
1 Introduction

In The Economics of Imperfect Competition, Joan Robinson (1969, p.70)
wrote:

An increase in wealth is likely to make the demand of the individual buyer of any

particular commodity less elastic. Thus an increase in demand due to an increase

of wealth is likely to reduce the elasticity of the demand curve, and may reduce

the elasticity so much that the slope of the curve is increased.

While the idea that higher individual income implies lower price elasticity
of the individual demand curve is an assumption on preferences,1 the rela-
tionship between an overall increase in income and market demand hinges
on some assumption on how income is distributed across consumers. Indeed,
increases in aggregate income rarely take place without a®ecting how income
is distributed { and, according to most accounts, income growth over the last
decades has occurred together with `increasing inequality', or `income polar-
ization' (see, e.g., Gottshalk and Smeeding, 2000). In a partial equilibrium
perspective, if an increase in the consumers' aggregate income is associated
with changes in the elasticity of the market demand curve, this should in
principle a®ect the behaviour of ¯rms and market structure (Benassi et al.,
2002a): Joan Robinson herself argues that such a shock would a®ect the
mark-up levels and the co-movement of prices and quantities in monopolistic
markets.
Clearly, any statement about the behaviour of market demand elasticity

following a change in aggregate income generally requires some assumption
on the individual demand curve; however, one would like to know whether
the aggregate reaction to an aggregate shock depends only on such assump-
tions at the individual level. Relying on the above quotation, one may call
`Robinson e®ect' the idea that the sign of the relationship between aggregate
income and market price elasticity is the same as that of the relationship
between individual income and the price elasticity of the individual demand
curve.
This paper asks what restrictions on the shape of the income distribu-

tion are su±cient to ensure that a negative (positive) relationship between
indivual income and individual price elasticity translates into a negative (pos-
itive) relationship between mean income and market demand elasticity. A
natural way to model increases in mean income is via ¯rst-order stochastic-

1The idea that the price elasticity of demand decreases as individual income increases is
arguably more reasonable than the converse. For some empirical evidence on the relevance
of the elasticity-income link, see e.g., Gertler et al. (1987).
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dominance (fosd) shifts of the income distribution. Hence, our model pro-
vides su±cient conditions for the Robinson e®ect to hold when income dis-
tribution is hit by a fosd shock { it being the case (as shown in section 3)
that such a shock may not in general lower market elasticity, even though
the price elasticity of the individual demand is decreasing in income.
The paper is organized as follows. In the next section a simple general

framework is developed to study the relationship between income distribution
and the elasticity of market demand. In Section 3 the main result of the paper
is presented, which identi¯es su±cient conditions on the income distribution
for the `Robinson e®ect' to take place, when the income distribution is hit
by shocks in the ¯rst-order stochastic-dominance sense. These conditions are
satis¯ed by a wide range of commonly used distributions. Section 4 o®ers
some concluding remarks.

2 Income distribution and demand elasticity

In this section we present a partial equilibrium framework to assess the role
of income distribution and the e®ects of distribution changes on market de-
mand, when income is the only source of heterogeneity.
Consumers di®er only in income, and their behavior is described by a con-

tinuous standard Marshallian demand curve q(p; y), where the prices of com-
modities other than q are held ¯xed throughout. Each agent is accordingly
identi¯ed by his income y 2 Y = (ym; yM ), where 0 < ym < yM · 1. The
good q is normal, that is (letting subscripts denote derivatives) qy(p; y) > 0
and qp(p; y) < 0, for all (p; y) 2 P £ Y , where P is a subset of non-
negative reals. A natural speci¯cation might be P = (0; pM ), with pM sat-
isfying q(pM ; yM ) = 0: it would be the choking price for the highest income
consumers (in the limit, if yM = 1). For any p 2 P , one clearly has
limy!yM q(p; y) > limy!ym q(p; y) ¸ 0.
Income is continuously distributed according to the density f(y; µ) > 0,

where µ 2 £ is a real parameter of the distribution. In the next section it
will measure a fosd shock. The income distribution F : Y £ £ ! [0; 1] is
obviously de¯ned by

F (y; µ) =

Z y

ym

f(x; µ)dx (1)

Clearly, Fµ(yM ; µ) = 0, since by de¯nition F (yM ; ¢) = 1 for all µ. Aggregate
(mean) market demand is

