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Abstract 

 

A high power laser named FLAME with an intensity 

up to 1021 W/cm2, a repetition rate of 10 Hz and  a 

contrast value (between main pulse and pre-pulse) of 

1010 is being deployed at the LNF – INFN in Frascati 

and it is expected to be fully operative by the middle 

of 2012. In this frame an experiment of light ions ac-

celeration through laser interaction with thin metal 

targets (LILIA) has been proposed and funded. The 

aim of LILIA experiment is to study, design and ver-

ify a scheme which foresees the production, the char-

acterization and the transport of a proton beam to-

ward a stage of post acceleration (high frequency 

compact Linac). Now the maximum operating laser 

intensity is limited to 1019 W/cm2 due to the lack of a 

parabola with a focal length shorter that the current 

used. In this configuration, according to the interac-

tion theory by short pulse laser and to performed nu-

merical simulations, we expect a proton beam with 

maximum energy of a few MeV with a total dose up 

to 1010-1012 protons/shot. Although these values are 

modest compared to the present state of art, their sci-

entific relevance is very important due to the fact that 

we will have a real laser driven source in the next 

year. In this paper we present the experimental set-up 

and the first tests of diagnostic devices based on radio

-chromic films, Thomson parabola, solid-state diodes 

arrays and solenoid current detectors. A scheme for 

the focusing and the transport of an emitted proton 

beam based on a pulsed solenoid feed by a custom 

designed power supply will be also presented. 

 

 

INTRODUCTION 

In the past few years, various interesting experi-

ments have been started in order to study the interac-

tion of ultrahigh-power laser pulses (with intensities 

beyond 1019 W/cm2 and duration time ranging be-

tween 40 - 1000 fs) with thin solid films (thickness of 

the order of 0.5 - 100 m) of different elements both 

metallic (Au, Cu, Pd, Al) and dielectric (polymers)

[1]. These experiments have shown that, as a result of 

the laser-target interaction, protons and ions with en-

ergies up to 58 MeV are emitted[1]. These protons, 

mostly originated by contaminated hydrocarbon  sur-

face used as target, are accelerated due to their higher 

charge-mass ratio with respect to other ions. Never-

theless, it is possible even to accelerate various spe-

cies of ions by etching the target utilizing different 

methods. The total number of accelerated particles is 

strongly correlated to the specific target conditions 

and the experimental set-up: typical values are in the 

range from 109 to 1013 particles for laser pulse. 

Laser driven acceleration is characterized by spe-

cific interesting properties, which mark a strong dif-

ference with respect to the traditional accelerating 

techniques. The most relevant features may be sum-

marized in the following points: a) the possibility to 

accelerate ions at tens of MeV in very compact struc-

tures (of the order of a few tens of microns) due to 

the very high electric fields available with respect to 

the size of well known accelerators; b) an excellent 

beam quality with a transverse emittance less than 10-

8 mmrad and a longitudinal energy spread less than 

10 eV. c) a very short duration of the proton bunch 

(of the order of a few ps); d) the possibility to syn-

chronize the proton beam with the laser beam up to a 

scale of a few fs to obtaimultiple, synchronized 

sources of different particles (electrons, protons) and 

radiation (monochromatic X rays). 

Due to these considerations laser driven accelera-

tion holds the promise of compact accelerating struc-

tures which may be useful in different applications 

such as medicine (radioisotope production for PET, 

hadrontherapy), nuclear physics, inertial fusion 
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(proton induced fast ignition), advanced diagnostic 

(proton imaging of fast electromagnetic fields) or 

material properties analysis and  advanced imaging 

applications. 

 

Materials and Methods 

 

THEORY 

In the majority of experiments for proton accelera-

tions, the regime occurring is the so called TNSA 

(Target Normal Sheath Acceleration)[1, 2]. The laser 

pulse heats the electrons and ionizes the medium. 

Next the electrons diffuse around the target building 

an intense electric field. This field accelerates the free 

protons present on the target surfaces, both in the for-

ward direction (from the rear side) and in the back-

ward direction (from the front surface). 

