Chapter 3

Steklov operators

In this chapter we consider Steklov operators in spaces of continuous func-
tions on the real line and on a bounded interval. We study the connections
of these operators with some second-order degenerate parabolic problems
establishing a general Voronovskaja-type formula. We also need a quanti-
tative version of Voronovskaja’s formula in order to apply the quantitative
estimates in Chapter 1.

The choice of Steklov operators is motivated by the fact that these opera-
tors can be used in different setting, such as spaces of continuous functions or
weighted spaces of continuous functions both on bounded than unbounded
real intervals.

The results in this chapter have been obtained in collaboration with I.
Rasa (Cluj-Napoca, Romania) and published in [33], [34].

3.1 Steklov operators on the real line

In this section we point out some general properties of Steklov operators
and we construct a sequence which can be canonically associated with an
assigned second-order differential operator A.

Let L%OC(R) be the space of all locally integrable real functions and for
every b > 0 define the integral mean operator M, : L} (R) — C(R) by
putting

1 x+b
My f(z) == %/b fydt, feLi.R), zcR. (3.1.1)

Then, for every n > 1, the n-th Steklov operator S, : Li .(R) — C(R) is
defined by setting
Spp = M, (3.1.2)

where, as usual, M,? is the identity operator and M;" = M, oMgﬁ‘f1 ifn>1.
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Observe that, for every f € L (R) and x € R,
Sopf(x) = fl2),

1 x+b
Suaf@) = My (Sp1af) @) =55 [ Swaaf(Ot

The preceding definition is meaningful also in the case where b is a
bounded continuous strictly positive real function on R; in this case the
integration is extended over the interval [x — b(z),z + b(z)] and (3.1.1) be-
comes

‘ 1 z+b(z) )
Myf(z) = m/ﬂ(@ ftydt,  feLL.(R), zeR. (3.13)

In this section we shall be mainly interested in studying some properties
of Steklov operators in the space C(R) of all continuous real functions on
R which admit finite limits at the points +00. The space C(R) is endowed
with the uniform norm and obviously every function in C(R) is bounded
and uniformly continuous.

Moreover as usual, we shall denote by C?(R) the space of all functions
f € C(R) which are twice differentiable and such that f” € C(R). Observe
that C?(R) is obviously dense in C(R) with respect to the uniform norm.

Observe that if f € C(R) and lim,_ 1 f(z) = £ € R, then we also
have limg o0 Sppf(z) = €. Indeed, this easily follows from an inductive
argument on the integer n > 0 using the equality S, ,f(x) = Sp—1f(§)
which holds for some & € [ — b(x), z + b(x)] and using the boundedness of
the function b which implies that lim,_, (2 — b(x)) = +o0.

Hence Steklov operators may be regarded as linear operators from C(R)
into C'(R) and in this case they become positive linear contractions with
respect to the uniform norm.

Our aim is to use these operators for the investigation of some degenerate
second-order differential operators.

Namely let a € C(R) be a strictly positive function such that

id-a € C(R) . (3.1.4)
Consider the differential operator A : D(A) — C(R) defined by

Au(z) := %a(a:)2 u’(z) ue D(A), zeR, (3.1.5)

where

D(4) = {ue CR)NC*R) | a®u" € C(R)} . (3.1.6)

Remark 3.1.1 Observe that A is a second-order elliptic differential oper-
ator, which is degenerate since a vanishes at the endpoints of the real line.
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Moreover, the endpoints +0co are natural endpoints and hence the operator
(A, D(A)) generates a Cp-semigroup of contractions on C(R) on the maximal
domain D(A).

Furthermore, every function v € D(A) also satisfies Ventcel’s boundary
conditions

lim a(z)?u"(x) =0.

r—+o0
Indeed if u € D(A) \ Dy (A), we should have for example lirf Au(z) =
T— 100
1
¢ # 0. Then lim — a®(x)z*u" (z) = ¢ and therefore lim u”(z) # 0;
r—-+oco O Tr—-+00

1 _
consequently lirf —u(r) # 0, contradicting the condition u € C(R). At
r—+400 I

the point —oo we can reason similarly.
Hence we conclude that in this case the maximal domain coincides with

Ventcel’s domain. For these and further results we also refer to the Chapter
11, [48, Chapter VI, Section 4] and [69]. O

We shall be interested in studying the connections between the differential
operator A and sequences of Steklov type operators.

Namely, we define the functions b, := a/n and consider the operators
L, : C(R) — C(R) defined by

Lnf(x) := Spp, f(2), feCMR), zeR. (3.1.7)

Since b,, is bounded, the operator L,, is well-defined as an operator acting
on C(R); furthermore, since a vanishes at +00, we have that L,, interpolates

every function f € C(R) at £oo, in the sense that lim, .10 L, f(x) =
lim, 100 f(2).

Moreover, observe that L, = M;' for every n € N and consequently, for
every k > 1, we also have

LE = MF™ = Sk, - (3.1.8)

Using (3.1.7), the operators L,, can be extended in a natural way to the
space of all continuous functions on R, and for this extension we can state
the following properties, for every z € R:

i) Ly1(z) = Spp,1(z) =1,
ii) Lyid(x) = Spp,id(z) =,

i) L,(id?)(z) = S, (id%)(x)
= 2245 050 Sip, (B2)(@) = a3 (2 150 Sia (0D)(@)) -
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Since S;p,, is a linear contraction, we can conclude that

lirf L, (id?)(z) = lirf S, (id?)(z) = 2

uniformly with respect to x € R.
We need some further preliminary results in order to state some deeper
properties of the operators Ly,.

Proposition 3.1.2 For every f € C(R), k> 1 and z € R,

1Sk, () = fII < EllS1,(F) = f1I - (3.1.9)

PROOF. We argue by induction on the integer k£ > 1. If £ = 1 then (3.1.9)
is obviously true. Now, assume that (3.1.9) holds for k£ > 1. We have

[Sk416,f (@) = f(@)] < [S1p, (Skp S = @)+ [S1p, f(2) — f()]
< 1Sk (F) = FI 1516, () = [
< K[[S1p, (f) = fII+ 1516, (F) = £l
< (k+ D[S, (f) = fll
and this completes the induction argument. O

As a consequence of the above result, we can state the following estimate.

Proposition 3.1.3 For every f € C?(R) we have

a2 "k
1Sk f = fII < wﬁ . (3.1.10)

PROOF. Let f € C?(R); for every z,t € R we can write

£ = f() = (@) (6= 2) + 50(E) (e - 2)?

with & between ¢ and .

Then
1 z+b
Sipf(x) = flx) = %), (f(t) = f(x))dt
1 z+b 1 :B-l—bl
= Sy [ =aarg [0 a
_ L[, t 2dt
= @/, §f (&)t —x)
and

1 1 x+b
Siof@) — @) < & s [F0 / (t — 2)2dt
2t€[x7b,x+b] 2b x—b
b2 i
= 0 s 1)
* te€[z—b,x+b]
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Letting b := b,(x) = a(z)/n and taking into account that f” and a are
bounded we can write

|S1p, f(z) — f(z)] < %a(m)g

n

i sup |F7 ()] (3.1.11)
Y t€r—bn(z),z+bn(z)]

and since f € C(R) and a € C(R)

a2 " 1
S100 (@) — £y < LI 2
n
Finally, from Proposition 3.1.2, we get
2 "
k
IS, f — £ < K Su, f— g < LT E
’ ’ 6 n
O
Under the following further hypothesis on a
a’(z)
36>0,IM >0 sup <M, (3.1.12)
swer  a*(y)
o~ yl <6

we can have (3.1.10) in terms of the operator A,

Proposition 3.1.4 If condition (3.1.12) holds, then for every f € D(A),
we have

k
15k0, f = FIl = MIAfll =5 -

PRrROOF. From (3.1.11) we have

1 ( )2 "
|S1p, f(z) = f(2)] < ma; te[w_bn?;l)%%n(w)] | (t)] (3.1.13)
o la@)?, L, 1 1a2©) ()] aP(x) _ [JAf] [ alz))?
— Tl = e < 1 <a@>’

for some & € [z — a(x)/n,xz + a(z)/n], that is | — z| < llal " 1f we choose

2
n such that |€ — z| < 0 from condition (3.1.12) we have (%) < M and
from (3.1.13)

e 3

114, /(@) — f() < AL

n2

Finally, from Proposition 3.1.2, we get

k
|Skb, f— fll S kNS, f — fIl < M|AS]| ol
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Corollary 3.1.5 For every f € C%(R),

||a2\|||f”|| 1

n

1L (f) = fI <

Corollary 3.1.6 If condition (3.1.12) holds, then for every f € D(A), we
have

1
ILa(f) = fll < MIAF]l- -

From the above results, we also obtain the following approximation prop-
erties of the sequence (Ly)p>1.

Theorem 3.1.7 For every f € C(R), we have

lim L,(f)=f uniformly on R .

n—-+o0o

PRrROOF. Indeed, it is clear that the uniform convergence of (Ln(f))n>1 to f
holds true for every f € C%(R). Since C%(R) is dense in C(R) and (Ly)n>1
is a sequence of positive contractions, the proof is complete. ]

Our next aim is to obtain a quantitative Voronovskaja-type formula for

Steklov operators. We begin with some properties of independent interest.

Proposition 3.1.8 For every f € C%(R) we have

1 n—1
- kZOSk,bn(f)

< a1 1 ’
- 12 n

PRrOOF. Let f € C%(R) using Proposition 3.1.3, for every x € R we can
write

n—1
> (Skp, f @) — f(x))‘
k=0

3=

n—1
LS ks f )~ Fla)
k=0

[y

[Skbn [ (2) = ()]

k=0

n—1 n—1
L e & e[
< = = =L N
< - >

A
S|

2~ 3
Pt 6 n 6n part
a1 n(n — 1)
6n3 2

and this completes the proof. O
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Proposition 3.1.9 If condition (3.1.12) holds, then for every f € D(A),
we have

A
- 2 n

1 n—1
- kZOSk,bn(f) —f

Proposition 3.1.10 For every f € C(R) we have

. 1
lim —
n—4oo n

n—1

> Skna(f)=f
k=0

uniformly on R.

