
1 Introduction

The role played by innovation in determining economic growth is commonly recognized. In recent

years an ever increasing amount of literature has been devoted to the subject and many authors,

starting from the contributions by Romer (1990), Grossman and Helpman (1991) and Aghion and

Howitt (1992), have written about its relevance. Many of these works underlined the importance of

Arrow’s (1962) claim that the development of new ideas spurs growth and they brought innovation

to be one of the most relevant topics in contemporaneous economic literature giving start to the

so called Endogenous Growth Theory or New Growth Theory.

The results produced by this stream of literature are many and, as is well known, very artic-

ulated.1 Here, we recall the role played by the intentional research activity carried out in the

innovative R&D sector described in the works by Grossman and Helpman (1991) and Aghion and

Howitt (1992). While, on the one hand, Grossman and Helpman draw particular attention to

the fact that research efforts may result in an extension of the number of available consumption

varieties; on the other hand, Aghion and Howitt underline that these efforts may, among other

things, improve the quality of the varieties already available.

The view that innovation is one of the engines of economic growth in the forms suggested by the

above mentioned authors is widely recognized. However, we think that some new insights might be

gained by means of a joint analysis on the effects of different types of innovation, which, following

Schumpeter (1934), we identify as product and process innovation. By considering both types

of innovation in a general equilibrium framework, we should be able to give a more articulated

description of the effects of the innovative activity on the economy. Hence, in this work we

introduce process innovation in the general equilibrium framework proposed by Grossman and

Helpman (1991, ch. 3) in order to study the complementary role this kind of innovation plays

with product innovation, which increases the number of available consumption (or intermediate)

1 These results are a too big a subject to be summarized in the present paper, and we refer the interested reader
to the exhaustive descriptions by Grossman and Helpman (1991) and Aghion and Howitt (1992).
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varieties, and which is the type of innovation considered by Grossman and Helpman (1991), while

process innovation increase productivity levels and, thus, decrease variable production costs of

new firms entering the final good sector.

The complementarity between process and product innovation is studied by Athey and Schmut-

zler (1995) in a different framework. Their aim is to underline the interactions between the

short-run innovative activity of a firm and its organizational structure, which defines its long-run

characteristics such as research capabilities and flexibility, which determines “how costly it will

be to make changes to product designs and production processes, once the opportunities for in-

novation have been identified.” (Athey and Schmutzler, 1995, p. 558). Moreover, Eswaran and

Gallini (1996, p. 722) “examine the interactions between firms’ product and process innovation

decisions, and the role patent policy can play in directing technological change toward a socially

efficient mix of innovations.” Moreover, Eswaran and Gallini (1996, p. 723) show that there is a

trade-off “between an entrant’s incentives to engage in product and process innovation. The more

differentiated the products are, the less is the entrant’s marginal profit from competing against

the pioneer through lower production costs, and vice versa.”

Differently from the works mentioned in the previous paragraph, our work does not focus

on the organizational structure of innovating firms, rather it focuses on the dynamic effects of

contextual process and product innovations in a general equilibrium framework and it aims to

give one possible explanation, among different existing ones, to the fact that firms producing at

any moment in time are heterogeneous in their productivity levels.

In a certain sense, the particular form of process innovation we represent is related, even if

it is different, to the argument of the learning-by-doing processes suggested by Romer (1990),

who considers knowledge accumulation as a side effect of conventional production activity not

resulting from deliberate research activity in the innovative sector. We analyze the effects of the

complementarity between product and process innovations when product innovations take place as

a deliberate effort of researchers employed in the R&D sector, and contextual process innovations
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take place as a side effect of the innovative activity in the same sector, resulting in higher produc-

tivity of new consumption goods. This is possible because researchers, when carrying out their

activity, accumulate knowledge which leads them, at a certain point, to develop new patents of

consumption goods characterized by more productive production processes. However, we explain

in the paper that workers (firms) engaged in the R&D sector have incentives in pursuing process

innovation, because the purchasing power of their wages is increased only if process innovation

takes place and only in terms of the more productive goods which have been made available.

Indeed, the improvements in production processes which we introduce in this work are assumed

to take place as a by product in the R&D sector and they are costlessly adopted by firms starting

the production of newly developed consumption (or intermediate) varieties, while already produc-

ing firms continue to produce using older technology which was available when the products were

developed, and, as a consequence, we will be able to obtain long-run equilibria characterized by

many different kinds of firms with different production processes.2 These assumptions allow us to

capture the fact that often new producing firms are more productive than older ones, given that

they start to produce when knowledge accumulated in the past allows new production techniques

to be more efficient.

Therefore, in this work we adopt a growth approach in order to identify one potential mech-

anism whose action will result in productivity heterogeneity of firms. Hence, if firms are hetero-

geneous in their productivity levels, this should result in a variety of prices, and of demand and

market shares which reflect firms’ productivity differences. Moreover, these differences should, in

turn, be reflected in patents’ price differences, given that we would expect that patent prices of

more profitable varieties are higher.

2 This is a simplifying assumption, given that we could consider a more general case in which old firms could adopt
the new more productive production processes provided that they sustain a certain switching or implementing cost.
The presence of different implementing costs would imply that not all preexisting firms would be able to adopt the
new more productive production processes once available. Thus, as in our simplified case, there would be equilibria
characterized by many different kinds of firms with different production processes. Hence the nature of the results
which we would obtain would be similar to those we obtain, with the sole difference that the distribution of firms
among the available production processes would be more biased towards the new ones. However, we chose to adopt
a simplified framework in which no technology change is possible in order to avoid the complications which would
arise describing the switching processes, and given that it would not change the heterogeneous nature of our results.
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In particular, we introduce process innovations in the setup proposed by Grossman and Help-

man (1991) characterized by the assumption of consumers’ love for variety by Dixit and Stiglitz

(1977). This last assumption identifies consumers’ love for variety as one of the causes of eco-

nomic growth, because it pushes firms to innovate in order to satisfy consumers’ demand for new

varieties. Moreover, it allows us to introduce a further assumption related to how process inno-

vation takes place, given that we assume that they are more likely to occur when the market is

larger. In fact, in this case, researchers are induced to increase their efforts to find improvements

in the available production technology given that, ceteris paribus, the number of more productive

varieties on which relative prices would be reduced and purchasing power would be higher, would

be larger. We could also justify this assumption with the argument that larger markets allow

researchers to exploit increasing returns to scale.

