1<\left(\frac{\gamma_{h}}{\gamma_{h+1}}\right)^{\sigma-1}<\frac{a}{L_{R}} l \tag{41}
\end{equation*}
$$

Expression (41) says that when the process innovation produces a reduction in γ which is not relatively high, then b_{i} decreases.

Appendix B

Following Grossman and Helpman (1991, p. 63) we define the index of the manufactured output

$$
D \equiv\left(\sum_{m=1}^{i} n_{m} x_{m}^{\alpha}\right)^{\frac{1}{\alpha}}
$$

where $\alpha=\frac{\sigma-1}{\sigma}$, while the ideal price index of final goods is p_{D}.
The gross domestic product (GDP), G, is defined as the sum of the value added in manufacturing and in the $\mathrm{R} \& \mathrm{D}$ sector

$$
G \equiv p_{D} D+v_{i} \dot{n}_{i}
$$

We know from Grossman and Helpman (1991, p. 63) that the growth of the real GDP is equal to a weigthed average of the growth rates of the manufactured good index, g_{D}, and of the research output, g_{i}, with weights given by sector's value shares. In particular, the manufactured goods share is given by $\theta_{D} \equiv p_{D} D /\left(p_{D} D+v_{i} \dot{n}_{i}\right)$. Thus the growth rate of the real GDP is

$$
g_{G}=\theta_{D} g_{D}+\left(1-\theta_{D}\right) g_{i}
$$

We need to compute g_{D} for a given value of b_{i}.
Using (29), (26) and (17), we rewrite D as follows

$$
\begin{aligned}
D^{\alpha} & \equiv \sum_{m=1}^{i} n_{m}\left(\frac{\alpha b_{m}}{n_{m} \gamma_{m}}\right)^{\alpha} w^{-\alpha}=\sum_{m=1}^{i} n_{m}\left(\frac{\alpha \frac{n_{m} \gamma_{m}^{1-\sigma}}{i} \sum_{j=1}^{n_{j} \gamma_{j}^{1-\sigma}}}{n_{m} \gamma_{m}}\right)^{\alpha} w^{-\alpha}= \\
& =\sum_{m=1}^{i} n_{m}\left(\alpha \frac{\gamma_{m}^{-\sigma}}{\sum_{j=1}^{i} n_{j} \gamma_{j}^{1-\sigma}}\right)^{\frac{\alpha-1}{\sigma}} w^{-\alpha}=\frac{\alpha^{\frac{\sigma-1}{\sigma}} \sum_{m=1}^{i} n_{m} \gamma_{m}^{1-\sigma}}{\left(\sum_{j=1}^{i} n_{j} \gamma_{j}^{1-\sigma}\right)^{\frac{\sigma-1}{\sigma}} w^{-\alpha}=} \\
& =\alpha^{\alpha}\left(\sum_{m=1}^{i} n_{m} \gamma_{m}^{1-\sigma}\right)^{\frac{1}{\sigma}} w^{-\alpha}=\alpha^{\alpha}\left(\sum_{m=1}^{i} n_{m} \gamma_{m}^{1-\sigma}\right)^{1-\alpha} w^{-\alpha}
\end{aligned}
$$

Therefore

$$
D^{\frac{\alpha}{1-\alpha}} \equiv \alpha^{\frac{\alpha}{1-\alpha}}\left(\sum_{m=1}^{i} n_{m} \gamma_{m}^{1-\sigma}\right) w^{-\frac{\alpha}{1-\alpha}}
$$

and totally differentiating the previous expression, we obtain

$$
\begin{aligned}
\frac{\alpha}{1-\alpha} D^{\frac{\alpha}{1-\alpha}-1} \dot{D} & =-\frac{\alpha}{1-\alpha} \alpha^{\frac{\alpha}{1-\alpha}} w^{-\frac{\alpha}{1-\alpha}-1} \dot{w}\left(\sum_{m=1}^{i} n_{m} \gamma_{m}^{1-\sigma}\right)+\alpha^{\frac{\alpha}{1-\alpha}} w^{-\frac{\alpha}{1-\alpha}} \gamma_{i}^{1-\sigma} \dot{n}_{i} \\
g_{D} & =-\hat{w}+\frac{1-\alpha}{\alpha} \frac{n_{i} \gamma_{i}^{1-\sigma}}{\left(\sum_{m=1}^{i} n_{m} \gamma_{m}^{1-\sigma}\right)} g_{i} \\
g_{D} & =-\hat{w}+\frac{(1-\alpha)}{\alpha} b_{i} g_{i}
\end{aligned}
$$

We know from (17) that

$$
\hat{w}=-\hat{V}_{i}
$$

Since for any given value of b_{i} we know that $\hat{V}_{i}=0$, we derive that

$$
g_{D}=\frac{(1-\alpha)}{\alpha} b_{i} g_{i}
$$

Moreover, given our normalization for manufacturing expenditure, we know that $E=p_{D} D=1$ and

$$
\begin{equation*}
\theta_{D}=\frac{1}{1+\frac{1}{V_{i}} g_{i}} \tag{42}
\end{equation*}
$$

Expression (42) tells us that the manufactured goods share, θ_{D}, is constant if V_{i} is constant. We know that V_{i} is constant only if b_{i} does not change. Consequently, the real GDP growths at the following rate

$$
g_{G}=\left[\theta_{D} \frac{(1-\alpha)}{\alpha} b_{i}+\left(1-\theta_{D}\right)\right] g_{i}
$$

which is constant when b_{i} is constant, given that we know from (37) that also g_{i} is constant.

