Notations and symbols

In this work we shall often make use of the following symbols:

$\ \cdot\ $	Uniform norm	p. 1
$\ \cdot\ _w$	Weighted uniform norm	p. 56
1	Constant function of value 1	p. 21
A(K)	Space of all affine functions on the compact set K	p. 15
$A_{\infty}(K)$	Space of all finite products in $A(K)$	p. 16
C(K)	Space of all real continuous functions on K	p. 15
$C^{2, \alpha}(K)$	Class of twice differentiable functions	
	with α -Hölder continuous second-order derivative	p. 21
$C(\overline{\mathbb{R}})$	Set of all continuous real functions on \mathbb{R}	
	which admit finite limits at the points $\pm \infty$	p. 40
$C^2(\overline{\mathbb{R}})$	Set of all functions in $C(\overline{\mathbb{R}})$ with	
	second-order derivatives in $C(\overline{\mathbb{R}})$	p. 40
$C_w(\overline{\mathbb{R}})$	Weighted space of $C(\overline{\mathbb{R}})$	P. 56
$C^2_w(\overline{\mathbb{R}})$	Set of all functions in $C_w(\overline{\mathbb{R}})$ with	
	second-order derivatives in $C_w(\overline{\mathbb{R}})$	p. 59
$C_w([0,1])$	Weighted space in the interval $[0, 1]$	p. 74
$C_w^2([0,1])$	Weighted space of twice differentiable functions	
	in the interval $[0, 1]$	p. 74
$C^{(b)}(\mathbb{R}^2)$	Space of all continuous bounded	
	real functions on \mathbb{R}^2	p. 80
$C_0(\mathbb{R}^2)$	Subspace of all continuous functions	
	vanishing at the point at infinity of \mathbb{R}^2	p. 80
$C_w^{(b)}(\mathbb{R}^2)$	Bounded weighted space of $C^{(b)}(\mathbb{R}^2)$	p. 80
$C_{0,w}(\mathbb{R}^2)$	Bounded weighted space of $C_0(\mathbb{R}^2)$	p. 86
$C_{w}^{2,(b)}(\mathbb{R}^{2})$	Space of all functions in $C_w^{(b)}(\mathbb{R}^2)$ with	
ω ()	bounded second-order partial derivatives.	p. 82
$\Delta_h(f, x)$	Divided difference operator	p. 31
$\Delta_h^r(f,x)$	<i>r</i> -th order divided difference	p. 31
δ_{ij}	Kronecker symbol	p. 25
-		

ε_x	Dirac measure	p. 16
id	Identity function	p. 26
$L^1_{\mathrm{loc}}(\mathbb{R})$	Spaces of all locally integrable functions	p. 39
$L^{1}_{\mathrm{loc}}(\mathbb{R}^2)$	Spaces of all locally integrable functions on \mathbb{R}^2	p. 79
$\mathcal{M}^+(K)$	Positive Radon Measure	p. 15
pr_i	Canonical <i>i</i> -th projection of \mathbb{R}^n onto \mathbb{R}	p. 17
$\omega(f,\delta)$	Modulus of continuity	p. 31
$\omega_r(f,\delta)$	Modulus of continuity	p. 31