Thus, the explicit purpose we try to assess in this work is to understand how the steady state

outcomes by Grossman and Helpman (1991) are affected by process innovations that accompany

product innovations, investigating the effects of this complementarity on the long run growth rate

of the economy, productivity heterogeneity of firms, worker distribution among different sectors

and on prices of all available varieties and patents.

Finally, our work will also try to address, or better mitigate, the scale effect problem which

affected the original contribution by Grossman and Helpman (1991). In fact, Jones (1999, p. 139)

writes that, when there is a scale effect, “the growth rate of the economy is proportional to the

total amount of research undertaken in the economy. An increase in the size of the population,

other things equal, raises the number of researchers and therefore leads to an increase in the

growth rate of per capita income. Taken at face value, this prediction is problematic because it

means that population growth should lead to accelerating per capita income growth”. Thus, we

would like to suggest that the introduction of a series of continuous process innovations, along the

lines described in the following sections, could add another mechanism through which this scale

effect may be tackled or better, as we stated, mitigated to those reviewed by Jones (1999).
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The remaining part of the work is organized as follows: Section 2 describes consumers’ and

firms’ behavior, while the innovative sector is more deeply analyzed in Section 3; Section 4 draws

the characteristics of the equilibrium outcomes which are “moving” with particular changes in

the distribution of workers; Section 5 presents some comments on the results, while Section 6

concludes.

2 Consumers’ and firms’ behavior

We consider a closed economy in which consumers love variety and their preferences are described

by the following intertemporal utility function

U =

Z ∞
0

e−ρt log

n(t)X
c=1

Dc(t)
σ−1
σ

 σ
σ−1

dt (1)

where Dc is the consumption of variety c, ρ is the rate of time preference and σ > 1 is both the

elasticity of substitution between any pair of varieties and the own-price elasticity of demand for

any variety. The elasticity of intertemporal substitution in (1) is constant and equal to 1, while n

is the total number of produced varieties in t.

Total consumers’ expenditure E is defined as

E =
nX
c=1

pcDc

where pc is the price of variety c.

Consumers’ demand xc for any variety c is

xc =
p−σc

nX
c=1

p1−σc

E (2)

All varieties are produced by firms which need to buy a patent from the R&D sector to start

their activity and which employ γ workers to produce a unit of their output. Given the assumptions

of consumers’ love for variety and the fact that there are no scope economies, all firms produce

different varieties.
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Moreover, firms are not all supposed to use the same production process, given that γ is not

necessarily equal for all firms. More precisely, we assume that there are i different groups of firms,

each of which is characterized by a particular value of γ, that is γm, which expresses the specific

units of labor required to produce one unit of the output by the nm firms of the group of type m,

with m = 1, 2, ......, i.

We assume that the higher the value of m, the lower the value of γm is and, therefore, the

higher the productivity of workers employed by firms of type m is. Each period is characterized

by a particular value of i, which increases when a new group of goods is made available through

R&D efforts in the innovative sector. We assume that any time the value of i increases, a new,

more productive process is made available and new firms use the more productive production

process. More details on how new values of γ are made available will be given in next section

which describes the innovative sector. For the moment, we only anticipate that by producing

new patents, researchers in the R&D sector exploit the knowledge accumulated by past innovative

activities and that the development of a sufficiently large number of varieties allows them to

introduce new patents characterized by higher productivity levels (that is, by lower γ values).

Hence, if there are only i groups of variety, each of numerousness nm, we derive from (2) the

demand xm for any firms characterized by γm

xm =
p−σm

iX
j=1

njX
j=1

p1−σj

E (3)

with m = 1, 2, ......, i.

Given that all varieties of type m are symmetric, total expenditure in varieties of the same

type is

nmpmxm =
nmp

1−σ
m

iX
j=1

njp
1−σ
j

E (4)

with m = 1, 2, ......, i.

Considering the intertemporal component of consumers’ allocation problem, following Gross-
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man and Helpman (1991) we define the index of the manufactured output

D ≡
Ã

iX
m=1

nmx
α
m

! 1
α

where α = σ−1
σ , and the ideal price index of final goods

pD ≡
Ã

iX
m=1

nmp
1−σ
m

! 1
1−σ

Given that D = E/pD, the intertemporal utility function (1) becomes

U =

Z ∞
0

e−ρt (logE − log pD) dt

As Grossman and Helpman (1991, pag. 48) show, the maximization of the previous expression

“subject to an intertemporal budget constraint requires that spending evolve according to”

Ė

E
= r − ρ

Then we normalize prices in such a way that total expenditure E is equal to 1.3 This implies

that we have

r = ρ (5)

Consumption varieties are produced by monopolistically competitive firms, which sustain a

fixed cost in order to acquire a patent produced in the innovative sector and a variable cost of

production. Since each firm maximizes profits, we know that price pm is

pm =
1

α
γmw (6)

where α = (σ − 1)/σ and w is the nominal wage.