PROOF. If follows from the density of C2(R) into C(R) and from Proposition
3.1.8 O

Finally, we shall need the following lemma.
Lemma 3.1.11 We have
1. Sﬂ,bnl(x) —1=0 5

2. Spp,(id —z)(xz) =0,

Proor. We have already evaluated S,, 5, at the functions 1, id and id?, then
a straightforward computations gives 7,2 and 3.
Now, we also observe that

n—1

Snb, (1) (@) = 2° + >~ Spp, (id - b7) ()
k=0

n—1 n—1
. . 1
S, (1Y) () = 2" +2 " Sy, (1d* - 02) (2) + R > Sk, (bp)(2) -

k=0 k=0
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At this point we can easily evaluate S, ;, ((id — 2)*) (z) and obtain

Sn b ((id — a:)4)(a:) = Smbn(id“)(x) — 4:(:Sn7bn(id3)(a:) + 6m25n7bn(id2)(x)
—4238, bn<id>< )+ =z

= 2z +2ZSkbn id? - p2)( Zskbn biy(
k=0
n—1
—dz <x3 + ) Skp,(id - bi)@))
k=0
1n71
+627 <x2 + 3 Z Sk.bn (bi)(a:)) — 423z + 2t
k=0
n—1 n—1
= 2) Sy, (id*07)(2) —dz Y Sy, (id - b)(2)
k=0 k=0
n—1 1n71
+20% Y " Skp, (02) (%) + £ Skopa (b7) ()
)
k=0 k=0
9 n—1 n—1
= 5 Skp,(id?-a?)(z) —dw—5 Y Sk, (id - a®)(x)
k=0 k=0
n—1 1 1 n—1
+22° =) Spp, () (2) + 553 2 kb, (a)(x)
k=0 k=0
Consequently,
1 n—1
4
Snp ((id — 2)%) QZSM ((id — 2)* - a®)(a >+5ﬁkz_osk,bn<a )(@) -
As regards the first term, for every kK =1,...,n — 1, we have
|Skp, ((id = 2)”-a®)(@)| < |[a®|| [Skp,((id = 2)?)(2)]
k—
1 2 k
_ 2 2 2
= |lo*ll 52 2 Si,bn(a ICOR

and consequently

n—1 n—1
23 Sl — ) a))| < oo a2? k= "
k=0 k=1

since a? € C(R) and Sy, are positive contractions on C(R) with respect to
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the uniform norm, we can write

S (1 — 1)) ()] < D= \ la?[|” + te 4Z\|a4\|

(L 1 Ha2H2+;||a4u
\n2 3 3 nd 5
2

2 4 2||2 2|2
_ 1]« +$(Ha | lla \@)S%Ha I

n? 3 5 3 n? 3
]
Theorem 3.1.12 (Voronovskaja-type formula)
For every f € C*(R) we have
a2
lim n(Ln,f —f)=—f".
n—oo 6
PRrOOF. Let f € C%(R); we apply Theorem 2.2.2, taking h,, = % The oper-

ators Ay, f(x) became ni L, ((id—z)?)(x) f"(z) = & SRS Sk, (a?) () f ()
which converges uniformly with respect z € R to ga?(z) f”(z) = Af(z) from
Proposition 3.1.10 and since f € C?(R). On the other hand L,1 —1 =0
and from Lemma 3.1.11 hypothesis (2.2.2,3) is also satisfied. Finally since
f € C%(R), the second-order derivative is bounded and uniformly continu-
ous. n

In order to consider a quantitative version of the above Voronovskaja-
type formula we need to introduce the following space

CQa _{f602 )‘f”GCa( )}
Theorem 3.1.13 If a®> € C%(R) for every f € C?**(R) we have
M
In(Lnf = f) = Afll < Ca—s (3.1.14)
n
where My is the seminorm defined by
My = Lgv + || ]| (3.1.15)

and Cy is a constant depending on a defined by

a2 "
C, = Ha2||max{1, Hé2\}ﬁ\|} . (3.1.16)
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PROOF. Let f € C**(R) and let Ag, , be the operator (2.2.2) obtained by
taking L = S, 3, and which can be evaluated from Lemma 3.1.11,

n—1
Ao f@) =52 (1 Zsi,bm%(x)) 7).

=0

we have

n(Lnf(x) = f(x) = Af] < |n(Lnf(z) = f(z) = As,,, f(@)]
+InAs,,, f(z) = Af(z)],  (3.1.17)

in regard to the first term of the the righthand side using Theorem 2.2.1 end
Lemma 3.1.11 we have

[n(Lnf(z) = f(2) = As,, ,, f(2)]

n— /2 n—1
Ly (10 (1 o)
< (S swo) (5 (2T s + 12

Ler (1@ 1+ V3, ,
< = l[a”] -
2 3n 3

As regards the second term of (3.1.17) from Proposition 3.1.8, since a’ e
C?(R), we have

n—1
InAs, ., F(x) = Af(@)| = g7 @)] |+ 3 Sip, (2)(x) — ala)
1=0

| /\

Hf”H
< - " 2 2\ .
< 72an [lla IIH(a )|l

Collecting the above inequalities we have

lLuf(a) = 1) = 41
1" (12
< <||3n”) LB L ety

Ly L@ la?] [(a®)"|
< g2 f < . 7
< fla”l <n0‘/2 + 2n — no/2 L+ 170 72\/n

My

IIGQHII( lL
n

where My is the seminorm defined by (3.1.15) and (|, is a constant depending
on a defined by (3.1.16). O

Observe that for n large enough C, is equal to ||a
At this point we deepen the connection with the differential operator A.
We shall need the following core property of the operator (A, D(A)).

2.
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Proposition 3.1.14 The space C*(R) is a core for (A, D(A)).

PROOF. Let u € D(A) and 0 < ¢ < 1. We show the existence of a function
v € C?(R) such that

lu(z) —v(z)] <e, |Au(x)— Av(z)| <e, zeR.

We argue only in the interval [0, +o00] since the same argument can be applied
to ] — o0, 0]. Since u € C(R) and

lim Au(x) =0, lim a(x)=0,

T——+00 T—+00

we can find ¢ > 0 such that
lu(z) =l <e, [Au(z)|<e, a(z)"<e, x>c,

where £ := lim,_, ;o u(x).

We observe that liminf, . u/(z) < 0 < limsup,_,, . v'(z), otherwise
we could not have u € C(R); consequently, we can choose xg > ¢ such that
|u/(z0)| < e. Now, we consider d. > 0 such that

<2, x € [z, 20 + O]

and define

. 9
hl ::mln{ﬁ,m,(sg} ; h2 :3\/g

We put, for simplicity,
x1:=x0+h1, x3:=x1+hsy;

finally, we consider 1 < x2 < x3, and define

QU/(.I(]) h1
M= — — () 2
and the functions we, wi,w : [zg, x3] — R by setting, for every = € [z, x3],
( r1 — X
u” () ) x € [zo,71] ,
Tr1 — X
Tr—x
wo(x) = M ! ) x €)xy, zo[ ,
T9 — X1
xr3 — T
M , x € [xo, 23],
Tr3 — T2

wi(z) = u(m) +/9€ we(t)dt

zo

w(z) = wu(xg) +/<v wi (t) dt .

0
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We easily get w(zg) = u(xo), w'(zg) = wi(ro) = v(x9) and w”(zo) =
wa(zo) = u’(x0) and further

w”(x3) = wo(x3) =0
and
1 2 T3
w'(xz3) = u'(xg) +/ wo(t)dt +/ wo(t)dt + / wo(t)dt
ts) 1 2
!/ 1 1 1 1

= u(zo) + 5 (21— @o)u’ (o) + 5 (w2 — 2)M + S (23 — 22)M
1 1

= u’(xo) + 5 (331 - l‘o)uu(l‘o) + 5(%3 - l‘l)M

which yields w’(z3) = 0 from the definition of M.
Moreover, we observe that hy < /e, hi|u”(zo)| < e, ho|M| < 3¢ and
|M| < y/e. Hence we obtain

sup |w'(2)] < [w'(2o)| + (w1 —20) sup |w"(z)] < [u'(z0)| + halu” (x0)]

z€[z0,21] z€[zo,21]

and consequently

sup [w'(z)] < [w'(21)] + (z3 — 21) sup  [w"(z)]

z€[z1,23] r€[x1,23]

< Ju'(2z0)] + ha|u” (wo)| + ho| M] ;

therefore, in any case
sup |w'(z)| < 5e

x€[zo,x3]

and this implies

sup w(z) — w(zo)] < (h1 +ha) sup u'(x)] < 20evE |

z€[z0,x3] z€[z0,x3]

We conclude that

sup |w(z) —u(z)] < sup fw(z) —w(zo)| + sup |u(z) —u(zo)]

x€[zo,x3] z€[z0,x3] z€[z0,x3]

< 20ev/e + 2¢,
and

sup a(z)?w"(z)] < sup a(@)®w(z)] + sup a(z)*w(2)|

x€[xo, 23] x€[zo,21] r€[x1,23]
< s la@Pd @)+ suwp o) M]
x€[xo,z1] r€[x1,23]
0(33)2 2. n
< sup la(zo)” u” (x0)| + /€

z€[z0,21] a(xO)Q

12 +e+/c.

IN
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At this point it is clear that the function v : [0,4+0c0[— R defined by
setting

u(z) 0<z<u,
v(z) == ¢ wx), xo <z <uws,
’U)(.Tg) ) r3 < T,
is in C2([0,+00]) and satisfies the required properties. O

We have the following main result.

Theorem 3.1.15 The operator (A, D(A)) generates a Cy-semigroup (T'(t))e>0
of positive contractions in C(R) and, for everyt > 0 and for every sequence
(k(n))n>1 of positive integers satisfying lim,_. 4 k(n)/n =t, we have

T(t) = lim LF™ strongly on C(R) (3.1.18)

n—-+o0o

moreover if a®> € C%(R), for every f € C*%(R) we have

o —szon St (|22 752
<||Af|| + Ci\gf) (3.1.19)

and choosing k(n) = [nt]

fron- s <1 S8 (e f2) (a2

(3.1.20)

PROOF. We already know that the operator (A, D(A)) generates a Cp-
semigroup (7'(t)):>0 of contractions and hence, for every A > 0, the range
(A—A)(D(A)) coincides with C(R) . Moreover, by Proposition 3.1.14, C?(R)
is a core for (A, D(A)) and therefore (A— A)(C?(R)) is dense in C(R). Hence
we can apply Trotter’s approximation theorem [70] and obtain that the clo-
sure of the operator arising from the Voronovskaja-formula (Theorem 3.1.12)
generates a Cy-semigroup represented by (3.1.18). Finally, this closure co-
incides with (A, D(A)) by the core property of C?(R). The positivity of the
semigroup is a consequence of the representation (3.1.18).

