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Abstract 
 

Intensity-modulated radiotherapy (IMRT) has been introduced into a wide spectrum of 
clinics worldwide. In tomotherapy, literally “slice therapy”, highly conformal treatments are 
possible because of  an increase in the number of treatment slices into which the target is 
segmented would lead directly to an improvement in three-dimensional dose conformality.With 
Peacock System (NOMOS Corporation), the IMRT is doing so using conventional clinical linear 
accelerators (Linacs) fitted with an integrated multileaf collimator (MLC). This system comprised of 
the MIMiC, a tertiary “bolt-on” MLC, and a dedicated inverse treatment planning system (Corvus).  
The introduction of dynamic-arc-IMRT with Serial Tomotherapy started in the mid 1990. The first 
patient was treated in 1994. Between November 2007 and September 2012, at the Operative Unit 
of Radiotherapy of  V. Fazzi Hospital of Lecce, 180 patients were treated with Serial Tomotherapy. 
Of those, 52 patients received Cerebral Ipofractionated Stereotactic IMRT with Talon; 66 prostate 
cancer patients were designed to deliver SIB-IMRT (78,4Gy to the prostate while simultaneously 
delivering 66,5Gy to seminal vesicles in 35 fractions); 20 patients received SIB-IMRT for 
Nasopharyngeal cancer (69.9Gy in 2.33Gy fractions to PTV1, 60Gy in 2Gy fractions to PTV2 and 
54Gy in 1.8Gy fractions to PTV3), 28 patients received brain IMRT and 14 patients were irradiated 
on the spine and bone marrow for palliation or other. This slice-wise method of treatment is 
known to produce extremely conformal dose distributions due to its ability to specifically match 
the dose distribution on each slice to the shape of the target volume on that same slice. The major 
criticism of contemporary IMRT is that we cannot be certain of the geometry (relative position and 
shape) of the tumour or organs at risk (OARs) at each treatment episode. Careful and exacting 
protocols are employed to attempt to localize these in the treatment plan and during the patient’s 
set-up. 

 

Introduction 
Intensity-modulated radiotherapy 

(IMRT) is based on the use of optimized non-
uniform radiation beam intensities incident 
on the patient.  

IMRT treatment plans are often 
generated using inverse planning or 
automated optimization 3D-RTP systems, 
which use computer optimization 
techniques to help determine the 

distribution of intensities across the target 
volume. (Fig. 1). 

IMRT does provide the ability to 
spare normal tissues that are surrounded by 
targets with concave surfaces, and this 
advantage is currently being exploited to 
escalate tumor dose.  
 
 

 
 



85 
 

 

 
Fig.1. High Conformity to target Volume 

 

Materials and methods 
Between November 2007 and 

September 2012, at the Operative Unit of 
Radiotherapy of  V. Fazzi Hospital of Lecce, 
180 patients were treated with Serial 
Tomotherapy. Of those, 52 patients received 
Cerebral Stereotactic RT with Talon (Fig. 2); 
66 prostate cancer patients were designed 
to deliver SIB-IMRT: 78,5Gy to the prostate 
while simultaneously delivering 66,5Gy to 
seminal vesicles in 35 fractions (Fig. 3); 20 
Patients received SIB-IMRT for 
Nasopharyngeal cancer: 69.9 Gy in 2.33 Gy 
fractions to PTV1, 60 Gy in 2 Gy fractions to 
PTV2 and 54 Gy in 1.8 Gy fractions to PTV3 
(Fig. 4); 28 patients receveid brain IMRT (Fig. 
5) and 14 patients were irradiated on the 
spine for palliation or other (Fig. 6). 

 
 

 

 

Figure 2. High dose gradients that can be formed at 
structure interfaces  due to Cerebral Stereotactic RT 
with Talon   
 

 

 
Figure 3. High dose conformity in IMRT plan of  a 
prostate cancer patient   
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Figure 4. High dose gradients that can be formed at 
structure interfaces  due to Cerebral Stereotactic RT 
with Talon   

 

 
Figure 5. Brain IMRT with Serial Tomotherapy 

 

 

 
Figure 6. IMRT plan for spine metastases treatment 
with Serial Tomotherapy 
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Calculations are based on a Siemens 
Primus linac with a dose rate of 200 
MU/min. 