We notice that the ratio between prices of any pair of varieties is proportional to the ratio of

labor required to obtain one unit of each type of good with

pm
pj
=

γm
γj

(7)

3 Cfr. Grossman and Helpman (1991)
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where m, j = 1, 2, ......, i.

Operating profits realized by a single firm of type m are

πm =

µ
1− α

α

¶
wγmxm

In equilibrium, when supply, xm, is equal to demand (3), substituting prices from (6), we obtain

that profits πm are

πm = (1− α)
γ1−σm

iX
j=1

njγ
1−σ
j

< 1 (8)

From the previous expression, we know that profits, πm, decrease when the total number of firms

increases, while they increase as productivity increases. In particular, for the more productive

varieties, characterized by m = i, we know not only that profits decrease as ni increases, with

∂πi/∂ni < 0, but also that they increase as γ decreases, given that ∂πi/∂γi < 0.

Total labor demand by firms of type m, Lm, is given by

Lm = nmγmxm (9)

Moreover, considering (4) together with (6), we derive that Lm is equal to

Lm =
αnmp

1−σ
m

w
iX

j=1

njp
1−σ
j

(10)

Given that the total number of units of workers in the economy is L, the labor market clearing

condition requires that

L = LR +
iX

m=1

Lm (11)

where LR is the total amount of labor employed in the innovative sector and will be described

in the following section.4 Finally, we define LC as the total amount of labor employed in the

production of consumption goods which corresponds to

LC =
iX

m=1

Lm

4 We simply assume that the switching technology cost for existing firms consists in a different, too high fixed
cost which firms that are already in the market have to sustain to be able to use the process innovation generated
within the R&D sector. This enables us to avoid considering the case of old firms switching technology.
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3 Product and process innovations

All firms producing consumption goods start their production after buying a patent of price vi.

New patents for new varieties are produced in the R&D sector, and their production is described

by the following function

ṅi =
1

a
niLR (12)

where a is an inverse measure of labor productivity in the innovative sector.

Expression (12) shows that the number of new patents produced in the R&D sector is pro-

portional to the units of workers employed in the same sector and to the number of the already

existing varieties, whose production process is characterized by the smallest value of γ, that is γi.

Therefore, we share the assumption in Grossman and Helpman (1991) that nonrivalry of ideas in

the innovative sector gives rise to increasing returns. We could have chosen a different functional

form for (12) which would have avoided the scale effect in Grossman and Helpman (1991). How-

ever, we chose this specification because we would like to show that we can identify a potential

way through which the presence of the scale effect can be mitigated, given that, as we show later,

its consequences are attenuated when process innovations may take place.

Moreover, we assume that γ values are decreasing in m, with

γ1 > γ2 > ... > γm > .... > γi−1 > γi (13)

As a consequence of (12) and (13), when innovations take place, that is when ṅi > 0, new varieties

are produced with the most efficient production process, characterized by the smallest available

value of γ, that is γi.

We know from (12) that labor demand in the innovative sector is

LR =
ṅi
ni
a (14)

Following Grossman and Helpman (1991), we assume that stock market value of a patent, vi,

is at any time equal to the present discounted value of the stream of all following profits. Hence,
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given the interest rate r on a safe asset, we can write that

vi =

∞Z
0

e−rtπidt (15)

The innovative sector is perfectly competitive and the level of employment of workers in the

R&D sector is such that it maximizes profits

πR = viṅi − wLR (16)

From the first order condition on the previous maximization problem, we obtain the nominal wage

as a function of the price of any new patent vi and the number of varieties of type i, that is

w =
vini
a

(17)

At this stage, we need to specify how γ evolves over time. We assume that the value of γ

evolves along a learning curve and we think that it is more likely that researchers obtain a further

improvement in production processes associated to new patents, which reduces the smallest value

of γ, when the number of patents associated to the existing more efficient technology, ni, becomes

sufficiently large and when the potential demand dimension is large, that is when L is large. The

reason for the first effect is that knowledge accumulates over time and, consequently, it makes

further improvements possible. The rationale for the second effect, which will be discussed later,

is that when demand is larger, researchers’ efforts are increased and productivity improvements

take place sooner. Moreover, in this case, researchers know that there is a competition effect

generated by the entrance of a higher number of firms due to the fact that, as we will show later,

larger values of L, other things equal, tend to increase the rate of growth of varieties, ṅi/ni, and

consequently ni, lowering expected rewards by researchers. In fact, expression (8) shows that

expected profits on varieties of type i are lower when ni is higher. However, given that (8) also

shows that profits for varieties i are higher, the lower γi, researchers increase their efforts to find

improvements in the available production technology to avoid the larger reduction in profits when

L is larger and to try to improve the profitability of new varieties because, once a reduction in γi
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occurs, there is a gap in the present value of the flow of all future operating profits between old

firms and new type firms

∞Z
ti

e−rt (πi(t)− πm(t)) dt = (1− α)

∞Z
ti

e−rt
1

iX
j=1

nj(t)
¡
γj(t)

¢1−σ
µ

1

γσ−1i

− 1

γσ−1m

¶
dt > 0 (18)

We observe, in passing, that the gap described in previous expression decreases as t increases.

At this point we notice that workers and firms engaged in the R&D sector have incentives

in pursuing process innovations, because these innovations allow them to increase the purchasing

power of their wages in terms of new, more productive goods. In fact, as (15) and (18) show,

process innovations increase patents’ prices paid by firms in the final sector, given that they raise

profits realizable by these firms. The increase in patents’ prices is, in turn, accompanied by an

increase in the wage w of workers employed in the R&D sector, because, in the framework we use,

their wage is related to the value of their marginal product of the R&D sector, which depends

on patents’ prices (17). Then, (6) shows that higher wages results in higher purchasing power in

terms of consumption goods, only when process innovations take place, because γ decreases and

w/pi increases. Thus, researchers, who are also consumers, have an incentive to obtain process

innovations. For this reason, we think that it is likely to assume that researchers make deliberate

efforts not only to produce new patents, but also to have more productive processes and we assume

that process innovations take place in the R&D sector provided that a sufficient level of knowledge

is accumulated.

