
Chapter 2

Applications to classical

sequences of operators

2.1 Infinite-dimensional setting

2.1.1 Application to Schnabl-type operators

In the preceding chapter we have stated a general result concerning with the
approximation of a C0-semigroup in an abstract setting (Theorem 1.1.2).
The general setting is motivated by some recent applications in population
genetics involving Bernstein-Schnabl operators in an infinite-dimensional
setting (see, e.g., [2]). Moreover starting with this sequence of operators,
other sequences such as Stancu and Lototsky operators were considered in
the same setting.

In this section, we consider all these operators and in each case we study
the consequences of the quantitative estimates in the preceding chapter.

We start with the Bernstein-Schnabl operators and we state the quanti-
tative estimates of the convergence of their iterates to the associated semi-
group. These operators have been introduced and studied in [2, 24] and a
unified treatment of these operators can be found in [9, Chapter 6] together
with supplementary references.

The result in this section are collected in [37].

Consider a metrizable convex compact subset K of some locally convex
space and let T : C(K) → C(K) be a positive projection on C(K) such that
its range H := T (C(K)) contains the subspace A(K) of C(K) consisting
of all affine continuous real functions on K and is invariant under convex
translation, in the sense that the function x 7→ h(tx + (1 − t)z) belongs to
H whenever h ∈ H, t ∈ [0, 1] and z ∈ K.

Now, for every x ∈ K consider the probability Radon measure µT
x ∈

M+(K) defined by µT
x (f) = Tf(x) for every f ∈ C(K).

For every n ≥ 1, the n-th Bernstein-Schnabl operator Bn : C(K) →
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C(K) associated with the projection T is defined by setting, for every f ∈
C(K) and x ∈ K,

Bnf(x) :=

∫

K
. . .

∫

K
f

(

x1 + · · · + xn

n

)

dµT
x (x1) . . . dµ

T
x (xn) . (2.1.1)

Lototsky-Schnabl operators are defined by considering a strictly positive
function γ ∈ C(K) with values in the interval ]0, 1] and by substituting the
measures µT

x with the probability Radon measures νT
x := γ(x)µT

x + (1 −
γ(x)) εx ∈ M+(K), where εx denotes the Dirac measure at x ∈ K. Hence,
for every n ≥ 1, the n-th Lototsky-Schnabl operator Ln,γ : C(K) → C(K)
is defined by

Ln,γf(x) :=

∫

K
. . .

∫

K
f

(

x1 + · · · + xn

n

)

dνT
x (x1) . . . dν

T
x (xn) (2.1.2)

for every f ∈ C(K) and x ∈ K.

Finally, in order to introduce the Stancu-Schnabl operators, we first de-
fine the polynomial

pn(a) :=

n−1
∏

j=0

(1 + j a) , a ∈ R ;

moreover, we use the convention to write |v|k = n for v = (v1, . . . , vk) ∈ N
k

satisfying v1, . . . , vk ≥ 1 and
∑k

i=1 vi = n.

Now, we fix a sequence (an)n≥1 of positive functions in C(K) such that
(n an)n≥1 uniformly converges to b ∈ C(K); as observed in [24] the result
concerning a sequence (an)n∈N of real numbers in [22] and [9] remain un-
changed in the case where (an)n∈N is a sequence of real continuous functions.

The n-th Stancu-Schnabl operator Sn,an : C(K) → C(K) is defined by
setting, for every f ∈ C(K) and x ∈ K,

Sn,anf(x) :=
1

pn(an(x))

n
∑

k=1

n!

k!
an−k

n (x)
∑

|v|k=n

1

v1 · · · vk
(2.1.3)

×
∫

K
. . .

∫

K
f

(

v1 x1 + · · · + vk xk

n

)

dµT
x (x1) . . . dµ

T
x (xk) .

Observe that the Bernstein-Schnabl operators can be obtained as a par-
ticular case of both Lototsky-Schnabl operators taking γ = 1 and of Stancu-
Schnabl operators taking an = 0 for every n ≥ 1.

Now, denote by A∞(K) the subalgebra of C(K) consisting of all func-
tions in C(K) which are finite products of elements of A(K) and define the
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operator LT : A∞(K) → C(K) by setting, for every f = h1 · · ·hm ∈ A∞(K),

LT (h1 · · ·hm) :=























0 , m = 1 ,
T (h1 h2) − h1 h2 , m = 2 ,
∑

1≤i<j≤m

(T (hi hj) − hi hj)
m
∏

r=1

r 6=i,j

hr , m ≥ 3 .

(2.1.4)
Observe that A∞(K) is dense in C(K) by the Stone-Weierstrass theorem.
Moreover, if K is a compact convex subset of R

d then A∞(K) ⊂ C2(K)
and for every f ∈ A∞(K) we have (see [9, Theorem 6.2.5, p. 433])

LT (f) =
1

2

d
∑

i,j=1

aij
∂2f

∂xi ∂xj
,

where aij(x) := T ((pri − xi)(prj − xj))(x) = T (pri prj)(x) − xi xj and pri
denotes the canonical i-th projection.

In order to apply the results in Chapter 1, we recall that

‖Ln,γ‖ ≤ 1 , ‖Sn,an‖ ≤ 1 , n ≥ 1 ;

moreover, for every f ∈ A∞(K), from [9, Section 6.2, pp. 427–429] we easily
obtain

‖n(Ln,γf − f) − γ LT (f)‖ ≤ 1

n

∑

i∈I

‖Li(f)‖ (2.1.5)

‖n(Ln,γf − f)‖ ≤ ‖γ LT (f)‖ +
1

n

∑

i∈I

‖Li(f)‖ , (2.1.6)

and further

‖n(Sn,anf − f) − (1 + b)LT (f)‖ ≤
∥

∥

∥

∥

nan − b

1 + an

∥

∥

∥

∥

‖LT (f)‖ +
1

n

∑

i∈I

‖Li(f)‖ ,

(2.1.7)

‖n(Sn,anf − f)‖ ≤
∥

∥

∥

∥

1 + nan

1 + an

∥

∥

∥

∥

‖LT (f)‖ +
1

n

∑

i∈I

‖Li(f)‖ , (2.1.8)

where I is a set of indices and, for every i ∈ I, Li : A∞(K) → C(K) is
a linear map such that, for every f = h1 · · · hm ∈ A∞(K), Li(h1 · · ·hm)
belongs to the linear subspace generated by

{h1 · · · hm, T (h1h2)h3 · · ·hm, . . . , T (h1h2h3)h4 · · ·hm, . . . , T (h1 · · ·hm)}

and is different from 0 only for a finite set of indices.
We have the following result.