At this point we can apply Theorem 1.1.2. From Theorem 3.1.13 follows
that the seminorms are given by ¢, (f) = C’a% and ¢, (f) = |Af]] +
Ca%, then taking into account that the growth bound of (T'(t))i>0 is
equal to 0 and every T'(t) is a linear contraction, i.e. w =0 and M = 1,
the estimates (3.1.19) and (3.1.20) follow directly from (1.1.10) and (1.1.11),
and this completes the proof. O
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3.2 Steklov operators on bounded intervals

In this section we show how Steklov operators can be considered even in
spaces of continuous functions on a bounded interval. For the sake of sim-
plicity, we shall consider only the case of the interval [0,1]. Also in this
case we can construct a suitable sequence of positive Steklov type operators
which can be associated with the differential operator A : D(A) — C([0,1])
defined by

1

Au(z) := 6 a(z)?u"(x) , u € D(A), x € [0,1], (3.2.1)
on the domain
D(A) :={u e C([0,1]) N C?%(]0,1]) | a*u" € C([0,1])}, (3.2.2)

where a € C([0,1]) is strictly positive on ]0, 1] and
a(z) =0(x(1 —x)), asx — 0,1 (3.2.3)

(hence a(0) = a(1) =0).

It is straightforward to check that 0 and 1 are natural endpoints and
therefore the maximal domain D(A) coincides with the following Ventcel’s
domain

Dy (A) == {u e C([0,1]) nC?(]0,1]) | lim a*(x)u”(x) =0} .

r—0,1
Condition (3.2.3) also ensures that

bn(z) = aT:L‘) < - -

r— —

2

|

N | —

for n large enough and consequently for such integers the integral mean
operators M, : L (0,1) — C(]0,1[)

loc

1 T+bn ()
My, /(&) = g5 /x o T (3.2.4)

are well-defined together with all their iterates. Observe that if f € C([0,1])
then we can use the convention M, f(0) = f(0) and M, f(1) = f(1) and
consider M), as an operator acting on C([0, 1]).

Now, consider the operators Ly, := S, , : C([0,1]) — C([0, 1]).

We have the following properties:

i) Ly1(z) =1,
i) Lyid(z) =z,
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i) L (102)(2) = 224+5 S0 S0, (8 (@) = 243 (3 20 Sig, () ())

Since |Mp, (a%)(z)| < [|a?|| we have that |3 32325 Sk,p, (a%)(2)] < nlla®||/n =
la?||, and therefore
lim L, (id?) = id?

n—oo

uniformly on [0, 1]. From the classical first Korovkin’s theorem [9, Theorem
4.2.7], we obtain the following result.

Theorem 3.2.1 For every f € C([0,1]),

lim L,(f)=f uniformly with respect to x € [0,1] .

n—-+00

As in the previous section, we can state the following results.
Proposition 3.2.2 We have the following properties:

1. For every f € C*([0,1)), there exists a constant Cy > 0, depending on
f, such that for everyn >1

k
155,60 (f) = Il < Cp 5 -

2. For every f € C([0,1]) we have

. 1
lim —
n—+oo 1

n—1
> Skn() =1
k=0

uniformly on [0, 1].
3. We have

1 [la*]?
n? 3

S5, ((id — 2)*)(x)] < for every x € [0,1] .
PROOF. As regards the first property, we can reason as in Proposition 3.1.4
and obtain

1
Cr =z la?14"]

Property 2) follows from the density of C?([0,1]) in C([0,1]) and the
analogous result in the previous section.

Finally, property 3) can be shown in the same way as in Lemma 3.1.11.
O

At this point we can state the following Voronovskaja-type formula and
its quantitative version; the proof is similar to that of Theorem 3.1.12 and
3.1.13 and for the sake of brevity we shall omit it.
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Theorem 3.2.3 (Voronovskaja-type formula)
For every f € C?([0,1]) we have

lim n(L,(f)— f)=—f".

n—oo 6

Theorem 3.2.4 (Quantitative Voronovskaja formula for Steklov op-

erators)
If a* € C*([0,1]) for every f € C**((0,1]) we have
M
In (La(£) = f) = Af| < Ca—s -
n

where My is the seminorm defined by
My = Lp + || f"]l

and Cy is a constant depending on a defined by

2 1(a®)"]
Co = |la ||1rnax{17 o |

We already know that the operator (A, D(A)) generates a Cp-semigroup
(T'(t))t>0 of contractions (see, e.g., [44] or [48, Chapter VI, Section 4]) and
hence, for every A > 0, the range (A — A)(D(A)) coincides with C([0,1]).
If C%([0,1]) is a core for (A, D(A)), then (A — A)(C?([0,1])) is dense in
C(]0,1]) and we can apply Trotter’s approximation theorem, which yields
the representation of the semigroup (7'(t)):>0 in terms of iterates of the
operators L, with the same arguments of the preceding section. In some
particular cases, it can be easily proved that C2([0, 1]) is a core for (A4, D(A)).

Theorem 3.2.5 Assume that
a(x) =Cz(l —x), 0<z<1,

for a suitable constant C > 0. Then, the space C*([0,1]) is a core for
(A,D(A)) and, for everyt > 0 and for every sequence (k(n)),>1 of positive
integers satisfying lim, .. k(n)/n =t, we have

T(t) = lim LF™ strongly on C([0,1]) , (3.2.5)

n—+00
moreover if f € C%([0,1]) we have
C,M k(n 2 Vk(n C,M
|y - phog|| < a/2f+<‘ () —t‘ + \/i¥> (HAfH +
n n T n n

(3.2.6)

)

and choosing k(n) = [nt]

CoM 1 1 2t CoM
i oy 2 (2 e
HTW Ln fH =ter Y (ﬁ+ W) (HAfH+ ne/? > '
(3.2.7)
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PROOF. The core property is well-known (see e.g. [26, Lemma 1.2]). Hence,
we can apply Trotter’s approximation theorem [70] and obtain the represen-
tation (3.2.5).

At this point estimates (3.2.6) and (3.2.7) follows from Theorem 1.1.2
taking into account of quantitative version of voronovskaja’s formula ob-
tained in Theorem 3.2.4 and this completes the proof. O
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3.3 Steklov operators in weighted spaces

In this section we consider Steklov operators on the space
Cu®) ={f€CR) | f-weCR)},

where w : R — R is a strictly positive continuous real function which tends

to 0 at the points £oo. The space Cy,(R) is endowed with the norm

1fllw = i‘éﬁ'f(x) w(@)| (=1 wl) . feCu(R).

In order to present a unified treatment we consider weight functions w
having the form

1
w@) =

with p > 2 fixed, even if some partial results can be established in a more

, rEeER,

general setting.

Let a € C(R) be a strictly positive function satisfying

id-a € C(R) (3.3.1)

and consider the differential operator A,, : D(A,) — Cy(R) defined by

Ayu(zx) = %a(a:)2 u'(x) ue D(Ay,), TeR, (3.3.2)

on the following maximal domain
D(Ay) = {u € Cu,(R) N C*R) | Ayu € Cy(R)} .

We need to assume the following additional condition on a

36>0,3M >0 )’y (3.3.3)
, : sup < , 3.
eyer (1+]2]) a(y)?
|lz—y|<d

which is obviously satisfied if there exist ¢ > 1 and Cy,Cs > 0 such that,

for every = € R,
C

—_— <
1+ |zfett —

C
2 2
< .
S T
We can define b, := a/n and consider the operator S, ;..
Different properties of Steklov operators are based on the behavior of the
function w, : R — R defined by setting, for every x € R,

w(z) v tbn(z)

We have the following result.
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Proposition 3.3.1 There exists a constant C,, > 0 such that
Cu
-1 < —.
fwn — 1] < =

PROOF. The property is obviously true on a neighborhood [—§, §] of 0, hence
by symmetry we can prove it only in the interval [0, +oo[. Since p > 2, we
have 1/w € C%(]0,+oc[) and for every x,t > 0 we can write

wit) B w<1x> B (w?@) (=24 (w(lgt))" (t -y

for a suitable & in the interval with endpoints ¢t and zx.

Now, let > ¢ and set for simplicity b = b, (z) = a(x)/n; for n enough
large we can assume that the interval of integration in the definition of the
n-th Steklov operator is contained in |0, +oo[ and consequently

Y
- ‘< (1 > /Hb(t—x)dt
/Ier (

1 " 2
+ ) (t — ) dt‘
B 1 1 " 2
1 p—2 2
< 2— (t—x)*| dt
< il p(p —1)(x + b)P~ /Hb(t —x)?dt
= 927 o—b
2
= E ( —1)($+b)p72
Hence, we can conclude that
|wn($) - 1‘ = ‘ Sl ,bn (%) (Qj) - w(x) (1]})
1
= ) |S1p < >
 w(x)
<
- 14+aP n2 v + >
1
< — -1 p—2
< el — 1) (o + o)
Cy
S lhad)

n2
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and this completes the proof. O

From the preceding result, we have w, < 1+ C,,/n? and consequently we
can find a constant C,, > 0 such that, for every n > 1,

lwnl|™ < Cy - (3.3.4)

Therefore, taking into account that, for every f € C(R) and z € R, we
have

lw(x) S1p, f(x)] =

1 x+bn(x) 1
——d n w -
w@) gy L, O o < el 1]

Arguing by induction on the integer n > 1 we get, for every f € Cy(R),
[Sm,60 ()l < llwnl[™ [fllw < Cw [[f e (3.3.5)

and we conclude that the operators S, ;, are equibounded.

Remark 3.3.2 The operators S, 5, map the space Cy,(R) into itself.

Indeed, let f € C(R); on a neighborhood of +o0o we have

B ’U)(JL‘) z+bn (x) B - M
= 2.2 /B_bn($) ft)dt = w(x) f(&) = (&) w(&) f&)

w(x) S1p, f(r)

for a suitable &, €]z —by,(z), z+b,(x)[; taking the limit as  — +o0o0 we have
&x — oo and consequently w(&;) f(&:) tends to a finite limit; moreover
lim, 4 oo w(z)/w(&,) = 1 since

1+ (x —by(x))P < w(x) < 1+ (x4 by(x))P
1+ aP ~w(é) T 1+ P

Now, a simple induction argument yields the existence of a finite limit of
Sn.b, f () at the point +oo.

A similar argument can be applied on a neighborhood of —oo and hence
the property is completely established. ]

As a consequence, we may now consider the operators Ly, : Cy(R) —
Cw(R) defined by

Lynf(z) = Sup, f(2), feC,(R), z€R. (3.3.6)

Observe that the operators L, , are equibounded and satisfy ||Ly, || <
Cy for every n > 1.