Moreover, we can also assume that decreases in γ are more frequent, or larger, with larger

population because the larger demand could allow researchers to exploit increasing returns to

scale or because workers know, as we show later, that a larger population is associated with a

larger number of researchers in equilibrium, and, therefore, with a larger number of goods on

which process innovations could increase their purchasing power.

Therefore, following previous reasoning, we may think that the evolution of γi depends on ni
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and L with

γ̇i = f (ni, L) (19)

To give an example, and we wont need to assume it in the following of the paper, a simple

specification for (19), could be the following

γ̇i =


ci < 0

0

if niL = χi

if niL < χi

(20)

where χi is a threshold value, which once reached allows us to represent the development of new

and more productive varieties. The threshold is not a constant, given that different stages of

development may require a different number of patents or different sizes of the population and

demand to induce further process improvements. Moreover, ci expresses the size of the process

innovation, whose value is not constant, given that process innovations are certainly not at all

equal in their effects and that they may have different impacts on various stages of the growth

process.

In more details, once γ decreases, from that point in time onward, index i will represent the

new more productive varieties. In particular, to make clear the use of our notation, we note that

varieties of type i can also be named with the last integer number of the series for m, which we call

h withm = 1, 2, ......, (h = i). Once there is an improvement along the learning curve, described for

instance by (19), the series continues in the following way: m = 1, 2, ......, h, (h+ 1 = i). Moreover,

we notice that in the moment of the change in γ, (12) can be written as follows

nh+1 = ṅh+1 =
1

a
nhLR (21)

According to (20), the evolution of γ is related to the “adjusted” size of the market, niL.

In summary, and more generally with (19), for a given size of the market L, more firms

operating in the economy along the frontier (higher ni) increase the accumulated knowledge which

allows researchers in the R&D sector to be able to find the way to introduce further improvements

in productivity of firms associated with new patents. But these improvements are more likely
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to occur when larger dimensions of the market, L, push researchers to increase their efforts in

searching for process innovations; firstly, to avoid the decrease in the value of new patents which

otherwise would be generated by smaller profits due to the higher competition and, secondly, to

increase their purchasing power on a larger number of new more productive varieties.

We know that the no arbitrage condition between patents and a safe asset implies that the

following Fisher equation must be satisfied for every value of m

πm
vm

+
v̇m
vm

= r (22)

We recall that while for m 6= i innovation does not introduce any new varieties, these are

developed for the i− th group of firms.

4 Moving equilibrium

In this section we describe the properties of the equilibrium of the model, which will be character-

ized as a moving equilibrium, given that we assume that the number of firms is the slow variable

of the economy, while all other variables are the fast variables.5

In particular, we know from expression (11) that in equilibrium the labor market is clearing.

From (10), (6) and (17) we obtain that employment in the final sector is

LC =
α

w
=

αa

vini
(23)

Thus, in any periods between the two subsequent reduction in γi, the market clearing condition

(11) can be rewritten as

L =
ṅi
ni
a+

αa

vini

Let us denote with Vi the inverse of the value of the aggregate existing stock of patents of firms

of type i, Vi = 1
vini

. Then, from the previous equation, we derive the growth rate of firms of type

5 See Schlicht (1985, 1997).
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i in any periods between the two subsequent reduction in γi, that is

gi =
L

a
− αVi (24)

where gi = ṅi/ni.

For any time before a subsequent reduction in γi, we know from expressions (22) and (23) that

the rate of change of Vi for firms of type i is

V̇i
Vi
= Vi

ni(1− α)
iX

j=1

nj

³
γi
γj

´σ−1 − gi − r (25)

From the previous expression, we note that we have Grossman and Helpman’s (1991) results only

if γi = γj ∀j = 1, ...., i−1, because this would also imply that ni = nj ∀j = 1, ...., i−1. Moreover,

in the same particular case, we know that the interception between the two curves (24) and (25)

would be unique when V̇i = 0, as is required in equilibrium.

However, when, as it happens in our case, γi 6= γj , the intersection between the two curves

(24) and (25) is not unique and it moves over time as ni increases in any period between two

following values of γi are made available. Therefore, more than a fixed steady state equilibrium,

as in Grossman and Helpman (1991), our assumptions lead to identify a moving equilibrium, which

is characterized by continuous changes in the number of firms with different productivities.

Let us define the index bi as

bi ≡ niγ
1−σ
i

iX
j=1

njγ
1−σ
j

(26)

It is readily verifiable that 0 ≤ bi ≤ 1 and that bi approaches 1 when ni goes to infinity. bi

gives us some information on the relative weight of firms of type i on the total number of firms,

where the weights are given by the productivity measure γ1−σi . Hence, given that the value of bi

continuously changes, we have a moving equilibrium characterized by continuous changes in the

fast variables due to movements in the slow variable bi. Particularly, we have a moving equilibrium

when all variables assume their equilibrium values conditioned to the number of patents already
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introduced in the R&D sector or, in an equivalent fashion, conditioned to the value of bi, which

depends on the number of patents. Then, changes in the number of available varieties, change bi

and, consequently, other variables, as we show in the rest of this section. Expressions (24), (25)

and (5) tell us that for any of those moving equilibria the following condition must be satisfied

V̇i = Vi

Vi
(1− α)

niγ
1−σ
i

iX
j=1

njγ
1−σ
j

+ α

−
L

a
− ρ

 (27)

Moreover, we use (26) to rewrite profits (8) in the following way

πm =
(1− α)

nm
bm < 1 (28)

Substituting (26), (6) and (17) into (3), we obtain that the demand for any firm of type m is

xm =
nmp

1−σ
m

nmpm

iX
j=1

njp
1−σ
j

=
aαbm
nmγm

Vi (29)

Using this expression we derive the total demand xmnm for all firms of type m, that is

nmxm =
aαbm
γm

Vi (30)

Expression (30) tells us that when new more productive varieties are made available by the inno-

vative sector, as the innovative process goes on, the total demand xmnm for the oldest firms of

type m, characterized by the highest values of γ, tends to decrease to zero, because bm becomes

smaller and smaller. On the contrary, the total demand xini for firms of type i on the technological

frontier, tends to increase as bi increases.