Treatment plans are created with 
Corvus 6.0 and 7.0. Steepness of dose 
gradients, homogeneity and conformity 
were assessed by the following parameters: 
Volume encompassed by certain isodoses 
outside the target as well as homogeneity 
and conformity as indicated by 
Homogeneity- and Conformity-Index.  

 

Results 
Six clinical examples are chosen to 

illustrate the quality of IMRT treatment plan 
with serial tomotherapy.  

These are 1- and 2-cm modes with 
single-couch position for prostate, head and 
neck, brain and spine treatment.  

The plan in Fig.2, hilhlights the 
intracranial ipofractionated stereotactic 
radiotherapy of brain metastases, with Serial 
Tomotherapy and Talon Immobilitation. It 
can be seen that the 0,8-cm mode with beak 
collimator has the 100% of target volume 
coverage. 

DVHs of the target volumes and 
selected critical structures highlight the 
increased dose heterogeneity often 
encountered as a consequence of conformal 
avoidance.  

The isodose distributions for the 
rinopharingeal cancer case are shown in Fig. 
4. Is a typical head-and-neck IMRT treatment 
plan showing conformal avoidance of the 
spinal cord and parotid glands while 
simultaneously delivering multiple dose 
prescriptions (69,9 Gy, 60 Gy and 54 Gy in 30 
fractions) to the two target volumes.  

The average values for the percent 
volume that received at least 95%of the 
prescription dose (V95), the target volume 
covered by 100% of the prescription dose 
(D100%) and the conformity index of the 
PTV were 99,3%, 97,8% and 0,9 for IMRT, 
100%, 99,8%, and 1 for the Stereotactic-RT, 
respectively. 

 

Discussion 
Computerized RT planning was first 

reported _40 years ago (1). Early dedicated 
RTP systems depended on twodimensional 
(2D) contour information and calculated 
doses based on relatively simple 2D dose 
models (2, 3). The first 3D approach to 
treatment planning dose calculation and 
display is credited to Sterling et al. (4, 5), 
who demonstrated a computergenerated 
film loop that gave the illusion of a 3D view 
of the anatomy and the calculated isodose 
distribution (2D color washes) throughout a 
treatment volume. Van de Geijn (6), 
Cunningham (7), Beaudoin (8), and Sontag 
and Cunningham (9) also performed early 
work in 3D dose-calculation models. 
Reinstein et al. (10) and McShan et al. (11) 
took the first real step toward clinically 
usable 3D-RTP in 1978 with the 
development of the beam’s-eye view 
display. The beam’seye view display 
provides the planner with a view from the 
perspective of the source of the radiation 
beam, looking down the rays of the 
divergent beam, and results in a view of the 
anatomy similar to a simulator radiograph. 
At the same time, the introduction of CT 
scanning and its use for RT significantly 
improved the way patient anatomy could be 
specified in treatment planning (12). In 
1983, Goitein and Abrams (13) and Goitein 
et al. (14) demonstrated how CT data made 
possible high-quality color beam’s-eye view 
displays and simulated radiographs 
computed from CT data (referred to as 
digitally reconstructed radiographs). 

Finally, between 1986 and 1989, 
several robust university-developed 3D-RTP 
systems began to be implemented in clinical 
use (15,16). The additional development of 
3D-RTP systems throughout the past 20 
years. One of the keys to the acceptance of 
3D-RTP throughout the community was a 
series of research contracts funded by the 
National Cancer Institute in the 1980s and 
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early 1990s to evaluate the potential of 3D-
RTP and to make recommendations to the 
National Cancer Institute for future research 
in this area (17).  

Important developments and 
refinements in 3D planning technology came 
from these contracts, particularly plan 
evaluation software tools, such as dose–
volume histograms (DVHs) (18, 19), and 
biologic effect models, such as tumor control 
probability (TCP) and normal tissue 
complication probability (NTCP) (20, 21) 
models, as well as efforts to stimulate and 
document the current state of knowledge 
about these effects (22). Many of these 
features are crucial parts of plan 
optimization, which is critical to IMRT. 