Q(p; µ) =

Z yM

ym

q(p; y)f(y; µ)dy (2)

3



A natural question is, what happens to market demand when the income
distribution shifts, following a change in µ. Trivially,

Qµ(p; µ) =

Z yM

ym

q(p; y)fµ(y; µ)dy

which, by standard results (e.g., Hirshleifer and Riley, 1992, ch.3), will be
positive if µ is a fosd shift, since q is increasing in y; while it will be positive or
negative, depending on convexity or concavity of Engel curves, if µ measures a
mean preserving, second order stochastic dominance shift of the distribution.
The focus of our paper, however, is what happens to market demand

elasticity when the income distribution changes. Let ´(p; y) be the (positive)
demand elasticity along the individual demand curve q(p; y). It is straight-
forward to derive the market demand elasticity H satisfying

H(p; µ) =

Z yM

ym

´(p; y)'(y; p; µ)dy (3)

where '(y; p; µ) is de¯ned by

'(y; p; µ) =
q(p; y)f (y; µ)

Q(p; µ)
(4)

so that, quite naturally, market elasticity is a weighted average of individ-
ual elasticities. Given p 2 P , ' > 0 is the density describing how market
demand is distributed across income classes. The corresponding cumulative
distribution is

©(y; p; µ) =

Z y

ym

'(x; p; µ)dx (5)

such that ©(yM ; ¢; ¢) = 1. In particular, we note that by writing out the
whole expression,

©(y; p; µ) =
1

Q(p; µ)

Z y

ym

q(p; x)f(x; µ)dx

©(y; p; µ) has the form of a Lorenz curve, since Q is the average value of q.
We gather in the next proposition two noteworthy, albeit quite intuitive,

general properties of ©(y; p; µ).

Proposition 1 (a) For given (p; µ) 2 P ££, ©(y; p; µ) dominates stochas-
tically F (y; µ) in the ¯rst order sense, that is ©(y; p; µ) · F (y; µ) for all
y 2 Y , with strict inequality somewhere; (b) If ´y(p; y) < 0 for all y 2 Y ,
an increase in p a®ects ©(y; p; µ) as a ¯rst order stochastic dominance shock,
i.e., ©p(y; p; µ) · 0 for all y 2 Y , with strict inequality somewhere.

4



Proof. (a) Using de¯nitions (1) and (5), for given (p; µ) we have

F (y; µ)¡ ©(y; p; µ) =
Z y

ym

f(x; µ)

µ
1¡ q(p; x)

Q(p; µ)

¶
dx ´ Z(y)

say. Note that Z(ym) = Z(yM) = 0, while Zy = [1 ¡ q(p; y)=Qp; µ)]f (y; µ).
Since f(y; µ) is positive, Q is an average and q is monotonically increasing
in y, there is only one value y of y such that q(p; y) = Q, which is the only
maximum of Z. There follows that Z > 0 for all y 2 Y , since it is increasing
(decreasing) around ym (yM ). Hence, ©(y; p; µ)¡ F (y; µ) = ¡Z(y; p; µ) < 0.

(b) By writing out the derivative of (5) with respect to p, we get

©p(y; p; µ) = ¡Qp(p; µ)
Q(p; µ)

©(y; p; µ)¡ 1
p

Z y

ym

´(p; y)'(y; p; µ)dy

after some rearrangement. Now multiply through by p > 0 and use (3) to
obtain the following condition for ©p(y; p; µ) < 0:

K(y) ´
Z y

ym

(H(p; µ)¡ ´(p; y))'(y; p; µ)dy < 0

where K is de¯ned for given (p; µ). Clearly, K(ym) = 0, and K(yM) = 0 by
(3). Since H(p; µ) is an average of ´(p; y) and ´y(p; y) < 0, the derivative
Ky = (H(p; µ) ¡ ´(p; y))'(y; p; µ) is increasing in y and vanishes at y = ey
such that ´(p; ey) = H(p; µ), which is a minimum. This implies that K(y) < 0
for all y, and hence ©p < 0.