Substituting (26), expression (27) becomes

V̇i = Vi

½
Vi [(1− α)bi + α]− L

a
− ρ

¾
(31)

Expression (31) is an upward opening parabola, with V̇i = 0 either when Vi = 0 or when V ∗i =

L/a+ρ
(1−α)bi+α > 0. The graph is plotted in Figure 1 only for positive values of Vi, because negative

values of Vi would have no meaning.

16



Insert Figure 1 about here

Moreover, in Figure 1 we also plot the actual value of Vi derived from (23), that is

Vi =
LC
αa

(32)

We know from (32) that (11) and (25) are, respectively,

LR = L− LC (33)

and

V̇i =

µ
LC
αa

¶·
biLC
αa

(1− α)−
µ
LR
a
+ ρ

¶¸
(34)

Hence, as both pairs of equations above (31)-(32) and (33)-(34) show, the equilibrium outcomes

which we describe within this framework are not stationary, given that bi changes as the innovating

process goes on determining the introduction of new varieties which increase ni. Thus, between

any pair of subsequent process innovations which lead to changes in γi, the equilibria we consider

are moving equilibria which we need, indeed, to identify.6

We notice that we need to know LC (or LR) in order to define the exact position of the vertical

line (32) in Figure 1, otherwise, we could either have that LC/(αa) < V ∗i or that LC/(αa) > V ∗i .

These two options would imply opposite changes in Vi. In fact, while Vi is increasing when

Vi > V ∗i , it is decreasing when Vi < V ∗i . However, as we show in two steps, Vi must be equal to

6 In other words, we can consider the economy as described by the following equation system in two vectors of
variables x and y:
ẋ = f (x, y) and ẏ = g (x, y)
where the vector of fast variable is x0 = (pm, xm, vm, Vm, w, πR, LR, LC , gi) and the vector of slow variable is

y0 = (bi). Note that the slow variable bi is obtained as a transformation of the number of all variables, nm with
m = 1, 2, ......, i, which, thus, are considered as slow variables too.
In the paper we assume that the fast vector has already reached its equilibrium for any given and fixed value

of the slow variable, bi, and we prove that the equilibrium is univocally identified for any given value of bi in the
following paragraphs in the text of the paper when we show that Vi = V ∗i =

L/a+ρ
(1−α)bi+α .

Particularly, the equilibrium value of the fast vector x is
x = X (bi), with f (X (bi) , bi) = 0.
Then, given that the slow variable bi changes over time, then x = X (bi) gives the corresponding moving

equilibrium of x. (See Schlicht (1985, 1997))
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V ∗i . In particular, first we recall that this is true in Grossman and Helpman’s (1991, ch. 3) case.

Then we prove that this is true in our general case.

First of all, we recall that if we were in Grossman and Helpman’s (1991, ch. 3) case, γ

would assume only one value, that is γm = γi = γ1 ∀m. Moreover, in this case the steady state

equilibrium is characterized by V̇1 = 0 and LR = L (1− α) − aαρ. In fact, we know that in this

case the expectations of agents are fulfilled only if the economy jumps immediately to the point

in which V̇1 = 0, because if V̇1 were positive we would have V1 growing to infinity, while if V̇1

were negative, we would end up with V1 = 0. However, Grossman and Helpman (1991) show

that both cases are impossible, given that: in the first case we cannot have V1 growing to infinity

because LR would be drawn to zero, n1 would stop growing, and v1 would be different from zero

(given that with a finite number of variety, profits are strictly positive); in the second case, we

cannot have V1 = 0, because LR would assume its maximum potential value, L, with LC = 0, and

expectations would be contradicted.7 Finally, we notice that in this case, b1 = 1. If we consider

the pair of equations (31)-(32) which describes the equilibrium condition, they would intersect in

V1 =
L−LR
αa = V ∗1 = L/a+ ρ with LR = L (1− α)−aαρ derived from the second pair of equations

(33)-(34).

Let us now consider the case in which, in the framework so far described, an innovation process

takes place producing new patents characterized by γ2 < γ1, which perturbs previous stationary

equilibrium.8 These new patents allow n2 firms to employ the technology of type 2. We know

from (21) that n2 = 1
an1LR and that b2 =

n2γ
1−σ
2

n1γ
1−σ
1 +n2γ

1−σ
2

< 1.

7 In fact, Grossman and Helpman (1991, p. 61) recall that if LR = L, the number of varieties would grow

continuously and, at the same time we would have v1(t) =

∞

t

e−r(τ−t) 1−α
n1(t)

dτ < 1−α
rn1(t)

.

In fact, v1(t) =

∞

t

e−r(τ−t) 1−α
n1(t)

dτ = − e−r(τ−t)
r

∞
t

1−α
n1(t)

= − e−r∞
r

+ 1
r

1−α
n1(t)

< 1−α
rn1(t)

.