The protons energy depends on the electrons tem-

perature and it has an exponential spectrum due to the 

thermal distribution of the electron energy. For a 

given laser, the intensity is 

where P is the laser peak power and w is the pulse 

waist value. It is convenient to introduce the dimen-

sionless parameter: 

where A is the maximum value of the vector poten-

tial. If a > 1, the electron quivering motion in the la-

ser fields is relativistic. Let us consider a 1D laser 

pulse moving on the z direction, the electron tem-

perature (expressed in eV) can be estimated from the 

kinetic energy as T = mc2( - 1) where      Pz /

mc   a   and Pz is the longitudinal momentum

[3]. If a >> 1 we obtain that T / mc2 ~ a. In 1D ge-

ometry, the electrostatic potential can be computed 

by solving the Poisson equation for a Maxwellian 

electron distribution. The protons maximum energy 

can be obtained estimating the maximum value of the 

electrostatic potential at the target-vacuum interface

[4]. After some simplification, the proton maximum 

energy results approximately proportional to: 

where 0 ~ 2 for a simple one dimensional model[5]. 

For very short pulses, the scaling found theoretically 

and in recent experiments [6-8] is 

 

Emax ~ I0.8 

 

with a proportionality constant depending on the 

power, focal spot and target thickness. As a conse-

quence, eq. (3) should be replaced with 

where the  depends on the wavelength and strongly 

on the thickness. The constant value is     

  for a target of thickness h = 0.5, 5, 20 μm, re-

spectively according to the fitting reported in [8] re-

lated to the thickness dependence found in the Dres-

den experiments. 

For the highest power P = 100 TW and a waist of 

2.5 μm corresponding to I = 10 21 W / cm 2 and a = 

22, the maximum energy obtained with a target of 5 

μm thickness is Emax = 12 MeV whereas the average 

energy is E0 = 1.7 MeV. Dresden experiments and nu-

merical investigations (see Fig. 1) show how the pro-

ton maximum energy drops significantly increasing 

with the target thickness. 

One of the limits of the proton energy achievable 

in the TNSA regime is related to the fraction of the 

initial laser energy. absorbed by the electrons of the 

target. If a large enough layer of plasma near its criti-

cal density can be added in front of the solid target, 

the energy coupling between the laser pulse and the 

target is strongly enhanced resulting in higher energy 

protons. Recent numerical investigations[9,10] con-

sidered solid targets with a foam layer added on the 
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Fig. 1 Energy growth with time for a 2D simulation 

with  P = 85 TW and a = 5 for a solid target with n = 80 nc 

and a thin hydrogen layer. The 3D result can be expected 

to be one half of the present one. 
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front surface, showing that these targets allow to dou-

ble the value of the highest proton energy reachable. 

The highest energy value Emax = 12 MeV for the 

bare metal target agrees with the scaling (4) of Dres-

den experiments. The proton energy spectrum in the 

TNSA regime is exponential with a cut-off  

where N0 is the total number of protons while  ‹E› 

= E0 is the average energy. The number of protons in 

a given small energy interval is 

The average energy is related to the electron tempera-

ture and N0 ~ a, but it is considerably smaller than the 

maximum energy. As a consequence, if a quasi 

monochromatic bunch has to be selected close to the 

maximum energy, the corresponding number of pro-

tons is a small fraction of the total. In the case of the 

Dresden experiment reported in Ref. [8] it has been 

shown that for Emax = 12 MeV and N0 = 1012 with E0 = 

1.7 MeV, the fraction of particle with E = 10 MeV and 

ΔE = 0.1 MeV would have only 1.6 × 108 protons.  
 

THE LILIA EXPERIMENT 

A high power laser (FLAME) has been deployed 

in the Frascati National Laboratories (LNF) of the 

INFN (Italian National Institute for Nuclear Physics). 

The main features of the apparatus are the following: 

 λ = 0.80 μm; 

 pulse length: 20 fs; 

 pulse repetition rate: 10 Hz; 

 pulse energy: 6 J; 

 medium power: 60 W; 

 laser beam waist = 2.5 μm. 
 

At the present time, a target area is currently oper-

ating, allowing the first test experiments of electron 

Laser Wakefield Acceleration (LWFA) to be carried 

out in a safe, radiation shielded environment. The 

FLAME facility will be fully operational in the mid-

dle of 2012, as well as for the proton acceleration 

experiment (LILIA). 