These properties hold in general { in particular, as is obvious, they do not
depend on µ. Property (a) implies that ¹(µ) =

R yM
ym
xf(x; µ)dx < m(p; µ) =R yM

ym
x'(x; p; µ)dx for all p 2 P : the average income weighted by the demand

share of each income class on overall demand, is higher than mean income
(i.e., average income weighted by the income share of each income class on
overall income): this follows naturally from the commodity being normal.
By property (b), following and increase in p; the implied decrease in demand
is such that the degree of income heterogeneity among buyers increases { in
the sense that demand is more unevenly distributed across income classes;
also, the share of high income buyers on overall demand increases, which,
though naturally to be expected, may be empirically not trivial, and in some
circumstances signi¯cant from a welfare point of view.2

2This applies, e.g., to commodities like pharmaceuticals or health services, where the
issue of price controls and availability for low income consumers may be relevant. Gertler
et al. (1987) provide some empirical evidence in this respect.

5



Equation (3) makes it clear that, when working on elasticity, the crucial
question is how shifts in F translate themselves into shifts in ©: that is,
how changes in income distribution a®ect the income distribution of market
demand (or its Lorenz curve). We now turn to the case where an exogenous
shock generates a fosd shift to the income distribution.

3 First order stochastic dominance

In this section we enquire about the e®ects of a fosd shock to the income
distribution: hence, we interpret µ as an index of fosd and impose that
Fµ(y; µ) · 0 for all y 2 Y (with strict inequality somewhere), which implies
that aggregate (average) income is increasing in µ, ¹µ(µ) > 0. As individual
demand q(p; y) is increasing in income y, this also immediately implies that
Qµ(p; µ) > 0: not surprisingly, a fosd shock increases demand at all prices.

3

But how about elasticity? In principle, there is no reason to expect
that Robinson's assumption on preferences (an increase in individual income
a®ects negatively the price elasticity of individual demand) delivers a negative
relationship between aggregate income and the price elasticity of market
demand. The following example shows that an increase in mean income may
leave market elasticity unaltered, even though the elasticity of individual
demand is decreasing in individual income.
Let the consumer's demand for commodity q be

q(p; y) = max

½
1¡ p

y
; 0

¾
such that its elasticity (whenever the consumer buys the commodity) is
´(p; y) = p=(y ¡ p), which is positive and clearly decreasing in income.4 Let
now the latter be distributed across consumers as a standard exponential,

f(y; µ) = e¡(y¡µ)

with ym = µ and yM = 1. An increase in µ > 0 amounts to a fosd shock,
which increases linearly aggregate (mean) income.5 We show in the Appendix
that in this case the aggregate demand function takes the form

Q(p; µ) = G(p)eµ

3For a simple proof, see e.g. Hirshleifer and Riley (1992, ch.3).
4This demand function can be rationalized as deriving from a separable utility function

(see, e.g., Tirole, 1989, p.144).
5Indeed, it is easily seen that ¹(µ) = 1 + µ, and that Fµ(y; µ) = ¡e¡y+µ < 0.
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for any p > µ: there follows trivially that Hµ(p; µ) = 0: an increase in mean
income has no e®ect on the price elasticity of market demand. The same
Appendix also presents a simple general argument, to the e®ect that a shock
being fosd does not ensure that the sign of the individual relationship be-
tween elasticity and income carries over to the aggregate relationship between
market elasticity and mean income.

3.1 Elasticity and the income distribution of demand

A preliminary step is now required to see how µ may a®ect the income distri-
bution of demand. This involves considering Esteban's (1986) income share
elasticity, de¯ned as follows

¼(y; µ) = lim
h!0

d log
³
1
¹

R y+h
y

xf(x; µ)dx
´

d log y
= 1 +

yfy(y; µ)

f(y; µ)
(6)

The function ¼ measures the percentage change in the share of income ac-
cruing to class y, brought about by a marginal increase y. Esteban shows
that there is a one-to-one relationship between any given income density and
the corresponding income share elasticity, so that the former can be charac-
terized in terms of the latter. Given that, a natural question is what is the
relationship between a fosd shock to the distribution, and the behaviour
of the corresponding income share elasticity. In this respect, the following
proposition is noteworthy:

Proposition 2 Let µ be a continuous shift to the density f(y; µ), such that
Fµ(ym; µ) = 0. If ¼µ(y; µ) > 0 for all y 2 Y , then µ is a fosd variable, i.e.
Fµ(y; µ) · 0 for all y 2 Y (strictly somewhere).