Early IMRT delivery concepts were 
pioneered several decades ago. Particularly 
important were the early efforts of Dr. Shinji 
Takahashi and colleagues, from Nagoya, 
Japan (23). Their work illustrated some of 
the important concepts in both conventional 
3D-CRT and IMRT delivery. Dynamic 
treatments were planned and delivered by 
Takahashi’s group using what may have 
been the first multileaf collimator (MLC) 
system. The MLC system used a mechanical 
control system to conform the beam 
aperture to the projected target shape as 
the machine was rotated around the patient. 
Another pioneering effort in CRT was 
conducted by the group at the 
Massachusetts Institute of Technology Lahy 
Clinic (24–26), who independently 
developed an asynchronous portal-defining 
device similar to that of Takahashi (23). 

The Royal Northern Hospital in 
England also pioneered an early CRT effort 
(27). The group developed a series of cobalt-
60 teletherapy machines in which the 
patient was automatically positioned during 
rotational therapy by moving the treatment 
couch and gantry during the radiation 
delivery using electromechanical systems. 
This was called the “Tracking Cobalt 
Project,” because the planning and delivery 
system attempted to track around the path 

of disease spread and subsequently conform 
the dose distribution. 

By the mid-1990s (and before much 
additional discussion had occurred in the 
literature about IMRT delivery methods), 
several other kinds of delivery techniques 
relevant to modern IMRT had evolved. The 
use of a computer-controlled scanned beam, 
available in the Scanditronix Racetrack 
Microtron System, was the first modern 
IMRT delivery technique described in the 
literature (28). Resolution of this technique 
is limited, as demonstrated by Karlsson et al. 
(29) and Lief et al. (30, 31).  

The second IMRT delivery technique 
described in the literature defined an 
approach called tomotherapy by which IMRT 
is delivered using a narrow slit beam (32).  

In tomotherapy, literally “slice 
therapy”, highly conformal treatments are 
possible because of  an increase in the 
number of treatment slices into which the 
target is segmented would lead directly to 
an improvement in three-dimensional (3D) 
dose conformality (fig. 7). 

 
Figure 7. IMRT with Serial Tomotherapy 

 
 This technique is very analogous to 

the tomography techniques used for CT and 
other such imaging systems. A temporally 
modulated binary mini-MLC of the type 
proposed by Mackie et al. (32) for 
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tomotherapy IMRT was developed 
commercially (Peacock MIMiC, Nomos 
Corp.) (33-35). The Peacock system’s MIMiC 
is mounted to a conventional low-energy 
megavoltage medical linear accelerator, and 
treatment is delivered to a narrow slice of 
the patient using arc rotation. The beam is 
collimated to a narrow slit (approximately 
2cm-20cm), and beamlets of varying 
intensity are created by driving the MIMiC’s 
leaves in and out of the radiation beam’s 
path as the gantry rotates around the 
patient. A complete treatment is 
accomplished by serial delivery to adjoining 
axial slices. The clinical use of the Peacock 
system was first implemented at the Baylor 
College of Medicine in Houston, Texas (36). 

Since then, it has been implemented 
in a large number of clinics worldwide, and 
several other institutions have reported 
their experience with the Peacock IMRT 
system (37-38). The treatment delivered by 
this system is described as serial 
tomotherapy, since it is delivered by a 
number of discrete arcs or indexed arcs of 
finite width, between which the treatment 
couch is moved longitudinally.  
The popular introduction of IMRT started in 
themid 1990s when the NOMOS Corporation 
(Swickley, Pennsylvania, USA) introduced the 
PEACOCK system [33, 39], this comprised of 
the MIMiC, a tertiary ‘‘bolt-on’’ multileaf 
collimator (MLC), and a dedicated inverse 
treatment planning system.  The first patient 
was treated in 1994 and until around the 
turn of the century most patients who 
received IMRT in the world were treated on 
this system (39).  
 
CONCLUSIONS 

The MIMiC delivery system, when 
used appropriately, is an extremely versatile 
system for treating a large variety of disease 
conditions. Typically, irregular-shaped and 
small-to-medium size tumors with adjacent 
critical structures are the most suitable 
candidates. One has to be vigilant on noting 

the limitation of the 20-cm width of the 
collimator.  

This slice-wise method of treatment 
is known to produce extremely conformal 
dose distributions due to its ability to 
specifically match the dose distribution on 
each slice to the shape of the target volume 
on that same slice. 

The major criticism of contemporary 
IMRT is that we cannot be certain of the 
geometry (relative position and shape) of 
the tumour or organs at risk (OARs) at each 
treatment episode.  

Careful and exacting protocols are 
employed to attempt to localize these in the 
treatment plan and during the patient’s set-
up. 
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