Proposition 3.3.3 For every f € Cy(R), k> 1 and x € R,

k-1
1Sk ,6, (F) = Fllu < 151,60 (F) = Fllw D Nlewnl” - (3.3.7)
1=0
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PROOF. We argue by induction on the integer k£ > 1. If £ = 1 then (3.3.7)
is obviously true. Now, assume that (3.3.7) holds for £ > 1. We have

[w(@)(Sk+1,, f () — f(2))]
< w(@)S1p, (Skp, f = ) (@) + [w(@)(S1p, f(2) — f(2))]
< lwn |l 15k,6, () = fllw + 11516, () = fllw

k—1
< Hlwnll Y Nlwnl 181,60 () = Fllew + 191,60 (F) = Fllw
i=0

k
<D lwnll 11818, (F) = fllw
=0

and this completes the induction argument. O

In the sequel we need to introduce the space
Cu(R) = {f € Cu@®) NC*(R) | f" € Cu(R)} .
Proposition 3.3.4 For every f € C2(R) and for every x € R

2 "
1910 () — flh < L e (3.38)

where C' > 0 is a suitable constant depending on a and the weight w.
PROOF. Let f € C2(R); for every z,t € R, we can write
! 1 " 2
F&) = fa) = fi2) (t —2) + 5 f(E)(t —2)

with & in the interval with endpoints ¢ and .
Then

T+bn ()
Sup () — f(x) = Qb%x) / () — f(x)dt

x—bn ()
Fegrm | a2 ey
= T t—x)dt + / — t—x)°dt
2bn(2) Jo—by(a) 20,(2) Joppm) 27
1 erbn(x)l " 2
-5/ o, 3@
and
S f(x) = f(z)| <1 sup | ()] 1 /erbn(x)(t — x)%dt
Lbn () " 2 tefz—bn(z),c+bn(@)] 2b0(7) Ja—bp (@)
2
S N L

6 tefo—bn(x)a+bn(2)]
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Observe that the functions w f” and a are bounded and consequently,
since

jw(z)| _ 14 (] + [la])?

1+ |zlp

sup <

tefo—bn(@)z+bn(z)] 10 ()]

i

the function sup [w(@)]

is bounded as well. Hence, we can write
te[z—bn (z),z+bn ()] |w(t)‘

Sunf (@) = f@lho < 55 w@) ()
t€[z—bn (x),2+bn ()]
L@’ g, BEL e

n% 6 icfo—bn(@)aotbn@)] WO tefo—bn@).0tbn(@)]

o 11"l
< CT )

L+ |+ al)? 0

where C' 1= sup,cp THz|P

Proposition 3.3.5 For every f € C2(R) we have

)

2 "
< o llallllf Hw;
n

1 n—1
- ];)Sk,bn(f) - f

w

where C > 0 is a suitable constant depending on a and the weight w.
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ProOOF. We can apply Propositions 3.3.3, 3.3.4 and 3.3.1 and obtain

1 n—1
EI;)Sk,bn(f) —f

1 n—1
<— Z | Sk,bn@) () = £,
k=0

w
n—1k—1

1 .
< 5||51,bn(f) — Fllw > ) llwnll®
k=0 i=0
n—1k—1
lla?[[]| £ ]| 1 1
< ol Hlw 2 1 )
=C 6n2 nkzﬂ;( +Cwn2)

@ N [
=% <0_w< *

M@ e [ (= (R ([ Cu b
=0 (c— (Z@ (%) ‘1>‘1>

B [ i
6C.,

n
Ml (n=1Co g (Y (o)
6C,, 2 n?2 C, k n
a1 (1, 5 () Ch
< - PR
<0 6 2n+z k) n2k=1 ]

k—2
we have Y ) o (Z) 527@71 < &1 where ¢y depend on the weight w, and the
proof is complete.
O

If condition (3.1.12) on a holds we can establish some quantitative results
similar to the unweighted case.

Proposition 3.3.6 If condition (3.1.12) holds, then we have the following
properties:

1. For every f € D(A,) we have
[AS [l

n2

1516, (f) = fllw < C

)
where C' > 0 is a suitable constant depending on a and the weight w.

2. For every f € D(Ay) we have

<c!

)

[AS
n

1 n—1
- kZOSk,bn(f) —f

w
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where C' > 0 is a suitable constant depending on a and the weight w.
At this point, we can state the following main results.
Theorem 3.3.7 For every f € Cy(R), we have

lim Lwn(f) =f

n—-+o0o

with respect to the norm || - ||

ProOF. Since C2(R) is dense in C,(R) we can apply Propositions 3.3.3,
3.3.4 and 3.3.1 and obtain

[Lwn(f) = fllw < ||51,bn(f)—f||wZ||wnHi
HU’QHHf”HwZH n”l

@ [[[1 " |

clla 6‘n2 Z<1+ >

e [ [V Cu\" _
- 6 Cu) 1+7’L2 1 ’

Thus, it is enough to take the limit as n — +o0o and the proof is complete.
O

IN

IN

Theorem 3.3.8 (Weighted Voronovskaja-type formula)
For every f € C2(R) we have

2
a” i

=0.
6

w

lim
n—oo

n(Lwn(f) = f) =

PROOF. Let f € C2(R); we apply Theorem 2.2.2, taking h,, = % The oper-
ators Ay f(x) become 2 Ly ((id — 2)?)(z) f"(z) = & ZZ_(I) Sk, (@) (x) f"(x)
which converge with respect the weighted norm to ta*(x)f"(z) = Af(z)
taking into account Proposition 3.1.10 and since f € CQ( ). On the other
hand L,1 —1 = 0 and from Lemma 3.1.11 nL,((id — z)*) converges to zero
even with respect the weighted norm. Finally since f € C2(R), the secon-
order derivative is bounded uniformly continuous with respect the weighted
norm. O

In order to obtain a quantitative estimate of the Voronovskaja’a formula
we need to consider the class of functions

Cu*(R) = {f € CL(R) | wf" € C*(R)} .
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Theorem 3.3.9 (Weighted quantitative Voronovskaja-type formula)

If a € C2(R) for every f € Cx*(R) we have

0o = 0)- 51| <€
where My is the seminorm defined by
My = Lygr + |1l (3.3.9)
" 4 @]
Cy = Ha2||max{§, W} . (3.3.10)

PROOF. Let f € CEU’O‘(R); for every x,t € R, we can write

ft) = fx) = fl(z) (t —z) + %f”(m)(t —z)? 4+t )t —z)*  (3.3.11)

wheren : R? — Rsatisfies n(t, z) = 5 (f"(£(t)) — f"(x)) for some £(t) € [z,1].
Then

n(Lunf(x) = f(x)) = nSnp, (f = f(z) - 1)(2)
=1 Snp, ( f(z) (id —z) + % F()(id — 2)* + n(id, z)(id — a;)2> (z)
=n f'(z) Spp, (id — z)(x) + n% f"(@) S, ((id —2)?) (z)
+1 Spp, (n(id, z)(id — 2)?) (z)

= g (&) Sup, (G = 2)2) (@) + 0 S, (nfid,2)(id — 2)?) (1)

and moreover
[w(@)(n (Lwnf(x) = f(z)) = Af(x))]
< [wlo) (03"0) S (10— 2) (0) — A1) )|
(@) S, (1(id, 2)(id — 2)?) (2)] -

We can write

w(z)n(t, ) = w(@)(f(§) - f(x))
= w(§)f"(§) — w(x)f" () + w(x)f"(§) — w(§) f"(€)

= (w(©)f"(€) — w(@)"(x)) + f(Ew(©) <M - 1> ,
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and then
(@) (L () — £(2)) — Af(2)) (3:3.12)
< \wm (154@) Sun (0= 0) (2) - A1) ) (3:3.13)
[0S (w0 € 0 ) — w(w)f(2)) (id - 2)?) ()
" w(x) .
s, (7700wo o) (L2 -1) (a2 ) @)

As regards the first addend, since a® € C?(R), from Proposition 3.1.8 we
have

wlo)f"(e) (;n S (i — 2)?)(a) ~ éa% )
‘ w(@)f"(@) |15~

ZS b (0 —a’(x)

Hf”Hw lla*|[|(a )”II
6 12n

_ " hwlla? (1 (@)
72n '

As regards the second term in (3.3.12) since f € C?%(R) and
w(€) " (§) = w(@) f"(@)] < Lugr|€§ — 2% < L[t — x|, we have
7S, (((wo&)(f" o) —w(@)f" (@) (id - 2)*) ()|

< Ly prnSnp, (|id — J:|2+O‘) (x) .

For every § > 0 we have

N4
|t — Pt < 5 <52+(t ?) > ;

52
choosing né? = ||a?|| and taking into account Lemma 3.1.11 we obtain
[w(@)n Sns, (n(id,2)(id = 2)%) (@)] < 6 (nd? + S, ((id —2)*) (x))
Lugr n? : 4
< ozl + msn,bn ((id = 2)*) (2))
T2
— 3 no/2

As regards the last term in 12) using the Cauchy-Schwartz inequality

(3:3
15s, (770 w0 ) ( ~1)d-2?) @

) 1/2
<l f"|lw ( ,bn ((;U(mé - 1) ) (m)) (S, (1d — x)4)(a:))1/2 .
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wo.

In order to estimate the term Sy, (( w(z) ) > (x) we observe that

S1,n <<w(05) - 1) > (x) = ( §(to) ) for some tg € [x—by,(2), 2+b,(2)];

since &y := &(to) € [z, to], it follows &y € [z — by (), z + b, (x)]. Consequently
we have

(w(x) _1)2 _ <1+w _1>2 _ <1+\x+ua||/n|p _1>2
w(éo) Tz ) S\ T
_ (ix + Jlal/np” — Iw\p>2 < e
1+ |x|P ~ n?

in the case x > 0; if z < 0 we can argue similarly. From Proposition 3.1.2,
since wlggi) — 1 =0 we have

2
(2

and from Lemma 3.1.11 the last term in (3.3.12) can be estimated as follows

s, (o )woe) (2 1) -} @] <l 2

C
<=,
n

Finally we have

n(Lon(f)(@) = f(2) — Awf"(2)|

Luygr 4]|a?| n 1" lwlla® [l ()] e Cla?| 1
~ ne/23 72n Y3 Vi
My
< Ca oz/2 ’

where My is the seminorm defined by (3.3.9) and C, is a constant defined
by (3.3.10). 0

The following lemma will allow us to state the core property of C2(RR)
for (Aw, D(Ay)). Under additional assumptions and in different settings,
the core property has been considered also in [59, 13, 14, 8].

