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Abstract 

Melanoma (MM) is one of the tumors with the highest incidence. In Italy, MM 

affected about 13,700 patients out of 373,000 new cases of cancer in 2018, with 

prognosis dependent on the degree of tumor invasion and presence of metastasis 

at diagnosis: only an early detection can lead to a better prognosis. Recent 

evidence suggests that MM is a family of different tumors with varying abilities 

to grow and metastasize: dendritic-shaped tumor cells were typically found in thin 

MM in situ. Reflectance Confocal Microscopy (RCM) is a non-invasive imaging 

tool that enables in vivo observation of the skin at a quasi-histological resolution, 

providing transverse-section grayscale images related to refractive index of 

different tissues. In this work, a dataset of RCM images, from 13 healthy subjects 

and 22 patients affected by MM in situ, were used to train a Multi-Layer 

Perceptron (MLP) artificial neural network. Each image was subdivided into sub-

blocks, labeled as positive if containing significant clusters of dendritic-shaped 

tumour cells. In each block, various standard features were calculated, e.g. 

Haralick’s and features from the run-length matrices. The MLP was trained to 

recognize the presence of clusters of dendritic-shaped cancer cells. The 

preliminary results are encouraging, giving AUC=0.81 with about 73% accuracy. 

Tests are currently underway to improve quality. 
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1.  INTRODUCTION 

Cutaneous melanoma (MM) arises from the malignant transformation of melanocytes 

derived from normal skin or a pre-existing melanocytic nevus [1]. Since melanoma in 

advanced stages is still incurable, early diagnosis is indispensable to reduce mortality. 

In the era of precision medicine [2], the identification and stratification of atypical nevi in 

the early stage of cancer development is an essential starting point for increasing the 

probability of therapeutic success. To date, however, identification of MM lesions is 

affected by an unsatisfactory rate of false-positive results due to the way in which diagnosis 

is performed. In fact, conventional clinical diagnosis of MM is based on some observable 

criteria such as Asymmetry, Borders, irregularity, non-uniform Colour, and Diameter 

>6mm (ABCD acronym), that only provide about 64% accuracy [3]. Therefore, diagnosis 

is often complemented with surgical excision for performing biopsy, an invasive and 

painful method that obviously leaves a scar. It is also time-consuming because many days 

are needed before the clinician gets the report back to complete the diagnosis [3]. 

In this scenario, clinical dermatology needs to undergo a technological revolution, through 

the development of novel imaging techniques that provide detailed information about the 

skin in a non-invasive manner [4]. Among these techniques, Reflectance Confocal 

Microscopy (RCM) enables in vivo visualization of the skin with a resolution at the cellular 

level, providing an alternative to histopathology [3]. This performant technique allows in 

vivo examination by producing an optical biopsy using a non-invasive procedure, which 

helps clinicians in real-time diagnosis of MM at an earlier and curable stage, avoiding 

unnecessary scars from surgical biopsies of benign lesions, reducing costs and time 

consuming medical procedures [3]. RCM works with incident light technology. The skin 

is illuminated from above with a focused laser in the near infrared band, and the reflected 

light is directed through a pinhole onto a detector. The contrast in the images relies on the 

differences in the reflectivity of the tissue that depends on the molecular and chemical 

structures. In RCM, structures with a higher refractive index appear bright and different 

refractive indices lead to particular reflection patterns in different shades of gray [5].  

Clinically, melanomas appear as dark, flat or slightly raised mark on the skin, with different 

colours. Borders can be irregular, with indentations or notches [3]. On the contrary, on 

RCM, melanocytes appear bright due to their higher refractive index and can be depicted 

with great definition due to the clear endogenous contrast of melanin [5], leading to 

distinguish two different microscopic subtypes of MM: pagetoid MM and solar MM [3]. 

Unlike pagetoid MM, that normally occurs in adults with intermittent solar exposure and 

showing high number of nevi on the skin, solar MM is frequent in patients with low nevi, 

in areas with high solar exposition [3] and there is no evidence of occurring in pre-existing 

nevus [3]. In addition, on RCM, atypical melanocytes in solar MM appear as clusters of 
cells with dendritic branches [3].  

The introduction of novel artificial intelligence (AI) technologies applied to the diagnosis 

and possibly to the prognosis of MM, could largely revolutionize the status of the 

management of MM patients. In this work, the development of a Computer-Aided 

Detection (CAD) software tool based on Artificial Neural Networks (ANN) for the 

automatic detection of dendritic-shaped cancer cells of solar cutaneous MM on a series of 

RCM images is described.  