Theorem 2.1.1 Assume that T (h1h2) ∈ A(K) for every h1, h2 ∈ A(K).
Then
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1) Lototsky operators
The closure of the operator (γ LT , A∞(K)) generates a C0-semigroup
(Tγ(t))t≥0 of positive contractions on C(K) and, for every t ≥ 0,
(k(n))n≥1 sequence of positive integers and f ∈ A∞(K), we have

‖Tγ(t)f − Lk(n)
n,γ f‖ ≤ t

n

∑

i∈I

‖Li(f)‖ (2.1.9)

+

(

∣

∣

∣

∣

k(n)

n
− t

∣

∣

∣

∣

+

√

2

π

√

k(n)

n

) (

‖γ LT (f)‖ +
1

n

∑

i∈I

‖Li(f)‖
)

and in particular, taking k(n) = [nt]

‖Tγ(t)f − L[nt]
n,γf‖ ≤ t

n

∑

i∈I

‖Li(f)‖ (2.1.10)

+
1√
n

(

1√
n

+

√

2t

π

) (

‖γ LT (f)‖ +
1

n

∑

i∈I

‖Li(f)‖
)

.

Moreover, for every λ ∈ C such that Reλ > 0 and n ≥ 1, consider the
operator Lλ,n,γ : C(K) → C(K) defined by

Lλ,n,γf :=

∫ +∞

0
e−λ tL[n t]

n,γ f dt , f ∈ C(K)

and let R(λ, γ LT ) be the resolvent operator of the closure of (γ LT , A∞(K)).
Then, for every n ≥ 1 and f ∈ A∞(K) we have

‖R(λ, γ LT )f − Lλ,n,γf‖ ≤ 1

n(Reλ)2

∑

i∈I

‖Li(f)‖ (2.1.11)

+
1√

nReλ

(

1√
n

+
1√

2Reλ

)

(

‖γ LT (f)‖ +
1

n

∑

i∈I

‖Li(f)‖
)

.

2) Stancu operators
The closure of the operator ((1+b)LT , A∞(K)) generates a C0-semigroup
(T1+b(t))t≥0 of positive contractions on C(K) and, for every t ≥ 0,
(k(n))n≥1 sequence of positive integers and f ∈ A∞(K), we have

‖T1+b(t)f − Sk(n)
n,an

f‖ ≤ t

(

∥

∥

∥

∥

nan − b

1 + an

∥

∥

∥

∥

‖LT (f)‖ +
1

n

∑

i∈I

‖Li(f)‖
)

+

(

∣

∣

∣

∣

k(n)

n
− t

∣

∣

∣

∣

+

√

2

π

√

k(n)

n

)

×
(

∥

∥

∥

∥

1 + nan

1 + an

∥

∥

∥

∥

‖LT (f)‖ +
1

n

∑

i∈I

‖Li(f)‖
)

(2.1.12)
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and in particular, taking k(n) = [nt],

‖T1+b(t)f − S[nt]
n,an

f‖ ≤ t

(

∥

∥

∥

∥

nan − b

1 + an

∥

∥

∥

∥

‖LT (f)‖ +
1

n

∑

i∈I

‖Li(f)‖
)

+
1√
n

(

1√
n

+

√

2t

π

)

×
(

∥

∥

∥

∥

1 + nan

1 + an

∥

∥

∥

∥

‖LT (f)‖ +
1

n

∑

i∈I

‖Li(f)‖
)

. (2.1.13)

Moreover, for every λ ∈ C such that Reλ > 0 and n ≥ 1, consider the
operator Sλ,n,an : C(K) → C(K) defined by

Sλ,n,anf :=

∫ +∞

0
e−λ tS[n t]

n,an
f dt , f ∈ C(K) .

If we denote by R(λ, (1 + b)LT ) the resolvent operator of the closure
of ((1 + b)LT , A∞(K)), for every n ≥ 1 and f ∈ A∞(K) we have

‖R(λ, (1 + b)LT )f − Sλ,n,anf‖ (2.1.14)

≤ 1

(Reλ)2

(

∥

∥

∥

∥

nan − b

1 + an

∥

∥

∥

∥

‖LT (f)‖ +
1

n

∑

i∈I

‖Li(f)‖
)

+
1√

nReλ

(

1√
n

+
1√

2Re λ

)

(2.1.15)

×
(

∥

∥

∥

∥

1 + nan

1 + an

∥

∥

∥

∥

‖LT (f)‖ +
1

n

∑

i∈I

‖Li(f)‖
)

.

3) Bernstein operators
In the particular case of Bernstein-Schnabl operators the preceding es-
timates become

‖T (t)f −Bk(n)
n f‖ ≤ t

n

∑

i∈I

‖Li(f)‖ (2.1.16)

+

(

∣

∣

∣

∣

k(n)

n
− t

∣

∣

∣

∣

+

√

2

π

√

k(n)

n

) (

‖LT (f)‖ +
1

n

∑

i∈I

‖Li(f)‖
)

and, taking k(n) = [nt],

‖T (t)f −B[nt]
n f‖ ≤ t

n

∑

i∈I

‖Li(f)‖ (2.1.17)

+
1√
n

(

1√
n

+

√

2t

π

) (

‖LT (f)‖ +
1

n

∑

i∈I

‖Li(f)‖
)
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and further

‖R(λ,LT )f −Bλ,nf‖ ≤ 1

n(Reλ)2

∑

i∈I

‖Li(f)‖ (2.1.18)

+
1√

nReλ

(

1√
n

+
1√

2Reλ

)

(

‖LT (f)‖ +
1

n

∑

i∈I

‖Li(f)‖
)

,

where (T (t))t≥0 is the C0-semigroup generated by the closure of
(LT , A∞(K)), Bλ,n : C(K) → C(K) is defined by

Bλ,nf :=

∫ +∞

0
e−λ tB[nt]

n f dt , f ∈ C(K) ,

and R(λ,LT ) is the resolvent operator of the closure of (LT , A∞(K)).