Lemma 3.3.10 For every u € C*(R) and h > 0, the following statements
are equivalent:

a) (wu)"(x) = O(z") (respectively, (wu)"(x) = o(z")) as x — +oo;
b) wu(x) = O(x") (respectively, wu"(x) = o(x")) as x — +o00;

¢) (wu')(x) = O(z") (respectively, (wu') (x) = o(z")) as x — +oo.
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PROOF. Assume that (wu)”(z) = O(z") as 2 — +oc. Then, for every z € R,

x #0,

(wu")(z) = (wu)"(z) + 2(wu) (2)w(z) (1/w) (x) + (wu)() w(z) (1/w)" (z)

- (wu)”(l‘)-l-?(wu)/(x)ﬁ
+(wu) (@) p(p — 1)le+ﬁ
= () 0) o+ ) 1

Condition (wu)’(z) = O(z") implies (wu)'(z) = O(x"*1!) which in turn
yields (wu)(x) = O(z"*2); hence (wu)(z) = O(2") as 2 — +oc.
Now, let (wu”)(z) = O(z") as 2 — Fo00. We have

(wa)'(z) = (wu)(z) + 2(wd)(x)

= (wu")(z) — 2(wu)(z) W

x 2 1
o) (2 (i) o Vi)

1

~ (wu)(@) + (wu')(z) T3 2

T + )
as before, from (wu”)(z) = O(z"), we obtain v”(z) = O(z"*P) and in turn
o' (z) = O(z"P+1) and u(x) = O(z"P*2); hence (wu)”(z) = O(x").

The equivalence between a) and c) can be proved similarly. O

Remark 3.3.11 We observe that the Ventcel domain of A,

Dy (Ay) == {u € C,(R) N C*(R) | liI:E w(x)Apu(z) = 0}
T—L00
coincides with the maximal domain already defined.
Indeed let uw € D(A,) and by contradiction assume that v ¢ Dy (Ay),
for example lirf w(x)Awu(z) =€ # 0. Then

1 1

. 2 2.1 _
e T aw a2 © (T =
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1
. 1 . 1 -
and therefore lim u'(z) # 0; consequently xEIJPoo peras su(x) # 0, con

z——o0 P12 .
tradicting the condition wu € C'(R). The same reasoning holds at the point
— 0. n

Proposition 3.3.12 The space C2(R) is a core for (A, D(Ay)).

PROOF. We consider the canonical isometry I' : Cy,(R) — C(R) introduced
in [8] and defined by setting, for every f € Cy,(R),

L) =fw.

Denote by (A, D(A)) the differential operator obtained by (3.3.2) with
w = 1 on the domain

D(A) ={ue CR)NC*R) | a®u" € C(R)} .

From [33, Proposition 2.10] we know that C%(R) is a core for (4, D(A)).
Now, we show that I'(D(A4,)) = D(A). Let v = I'u € D(A); we have
u € Cyp(R) N C?(R) and further

a2
ra@) = |(v) @)
a.’L‘Z a.fL'Q a.’L‘Z
< D+ o M)+ S L)
a.fL'Q
< Jav@)] + o O+ ey

1+ ]| 6 1+ a2

Using Taylor’s formula we can write v/(z) = U($+535_”($) - ””2(5)5 for some

€ €lx,x + d[, where § is given by (3.3.3), and consequently

1 +1|x\ a(?%w B ‘ 1 +1|x\ a(g)Q e 535 - 1 +1|x\ a(g)Q ”(f)g‘
< ol + Ao "©3
< 2l + 3 [H )
— ol + 3M140(©)
which implies
P(Au)(a)| < Av(a)] + Trlioll + 51400 + Tl (33.14)
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Since ||v|| < oo and limy_,100 Av(z) = 0 (see Remark 3.3.11), we have
lim, 100 '(Au)(x) = 0 and u € D(Ay).
Conversely let u € D(A,), we have I'(u) € C(R) N C%(R) and further

ArwE)] = [ oy (@)
< 2 )| + S )
< L@+ 1o 2 o)+ 1 I o))
Again from Taylor’s formula we have o/(z) = “EH=u@) _ w78 5 where
¢ €]z, + 6] and § is given by (3.3.3), and consequently
1 +1|x\ a(?Q (w)(z)] < ‘ 1 +1\x| a(g)Qw(x)U(x . 5()5 =
i —|—1|x\ 5 )“”(5)2‘
:
= Hg(5”1+1\x| (lg:(+)5) [Pu(z +9)]
e )
+ | i 0 53
< Tl + Gl e
Then we have
AT)@)] < [P0 + T (3315)
HCIP (AW + 15 T

and taking the limit as © — oo we obtain lim, 4. A(T'u)(x) = 0 (see
Remark 3.3.11) and consequently lim,_, 1, ['u(x) = 0.

Now, we observe that T'(C2(R)) = I'({u € C,(R)NC?(R)| wu” € C(R)})
and C?(R) = {v € C(R)NC?(R) | v" € C(R)} and taking into account that
wu” € C(R) if and only if (wu)” = (Tu)” € C(R), we deduce the equality

P(Cy(R)) = C*(R) .
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Finally from (3.3.14), it immediately follows that if I'(u) € D(A) then
IT(Aw)|| < € (JATw) + ([T (w)]]) (3.3.16)

for some constant C' > 0. B
Taking into account that C?(R) is a core for (A, D(A)), the proof is
complete. ]

Finally, we discuss the representation of the semigroup generated by A
by means of iterates of weighted Steklov operators.

Proposition 3.3.13 The operator (A, D(Ay)) generates a strongly con-

tinuous semigroup on Cy(R).
PRrROOF. Let A > 0 and consider the problem

Au— A(u) = f f €Cu(R), (3.3.17)
which is equivalent to

Mw—Bw)=g, g€ C(R), (3.3.18)

where v = uw, g = wf, and

/
v\ _ w’ v\ __ " w’ ,/ w’ :
From ()" = % — #zv and ()" = 4 — 240" — (W) v, we obtain
2 2 .,/ 2 AN
a a® w a w
Blv)=—v"—-2——V ——w| = | v=:ap?’ + v +vpv.
() =75 6w 6" \w E

Using Feller’s classification of the endpoints (see [48]), we prove that B

generates a Cp-semigroup on its maximal domain D(B) := {u € C(R) | Bu €
C(R)}. In our case the functions W, R and Q in [48, p. 391-393]) are given

by
T T / 2
W (z) = exp <—/ ﬂ—B> = exp </ QE) = w(x)g ;
2o OB vy W w(zo)
Ru(o) = Wao) [ —w(? [
€Tr) = xT = wlxr
B B 2o BWB vy APW?
and ) . 6 .
rz) = ——"— W = w2 .
Qo) = vy L Ve = e
Since w(z) = ﬁ, it can be readily seen that

62 1
%) =5, R
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and hence Qp is not integrable on [0, +00[ and on | — oo, 0]; moreover,

6 T (L Jep)?
R = dt
50) = T )
and from the estimate
T 22 2p+3
> D
Rp(z) > 1+x2p/0 tPTEdt = O ———- T

it follows that Rp is not integrable on [0, +oo[ and on ] — 00, 0] as well.

So the endpoint —oo and oo are both natural for the operator B, and con-
sequently the operator Bv —vypv generates a strongly continuous semigroup
on its maximal domain on C(R). Observe also that the maximal domain
coincides with the Ventcel domain in the case of natural endpoints, as an
immediate consequence of the classical generation results by Clément and
Timmermans [44] and Timmermans [69] (see Chapter II).

Taking into account that

a(x)? p(p — 1)|z|P~2

6 L+l

vB(T) =

we conclude that yp is bounded and hence (B, D(B)) generates a strongly
continuous semigroup on C(R).

Finally, we observe that if v € C(R) is a solution of (3.3.18), then u :=
v/w € Cyu(R) is a solution of (3.3.17). Moreover u € D(A) if and only if
u-w € D(B) since I' is an isometry between Cy,(R) and C(R), and from the
generation property of (B, D(B)) we deduce that (A, D(A,) generates a
Co-semigroup on Cy, (R). O

Finally we can state the following representation theorem.

Theorem 3.3.14 The operator (A, D(Ay)) generates a positive Cy-semigroup
(T(t))>0 in Cw(R) satisfying | T(t)| < et and, for every t >0 and for ev-
ery sequence (k(n),>1) of positive integers satisfying lim,,_, o~ k(n)/n = t,
we have

T(t) = lim LF™ strongly on C(R) ,

n—-+o0o

moreover if a € C%(R), for every f € C& (]R) we have

HT(t)u—Lﬁ(”)uH < Gobly +< \f\/—) (3.3.19)

w na/Q '
CoMy
< (a7l + S5

and choosing k(n) = [nt]

CoM 1 1 2t CoM

] I ST ;

e =2t < e=e o/ (\/ﬁ+ 7r> (HAwa nal? > :
(3.3.20)
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PRrROOF. From Proposition 3.3.13 we know that the operator (A, D(Aw))
generates a Cp-semigroup (7(¢)):>0 and hence, for every A > 0, the range
(A — Ay)(D(Ay)) coincides with C,,(R) . Moreover, by Proposition 3.3.12,
C2(R) is a core for (A, D(Ay)) and therefore (A — A,,)(C2(R)) is dense in
Cy(R). We observe that we have

C n
ILuwall < loonllZ < (1 + on — 1)" < (1 N n_)

as a consequence of (3.3.5) and Proposition 3.3.1, and consequently

c n2\ k/n
1L L < ((1 + W) > < (Ck/n

Hence we can apply Trotter’s approximation theorem [70] and obtain
that the closure of the operator arising from the Voronovskaja’s formula
(Theorem 3.3.8) generates a Cp-semigroup represented by (3.3.14). Finally,
this closure coincides with (A, D(A,)) since C2 (R) is a core by Proposition
3.3.12. The positivity of the semigroup is a consequence of the representation
(3.3.14).

At this point we can apply Theorem 1.1.2. From Theorem 3.3.9 follows
that the seminorms are given by ¢, (f) = Ca% and on(f) = [Af]lw +

Ca%, then taking into account that the growth bound of (7'(t))¢>0 is
equal to 0 and every T'(t) is a linear contraction, i.e. w =0 and M = 1,
the estimates (3.3.19) and (3.3.20) follow directly from (1.1.10) and (1.1.11),
and this completes the proof. O
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3.4 Steklov operators in weighted spaces on [0, 1]

In this section we consider the weighted space of continuous functions on
the interval [0,1]. We fix a € C([0, 1]) satisfying a(0) = a(1) = 0 and require
that it is differentiable at 0 and 1, i.e.

lm %) R (3.4.1)
z—0,1 .1‘(1 — .1‘)

We consider the weight function
w(x) :=2P(1 —x)?, x €[0,1], P,q>2. (3.4.2)
In the sequel, we shall set b,(z) = a(x)/n. From (3.4.1), it follows

[z — by (), z + by(x)] C [0,1] for every = € [0,1] and large enough n; hence,
we can define the functions wy, : [0,1] — R by setting

w(z) /IH’"(I) 1
wp(x) = ——dt, z €]0,1], 3.4.3
= %@ Loty 0 ol 34
and
wn(0) := lilr(r)l+ wp(z) , wp(l) = lir?i wp(z) . (3.4.4)

Remark 3.4.1 Let n € N be large enough; then the limits in (3.4.4) exist
and are finite at the points 0 and 1.