Concerning the experiments with LILIA, the fol-

lowing pulse parameters are expected: 

1. in the first phase, the power will be in the range 

100 < P < 200 TW, so that with a  w of 10 μm, 

the intensity range is 0.64 × 10 20 < I < 1.3 × 

10 20 W/cm2 and the dimensionless parameter 

range is 5.4 < a < 7.7. As a consequence, sup-

posing a linear scaling holds, the highest pro-

tons energy that might be reached for a = 5.4 is 

2.4 MeV for a very thin (0.5 μm) target and 13 

MeV for a medium target (5 μm). For a very 

thin target the maximum energy reachable re-

sults to be 4 MeV at the power of 200 TW on 

the target surface. The scaling (3) was con-

firmed by systematic 2D simulations with the 

AlaDyn code[11] and by experiments carried in 

similar experimental conditions[12];  
2. in the second phase, full power of 200 TW 

should be reached and the use a new off-axis 

parabola would allow a much tighter focusing 

with a waist of 2.5 μm, so that intensities up to 

2 × 10 21 W/cm2 and a ~ 30 might be reached. In 

case of a thin target (0.5 - 1 μm), we would ex-

pect a maximum energy above 30 MeV, which 

could be further enhanced by using a structured 

target[13] . 

 
As a consequence, one might select a bunch at  E 

= 30 MeV with a narrow energy spread ΔE and still 

have a reasonable number of protons (107 - 108). This 

opens a very interesting perspective for applications 

such as hadrontherapy in connection with a post-

acceleration stage in order to reach energies up and 

beyond 100 MeV. Indeed if a sufficient current inten-

sity can be reached at 30 MeV with  narrow spread 

ΔE / E ~ 1 %, good beam quality, energy selection 

and collimation, then the proton bunch might be post-

accelerated after injection in a high field linac, as the 

one developed for the INFN ACLIP project [10] (Fig. 

2).  
During the first phase, we will focus on two main 

aspects. 

 
a) A parametric study of the correlation of the 

maximum TNSA accelerated proton energy, 

with respect to the following parameters:  
 Laser pulse intensity (in the range of 10 18 - 

10 19 W / cm 2); 

 Laser pulse energy (in the range of 0.1 - 5 

J); 

 Laser pulse length (in the range of 25 fs - 1 

ps); 

 Metallic target thickness (in the range of 1 - 

100 μm). 

In such a frame, we would like to deeply inves-

tigate the experimental scale rules within the 

possibilities offered by the FLAME facility. 
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Moreover, this will provide the opportunity to 

get experience in the development of iagnostic 

techniques and in target optimization  

diagnostic techniques and in target optimiza-

tion.  
b) The possibility to produce a real proton beam 

able to be driven for significant distances (50 - 

75 cm) away from the interaction point and 

which will act as a source for further accelerat-

ing structures.  
 

THE LILIA SETUP 
 
The mechanical setup  
The LILIA experiment has been designed to be 

housed in the interaction chamber available at the exit 

of the laser compressor in the FLAME bunker. The 

layout of the first phase of the experiment is shown in 

Fig. 3 and it foresees:  
 a special designed optical breadboard, with 

standard metric holes format, to allow the defi-

nition of a common reference plane level and 

the assembly of components within the cham-

ber; 

 a multi shot target holder able to be remotely 

moved in x-y-z directions and rotated along the 

z-axis with respect to the laser beam. This will 

allow a very accurate positioning of the targets 

with respect to the laser beam and the possibil-

ity to perform multi shot experiments without 

having to open the vent of the chamber to re-

place the already used targets. The target 

holder has been designed for the use of alumin-

ium foils (pure up to 99.0 %) with thickness as 

low as 1m and the possibility to provide up to 

30 usable shots. The position accuracy of the 

targets with respect to the laser beam is of the 

order of 20m for the translation stages and of 

0.1 degrees for the rotation stage. The align-

ment of the targets with respect to the power 

laser beam will be accomplished using align-

ment lasers and devoted optical windows in the 

chamber; 

 a remotely movable multi-detector holder able 

to house 8 stacks of radio-chromic detectors to 

be used close (50 mm) to the interaction point. 