The results expected from this innovative automated system of assisted diagnosis concern 

the possibility to support the clinician in reading the images, typically difficult to interpret, 
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during the diagnostic process, identifying clusters of malignant cells that can be used as 

biomarkers of disease. In particular, the presence and the automatic detection of dendritic-

shaped tumour cells can be immediately presented to the attention of the clinician in any 

doubt case, when it is difficult - even for the naked eye of the best dermatologist - to 

discriminate between atypical nevus vs. melanoma, leading to the correct therapeutic 

choice. A CAD tool can also be used as a first reader in the screening of large courts of 

patients, to focus the attention of the clinician primarily on images of suspicion or obvious 

malignancy. This software would also support the prognosis, since it would be able to 

quantitatively measure the reduction of these atypical cell clusters during follow-up or even 

assess whether the scar zone shows undamaged margins after surgery. 

 

2. MATERIALS AND METHODS 

A. RCM data 

In this work, a dataset of RCM images, from 13 healthy subjects and 22 patients affected 

by solar melanoma in situ, were used to train a Multi-Layer Perceptron (MLP) ANN. The 

images were acquired in ‘Città di Lecce Hospital’ – Gruppo Villa Maria (GVM), site in 

Lecce, Italy.  

Imaging was performed using Vivascope 1500 RCM which uses a laser diode with a near-

infrared wavelength of 830 nm. Laser power is low so that the light causes no damage to 

tissue, but imaging depth is limited to 200–300 µm which corresponds more or less to the 

papillary dermis. VivaScope 1500 provides basic images with a 500×500 µm horizontal 

field of view (x, y) at a preselected imaging depth (z). RCM allows the scanning of the 

entire area of the lesion up to 8×8 mm. An automated stepper can then generate a grid of 

contiguous horizontal images (1000x1000-pixel each) forming a two-dimensional 

composite mosaic called VivaBlock.  

After setting the referencing mark to zero, three mosaics were acquired from all the subjects 

at the epidermal level (z = 30 µm), DEJ (z = 60-90 µm), and upper dermis (z = 90–120 

µm), respectively [3]. Figure 1 shows an example of RCM images. 

 
Figure 1. Example of dermis level of benign nevus, with regular and conserved 

architecture of dermal papillae (a) and dermis level of solar melanoma, with irregular 

architecture and clusters of dendritic-shaped cancer cells around a hair follicle (b).  

 
B. Image Processing 

A Graphical User Interface (GUI) was developed in MATLAB (The MathWorks, Inc. 

Natick, Massachusetts), in order to allow the dermatologists to easily label image parts 
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according to presence or absence of pathological tissues (the latter, characterized by 

dendritic-shaped tumour cells). 

Vivablocks often show some blurring, variable illumination between mosaic blocks, and 

noise. To avoid calculations to be affected by the discontinuities existing between mosaic 

blocks, every image was split and each block was then considered as a single ROI, where 

features were calculated.  

Each step of loading, labelling and splitting the images was achieved using the GUI (Figure 

2). 

 

 

 

 

 

 

 

 

 

 

Figure 2. Scheme of RCM image processing. Figure (a) shows the acquisition of three (or 

more) RCM layers of the skin (epidermis/DEJ/derma). These images are mosaic-structure 

Vivablocks.  Figure (b) shows a whole mosaic-structure Vivablock composed by blocks of 

1000x1000 pixels. The yellow square shows a single block. Figure (c) shows the GUI 

interface: blocks are labelled by the dermatologists according to the presence of 

pathological blocks (red squares) and then split and placed in form of a 3D object (depth 

allowing to index single blocks) ready for easy access by the feature-calculation and MLP 

software. Yellow line is a convenient grid.  

 

C. Feature Extraction 

To compute the features that describe the lesion textures, the Radiomics MATLAB toolbox 

developed by Vallières et al. [6] was used. The computed features, used as input for the 

neural network, were extracted from the intensity histogram (first-order statistics), the 

gray-level co-occurrence matrix (GLCM, Haralick’s second-order features), the gray-level 

run-length matrix (GRLM), the gray-level size zone matrix (GLSZM) and the 

neighborhood gray-tone difference matrix (NGTDM) [7]. Information of each method and 

the corresponding features can be found in [6].  

Prior to the computation of texture features, the images were quantized to a lower number 

of gray levels (32) to improve the signal-to-noise ratio [8].  

Finally, before being used in the training/validation loop, all the features were normalized 

(between 0 and 1) to avoid model computation being affected by differences in the feature 

scales [9].  