Since the discussion is at all similar on neighborhoods of the endpoints 0
and 1, in the sequel we shall limit ourselves to consider only a neighborhood
of 0, where the weight function can be taken of the form

w(z) =P .

We observe that, for every = €]0, 1],

1 z+bp(x) 1
wp(z) = 2P TN E) /xbn(x) m dt (3.4.5)
1 1 1 )
1 p2by(2) [(l’ N ) e ) ol
_ 11 @aba@) T — (@b,
P N 7 B P WO ey
B 1 x2r—1 (14 by (z)/2)P~ — (1 — by (z)/2)P~ !
 p—12b,(z) 222 (1 = bp(x)?/22)p~1
x (1+ba(2)/x)P~! = (1= bp(x)/x)"~"

2(p — )by (z) (1 = by(2)2/22)p—1
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Since a is differentiable at 0, we have

1, a(0)=0,
p—1 p—1
2—0 2(p — 1) N (1 B li)pfl
where v := a/(0). O

In the next Proposition 3.4.2 we estimate w,.

Proposition 3.4.2 There exists a constant C' > 0 such that

C
Jeon = 1)) < =

PRrROOF. For n large enough, we have 0 < b,(x)/x < 1/2 for every x €]0,1]
and hence, using the Taylor’s expansions of (1 £ y)?~! at 0, we get the
existence of &, 0;,m, €]0,1/2[ such that

-1
<1+bn(l’)>p _ 1+(p_1)bna(:$)_i_l(p_l)(p_Q)bnx&Q

» 2
1 —4 n(l,)?)
te =D -2 -3) 1 +&)"" — 35—,
p—1 T T 2
(1—6”55)) = - -2 -2 b”g(ﬂ)
T 3
=Dl -2)p-3)1- )" bn:fﬁ) ’
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Consequently, using (3.4.5),

1 (1 + ba(x) /2P~ — (1 = bn(@)/2)P"

)= D) (1= ba(a /a2

_(1 — by (z)?/2?)Pt
(= b [

- u—m@Wﬂv1x
X (1 + % (P=2)(p—3) (L+&)P "+ (16" b"g(j—f)Q
Lt (1) (1 g

- e (-2
(&) (=0 + (= 1) (L))

= ig = a(c;()ﬁ;(/ﬁ )T p(x) (3.4.6)

o) = 5 (= 2)(p—3) (1+ &P + (L= 07) 4 (p— 1) (L —map

Since ¢ is bounded as well as a(x)/z, we get the desired result. O

Now, we consider the weighted space

Co((0,1]) = {f € C(0,1) [ I lim w(z) f(z) € R}

endowed with the norm

[fllw = sup [f(z)w(z)],  feCu(0,1]).

z€[0,1]

As in the preceding section we define the operators L, , : Cy([0,1]) —
Cw([0,1]) by setting, for every f € Cy([0,1]), Luwn(f) = Snp,(f)-
We also need to define the subspace

C([0,1]) = {f € Cu((0,1]) N C*(0,1]) | f" € Cu([0,1])} .

If n is large enough, then for every f € Cy([0,1]), the function Ly, ,(f)
is well-defined by (3.4.1). Moreover we have,

[ i (Pl = (1S (Pl < llwon]™ 1l < Cuw || flluw (3.4.7)

and hence Ly, »(f) € Cy([0,1]).
The proofs of the following properties are at all similar to the unbounded
weighted case and therefore we shall omit them.
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Proposition 3.4.3 We have the following properties:
1. For every f € C(0,1), k> 1 and x € R,

k
1Sk ,6, (F) = Fllu < 1516, () = Fllw D llwonl* - (3.4.8)
=0

2. For every f € C2([0,1]), there exists a constant Cy > 0, depending on
f, such that for every x € (0,1)

1516, (f) = fllw < (3.4.9)

3. For every f € Cy([0,1]) we have

. 1
lim —
n—+oo 1

n—1
> Skn(f)=f
k=0

with respect to the norm || - ||w.

As a consequence, also in the present setting we can state the following
results. The proof is omitted since it is at all similar to the unweighted case.

Theorem 3.4.4 For every f € Cy([0,1]), we have

lim Lw,n(f) = f

n—-+o0o

uniformly with respect to the weighted norm || - ||,.

Theorem 3.4.5 (Weighted Voronovskaja-type formula)
For every f € C2([0,1]) we have

2
lim S| —
o 6

n(Lw,n(f) - f) -

w

In order to obtain a quantitative estimate of the Voronovskaja’a formula
we need to consider the class of functions

C3([0,1]) = {f € CL([0,1]) | wf" € C*([0,1])} .
Theorem 3.4.6 (Weighted quantitative Voronovskaja-type formula)

If a% € C%([0,1)) for every f € C2*(]0,1]) we have

2

a_ f//

My
<y
6

— a27
w ne/

n(Lwn(f) = f) -
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where My is the seminorm defined by

luf = wa” + Hf”Hw (3.4.10)
and 2\
4 [|(a®)"]]
2
= max { —, . 4.11
Cai= [l w{37%% (3.4.11)

Finally, we shall be concerned with the core property and the represen-
tation of the semigroup generated by the differential operator arising from
the Voronovskaja-type formula.

The differential operator is A,u(x) := a(z)?u”(x)/6 on the following
Ventcel’s domain

Dy (Ay) := {u € Cyu([0,1]) n C%(J0,1]) | 111%11 w(z) Ayu(xz) =0} .
x—0,

As in the preceding section, we consider only first-order degeneracy of
the function a at the endpoints. Different generation results in the space of
continuous functions vanishing at the endpoints are available in [8] (see also
[6] and the references given there).

Theorem 3.4.7 Assume that
a(z) =Czx(l —x), 0<z<1,

for a suitable constant C > 0. Then, the space C%([0,1]) (and hence C2([0,1]))
is a core for (Ay, Dy (Ay)); moreover, the operator (A, Dy (Ay)) generates
a Co-semigroup (T'(t))t>0 in Cy([0,1]) and, for every t > 0 and for every
sequence (k(n))n>1 of positive integers satisfying lim,_. . k(n)/n = t, we
have

T(t) = lim L™ strongly on Cy([0,1]) , (3.4.12)

n—+o0o i

moreover for every f € Ca®([0,1]) we have

|T@u -~ Lhu| <t Colly | (‘k(:) —t' + @@) (3.4.13)

w na/2

xommw+9ﬂﬁ)

no/2

and choosing k(n) = [nt]

CoM 1 1 12t CoM

_ 1[nt] alf L[ L <t otV
HT(t)u Ln un =t w2 Vn (\/ﬁ+ 7T> (HAwa+ ne/? > '
(3.4.14)
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PROOF. We reason only in the interval [0,1/2] and assume a(z) = Cz. Let
u € Dy(A,) and fix e > 0. We have u”(z) = o(1/2P*2) as x — 0 and hence
u'(x) = o(1/2P™1) and u(z) = o(1/2P), that is lim, .o w(z) x v/ (z) = 0 and
lim,_,o w(z)u(z) = 0. Hence, we can choose § > 0 such that 6 < 1/2 and

lw(x)u(z)] <e, x€][0,0],
lw(z)xu' (z)| <e, x€]0,d],
lw(z)z?u"(z)| <e, = €]0,9].

Let v :[0,1/2] — R as follows
(z—0)°

u(0) +u'(8)(z — 6) +u"(6) 5 T€ [0,4],
v(x) = 1
u(zx) , x € [(5, 5} .
Then, v € C%([0,1/2]) and, for every = €]0, 4], we have
2,2 2, p+2
w) dva)] = Julo) @) = [ )
2 §p+2 2
< ‘C 2 u"(d)‘<%5
and consequently
C? Cc? C? 1
_ <L el e= .
|lw(z)(Au(x) — Av(x))| < 5 €+ T35 T € [O, 2]

Finally, for every x € [0, d],
lw(@)(u(z) —v(@)] < |w(@)u(@)] + [wz)w@)] + [w@) ' (d) (z - )

— )2
+ |w(z) u"(é)%
(52
< e+ |lw()u(d)] + [w(d)du'(8)] + ‘w(é) Eu”(é)‘
< s—l—s—l—s—i-izzs.
- 2 2

The same inequality obviously extends to the interval [0,1/2] and since ¢ is
arbitrary, this completes the proof of the core property.

In order to apply Trotter’s approximation theorem, we need to establish
the stability estimate ||L% [ < M ek/™ for every m,k > 1 for a suitable
constant ¢ > 0.

Indeed, from (3.4.7) and Proposition 3.4.2, we get

C n
IZwanll < Jwnll” < (1 + [lwn = 1" < <1 + ﬁ) ,
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where C' is the constant in Proposition 3.4.2, and consequently

c n2\ k/n
’ n

Hence, we can apply Trotter’s approximation theorem [70] and obtain
that the closure (A, D(A)) of the restriction of A, to C2([0,1]) generates a
Co-semigroup (7'(t))¢>0 on Cy ([0, 1]) which can be represented by (3.4.12).
Moreover, the stability estimate also gives ||T(t)|| < e for every ¢t > 0.

Now, we show that (A, Dy (Ay)) is closed and this, together with the
core property, will imply that (A, D(A)) = (A, Dy (Ay)) and complete the
proof.

Let (up)n>1 be a sequence in Dy (A,,) and u,v € Cy ([0, 1]) such that (w-
Up )n>1 converges uniformly to w-w and (w - A(uy)),>1 converges uniformly
to w - v. Since a and w are continuous and strictly positive in ]0,1[, they
have a positive minimum in every interval [a,b] C]0,1[ and consequently
(un)n>1 converges uniformly to u and (A(u,)),>1 converges uniformly to v
in [a, b]; from the classical theory, we have that u € C?([a,b]) and Au = v in
[a,b]. Since the interval [a, b] is arbitrary, we get u € C2(]0, 1[) and Au = v in
10, 1[. Finally, from the uniform convergence of (w-A(uy,))n>1 to w-v and the
condition lim,_.o 1 w(z) Au,(x) = 0, we also have lim,_,o; w(z) Au(z) = 0
and hence u € Dy (Ay).

At this point we can apply Theorem 1.1.2. From Theorem 3.4.6 follows
that the seminorms are given by 1, (f) = Ca% and ¢n(f) = ||Afllw +
Canj\;j—/@, then taking into account that the growth bound of (7(t)):>0 is
equal to 0 and every T'(t) is a linear contraction, i.e. w = 0 and M = 1,
the estimates (3.4.13) and (3.4.14) follow directly from (1.1.10) and (1.1.11),

and this completes the proof. O
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3.5 An extension to the multivariate case

In this final section we briefly consider a possible extension to the multi-
variate case; we establish some approximation results and a Voronovskaja’s
formula.