Proof. The existence of the C0-semigroups generated by the closures of
the operators (γ LT , A∞(K)) and ((1 + b)LT , A∞(K)) is a consequence of
[9, Theorem 6.2.6, p. 436]. Moreover, from (2.1.6)–(2.1.5) we can apply
Theorem 1.1.2 and Theorem 1.2.1 considering the seminorms ϕn : A∞(K) →
R and ψn : A∞(K) → R defined by

ϕn(f) := ‖γ LT (f)‖+ 1

n

∑

i∈I

‖Li(f)‖ , ψn(f) :=
1

n

∑

i∈I

‖Li(f)‖ , f ∈ A∞(K) ,

and we get (2.1.9) and (2.1.11). The particular case k(n) = [nt] follows from
(1.1.11).

Analogously, if we define

ϕn(f) :=

∥

∥

∥

∥

1 + nan

1 + an

∥

∥

∥

∥

‖LT (f)‖ +
1

n

∑

i∈I

‖Li(f)‖ ,

ψn(f) :=

∥

∥

∥

∥

nan − b

1 + an

∥

∥

∥

∥

‖LT (f)‖ +
1

n

∑

i∈I

‖Li(f)‖ ,

from (2.1.8)–(2.1.7), Theorem 1.1.2, Theorem 1.2.1 and (1.1.11) we get
(2.1.12), (2.1.13) and (2.1.14).

Finally, the case of Bernstein-Schnabl operators is obtained taking γ = 1
in (2.1.9)–(2.1.11) (or an = 0 in (2.1.12)–(2.1.14)). �
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2.2 Finite dimensional setting

2.2.1 Best order of convergence in C2,α(K)

In this section we consider a domain K of R
d and apply Theorem 1.1.2

and 1.2.1 to some classical sequences of linear operators connected with
some second-order differential operators. In order to describe the rate of
convergence in the Voronovskaja-type formula we restrict our attention to
the class C2,α(K) of twice differentiable functions with α-Hölder continuous
second-order derivative, and give a general quantitative estimate in terms
of the α-Hölder constant defined by

Lf ′′ := sup
x,y∈K

x 6=y

1

|x− y|α |f
′′(x) − f ′′(y)| . (2.2.1)

This result can be easily applied to a wide range of linear operators, by
simply evaluating them at the functions (pri − xi), (pri − xi)(prj − xj), this
will determinate the coefficient of the differential operator associated with
the Voronovskaja formula, and at the function (pri − xi)

2(prj − xj)
2 which

affects the rate of convergence.

In the next theorem we consider a linear operator L on C(K), and its
associated differential operator

ALf(x) :=
1

2

d
∑

i,j=1

∂2f

∂xi ∂xj
(x)L

(

(pri − xi)(prj − xj)
)

(x) (2.2.2)

+
d
∑

i=1

∂f

∂xi
(x)L(pri − xi)(x)

defined for every f ∈ C2(K) and x ∈ K. This operator is strictly related
to the differential operator associated with the Voronovskaja-type formula
when we shall consider a sequence of linear operators.

Theorem 2.2.1 Let K ⊂ R
d, and L : C(K) → C(K) a linear positive

operator. For every x ∈ K denote by ψx : K → R the real function defined
by ψx(y) := |y − x| for every y ∈ K. Then for every f ∈ C2,α(K) we have

|L(f)(x) − f(x) −AL(x)| ≤ |f(x)||L1(x) − 1| (2.2.3)

+
Lf ′′

2

(

L(ψ2
x)(x)

)α/2 (
(L(ψ2

x)(x))2L(1)(x) + L(ψ4
x)(x)

)1/2
.

Proof. Let f ∈ C2,α(K) and x = (x1, . . . , xd) ∈ K. For every y =
(y1, . . . , yd) ∈ K, there exists ξ(y) in the segment joining x and y such
that



22 Chapter 2: Applications to classical sequences of operators

f(y) − f(x)

=
d
∑

i=1

∂f

∂xi
(x) (yi − xi) +

1

2

d
∑

i,j=1

∂2f

∂xi ∂xj
(ξ(y)) (yi − xi)(yj − xj)

=
d
∑

i=1

∂f

∂xi
(x) (yi − xi) +

1

2

d
∑

i,j=1

∂2f

∂xi ∂xj
(x) (yi − xi)(yj − xj)

+
1

2

d
∑

i,j=1

(

∂2f

∂xi ∂xj
(ξ(y)) − ∂2f

∂xi ∂xj
(x)

)

(yi − xi)(yj − xj) .

Hence

f − f(x) · 1

=

d
∑

i=1

∂f

∂xi
(x) (pri − xi) +

1

2

d
∑

i,j=1

∂2f

∂xi ∂xj
(x) (pri − xi)(prj − xj)

+
1

2

d
∑

i,j=1

(

∂2f

∂xi ∂xj
◦ ξ − ∂2f

∂xi ∂xj
(x)

)

(pri − xi)(prj − xj) ,

and evaluating L of both sides at the point x we get

L(f)(x) − f(x) + f(x) − f(x) · L(1)(x) =

d
∑

i=1

∂f

∂xi
(x)L(pri − xi)

+
1

2

d
∑

i,j=1

∂2f

∂xi ∂xj
(x)L

(

(pri − xi)(prj − xj)
)

(x)

+
1

2

d
∑

i,j=1

L

((

∂2f

∂xi ∂xj
◦ ξ − ∂2f

∂xi ∂xj
(x)

)

(pri − xi)(prj − xj)

)

(x) .

Taking into account that L is positive we can write

|L(f)(x) − f(x) −Af(x)| ≤ |f(x)||L1(x) − 1| (2.2.4)

+
1

2

d
∑

i,j=1

L

((

∂2f

∂xi ∂xj
◦ ξ − ∂2f

∂xi ∂xj
(x)

)

(pri − xi)(prj − xj)

)

(x) .

Since f ∈ C2,α(Kd) we can estimate the last term as follows

d
∑

i,j=1

∣

∣

∣

∣

∂2f

∂xi ∂xj
(ξ(y)) − ∂2f

∂xi ∂xj
(x)

∣

∣

∣

∣

≤ Lf ′′ |y − x|α ,
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where Lf ′′ is the Lipschitz constant of f given by (2.2.1). Moreover, using
the inequalities |(yi − xi)(yj − xj)| ≤ |y − x|2 from (2.2.4) we get

|L(f)(x) − f(x) −Af(x)| ≤ |f(x)||L1(x) − 1| + Lf ′′

2
L
(

ψ2+α
x

)

(x) .