Therefore, we would have that v1(t)n1 (t) < 1−α
r

which is equivalent to saying V1(t) > r
1−α > 0 which contradicts

the fact that V1 = 0.

8 In the particular example described by (20) when n1L = χ1. In any case, we recall that we do not need to use
this particular specification of the more general expression (19).
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After the change in γ, the innovative sector continues to produce new patents of type 2 ac-

cording to (12). The inverse of the aggregate value of patents of type 1 is equal to V1 =
1

v1n1
,

where n1 is now a constant. Moreover, from (28), we know that profits of firms of type 1 are from

now on π1 =
(1−α)
n1

b1. At the same time, there will be continuous increases in n2, or in other more

productive types of firms whenever there are further innovations leading to further reductions in

γ. These processes will reduce b1, reducing profits of firms of type 1 and, therefore, the value of

patents of firms of type 1, v1, thereby, increasing V1. Therefore, we know that V1 is increasing in

b1. Moreover, for any given value of b1, n1 and v1 are given and, thus, V1 is univocally determined.

In other words, we are able to rule out bubble paths for the aggregate value of firms which are

no longer on the technological frontier, such as firms of type 1, once technology with γ2 can be

used. Furthermore, we may say that this is generally true for any firms of type m different from

i, that is, firms at the technological frontier from the production process point of view, because

their number nm does not increase anymore, and because their value vm must decrease due to the

ongoing growth in variety. At the limit, when the weight bm of firms adopting older technology

than the firms at the frontier, γi tends to decrease toward zero, and Vm tends to infinity.

Lemma 1 For any variety which is not at the technological frontier, that is, for any variety
produced with γm > γi, profits decrease and Vm increases as the weight bm of the group decreases
as a consequence of subsequent innovations in the R&D sector which increase the number of
patents.

Moreover, returning to our example, we further observe that once the new patents of type 2

become available at the technological frontier, with i = 2, and b2 < 1, then V ∗2 =
L/a+ρ

(1−α)b2+α > V ∗1 .

Then we notice that while firms of type 2 remain at the frontier, for a given value of b2 , if

V2 =
1

v2n2
does not immediately jump to V ∗2 , there could be two other possible cases which we

should consider: either we have V2 < V ∗2 (with V̇2 < 0 which would draw V2 to zero), or V2 > V ∗2

(with V̇2 > 0 and V2 growing to infinity). We note, in passing, that the following arguments can

be generalized to the case in which firms of type i are at the frontier, for given bi values.

We rule out the first case, that is V2 < V ∗2 , because we want to exclude asset bubble paths
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both in the subcase in which all firms of type 2 will always continue to be on the technological

frontier in the future and in the subcase in which, sometime in the future, these firms will no

longer be on the technological frontier due to further process innovations, which further reduce

γ for future varieties. In the first subcase, V2 cannot be drawn to zero because this would be

possible, for a finite number of firms n2, only with v2 increasing to infinity; but with ongoing

patent innovations this is impossible. Following the same reasoning, we can exclude asset bubble

paths in the present (while firms of type 2 are at the frontier) also in the subcase in which the

same firms were no longer supposed to be on the technological frontier at sometime in the future.

In fact, if in the future the number of varieties is growing, we can exclude a continuous growth in

v2 and consequent decreases in V2 in the present, for given value of n2 and b2, because profits of

firms of type 2 are superiorly limited by variety growth.

We can also rule out the second case, that is V2 > V ∗2 , once more both in the subcase in which

all firms of type 2 will always continue to be on the technological frontier in the future and in the

subcase in which, at sometime in the future, these firms will no longer be on the technological

frontier due to further process innovations. In the first subcase, when firms of type 2 remain on

the frontier with i = 2, this will rapidly lead to employ all workers in the manufacturing sector

with no more growth in variety (given that we know from (32) that V2 = LC
αa ) and V2 increasing

to infinity. However, this would be possible only if v2 were equal to zero and we exclude this case

because if the number of varieties stops growing, profits must always be strictly positive. Finally,

in the second subcase if n2 stops growing at sometime in the future because firms of type 2 are

displaced from the frontier, in the present (while these firms are at the frontier), we know that V2

will increase to infinity in the future, because it is in the future that v2 tends to zero as b2 (and

profits) tends to zero. However, these future increases in V2 cannot be anticipated in the present,

because, otherwise, V2 would be lead to infinity in the present which would be inconsistent with

LC < L. In other words, from (32) we could have it only with LC = L, but at the expense of

no innovation at all in the present (because LR = 0) which would exclude the potential future
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process innovations.

So we have that when firms of type two are at the technological frontier, V2 immediately jumps

to V ∗2 and that, for any given value of b2, V̇2 = 0. We know that b2 changes in the present with

ongoing patent innovations. In particular, it continuously increases, because n2 increases. As long

as firms of type two are at the technological frontier, the continuous increase in b2 is associated

with continuous reductions in V2 = V ∗2 , with V2 having a lower limit. In fact, V2 = V ∗2 tends to

V ∗1 as n2 increases.

We already noticed that previous arguments can be generalized to the case in which, instead

of firms of type 2 we considers firms of type i at the frontier for given bi values. For we know now

that we have

Vi = V ∗i =
L/a+ ρ

(1− α)bi + α
(35)

where Vi = V ∗i is increasing in L, ρ (with ρ = r) and decreasing in a, bi and α.

We may write the following lemma:

Lemma 2 In general, the inverse of the aggregate value of firms at the frontier, Vi, is Vi = V ∗i >
V ∗1 with V̇i = 0 when bi is given. However, given that bi increases when patent innovations take
place for firms at the technological frontier increasing ni, Vi changes approaching V ∗1 as the weight
bi increases.