The following results have been published in [42].

For the sake of simplicity, we limit ourselves to the two-variables case
since a similar construction can be extended in a straightforward way in
more variables.

The case considered in this section is of particular interest since it involves
a second-order partial differential operator on the whole space R? whose
coefficients of the second-order partial derivatives may be even unbounded
or degenerate.

First, we define the mean integral operator over a rotated rectangle.
Let a,b : R? — R be strictly positive continuous functions satisfying the
following condition

a(z,y),b(z,y) <1+ ezl +ly),  (z,y) €R?, (3.5.1)

for some suitable constants ¢i,ca > 0 and let # : R2 — R be a continuous
function.

Moreover, denote by Li (R?) the space of locally integrable functions on

R2.
The mean integral operator M, ¢ : L}

loc

Le@®?*) — C(R?) is defined by
setting, for every f € L (R?) and (z,y) € R? ,

Musol @)= o [ semagan, @52

where

Rlz,y] = {(&,n) eR?| (3.5.3)
(€ — ) cos O(x,y) + (n — y) sinO(x,y)| < alz,y) ,
| = (§ —x)sinf(z,y) + (n —y) cos O(x,y)| < b(w,y)}

is the rectangle with center (z,y), sides 2 a(z,y) and 2 b(z, y) and rotated an-
ticlockwise of an angle 0(x,y); moreover |R[z,y]| := 4a(z,y)b(x,y) denotes
the Lebesgue area of R[x,y].

Using the parallel variables to the sides of the rectangle R|z,y|, from
(3.5.2) we easily get, for every f € Li (R?) and (z,y) € R? ,

loc

%bgf x, = / / OQDLB,Z 5,7[ d&d s
T ( y) .1‘ y b .1‘ y —a(z,y) b(z,y) ( ) 7
(33)4)
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where

Pry(&,n):i= (2 + cosO(z,y) —nsinb(z,y),y + {sinb(z,y) +ncosb(z,y))

defines the change of variables.

Denote by C'®)(R?) the space of all continuous bounded real functions
on R? and by Cy(R?) the subspace consisting of all continuous functions
vanishing at the point at infinity of R?. These spaces are endowed with the
usual uniform norm

Ifll:== sup |f(z,y), feCORY.

(z,y)€R?

Moreover, we shall consider the function w : R? — R defined by

1
w(w,y) = Tr2 42 (z,y) ER?, (3.5.5)

and the space
CO®?Y) = {f e C®R?) | wfe CORY}
endowed with the norm

[fllw = sup fw(z,y) f(z,y)] .
(z,y)€R?

Observe that M, 9 maps C () (R?) into itself and is a positive contraction
when considered as an operator on this space. Moreover, M, ;¢ maps the
space of compactly supported functions into Co(R?) and by continuity also
Co(R?) into itself.

Now, we show that M, ;¢ maps C’gj) (R2) into itself. First, we put

r(z,y) == Va(z,y)? + b(z,y)?, (3.5.6)
for every (z,y) € R? and we observe that (see (3.5.3))
Rlz,y] C [z —r(z,y),z +r(z,9)] X[y —r(z,9),y +r(z,9)] . (3.5.7)
Moreover, from (3.5.1), we have

r(@,y) < V2 (e + ealal +ly)))
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and hence, using (3.5.6) and (3.5.7),

M, ; 1
| ,b,92f(x zé)\ < ' x (3.5.8)
1+22+y (1 + 2% +y?) |R[z,y]|
(14 € + 1)dé dy
//xy]1+§2+ 2
———  sup 1+ 4+ fllw
1"’55 + Y% (em)eRlzy)
< 1422+ y2 + 2r(x,y)2 +2(|z| + [y|)r(z, y) £
= 1+ 22 + 9?2 Y
3 + ca(a® + y?)
< 1 w < (1 w
< (14252 i < s e 1)

for some suitable constant c3,cq > 0.

Then M, ¢ is a bounded operator when considered on the space Cfub) (RQ)
endowed with the norm || - ||.

We are now in a position to define our Steklov operators. For every
n > 1, set an = a/n, by, := b/n and consider the n-th Steklov operator
Sp ) (R?) — ) (R?) defined by setting, for every f € ol )(RQ) and
(z,y) € R?,

Snf($7y) = M:n,bnﬁf(xvy) ) (359)

where, as usual, M ' b0 denotes n-th iterate of the operator M,,, p, ¢-

We shall write M in place of M,, 1, ¢ if no confusion arises.

As a consequence of the properties of Mg, from (3.5.9) we have that
Sy, is well-defined as an operator on c) (R?) and maps the spaces C®) (R?)
and Cp(R?) into themselves. When necessary, we shall consider the Steklov
operators acting on these spaces too; we also observe that .S, is a positive
contraction when acting on C'®)(R?) and Cy(R?) endowed with the uniform
norm.

In order to estimate the norm of .S,, with respect to the weighted uniform
norm in C (R?%), we use (3.5.8) taking into account that in this case we
have to consider r,, := va? + b?/n in place of r and obtain

Mnf(z,y)|l _ 1422+ + 2rn(2,9)? + 2(|2] + [y))ra(z, y)
1+~T2+y2 — 1+~T2+y2

(1 n %) flos  (zy) €2, (3.5.10)

(A

IN

for a suitable constant C' > 0; this yields

C n
180Dl =22 < (145 ) 1l < < 1



82 Chapter 3: Steklov operators

and hence the sequence (S, ),>1 is equibounded with respect to the weighted

uniform norm in C'¢) (R?); moreover, it is also a sequence of positive con-
tractions on C®(R?) and Cy(RR?).
We have the following preliminary properties.

Lemma 3.5.1 The following equalities hold, for everyn € N,
1) S,(1) =1
2) Sp(pr;) =pr;,i=1,2.
3) For every (x,y) € R, we have

n—1

1
2 _ 2 k(2 o2 2 2
Sp(pri)(z,y) = = +W ZMn(a cos” 0 + b sin” 0)(x,y) ,
n—1
2 _ 2 B 2
Sn(prs)(z,y) = y“+ 3n2 ZM a? sin? 0 + b* cos® 0)(x,y) ,
Sy (pry pry)(z,y) = a:y—i— Z (a® —b%) cos 0 sind) (z,y) .
k=0

PROOF. It is obvious that M, 1 = 1 and hence property 1) is true. Moreover,
from (3.5.4) we easily obtain M, pr, = pr;, i = 1,2, and this yields property
2). Finally a straightforward calculation based on (3.5.4) gives
1
Mo (pri)(@,y) = @+ 2 (a(w,y)” cos®O(w,y)  (3.5.11)
+b(w,y)? sin® 0(z,y)) -
1
My (pr3)(z,y) = y*+ 55
+b(x,y)? cos® 0, y)) -
1
My (pripry)(@,y) = @y + 55 ((al2,9)* = bz, 9)*) *
X cos@(x,y) sinf(z,y))

(a(z,y)* sin* 0(z, y)

and an induction argument on the integer n > 1 yields property 3). O

The convergence of the sequence (S,)n>1 of Steklov-type operators will
be obtained studying the behavior of these operators on the subspace

o 2t
0x?2’ Oy?’ Ox Oy

C2O(R?) = {f e CP(R?) N C2(R?) C“”<R2>}

(3.5.12)
of all functions in Cfub) (R?) with bounded second-order partial derivatives.
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Proposition 3.5.2 For every [ € Cf,j(b) (R?) there exists a constant Cy > 0,
depending on f, such that

1
[Mnf = fllw < Cfﬁ . (3.5.13)

ProoOF. For every x,y,s,t € R, there exist £, € R such that

2
[0~ fe) = S@oe-0+La-n+ 5]

el P
G €5 4 S En)s 0t - )

.’EQ
T

and consequently
0
M f(2,9) = £(2.) = 92 (&) My (e, — 2)(z,)

2 I — 1 2
S g o, — ) + 30 (€0 P (o)

2 o — u)2
e e

2
M, (a (€ m)on, — 2)(or, - y>) (e,9)

Let C:=max{]|0°f/0x°||,[10%f /||, 2|0 f /0x0y|}; then

C

My f(y) = fl@y)l < 5 (Ma(pry = 2)° + My(prz = y)°

+My(pry — z)(pry — y))
a® + b* + (a* — b%) sin(20)) (z, ) .

c
6n Gn2 (
Multiplying by w(zx,y) and taking the maximum, from (3.5.1) we obtain the
desired estimate. n

At this point, we introduce the function w,, : R? — R defined by

onle) = w3, (1) 210)

(see (3.5.5)). Observe that w,, is bounded since 1/w € ) (R?) and conse-
quently M, (1/w) € ) (R?) too.

Proposition 3.5.3 For every f € C’gj)(RQ) and k > 1,

1M5: (F) = fllw < 1M (f) = fllw lewn\l (3.5.14)
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PROOF. We argue by induction on the integer £ > 1. If £ = 1 then (3.5.14)
is obviously true. Now, assume that (3.5.14) holds for £ > 1. We have

w(z, y) (Mg f (2, y) = f(z,y))]
< |w(x,y)Mn(M,{ff - f)(x,y)l + ‘w(x>y)(Mnf($7y) - f(wvy))‘

< wn(@, )IMy (f) = fllw + 1Mo () = Fllw
k—1

< wp(z,y) an(%?/)i My (f) = fllw + |1 Mn(f) = fllw

1=0

k
< an(xay)i HMn(f) - wa + HMn(f) - wa
i=1

k

<3 (@) 118, (F) — Fllu
=0

and this completes the induction argument. O

In order to deduce the convergence of Steklov operators from the above
proposition, we need to estimate the convergence of the sequence (wn)nzl.

Proposition 3.5.4 There exists a constant C' > 0 such that

C
Joon = 1)) < =

ProOF. First, we observe that

on) =11 = fut@)Sia, (3 ) - wle)

: u(2)-S

Since 1/w € cl (R?) N C2?(R?) and its second-order partial derivatives
are bounded, we can apply Proposition 3.5.2 and obtain a constant C > 0

such that
1 1
o (2) -5
w w

and this completes the proof. O

C

w

Now, we are in a position to state the convergence property of the se-
quence (Sp)p>1-
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Theorem 3.5.5 For every f € c®) (R2), we have

dim [Su() = Sl =0.