At this point using the Cauchy-Schwartz inequality (see, e.g., [9, Section
1.2, p. 21]) we obtain

|L(f)(x)−f(x)−Af(x)| ≤ |f(x)||L1(x)−1|+Lf ′′

2

√

L (ψ2
x) (x)

√

L
(

ψ2+2α
x

)

(x) .

Observe that for every δ > 0, we have

ψx(y)2+2α ≤
(

δ2 +
ψx(y)4

δ2

)

δ2α ;

indeed if |y− x| ≤ δ we obviously have |y− x|2+2α ≤ δ2+2α and otherwise if

|y−x| > δ then 1 ≤
(

|y−x|
δ

)2−2α
and |y−x|2+2α ≤ |y−x|2+2α

(

|y−x|
δ

)2−2α
=

|y−x|4
δ2 δ2α. Therefore

|L(f)(x) − f(x) −Af(x)| ≤ |f(x)||L1(x) − 1|

+
Lf ′′

2

√

L (ψ2
x) (x)

√

δ2α

(

δ2L(1)(x) +
1

δ2
L(ψ4

x)(x)

)

= |f(x)||L1(x) − 1| + Lf ′′

2
δα

√

δ2L(ψ2
x)(x)L(1)(x) +

L(ψ2
x)(x)

δ2
L(ψ4

x)(x) ,

and choosing δ2 = L(ψ2
x)(x) we obtain

|L(f)(x) − f(x) −Af(x)| ≤ |f(x)||L1(x) − 1|

+
Lf ′′

2

(

L(ψ2
x)(x)

)α/2 (
(L(ψ2

x)(x))2L(1)(x) + L(ψ4
x)(x)

)1/2
.

�

In concrete applications we have a sequence of linear operators (Ln)n∈N,
and a sequence of positive real numbers (hn)n∈N converging to zero, such
that the operator

ALn

hn
:= An

converges to a second-order differential operator

Af(x) :=
d
∑

i,j

ai,j(x)Di,jf(x) +
d
∑

i=1

bi(x)Dif(x)

where ai,j, bi are bounded, positive, continuous functions on
◦
K. The link

between the linear operators Ln and A is given by a Voronovskaja-type
formula:
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Theorem 2.2.2 Let K be a set of R
d, let (hn)n∈N be a sequence of positive

real number converging to 0 such that for every x ∈ K and f ∈ C2(K), with
uniformly continuous and bounded second-order partial derivatives,

1. lim
n→∞

Anf(x) = Af(x)

2. lim
n→∞

Ln1(x) − 1

hn
= 0

3. lim
n→∞

Ln(ψ4
x)(x)

hn
= 0.

Then

lim
n→∞

Lnf(x) − f(x)

hn
= Af(x) , for every x ∈ K and f ∈ C2(K) .

(2.2.5)

Proof. Let f ∈ C2(K) with uniformly continuous and bounded second-
order partial derivatives. We can still apply (2.2.4) to the operator Ln and
dividing by hn we get, for every x ∈ K,

∣

∣

∣

∣

Lnf(x) − f(x)

hn
−Af(x)

∣

∣

∣

∣

≤ 1

hn
|Lnf(x) − f(x) −Af(x)| + |Anf(x) −Af(x)|

≤ |f(x)| |Ln1(x) − 1|
hn

+

∣

∣

∣

∣

∣

∣

1

2hn

d
∑

i,j=1

Ln

((

∂2f

∂xi ∂xj
◦ ξ − ∂2f

∂xi ∂xj
(x)

)

(pri − xi)(prj − xj)

)

(x)

∣

∣

∣

∣

∣

∣

+ |Anf(x) −Af(x)| .

Since f ′′ is uniformly continuous for every ε > 0 there exists δ > 0 such that

|t− x| ≤ δ implies that
∣

∣

∣

∂2f
∂xi ∂xj

(t) − ∂2f
∂xi ∂xj

(x)
∣

∣

∣ ≤ ε. Then

∣

∣

∣

∣

∂2f

∂xi ∂xj
(ξ(t)) − ∂2f

∂xi ∂xj
(x)

∣

∣

∣

∣

|(ti − xi)(tj − xj)|

≤ ε|(ti − xi)(tj − xj)| + 2

∥

∥

∥

∥

∂2f

∂xi ∂xj

∥

∥

∥

∥

(t− x)4

δ2
;

indeed if |t− x| ≤ δ we have |ξ(t) − x| ≤ |t− x|, and

∣

∣

∣

∣

∂2f

∂xi ∂xj
(ξ(t)) − ∂2f

∂xi ∂xj
(x)

∣

∣

∣

∣

≤ ε ; (2.2.6)
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conversely if |t − x| > δ we have that 1 < |t−x|
δ and using the inequality

|(ti − xi)(tj − xj)| ≤ |t− x|2 we have again the validity of (2.2.6). Finally

∣

∣

∣

∣

Lnf(x) − f(x)

hn
−Af(x)

∣

∣

∣

∣

≤ |f(x)| |Ln1(x) − 1|
hn

+ ε
1

2

d
∑

i,j=1

Ln((pri − xi)(prj − xj))(x)

hn

+ ‖D2f‖Ln(ψ4
x)(x)

δ2hn
+ |Anf(x) −Af(x)| ,

which converges to ε
∑d

i,j=1 ai,j(x) as n→ ∞. Since ε is arbitrary the proof
is complete. �

Remark 2.2.3 If the hypotheses 1., 2. and 3. in Theorem 2.2.2 hold with
respect a uniform norm (or with respect a weighted uniform norm) then
(2.2.5) holds uniformly (or with respect to the weighted uniform norm ) as
well. �

2.2.2 Application to Bernstein operators

In this section we consider the particular case of the standard simplex of R
d

Kd :=

{

x = (x1, . . . , xd) ∈ R
d | x1, . . . , xd ≥ 0 ,

d
∑

k=1

xk ≤ 1

}

,

and the classical sequences of multi-dimensional Bernstein, Lototsky and
Stancu operator onKd. These operators coincide with the Bernstein-Schnabl,
Lototsky-Schnabl and Stancu-Schnabl investigated in the preceding section
considering the particular projection Td : C(Kd) → C(Kd) defined by

Tdf(x) :=
d
∑

i=0

xif(δi1, . . . , δid) , f ∈ C(Kd) , x = (x1, . . . , xd) ∈ Kd ,

which maps any continuous function f into the affine functions which inter-
polates f at the vertices of Kd (see [9, Section 6.3.3, p. 450]).