The previous lemma is extremely important given that it allows us to identify not a unique

steady state equilibrium, but a series of moving equilibria, which can be considered as perturba-

tions of the original steady state equilibrium in Grossman and Helpman (1991, ch. 3), and which

continue to change as long as bi changes and as long as we can have different process innovations

which continue to change the technology at the frontier. The implications of our results will be

discussed in the following section.

Moreover, from expressions (30) and (35) we obtain the total demand for varieties of type i

xini =
aα

γi

·
L/a+ ρ

(1− α) + α/bi

¸
which clearly shows that as bi increases, total demand for varieties of type i increases. Thus,

gradually in our model, while the market share and the demand of previously developed varieties
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decreases, the market share and the demand of new and more productive varieties made available

increases as long as they are on the technological frontier.

5 Structural changes and the scale effect

One of the most striking characteristics of the moving equilibrium we have so far described is that

it allows us to represent the effects of ongoing patent innovations which take place together with

process innovations. Considering both kinds of innovations gives a more complete picture of the

effects of R&D activities and it produces a setup in which the rate of growth of patent innovations

varies across time according to workers’ distribution between the final and the innovative sectors

considered in the model.

In the period in which technology of type i is available, we know from expression (12) that the

rate of innovation is proportional to the number of workers employed in the R&D sector, and this

number LR, derived from (33)-(34) when V̇i = 0, depends on the value of bi, that is

LR =
Lbi (1− α)− aρα

(1− α) bi + α
(36)

As in Grossman and Helpman (1991), we assume that L is sufficiently large to allow patent

innovations to take place: this requires that L > aρα/bi (1− α). Once more, it is readily verifiable

that when bi = 1 we obtain the same results as in Grossman and Helpman (1991).

Expression (36) shows that the number of workers employed in the innovative sector is an

increasing function of bi because

∂LR
∂bi

=
(1− α)α (L+ aρ)

((1− α) bi + α)2
> 0

Therefore, when there are at least two different types of firms producing using different technolo-

gies, and the innovative sector intensifies its research in finding new patents for the production

of new goods employing the more productive technologies, then any time a new patent is pro-

duced and implemented the value of bi increases. As bi increases, the final sector in aggregate
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becomes more productive and, therefore, more workers are made available to be employed in the

R&D sector. Moreover, the growth rate of new varieties increases as it is shown by the following

expression

gi = g =
LR
a
=

Lbi (1− α) /a− ρα

(1− α) bi + α
(37)

The growth rate g is superiorly and inferiorly limited because 0 ≤ bi ≤ 1.

In general, the model explains structural changes by means of workers’ distribution movements

between the two sectors. Indeed, changes in LR (and LC) reflect changes in bi, which are the results

of product and process innovations. We know that as long as new patents are produced by means

of product innovations, bi continues to increase over time implying a continuous shift of workers

from the sector in which final consumption goods are produced to the innovative sector, with an

increasing value of gi. However, once there is a process innovation which reduces γi, changes in bi

are more complex and they explain structural changes of different nature, which may end up also

with workers shifted from the innovative sector towards the sector in which consumption goods

are produced if bi for the new type of varieties is larger than it was for previous varieties on the

frontier.

Particularly, we may state that there is a redistribution of workers from the innovative (final

good) toward the final good (innovative) sector when the value which bi takes once the process

innovation takes place is smaller (larger) than its value for previous varieties on the frontier. In

Appendix A we show that when process innovations are relatively not too big, bi decreases after

process innovations take place with workers moving from the innovative sector to the final good

sector and, as a consequence, the growth rate of patents decreases.

Once the process innovation has taken place, as long as there are further innovations which

increase the number of patents with the same value of γ, workers move from the final to the

innovative sector. They are induced to move again to the final sector, once a subsequent process

innovation of limited impact takes place.

Regarding the scale effect, we notice that it would still be present in this work if we had not
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introduced the assumption in (19) that increases in L may produce process innovations. These

continuous subsequent process innovations due to increases in L may contribute to continuously

lowering the value of bi and keeping g from increasing.

In particular, this could not happen as long as subsequent patent innovations are related to

varieties characterized by the same value of γ. In fact, partially differentiating (36) with respect

to LR, L and bi, after few steps we obtain

dLR
LR

=
(1− α) bi

(Lbi (1− α)− aρα)

µ
L
dL

L
+

α (L+ aρ)

((1− α) bi + α)

dbi
bi

¶
(38)

From (38) we know that LR, and consequently g, would be constant only if

dbi
bi
= −L ((1− α) bi + α)

α (L+ aρ)

dL

L
≡ b∗ < 0 (39)

This is never the case when varieties of type i remain along the technological frontier given that

bi would continuously increase over time and, therefore, dbi/bi can only be positive.

However, when L increases, continuous process innovations could continuously lower bi. If these

two effects on bi balance each other, bi will be constant implying that LR, in turn, is constant

with no change in the growth rate of the number of varieties. In appendix B we show that this

would imply a constant growth of the real gross domestic product (GDP).

Therefore, we may conclude that when process innovations are associated to product innova-

tions, we can obtain equilibrium paths characterized by a stable distribution of workers between

the two sectors, which corresponds to a fixed growth rate, provided that bi continuously decreases

over time due to subsequent process innovations.

6 Conclusion

Scholars in the field of international economics and economic growth have devoted great attention

to the subject of heterogeneity of firms in the last few years. Productivity differences across firms

are, for instance, analyzed in a general equilibrium framework by Melitz (2003) which analyzes
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the effects of international trade on intra-industry reallocation of firms and on aggregate industry

productivity.