PROOF. Let f € C?U’(b)(RZ); from Propositions 3.5.2, 3.5.3 and 3.5.4 we
obtain

1Su(f) = fllw < IMa(f ﬂhZWMV—%ZIMi
1=0

5 (ed) % (- 5) )

and consequently lim,, oo [|Sn(f) — fllw = 0. 0

IN

As a consequence of Theorem 3.5.5, we have that the sequence (S, (f))n>1
converges to f uniformly on every compact subset of R? whenever f €
¥ (r2).

In the following result, we study the uniform convergence of the sequence
of Steklov operators in the space Cp(R?).

We observe that from Proposition 3.5.2, it follows that if f € o (R%) N
C?(R?) has bounded second-order partial derivatives, we have

Mo f(2,9) — F@0)| < 55 (0 46+ (07 = 1) sin(20)) (2,9) , (2:y) € B

and hence if a, b are bounded, we also obtain
C
1M (F) = £ < =5 (la®]| + [9°1) - (3.5.15)

Theorem 3.5.6 Assume that a,b € C)(R?). Then, for every f € Co(R?),
we have
hm I1Snf — fll=0. (3.5.16)

PROOF. Let f € C?(R?) with bounded second-order partial derivatives and
observe that the second member of (3.5.15) tends uniformly to 0 as n —
+00. Moreover, in this case the operators M,, are positive contractions with
respect to the uniform norm, and consequently

15 (f) = fIF = IM5 () = fII < nl| M (F) = [l

which yields lim,, 1 [|Sn(f) — f|| = 0. The general case where f € Cp(R?)
follows from a density argument. O

Now we establish a Voronovskaja-type formula for the operators 5,,. We
need some preliminary properties of independent interest which establishes
the convergence of the mean of iterates of the operators M,,.
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Proposition 3.5.7 For every f € C’gj(b) (R?), we have

n—1
Jim EZ{)M,’;(f)—f =0. (3.5.17)

PROOF. Let f € c2® (R?); from Propositions 3.5.3 and 3.5.4 it follows

n—1
Sy ME -
k=0

1 n—1
<z -4,
w k=0

n—1k—1 n—1k—1

1 . 11 1 ..
< E HMn(f) - f”w ZZ HwnHZ < Cfgm 22(1 + Cﬁ)l

k=0 =0 =0 =0
_Cfn c\"
'“6(6(@*@)‘*)‘9’

and taking the limit as n — 400, we have the validity of (3.5.17). g

Eod

Remark 3.5.8 If we consider the subspace
Co.u(R2) = {f c COMR?Y) |wfe CO(IRQ)} , (3.5.18)

we can observe that the preceding proposition is still true for every f €
Co.w(R?).
Indeed, from (3.5.10), we get

C k
|Wﬂs@+—)s£
n

with respect to the norm in C") (R?) and hence the mean operators 37~ ) M¥ /n
are equibounded when acting on the space ) (R?). Since c2® (R?) is
dense in Cj ,,(R?), Proposition 3.5.7 can be applied to every f € Cp,,(R?).

O

Finally, we can establish a Voronovskaja-type formula with respect to the
weighted uniform norm.

Theorem 3.5.9 (Voronovskaja-type formula) Assume that a,b € Cy(R?)

and consider the second-order partial differential operator A : C*(R?) —
C(R?) defined by

1 rf O rf
A(f)._6<aﬁ+ﬂa—y2+'ya$8y

> , feC?*R?, (3519
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where the coefficients o, 3,7 : R2 — R are given by
o :=a’ cos?O4+b* sin? 0, B:=a® sin?0+b% cos’ 0, v:= (a® —b?) sin(26) .

Then, for every f € C’?U’(b) (R?) with uniformly continuous second-order
partial derivatives, we have

T ([n (S f — f) ~ A(f)]l,, =0

PrROOF. Let f € C’g,’(b) (R?) have uniformly continuous second-order partial
derivatives. For every z,y,s,t € R, we can write

F(s.8) = @) = GHe)s =)+ St =)
2 s — )2 2 N2 2
et e S+ - ae-y)

+77(87t7x7y) ((8 - J:)Q + (t - y)2)

where n : R* — R satisfies lims ) (2,y) 1(8: 1, 2,y) = 0 uniformly with
respect to (x,y) € R%. Then

n(Suf(x,y) — f(x,9)) = nSu(f — f(z,9))(z,y) (3.5.20)
=0 G @S, by = 0)an) + 0 G 2,08~ ) o)
n 0°f 2
+3 W(x,y)sn((md —x)°)(z,y)
n 0f 2
+3 8—y2(x,y)5n((Pr2 —y)7)(z,y)

2
2 afy Su((pry — ) (prz — ) (. )

+n 8y (n(pry, pra, 2,y) ((pry — 2)* + (pry — 1)) (z,y) -

We observe that the first two addends in (3.5.20) vanishes.
Moreover, we have

n
5 S0 ((pr1 = 2)°) (2,9) = n (Sn(Pr1)(z,y) = 228, (pr)) (2, y) + 27)
n—1
ot k(2 20 32 2
=& kZZOMn(a cos” 6 + b sin” 0)(z,y)

n—1

1

= 6_71 ZMS(Q)(xay) )
k=0
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5 S ((pr2 = 9)?) (2.) = . (Su(Pr3)(a.y) — 295 (prs) () +y?)

i
L

M (a? sin? 0 + b* cos? 0)(z,y)

1
6n

T
= O

My (B)(x,y) ,

0

1
6n

B
Il

n Sy,

—~

(pry — z)(pry — y))(z,y)
=n(S (prlprz)( 2Y) — ySn(pry) — 2Su(pro)(z,y) + zy)

=
= &n Mk b?) sin(26)) (z,y)
k=0

n—1

1

— MF .

o a () (7, 9)
k=0

Our assumptions on the functions a and b ensure that all the functions
a, B and v are in Cp ,,(R?) and hence from Proposition 3.5.7 (see also Remark
3.5.8), it follows

i 2 (o —0) (0y) = gale)
im 25 (o)) () = ¢ Bley)
i nS,((or — 2oy 9@ y) = ()

(b)

uniformly with respect to the weighted uniform norm in Cy,’ (R?).

Finally, we have only to show that the last addend in (3.5.20) converges
to 0 with respect to the weighted uniform norm. To this end, let € > 0 and
consider ¢ > 0 such that |n(s,t,z,y)| < & whenever (s —z)% + (t —y)? < 2.
Moreover, take M > 0 such that |n(s,t,z,y)| < M for every (x,y), (s,t) €
R2. We have

[n(s,t,2,9)| ((s = 2)* + (t = y)*) < e((s —2)* + (t —9)*)

if (s —x)% + (t —y)? < 6% and

(s, 2,9l (s = 2)" + (= 9)*) < (5= 2) + (=),

whenever (s — )% + (t — y)? > 6. In any case

(s, 2, 9)| ((s—=2)°+(t=9)*) < e((s—2)"+(t=9)")+ 5 ((s=2)*+(t-y)*)”
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and hence

&
&

[n Sy (n(pry, pra, 2,) ((pr; — )% + (pry — 9)%)) (
<nS, (In(s,t,z,y)| ((pr; — z)* + (pry — y)?)
<n Sy (e((pry — 2)* + (pry — v)*)) (z,y)

#ny (G5 (on =20+ (ory = )2 (010)
<en Sy ((pry — 2)* + (pra — 9)°) (2,9)

+5%2n Shn (((Pﬁ —x)* + (pry — 9)2)2> (z,y) -

~—
—~
K
<
~—

Observe that

i nSu((pr — 2 + (pr — 9)?)(9) = 5(@2 () + B2(w.)

uniformly with respect to the weighted norm and hence, from the arbitrarily
of €, it remains only to show that

lim Hn Sh (((pr1 — )% + (pry — y)2)2)‘ =0. (3.5.21)

n——+o0o ‘w

Indeed, a straightforward calculation yields
2
My (((pry = @) + (s = 9))°) = ((pry = 2) + (pra — )*)?
1 /1 2 1 2 1
+ﬁ <5 at + 9 a® b® + E b4> + 2 ((prl —x)2 + g(prQ - y)2>
2 1 9 9 4
g B glery —2)" 4 (pry = )" ) + o5 v (pry — 2)(pry —9)

and taking n iterations of the above formula, we have

WL k: t (20 (om0 Soma 1)
+% :z:)ij <25 (é(prl — 2)* + (pry — ) ))
5 (37tm - 2002 )
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Now, we discuss the convergence in C’gj ) (R?) of the preceding addends
evaluated at (z,y). The first addend ((pr; — )% + (pry — v)?)? vanishes
identically at (z,y). As regards to the second addend, we observe that the
assumptions on a and b ensure that a*,b*, a?b? € Cp,,(R?) and hence, from
Proposition 3.5.7 and Remark 3.5.8, we have

1 1
k(L 2 4y _ 1 4 2,2, 134
nhIJrrlngM<a—|— a’bh® + = b) 5a+9ab+5b

for the weighted uniform norm. Therefore the second addend converges to 0
uniformly with respect to the weighted norm due to the factor 1/n?. Finally,
the same argument can be applied to the last three addends and we find that

they converge in Cl(ub) (R?) respectively to the functions

2a <(pr1 — )’ + %(prz - y)Q) .28 ( (pry — )% + (pra — y)2> :

and 4
37 (pry —2)(pry —y)
which vanish identically at (z,y).
Hence (3.5.21) has been established and the proof is complete. U

Under additional assumptions on the functions a and b, we can state the
Voronovskaja-type formula in the space Cy(R?) with respect to the uniform
norm.

We begin with the analogous of Proposition 3.5.7 in the space Cp(R?).

Proposition 3.5.10 For every f € C?(R?) having bounded second-order
partial derivatives, we have

%ZM,’j(f)—fH =0. (3.5.22)

PROOF. Indeed, since the operators M, are positive contractions, from
(3.5.15) we have

e <1§HM’“<f>—fH
n & " n "

1 Cy(lla®]| + [11*])) n(n —1)
— || M ( E k< -— .
H —fl ~n n? 2

Taking the limit as n — 400, we have the validity of (3.5.22). O
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Theorem 3.5.11 (Voronovskaja-type formula in Cy(R?)) Assume that
a(1+pry +pry) € Co(R?),  b(1+pry +pry) € Co(R?)

and consider the differential operator A defined by (3.5.19).
Then, for every f € C3(R?), we have

Tim [ (S.f — £) — A(F)]| = 0.

Proor. We observe that Proposition 3.5.10 continues to hold for every
function in Cy(R?) by a density argument, and that our assumptions ensure
that o, 8 and v and all the functions involved in the remainder estimates are
in Cy(R?). Using this remark in place of Proposition 3.5.7, we can proceed
exactly as in the proof of Theorem 3.5.9. O