Observe that the projection Td satisfies all our general assumptions and
also those in Theorem 2.1.1, and therefore we already have an estimate of the
convergence of the iterates of our operators to the associated semigroup on
the subspace A∞(Kd). However, here, we want to point out some additional
information on a larger subspace.

The results in this section have been published in [36] in a preliminary
version and are stated in [37] in the definitive version.
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We consider the case of Bernstein operators, which are explicitly given
by

Bnf(x1, . . . , xd) :=
∑

h1+···+hd≤n

n!

h0!h1! . . . hd!
xh0

0 xh1

1 . . . xhd
d f

(

h1

n
, . . . ,

hd

n

)

for every f ∈ C(Kd) and (x1, . . . , xd) ∈ Kd, where x0 := 1 − x1 − · · · − xd

and h0 := n− h1 − · · · − hd.
In our situation, the operator LT , defined by (2.1.4), coincides on A∞(Kd)

with the differential operator A : C2(Kd) → C(Kd) defined by

Af(x) =

d
∑

i,j=1

xi(δij − xj)

2

∂2f

∂xi ∂xj
(x) (2.2.7)

whenever f ∈ C2(Kd) and x = (x1, . . . , xd) ∈ Kd.
It is well-known that the closure of (A,C2(Kd)) generates a C0-semigroup

of positive contractions on C(Kd) and that C2(Kd) is a core for this closure
(see e.g. [9, Theorem 6.2.6, p. 436] or also [49]).

From Theorem 2.1.1 the estimates required in Theorems 1.1.2 and 1.2.1
are already available in A∞(Kd). However our aim is to investigate the
validity of similar estimates in the space C2,α(Kd).

Taking L = Bn in (2.2.2) we get the differential operator

ABnf(x) :=
1

2

d
∑

i,j=1

∂2f

∂xi ∂xj
(x)Bn

(

(pri − xi)(prj − xj)
)

(x)

+
d
∑

i=1

∂f

∂xi
(x)Bn(pri − xi) ,

and in order to apply Theorem 2.2.1 we need to evaluate the operator Bn

at the function (id − x)4, where id denote the identity function defined by
id(x) := x for every x ∈ R.

Proposition 2.2.4 For every x ∈ Kd, we have

Bn((id − x)4)(x) =
1

n2



ψ(x)2 + 2
d
∑

i,j=1

x2
i (δi,j − xj)

2



 (2.2.8)

+
1

n3





d
∑

i,j=1

xixj(xi + xj − 3xixj) +

d
∑

i=1

xi(1 − 2xi)
2

−ψ(x)2 − 2
d
∑

i,j=1

x2
i (δi,j − xj)

2



 ,

where ψ(x) =
∑d

i=1 xi(1 − xi).
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Proof. We have

Bn((id − x)4)(x) =
d
∑

i,j=1

Bn((pri − xi)(prj − xj))(x) ;

in order to compute Bn((pri−xi)(prj −xj))(x) we use the fact that Bn coin-
cides with the n-th Bernstein-Schnabl operator associated to the projection
Td, that is

Bnf(x) =

∫

Kd

. . .

∫

Kd

f

(

x1 + · · · + xn

n

)

dµTd
x (x1) . . . dµ

Td
x (xn) . (2.2.9)

We fix x ∈ Kd and consider two affine function h1, h2 such that h1(x) =
h2(x) = 0. Consider the function f := h2

1h
2
2; then we have

h2
1h

2
2

(

x1 + · · · + xn

n

)

=
1

n4

n
∑

i,j,k,l=1

h1(xi)h1(xj)h2(xk)h2(xl) ,

and consequently

Bn(h2
1h

2
2)(x)

=
1

n4

n
∑

i,j,k,l=1

∫

Kd

. . .

∫

Kd

h1(xi)h1(xj)h2(xk)h2(xl) dµ
Td
x (x1) . . . dµ

Td
x (xn)

=
1

n4

n
∑

i,j,k,l=1

i=j=k=l

Td(h
2
1h

2
2)(x) +

1

n4

n
∑

i,j,k,l=1

i=j,k=l,i6=l

Td(h
2
1)(x)Td(h

2
2)(x)

+
1

n4

n
∑

i,j,k,l=1

i=k,j=l,i6=j

(Td(h1h2)(x))
2 +

1

n4

n
∑

i,j,k,l=1

i=l,j=k,i6=j

(Td(h1h2)(x))
2

=
1

n3
Td(h

2
1h

2
2)(x) +

n(n− 1)

n4
Td(h

2
1)(x)Td(h

2
2)(x) + 2

n(n− 1)

n4
(Td(h1h2)(x))

2

=
1

n2

[

Td(h
2
1)(x)Td(h

2
2)(x) + 2 (Td(h1h2)(x))

]

+
1

n3

[

Td(h
2
1h

2
2)(x) − Td(h

2
1)(x)T (h2

2)(x) − 2(Td(h1h2)(x))
2
]

.