A fixed lead foil (3 mm thick) is used to avoid 

the damage of stacks adjacent to the one of 

interest for a specific laser shot; 

 the availability of multiple detectors copes 

with the possibility to perform multiple experi-

ments on different targets in a very short time, 

minimizing the fluctuations in the laser beam 

characteristics; 

 a more accurate analysis of the energy distribu-

tion of the produced ions will be carried out at 

a fixed emission angle with a Thomson parab-

ola (TP)  spectrometer with its related detec-

tors. A 150 mm diameter vacuum movable 

window in the interaction chamber at an angle 

of 120 degree with respect to the laser beam 

will allow the positioning of the TP.  

The ion detectors 
 

Radio-chromic films 

Radio-chromic detectors involve the direct impres-

sion of a material by the absorption of energetic ra-

diation, without requiring latent chemical, optical, or 

thermal development or amplification. Detectors 

based on this phenomenon are available as films of 

different shape and build. They are obtainable as 

 

Fig. 2 The INFN ACLIP Linac 

Fig. 3 Sketch of the LILIA mechanical setup 
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stacks of one or more subtle layer of sensitive mate-

rial (usually few microns thick) with intermediate 

polyester and adhesive layers to act as mechanical 

support. A radio-chromic film changes its optical 

density as a function of the absorbed dose. This prop-

erty, along with the relative ease of use, led to adopt 

these detectors as simple ion beam transverse proper-

ties diagnostic tools. More sophisticated analysis pro-

cedures and more complex configuration of these 

detectors (usually stacks of many films) may give an 

estimation of energy distribution of the ions in the 

beam[14]. Two specific commercially available de-

tectors have been considered for the first measure-

ments we are going to do: they are provided by Gaf-

chromic company and named HD-810 and MD-55. 

The first type is a single layer film with a dynamic 

range from 0 to 250 Gy while the second one is a 

double layer film with a 60 Gy maximum dose value.  

An analysis procedure based on the reading of the 

exposed films using a commercial scanner (Epson 

V750 Pro, maximum optical density 0-4), a calibra-

tion correlation with a ISO21550 reference target, 

along with the conversion curves optical density-dose 

provided by Gafchromic, lead us to an evaluation of 

the maximum error in the determination of the true 

dose of the order of 20 %. This value is rather large 

and it is due both to intrinsic fluctuations in the film 

sensitivity in the production process and to errors in 

the image measurements. 

A model has been developed for the reconstruc-

tion of the ion beam energy spectrum from readings 

of films arranged in a stack. For a maximum energy 

of 10 MeV and a stack of 10 films, test cases give up 

energy distribution characterized by errors of the or-

der of  25 - 30 %. 

The above considerations lead us to the idea to use 

radio-chromic films just in the first stages of the 

measurements, in order to provide us a rough idea of 

the emission process and of the dynamic range of 

energies and intensities we‟ll have to deal with.  
 

Thomson Parabola spectrometer  
A Thomson spectrometer has been designed and real-

ized within the LILIA collaboration.  An extensive 

description can be found in [15]. 

The main characteristics may be so summarized:  

 Analysis of proton and carbon beams (Q = +1 

to + 6) from 0.1 to 10 MeV; 

 very compact design [160 × 144 × 150  mm3];  
 high magnetic field (tunable) up to 1850 gauss;  
 high electric field (tunable) up to 20 kV / cm.  
 

Solid state detectors 

In addition to the more traditional passive radio-

chromic films, or MCP detectors, active solid-state 

detectors have been studied and tested. They would 

give a real time information which of course is ex-

tremely important to control and change the experi-

ment parameters. 

Our basic aim has been the possibility to study and 

develop a silicon based detector, position sensitive 

and based on a matrix of simple PIN diodes. These 

detectors are thought for the focal plane of the Thom-

son Parabola Spectrometer, being possible to arrange 

a 2D array with proper spatial resolution. After a la-

ser shot, a pulse of ions reaches a single pixel of this 

matrix after being deflected by the TP. The pixel 

identifies ions with the same Z/A ratio and the same 

energy. The measure from the pixel is done by inte-

gration, with a delayed coincidence with respect to 

the laser pulse. 
The main advantages of this sort of detectors 

with respect to a scheme that foresees a MCP and a 

CCD camera, may be pointed out in the following: 

Fig. 4 Thomson Spectrometer for laser plasma facility 
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 the lower sensitivity of the detector is as low as 

a single proton charge ; 
 the capability to work in a rough vacuum envi-

ronment;  
 the availability of low-medium cost detectors;  
 the flexibility to design specific geometric con-

figurations able to suit the experimental re-

quirements. 