Proof. To ease notation, let s(y; µ) = fµ(y; µ)=f(y; µ), with f(y; µ) > 0
for all y 2 Y . Simple di®erentiation then shows that ¼µ(y; µ) = ysy(y; µ),
so that ¼µ(y; µ) > 0 means that s(y; µ) is monotonically increasing in y for
any given µ. Now notice that by de¯nition Fµ(yM ; µ) =

R yM
ym
s(y; µ)f(y; µ)dy

= 0: as f(y; µ) > 0 and the overall integral is nil, s(y; µ) has to take on both
negative and positive values. Since s(y; µ) is increasing in y, the (negative)
minimum of s occurs at y = ym and, by the same token, s(yM ; µ) > 0 is
a maximum for s: there is a unique value by of y such that s(by; µ) = 0.
Consider now the function Fµ(y; µ) =

R y
ym
fµ(y; µ)dy, the ¯rst derivative of

which is fµ(y; µ) = s(y; µ)f(y; µ). Clearly, signffµ(y; µ)g = signfs(y; µ)g,
and fµ(y; µ) vanishes at by which is the unique minimum for Fµ(y; µ). Since
s(y; µ) is negative (positive) for y near ym (yM) so will be fµ(y; µ): Fµ(y; µ)
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points down (up) around ym (yM). As Fµ(ym; µ) = Fµ(yM ; µ) = 0, Fµ(y; µ)
lies below the zero line: µ is then a fosd parameter.

Under the assumption that a shock on µ does not a®ect the lower bound of
the support of the distribution, the proof takes advantage of the fact that if µ
raises the income share elasticity, the µ-elasticity of the density (equivalently,
the function s) must be increasing in income, and negative for low income
levels.
Proposition 2 is the key to the paper's main result, to the e®ect that the

condition ¼µ(y; µ) > 0 is actually su±cient for the Robinson e®ect to take
place. To see this, notice that, given (3), the derivative of market elasticity
H with respect to µ is clearly,

Hµ(p; µ) =

Z yM

ym

´(p; y)'µ(y; p; µ)dy

Integrating by parts one obtains

Hµ(p; µ) = ¡
Z yM

ym

´y(p; y)©µ(y; p; µ)dy (7)

indeed, a crucial piece of information is obviouly how individual elasticity
´(p; y) reacts to y.
Looking at (7), one may rely exclusively on Robinson's assumption that

´y(¢; y) < 0 to draw the conclusion that Hµ(¢; µ) < 0, whenever one can
safely assert that ©µ(y; ¢; µ) · 0 for all y (with strict inequality somewhere).
In other words: it is enough to know that individual elasticity is such that
´y(¢; y) < (>)0 to conclude that Hµ(¢; µ) < (>)0, when a fosd shock to
F (y; µ) translates into a fosd shock to ©(y; ¢; µ): monotonicity of the indi-
vidual relationship is then enough to sign the aggregate relationship. How-
ever, ©(p; y; µ) depends on preferences via the individual demand curve, so
that a given shock to F does not necessarily translate into a shock of the
same type to ©: in fact, we are interested on what restriction on F only are
such that this occurs. As the following proposition establishes, it turns out
that one such restriction is that the income share elasticity be raised by an
increase in µ { which obviously raises mean income.

Proposition 3 Assume Fµ(ym; µ) = 0. If ¼µ(y; µ) > 0, then ©µ · 0 for all
y 2 Y .

Proof. The proof is straightforward, by noting that Proposition 2 can
also be applied to the income distribution of demand: if the corresponding
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Esteban elasticity is raised by an increase in µ, then a change in µ is a fosd
shift to ©(y; p; µ). Let such elasticity be denoted by b¼(y; p; µ): it is easily
checked that

b¼(y; p; µ) = 1 + y'y(y; p; µ)
'(y; p; µ)

= "(y; p) + ¼(y; µ) (8)

where "(y; p) is the income elasticity of demand. There follows that ¼µ(y; µ) >
0 implies b¼µ(y; µ) > 0 and hence µ is a fosd variable for both F and ©, since
Fµ(ym; µ) implies trivially ©µ(ym; p; µ) = 0.