Now let 1 ≤ i, j ≤ d and take h1 = pri − xi and h2 = prj − xj ; we obtain

Td((pri − xi)(prj − xj))(x) = xi(δi,j − xj)

and

Td((pri − xi)
2(prj − xj)

2)(x) = xixj(xi + xj − 3xixj) + δi,jxi(1 − 2xi)
2 .
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Hence

Bn((pri − xi)(prj − xj))(x)

=
1

n2
(xi(1 − xi)xj(1 − xj) + 2x2

i (δi,j − xj)
2)

+
1

n3

(

xixj(xi + xj − 3xixj) + δi,jxi(1 − 2xi)
2

−xi(1 − xi)xj(1 − xj) − 2x2
i (δi,j − xj)

2
)

,

and this completes the proof. �

Remark 2.2.5 We have

∣

∣Bn((id − x)4)(x)
∣

∣ ≤ 1

n2



ψ(x)2 + 2

d
∑

i,j=1

x2
i (δi,j − xj)

2



+
3

n3
. (2.2.10)

Indeed since x ∈ Kd, we have 0 ≤
∑d

i=1 x
2
i ≤ 1 and (1 − 2xi)

2 ≤ 1 and
therefore

d
∑

i,j=1

xixj(xi + xj − 3xixj) +

d
∑

i=1

xi(1 − 2xi)
2 − ψ(x)2 − 2

d
∑

i,j=1

x2
i (δi,j − xj)

2

≤ 2

d
∑

i,j=1

xix
2
j +

d
∑

i=1

xi(1 − 2xi)
2 ≤ 2

d
∑

i=1

xi

d
∑

j=1

x2
i +

d
∑

i=1

xi ≤ 3 .

Using the above inequalities, (2.2.10) directly follows from (2.2.8). �

Now we can establish a quantitative version of the Voronovskaja-type
formula for the Bernstein operators in the space C2,α([0, 1]).

Theorem 2.2.6 (Quantitative Voronovskaja’s formula for Bernstein
operators) Consider the Bernstein operators on C(Kd) and the differential
operator (2.2.7). For every f ∈ C2,α(Kd) and x ∈ Kd we have

|n(Bn(f)(x) − f(x)) −Af(x)| ≤ Lf ′′

(

1

2
− 1

2d
+

3

4n

)1/2 (ψ(x)

n

)α/2

if d > 1 and

|n(Bn(f)(x) − f(x)) −Af(x)| ≤ Lf ′′

(

1

16
+

3

4n

)1/2(ψ(x)

n

)α/2

if d = 1, where ψ(x) =
∑d

i=1 xi(1 − xi).
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Proof. Recalling that, for every i, j = 1, . . . , d,

Bn1 = 1 , Bnpri = pri , Bn(pri prj) = pri prj +
1

n
pri (δij − prj) ,

we have

Bn(pri − xi)(x) = 0 , Bn

(

(pri − xi)(prj − xj)
)

(x) =
xi(δij − xj)

n
,

and therefore
nABnf = Af

and Bn(ψ2
x)(x) = 1

n

∑n
i=1 xi(1 − xi) = 1

nψ(x). From Theorem 2.2.1 and
(2.2.10) we have

|n(Bn(f)(x) − f(x)) −Af(x)|

≤ Lf ′′

2

1

nα/2
(ψ(x))α/2n

(

ψ(x)2

n2
+Bn((id − x)4)(x)

)1/2

=
Lf ′′

2

1

nα/2
(ψ(x))α/2n





2

n2
ψ(x)2 +

2

n2

d
∑

i,j=1

x2
i (δi,j − xj)

2 +
3

n3





1/2

≤ Lf ′′

2

1

nα/2
(ψ(x))α/2



2



ψ(x)2 +

d
∑

i,j=1

x2
i (δi,j − xj)

2



+
3

n





1/2

.

The function g(x) = ψ(x)2 +
∑d

i,j=1 x
2
i (δi,j − xj)

2 attains its maximum in
Kd at the point x = (1/d, . . . , 1/d) if d > 1 and at x = 1/2 if d = 1; then

g(x) =

(

d
∑

i=1

1

d

(

1 − 1

d

)

)2

+

d
∑

i=1

(

1

d

)2(

1 − 1

d

)2

+
∑

i6=j

(

1

d

)4

=

(

1 − 1

d

)2

+
1

d

(

1 − 1

d

)2

+
d(d− 1)

d4
= 1 − 1

d

if d > 1 and g(x) = 1/8 if d = 1. Therefore

|n(Bn(f)(x) − f(x)) −Af(x)| ≤ Lf ′′

2

1

nα/2
(ψ(x))α/2

(

2

(

1 − 1

d

)

+
3

n

)1/2

if d > 1 and

|n(Bn(f)(x) − f(x)) −Af(x)| ≤ Lf ′′

2

1

nα/2
(ψ(x))α/2

(

1

4
+

3

n

)1/2

if d = 1. �
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Remark 2.2.7 Taking into account that ψ(x) ≤ 1− 1
d if d > 1 and ψ(x) ≤ 1

4
if d = 1, we have, for n > 1

‖n(Bn(f) − f) −Af‖ ≤ Lf ′′
1

nα/2
. (2.2.11)

�

The following last result is a consequence of Theorem 1.1.2, 1.2.1 and (1.1.11)
by means of (2.2.11)

Theorem 2.2.8 Consider the Bernstein operators on C(Kd) and the dif-
ferential operator (2.2.7). Then, the closure of (A,C2(Kd)) generates a
C0-semigroup (T (t))t≥0 on C(Kd) such that, for every t ≥ 0, (k(n))n≥1

sequence of positive integers and f ∈ C2,α(Kd), we have

‖T (t)f −Bk(n)
n f‖ (2.2.12)

≤ Lf ′′ t

nα/2
+

(

∣

∣

∣

∣

k(n)

n
− t

∣

∣

∣

∣

+

√

2

π

√

k(n)

n

)

(

‖Af‖ +
Lf ′′

nα/2

)

,

and in particular, taking k(n) = [nt],

‖T (t)f−B[nt]
n f‖ ≤ Lf ′′ t

nα/2
+

1√
n

(

1√
n

+

√

2t

π

)

(

‖Af‖ +
Lf ′′

nα/2

)

. (2.2.13)

Moreover, for every λ ∈ C such that Reλ > 0 and n ≥ 1, consider the
operator Bλ,n : C(Kd) → C(Kd) defined by

Bλ,nf :=

∫ +∞

0
e−λ tB[n t]

n f dt , f ∈ C(K) .

If R(λ,A) denotes the resolvent operator of the closure of (A,C2(Kd)),
for every n > 1 and f ∈ C2,α(Kd) we have

‖R(λ,A)f −Bλ,nf‖ ≤ 1

(Reλ)2
Lf ′′

nα/2
(2.2.14)

+
1√

nReλ

(

1√
n

+
1√

2Reλ

) (

‖Af‖ +
Lf ′′

nα/2

)

.

In the one dimensional case we have a partial converse result.

First we recall some needed notions related to the smoothness of a func-
tion f .