Our paper adopts a growth approach to explain how heterogeneous firms producing in a par-

ticular period of time are the result of subsequent waves of process innovations which allow more

recent firms to produce using more productive techniques. The contemporaneous production of

firms characterized by different productivity levels results in a variety of prices set by firms which

reflect productivity differences. The latter are also responsible for patents’ price differences, given

that patent prices of more profitable varieties are higher. Moreover, demand and market shares

of older less efficient firms decrease over time as long as new patents, which allow the production

of new goods along the technological frontier, are produced in the innovative sector.

In this work we assume that old firms are unable to implement the more productive production

processes due to high switching or implementing costs required to adopt the new production

processes. However, demand for these firms is still positive given the Dixit and Stiglitz approach,

which postulates love for variety in consumption. The assumption of goods which are imperfect

substitutes together with that of productivity heterogeneity results in different equilibrium prices

for different varieties. Moreover, our results suggest that policy intervention may have a role given

that specific policies could be set in order to reduce switching costs when they are particularly

high in order to implement a redistribution of the production activity toward the innovative sector

with an associated higher rate of innovation and of growth of the overall economy.
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Appendix A

As in the text, we define h in such a way that m = 1, 2, ......, (h = i). Once there is an

improvement along the learning curve described by (19), the series continues in the following way:

m = 1, 2, ......, h, (h+ 1 = i). In this appendix we show when process innovations which increase

the value of h as defined above, end up with a smaller (higher) value of bi. In other words, we

show when bh is higher (lower) than bh+1.

We know from the definition (26) that

bh ≡ nhγ
1−σ
h

hX
j=1

njγ
1−σ
j

and bh+1 ≡
nh+1γ

1−σ
h+1

h+1X
j=1

njγ
1−σ
j

Hence, we derive that bh > bh+1 when

nhγ
1−σ
h

h+1X
j=1

njγ
1−σ
j > nh+1γ

1−σ
h+1

hX
j=1

njγ
1−σ
j
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or, equivalently, when

nhγ
1−σ
h

hX
j=1

njγ
1−σ
j + nhγ

1−σ
h nh+1γ

1−σ
h+1 − nh+1γ

1−σ
h+1

hX
j=1

njγ
1−σ
j > 0 (40)

Expression (40) is true when
hX

j=1

njγ
1−σ
j

h−1X
j=1

njγ
1−σ
j

>
nh+1γ

1−σ
h+1

nhγ
1−σ
h

We substitute nh+1 from (21) and we obtain

l ≡

hX
j=1

njγ
1−σ
j

h−1X
j=1

njγ
1−σ
j

>
LRγ

1−σ
h+1

aγ1−σh

=
LR
a

µ
γh
γh+1

¶σ−1

where the left term in the inequality, l, is always larger than 1. Therefore, given that γh+1 < γh,

we may at least state that bh > bh+1 is true, when LR
a

³
γh
γh+1

´σ−1
< l. That is when

1 <

µ
γh
γh+1

¶σ−1
<

a

LR
l (41)

Expression (41) says that when the process innovation produces a reduction in γ which is not

relatively high, then bi decreases.

Appendix B

Following Grossman and Helpman (1991, p. 63) we define the index of the manufactured

output

D ≡
Ã

iX
m=1

nmx
α
m

! 1
α

where α = σ−1
σ , while the ideal price index of final goods is pD.

The gross domestic product (GDP), G, is defined as the sum of the value added in manufac-

turing and in the R&D sector

G ≡ pDD + viṅi
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We know from Grossman and Helpman (1991, p. 63) that the growth of the real GDP is equal to

a weigthed average of the growth rates of the manufactured good index, gD, and of the research

output, gi, with weights given by sector’s value shares. In particular, the manufactured goods

share is given by θD ≡ pDD/ (pDD + viṅi). Thus the growth rate of the real GDP is

gG = θDgD + (1− θD) gi

We need to compute gD for a given value of bi.

Using (29), (26) and (17), we rewrite D as follows

Dα ≡
iX

m=1

nm

µ
αbm
nmγm

¶α
w−α =

iX
m=1

nm



α
nmγ1−σm
iX

j=1

njγ
1−σ
j

nmγm



α

w−α =

=
iX

m=1

nm

α
γ−σm

iX
j=1

njγ
1−σ
j



σ−1
σ

w−α =

α
σ−1
σ

iX
m=1

nmγ
1−σ
m iX

j=1

njγ
1−σ
j


σ−1
σ

w−α =

= αα

Ã
iX

m=1

nmγ
1−σ
m

! 1
σ

w−α = αα

Ã
iX

m=1

nmγ
1−σ
m

!1−α
w−α

Therefore

D
α

1−α ≡ α
α

1−α

Ã
iX

m=1

nmγ
1−σ
m

!
w−

α
1−α

and totally differentiating the previous expression, we obtain

α

1− α
D

α
1−α−1Ḋ = − α

1− α
α

α
1−αw−

α
1−α−1ẇ

Ã
iX

m=1

nmγ
1−σ
m

!
+ α

α
1−αw−

α
1−α γ1−σi ṅi

gD = −ŵ + 1− α

α

niγ
1−σ
iÃ

iX
m=1

nmγ
1−σ
m

!gi

gD = −ŵ + (1− α)

α
bigi
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We know from (17) that

ŵ = −V̂i

Since for any given value of bi we know that V̂i = 0, we derive that

gD =
(1− α)

α
bigi

Moreover, given our normalization for manufacturing expenditure, we know that E = pDD = 1

and

θD =
1

1 + 1
Vi
gi

(42)

Expression (42) tells us that the manufactured goods share, θD, is constant if Vi is constant. We

know that Vi is constant only if bi does not change. Consequently, the real GDP growths at the

following rate

gG =

·
θD
(1− α)

α
bi + (1− θD)

¸
gi

which is constant when bi is constant, given that we know from (37) that also gi is constant.
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