It should be stressed that ¼µ is positive in many, well known and widely
used cases, where it is associated with the densities intersecting only once
following a shock on µ. Moreover, this property is a well known feature (in
an obviously di®erent context) of many contract theoretic models, where it
is known as `monotone likelihood ratio property' (e.g., Hart and HolstrÄom,
1987).6

By Proposition 3, if the distributive shock on µ has no e®ect on the income
share elasticity, there is no e®ect on the price elasticity of market demand
{ incidentally, this is what happens in the previous example, since for the
exponential distribution ¼(y; µ) = 1¡ y, independent of µ.7 The economics
behind this result can be put as follows. It is obvious that aggregate price
elasticity is an average of individual elasticities, weighted by the individual
demand share on total demand. A fosd shock increases market demand (as
agents are on average richer), but does not necessarily increase the weight
of high income (low elasticity) classes vis µa vis that of low income (high
elasticity) classes: for this to happen, the increase in the density of high
income classes must be such that their demand increases more than aggregate
demand: that is, 'µ(¢; p; µ) > 0. This implies that for some other classes,
'µ(¢; p; µ) < 0, while for at least one value of y it will be 'µ(¢; p; µ) = 0
(since obviously

R yM
ym
'µ(y; p; µ)dy = 0). Given this, a decrease in aggregate

elasticity is clearly to be had whenever 'µ(¢; p; µ) is monotonically increasing
in y, i.e. the shock raises the high income (and decreases the low-income)

6The property ¼µ > 0 (µ being an appropriately de¯ned fosd shift variables) holds for
distributions such as Pareto, lognormal, Beta, and Gamma. The implication of MLRP is
apparent when recalling, from Proposition 2, that ¼µ > 0 implies that s(y; µ) is increasing
in y:

7In the example we also have, contrary to the assumptions in Proposition 3, Fµ(ym; µ) =
¡1 6= 0. Referring to the proof of Proposition 2, this is implied by ¼ being independent of
µ, since the latter means that the µ-elasticity of the density is independent of income. In
fact, for the exponential distribution this elasticity equals µ: hence fµ(¢; µ) = f(¢; µ), and
Fµ(yM ; µ) = Fµ(ym; µ) +

R yM
ym

fµ(¢; µ)dy = 0 requires Fµ(ym; µ) = ¡1.
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demand share; on the other hand, Proposition 2 tells us that a necessary and
su±cient condition for the µ-elasticity of any density to be monotonically
increasing in y, is that the corresponding income share elasticity be raised
by µ. Hence if b¼µ is positive, 'µ is indeed increasing in y.
4 Concluding remarks

The e®ects of income distribution on market demand are generally studied
under the assumption that prices be given { the main focus being on Engel
curves, consumption patterns and the size of the market (e.g., Lambert and
PfÄahler, 1997). However, the link with price elasticity should in principle
also matter, as elasticity is crucial to the ¯rms' choices and market structure
(Benassi et al., 2002b). Clearly, the crucial obstacle to this kind of anal-
ysis is that the relationship between market demand elasticity and income
distribution depends heavily on preferences.
The premise of this paper is that it is anyway useful to know to what ex-

tent the link between income distribution and the price elasticity of demand
is a®ected by speci¯c assumptions about preferences. In this respect, our
main result is that there exist restrictions on the shape of the income distri-
bution (holding for a wide class of functional forms), such that the `Robinson
e®ect' operates { that is, the sign of the income-elasticity link at the aggre-
gate level is the same as that dictated by preferences at the individual level,
whenever the increase in aggregate income is due to a ¯rst-order, stochastic
dominance shock to the distribution of income. For example, one practical
consequence of this is that, when individual price elasticity is decreasing in
income, one such shock is bound to raise the ¯rms' market power in a tradi-
tional Cournot setting, whenever it also raises the income share elasticity at
all income classes.

References

[1] Benassi C., R.Cellini and A.Chirco (2002a): Personal Income Distribu-
tion and Market Structure, German Economic Review, 3, 327-38.

[2] Benassi C., A.Chirco and M.Scrimitore (2002b): Income Concentration
and Market Demand, Oxford Economic Papers, 54, 584-96.

[3] Esteban J. (1986): Income Share Elasticity and the Size Distribution of
Income, International Economic Review, 27, 439-44.

10



[4] Gertler P.J., L.Locay and C.Warren (1987): Are User Fees Regressive?
The Welfare Implications of Health Care Financing Proposals in Peru,
NBER Working Paper 2299, June.