The divided difference operator ∆h(f, x) is defined by

∆h(f, x) := f(x+ h) − f(x) , h ≥ 0 .
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If r ≥ 2, the r-th order divided difference ∆r
h is defined as the r-fold com-

position of ∆h with itself.
If f ∈ C([a, b]), then the modulus of continuity of f is defined by

ω(f, δ) := sup
0≤h≤δ

‖∆h(f, ·)‖[a,b−h] , 0 ≤ δ ≤ b− a .

Accordingly, if r ≥ 2 the r-th order modulus of smoothness is given by

ωr(f, δ) := sup
0≤h≤δ

‖∆r
h(f, ·)‖[a,b−rh] , 0 ≤ δ ≤ b− a

r
.

If 0 < α ≤ 1, we e denote by Lipα the set of all functions f ∈ C([a, b])
for which there exists M > 0 such that ω(f, δ) ≤ Mδα, i.e. Lipα is the
Lipschitz α-class. If 0 < α ≤ 2 we denote by Lip∗ α the set of all functions
f ∈ C([a, b]) for which there exists M > 0 such that ω2(f, δ) ≤ Mδα. It is
noteworthy that if 0 < α < 1 the class Lip∗ α and Lipα coincide (see [45, p.
6 (1.3.5)]).

Proposition 2.2.9 Consider the Bernstein operators on C([0, 1]) and the
differential operator (2.2.7). Let f ∈ C2([0, 1]) and assume that there exist
a constant C > 0 and α ∈]0, 1[ such that

‖n(Bnf − f) −Af‖ ≤ C

nα/2
. (2.2.15)

then f ∈ C2,α
loc (0, 1).

Proof. First we explicitly evaluate the differential operator (2.2.7) which,
in our situation, becomes

Af(x) =
x(1 − x)

2
f ′′(x) .

Now let f ∈ C2,α
loc ([0, 1]); since f ∈ C2([0, 1]), for every x ∈ [0, 1] and y ∈

[0, 1], there exists ξ(y) in the segment joining x and y such that

f(y) − f(x) = f ′(x) (y − x) +
1

2
f ′′(x) (y − x)2 + η(y, x) (y − x)2 , (2.2.16)

where η(t, x) := 1
2 (f ′′(ξ(t)) − f ′′(x)). Then we can write

Bn(f)(x) − f(x) = Bn(id − x)(x) +
1

2
f ′′(x)Bn(id − x)2(x)

+Bn((id − x)2η(id, x))(x) .

Taking into account that

Bn(id − x)(x) = 0 , Bn(id − x)2(x) =
x(1 − x)

n
,
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we have

Bn(f)(x) − f(x) =
1

n
Af(x) +Bn((id − x)2η(id, x))(x) ,

and from (2.2.15) it follows that

∣

∣Bn

(

(id − x)2η(id, x)
)

(x)
∣

∣ ≤ C

n

1

nα/2
. (2.2.17)

Now, we consider a linear combination of Bernstein polynomials introduced
by Butzer [20] and recursively defined by

Bn,0 := Bn

(2r − 1)Bn,r = 2rB2n,r−1 −Bn,r−1 .

A result of Ditzian [47] states that

‖Bn,r(f) − f‖ = O

(

1

nβ/2

)

⇐⇒ ‖ϕβ∆2r
h f‖[rh,1−rh] = O(hβ) (2.2.18)

for β < 2r and ϕ2(x) := x(1 − x).
If we set gx(y) := (y − x)2η(y, x) and take r = 2 we get

Bn,2 =
8

3
B4n − 2B2n +

1

3
Bn

and from (2.2.17) it follows that ‖Bn,2(gx)‖ = O
(

1
n1+α/2

)

. Therefore we

take (2.2.18) with β = 2 + α, then for every δ > 2h exists C = C(δ) > 0
such that

∣

∣∆4
hgx(y)

∣

∣ ≤ Ch2+α , y ∈ [δ, 1 − δ] . (2.2.19)

Now we evaluate ∆4
hgx(y) at the point y = x; we have

∆4
hgx(x) = gx(x+ 4h) − 4gx(x+ 3h) + 6gx(x+ 2h) − 4gx(x+ h) + gx(x) .

Taking into account that, from (2.2.16), for every s ≥ 0

gx(x+ s) = f(x+ s) − f(x) − f ′(x)(x+ s− x) − 1

2
f ′′(x)(x + s− x)2

= f(x+ s) − f(x) − f ′(x)s− 1

2
f ′′(x)s2 ,

we have

∆4
hgx(x) = f(x+ 4h) − 4f(x+ 3h) + 6f(x+ 2h) − 4f(x+ h)

−f(x)(1 − 4 + 6 − 4)

−f ′(x)h(4 − 12 + 12 − 4) − f ′′(x)h2(16 − 36 + 24 − 4)

= ∆4
hf(x) .
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Now we evaluate the 4-th order finite-difference of f in terms of the second-
order derivative of f ,

∆4
hf(x) =

∫ h

0
∆3

hf
′(x+ t)dt =

∫ h

0

∫ h

0
∆2

hf
′′(x+ t+ s)dsdt

= h2∆2
hf

′′(x+ ξ(x)) (2.2.20)

where ξ(x) ∈ [x, x+ 2h]. Now we consider the function z(x) := x+ ξ(x) for
x ∈ [δ, 1− δ], we have that z(δ) ≤ δ+2h and 1− δ ≤ z(1− δ), then z−1([δ+
2h, 1 − δ]) ⊂ [δ, 1 − δ]. Consequently, since the function z is continuous, for
every h ≥ 0 and z ∈ [δ + 2h, 1 − δ] we can take x ∈ [δ, 1 − δ] such that
z(x) = x+ ξ(x) = z, and from (2.2.19) and (2.2.20) we can write

∣

∣h2∆2
hf

′′(z)
∣

∣ = |∆4
hgx(x)| ≤ Ch2+α , z ∈ [δ + 2h, 1 − δ] ,

and hence, since δ > 2h,

‖∆2
hf

′′‖[2δ,1−δ] = O(hα) .