Different materials and structures have been 

considered and partly characterised: silicon photodi-

odes (PD), monolithic silicon telescope (MST) and 

SiC diodes. 

Different materials and structures have been 

considered and partly characterised: silicon photodi-

odes (PD), monolithic silicon telescope (MST) and 

SiC diodes. diodes for optimum particle discrimina-

tion and large energy range, SiC diodes are radiation 

hard. Tests have been performed on the two silicon 

structures at INFN-LNS and INFN-LNL with 30 

MeV proton beam for the first (PD) and 1 - 5 MeV 

proton beam and 60 MeV / u carbon beam for the sec-

ond (MST). 

The results show that charge collection is opti-

mal in the fully depleted structure (MST), being the 

other affected by long tails and partial collection. 

SiC diodes are built on a low doped epitaxial 

layer and their response to high energy ions passing 

through will be verified soon. 

We plan to further develop and test some of these 

detectors, but we still have to face the problems 

which arise from their use in an extremely high noise 

environment, as the one present in the surroundings 

of the laser-target interaction.  
 

Beam Focusing and Transport  
 
The problem to immediately focus the emitted pro-

tons in order to obtain a useful beam and to transport 

it from the interaction region toward external meas-

urement or post-acceleration facilities will be faced 

both from the numerical computation and experimen-

tal point of view. The following general considera-

tions must be taken into account to deal with this 

item. The excellent emittance is the result of very 

short initial burst duration and very small “virtual” 

source size. However, proton beams emerging from a 

laser-driven target have typically a broad energy 

spectrum and large, energy dependent, divergence 

angle (typically 40 - 60 degree depending on laser 

and target parameters). The inherent large divergence 

and the energy spread can make it hard to utilize the 

full flux of the proton beam for applications and in-

deed for further transport and beam manipulation. 

The manipulation  of proton beams gives new chal-

lenges due to the high bunch charge and nature of the 

beams. This means it requires innovative approaches 

to enable beam control. The possibility to drive a la-

ser emitted proton beam using a scheme based on a 

pulsed solenoid has been reported in literature[16]. 

We considered this approach really interesting and 

we carried out very preliminary simulation runs to 

define the main features of the components involved.  
In our research we will focus on a scheme that 

foreseen a pulsed high field solenoid to collimate the 

beam directly behind the target foil. This method will 

provide a first formation of the proton beam very 

close to the target. Then, it would be necessary to add 

a second stage to accomplish the final formation of 

the beam and its transport to a reasonable distance 

from the source (500 - 750 mm). This goal may be 

reached using a magnetic chicane to filter the un-

wanted beam component and a conventional beam 

transport scheme based on high gradient permanent 

quadrupoles.  
Elements characterized by gradient values up to  200 

T / m with small sizes (8 mm internal bore and  30 

mm external diameter), are commercially available. 

Very preliminary simulations have been carried 

out looking at a proton beam of 3 MeV with a diver 
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gence of 25 mrad injected in a solenoid (50 mm inter-

nal bore, length 200 mm) located at 50 mm from the 

laser-target interaction point. An energy spread of the 

order of 10 % has been considered in separate simu-

lations to provide a more realistic approach to the 

phenomenon. 

Fig. 5 summarizes the results so far obtained. It 

is noticeable that fields of the order of 3.0 - 3.5 T may 

result in a good shaping of the beam at the distances 

of interests. Further work is undergoing to look at a 

more detailed understanding of the emission and 

transport processes of the proton beams in the pres-

ence of the solenoid. 

From the experimental point of view we are 

constructing a pulsed power supply like charge trans-

fer circuit. The main characteristics of this power 

supply are: max. voltage 40 kV; max. current 2 kA; 

pulse length 1 ms; repetition rate 1 Hz. It will be able 

to feed a solenoid as the one used in the simulation. 

Fig. 6 shows a first prototype of the solenoid. It has 

been constructed and it will be mainly used to test the 

high voltage insulation. A Rogowski coil [17] and a 

resistive shunt to measure the current behaviour of 

the power supply have been developed and cali-

brated.  
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