 

(c) (a) (b) 
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D. Model Evaluation 

The flow chart in Figure 3, illustrates the main software steps, starting with block labeling 

by the user interface (left), followed by feature calculation (centre) and classification 

(right).  

 

 

 

 

 

Figure 3. The main steps of the classification algorithm. 

 

After various tests with several network architectures, a feed-forward neural network 

(MLP) composed of 1 hidden layer with 5 neurons, trained by supervised learning with 

backpropagation, was used to classify the RCM images into two classes (Negative vs 

presence of Dendritic-shaped tumour-cell clusters), . 

In order to have random patient partitioning during hold-out, avoiding the arbitrary 

selection of training and validation sets by an operator, the patients were beforehand 

randomly permuted and then automatically partitioned through a subtle procedure that 

takes into account that the number of ROIs per patient  (the 1000x1000-pixel blocks) may 

vary substantially  and also the number of positive and negative blocks per patient may 

vary. Accordingly, the partitioning algorithm performs a kind of ‘bin packing’, a term 

that reminds the packing of arbitrary parcels in the most effective way [10]. In this way, 

positive and negative blocks were divided into training and validation groups in ways that 

approximate the request of particular proportions between dataset populations, paying 

attention to work with balanced datasets. The training set was then used to build the 

model and then this model was evaluated using the validation set. Model performance 

was measured using the Receiver Operating Characteristics (ROC) and the Area Under 

the ROC Curve (AUC). 

 

3.  RESULTS 

Figure 4 shows the ROC curve obtained from the trained network applied to the 

validation set. In order to assign a value for the uncertainty on the ROC AUC, training 

and performance calculation were repeated 20 times, and the mean value of AUCs 

together with its standard deviation were calculated, giving AUC = 0.81±0.02. The 

accuracy, sensitivity and specificity values were calculated at the ROC point closest to 

(0,1) giving values around 73%. 
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Figure 4. ROC curve and the related AUC 

 

With the same particular choice of the ANN output cutoff, the results obtained by the 

CAD system on the patients in the validation dataset were mapped onto their images and 

compared with the truth. An example for one patient is shown in Figure 5. The figure 

shows a particular frame of a RCM image loaded in the GUI, which was previously 

labelled by an expert dermatologist according to the presence or absence of clusters of 

tumour cells (“DENDRITIC” vs “-“ , respectively). Contextually, on the same image the 

output of the trained classifier for the same image is overlapped: red squares and green X 

symbols highlight the positive blocks found by the software, whereas the green minus 

identify the negative blocks.  

It is easy to assess that there is a good match between positive blocks determined by the 

expert operator and positive blocks found by the software, for 14 out of 15 positive 

blocks.  Similarly, 4 negative blocks out of 5 were correctly found as negative by the 

software. Only 1 block (n° 51) was considered positive in spite of being labelled as 

negative by the expert dermatologist, probably because there are still some cells on the 

bottom, that the software has considered as a cluster of tumour cells. Another single 

block was seen as negative (block n° 52), although it was tagged as positive by the 

operator.   

These results correspond to an accuracy of 90%, which is better than the average 

accuracy of the software, previously shown. Of course, other regions of this image and of 

other images show inferior performance.   

 

AUC = 
81% 
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Figure 5. Output of the CAD system for dendritic-shaped tumour cells detection, for a 

patient of the validation set. 

 

4. CONCLUSIONS 

This work reports the preliminary results obtained from a CAD system developed to 

identify areas of dendritic-type tumour cells in RCM images. Dendritic-type cancer cells 

can be associated with the presence of solar melanoma, so in perspective the described 

system can be used as an aid to the dermatologist in the detection of this tumour.  

Despite the immaturity of the software, the first results obtained are comforting. The 

quality of the system can be summarized by the area under the ROC curve, which stands 

at about 81%, and in the accuracy, sensitivity and specificity values (all around 73%) 

obtained with a particular choice of the work point in the ROC space. 

Of course, the database used for its development is still limited, and has to be 

significantly expanded to cover a larger number of situations and learn to cope with the 

variability of the images of different patients.  

A thorough investigation of the results obtainable on the dataset with the current 

architecture and choice of features is now in order. Further cases will be tested in the next 

future to implement the performance of the CAD system, and different network 

architectures will be investigated.  

In addition, interesting developments go in the direction of a Deep Learning approach. 

Deep Learning systems allow pattern recognition without the need to choose the best 
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features, which are automatically detected. On the other hand, the size of the training 

dataset needs to be significantly increased.  

In conclusion, this is an embryonic work, but with great potential and promising 

preliminary results. 
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