[5] Gottshalk, P. and T.M.Smeeding (2000): Empirical Evidence on
Income Inequality in Industralized Countries, in A.B.Atkinson and
F.Bourguignon (eds), Handbook of Income Distribution, North Holland,
Amsterdam.

[6] Hart O. and B.HolstrÄom (1987): The Theory of Contracts, in
T.F.Bewley (ed), Advances in Economic Theory. Fifth World Congress,
Econometric Society Monographs No.12, Cambridge University Press,
Cambridge and New York.

[7] Hirshleifer J. and J.G.Riley (1992): The Analytics of Uncertainty and
Information, Cambridge University Press, Cambridge.

[8] Lambert, P.J. and W.PfÄahler (1997): Market Demand and Income Dis-
tribution: A Theoretical Exploration, Bulletin of Economic Research,
49, 137-51.

[9] Robinson, J. (1969): The Economics of Imperfect Competition, MacMil-
lan, London and New York (2nd edition).

[10] Tirole, J. (1989): The Theory of Industrial Organization, MIT Press,
Cambridge Ma.

11



Appendix

In this Appendix we (a) present in more detail the example discussed in
the text; and (b) present a simple general argument to show that, under a
fosd shock, knowing the sign of the relationship between price elasticity and
income along the individual demand curve says nothing on the relationship
between market elasticity and average income.

(a) The example
The income distribution is a standard exponential, with density f (y; µ) =
e¡(y¡µ), and cumulative distribution F (y; µ) = 1 ¡ e¡y+µ, y 2 [µ;1). As
explained in the text (see also f.note 5), µ > 0 is a fosd parameter and
mean income is ¹(µ) = 1+ µ. We notice that, contrary to our assumption in
Proposition 3, Fµ(ym; µ) = ¡1 < 0 and ¼(y; µ) is independent of µ. Indeed

¼(y; µ) = 1 +
yfy(y; µ)

f(y; µ)
= 1 +

¡ye¡(y¡µ)
e¡(y¡µ)

= 1¡ y

As to the individual demand function, we have q(p; y) = max
n
1¡ p

y
; 0
o
, so

that aggregate demand is

Q(p; µ) =

Z 1

µ

max

½
1¡ p

y
; 0

¾
e¡(y¡µ)dy (A.1)

Assume now that p > µ. Then (A.1) becomes

Q(p; µ) =

Z 1

p

µ
1¡ p

y

¶
e¡(y¡µ)dy

which gives Q(p; µ) = (1 ¡ pA (p) ep)e¡p+µ where A(p) = R1
p
x¡1exdx is a

decreasing positive function of p. Clearly, this can be written as Q(p; µ) =
G(p)eµ (which is isoelastic in µ), with G(p) = e¡p ¡ pA(p):

(b) A simple argument
Assume µ is a fosd shock to the income distribution, such that Fµ(y; µ) · 0
(strictly somewhere) for all y 2 Y , which implies Qµ(p; µ) > 0 for all p 2 P .
Upon di®erentiation, a necessary and su±cient condition for Hµ(p; µ) < 0 is
that

¡pQpµ(p; µ) < Qµ(p; µ)H(p; µ)
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where subscripts denote (cross) partials and (obviously) p, Qµ(p; µ), and
H(p; µ) are all positive. We now show that ´y(p; y) < 0 implies Qpµ(p; µ) < 0,
which means that the LHS is itself positive: some speci¯c assumption on
F (y; µ) is accordingly required beyond fosd, to ensure that ´y(p; y) < 0
implies Hµ(p; µ) < 0.
Integration by parts yields

Qpµ(p; µ) = ¡
Z yM

ym

qpy(p; y)Fµ(y; µ)dy

Since ´y(p; y) < 0 implies trivially ¡pqpy(p; y) < qy(p; y)´(p; y) for all y, there
follows that

pQpµ(p; µ) = ¡p
Z yM

ym

qpy(p; y)Fµ(y; µ)dy <

Z yM

ym

qy(p; y)´(p; y)Fµ(y; µ)dy < 0

the last inequality deriving from qy(p; y) and ´(p; y) being both positive for
all y, while Fµ(y; µ) · 0 (strictly somewhere) by the de¯nition of fosd. Since
p is obviously positive, this implies Qpµ(p; µ) < 0.
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