The last expression yields ω2(f, h) ≤ Chα, i.e. f ′′ ∈ Lip∗(α) locally in (0, 1).
Since 0 < α < 1, we have that f is also in Lip(α) . �

For the sake of brevity we do not investigate the analogous results for
Lototsky-Schnabl and Stancu-Schnabl operators in this setting. In the next
section we give some details on a particular class of Stancu operators.
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2.2.3 Application to Stancu operators

In this section we consider some quantitative estimates of the convergence
of suitable combinations of iterates of Stancu operators to the associated
C0-semigroup and the resolvent operator of its generator in the context of
spaces of continuous functions on the d-dimensional simplex.
Stancu operators were introduced by D. D. Stancu in [66, 67] in the context
of spaces of continuous functions on the interval [0, 1]; if a ∈ R, the n-th
Stancu operator Qn,a : C([0, 1]) → C([0, 1]) is defined by setting

Qn,af(x) :=

n
∑

k=0

f

(

k

n

)

qnk(x, a), f ∈ C([0, 1]), x ∈ [0, 1],

where

qnk(x, a) :=

(

n

k

)

Φk(x, a)Φn−k(1 − x, a)

Φn(1, a)
, Φk(x, a) :=

k−1
∏

j=0

(x+ ja).

In this setting these operators have been studied by Mühlbach [60, 61].
Further generalizations were considered by Felbecker [51] and by Campiti
[22, 23]; in these last papers also connections with the representation of a
suitable C0-semigroups have been considered.

The results in this section have been published in [39].
First, we consider the standard simplex Kd of R

d and the Stancu op-
erators Sn,an : C(Kd) → C(Kd) on Kd, which are associated with a se-
quence (an)n≥1 of positive real numbers and are defined by setting, for every
f ∈ C(Kd) and x = (x1, . . . , xd) ∈ Kd,

Sn,anf(x1, . . . , xd) :=
1

pn(an)

∑

h1+···+hd≤n

f

(

h1

n
, . . . ,

hd

n

)

(2.2.21)

× n!

h0!h1! . . . hd!

d
∏

i=0

Φhi
(xi, an),

for every f ∈ C(Kd) and (x1, . . . , xd) ∈ Kd, where as usual x0 := 1 − x1 −
· · · − xd, h0 := n− h1 − · · · − hd and

pn(a) :=

n−1
∏

j=0

(1 + j a), a ∈ R.

In the sequel we assume that the sequence (nan)n≥1 converges to b ≥ 0
and consider the differential operator A : C2(Kd) → C(Kd) defined by

Af(x) = (1 + b)
d
∑

i,j=1

xi(δij − xj)

2

∂2f

∂xi ∂xj
(x) , (2.2.22)
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whenever f ∈ C2(Kd) and x = (x1, . . . , xd) ∈ Kd.
It is well known that the closure of the operator (A,C2(Kd)) generates a

C0-semigroup of positive contractions on C(Kd), and that C2(Kd) is a core
for this closure (see e.g. [9, Theorem 6.2.6, p. 436]).

Moreover, the operator A is connected with Stancu operators by means
of the following Voronovskaja’s formula established in [51, 23]:

lim
n→+∞

n(Sn,an(f) − f) = A(f), f ∈ C2(Kd). (2.2.23)

Now we establish a quantitative version of (2.2.23)

Proposition 2.2.10 Consider the Stancu operators (2.2.21) on C(Kd) and
the differential operator (2.2.22). There exists a constant C > 0 such that
for every f ∈ C2,α(Kd) we have

‖n(Sn,an(f) − f) −A(f)‖ ≤C
(

1

nα/2
+ |nan − b|

)

Mf ,

where Mf is the seminorm on C2,α(Kd) defined by

Mf := Lf ′′ + ‖D2f‖ . (2.2.24)

Proof. Let f ∈ C2,α(Kd) we have

|n(Sn,an(f) − f)(x) −Af(x)| (2.2.25)

≤ |n(Sn,anf(x) − f(x) −ASn,an
f(x))| + |nASn,an

f(x) −Af(x)| ,

where ASn,an
is the operator (2.2.2) obtained by taking L = Sn,an . In

order to write an explicit expression of Sn,an , we recall that, for every i, j =
1, . . . , d,

Sn,an(1) = 1, Sn,an(pri) = pri,

Sn,an(pri prj) = pri prj +
1 + nan

n(1 + an)
pri (δij − prj) ,

and consequently

Sn,an((pri − xi)(prj − xj))(x) =
1 + nan

n(1 + an)
xi (δij − xj) (2.2.26)

and
Sn,an(pri − xi)(x) = 0 .

Hence the operator ASn,an
becomes

ASn,an
f(x) =

1 + nan

n(1 + an)

d
∑

i,j=1

xi (δij − xj)

2

∂2f

∂xi∂xj
(x) .
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In regard to the first term in (2.2.25), we apply Theorem 2.2.1 with L =
Sn,an , and we get

|n(Sn,anf(x) − f(x) −ASn,an
f(x))|

≤ n
Lf ′′

2

(

Sn,an(ψ2
x)(x)

)α/2 (
(Sn,an(ψ2

x)(x))2L(1)(x) + L(ψ4
x)(x)

)1/2
.

From (2.2.26) we have

Sn,an(ψ2
x)(x) =

1 + nan

n(1 + an)
ψ(x)

(

d
∑

i=1

xi(1 − xi)

)

and therefore

∣

∣Sn,an(ψ2
x)(x)

∣

∣ ≤ 1 + nan

n(1 + an)

(

1 − 1

d

)

≤ 1 + nan

n(1 + an)
.

Moreover from [9, Lemma 6.2.2, p. 429], we obtain the existence of a con-
stant C1 > 0 such that

∣

∣Sn,an

(

(pri − xi)
2(prj − xj)

2
)

(x)
∣

∣ ≤ C1

n2

and hence

Sn,an(ψ4
x)(x) ≤ d2C1

n2
.

The first term in (2.2.25) can be estimated as follows

|n(Sn,anf(x) − f(x) −ASn,an
f(x))|

≤ Lf ′′

2

(

1 + nan

n(1 + an)

)α/2

n

(

1 + nan

n(1 + an)
+
d
√
C1

n

)

.

In regard to the second term in (2.2.25) we have

|nASn,an
f(x) −Af(x)| ≤

∣

∣

∣

∣

1 + nan

1 + an
− (b+ 1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

d
∑

i,j=1

xi (δij − xj)

2

∂2f

∂xi∂xj
(x)

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

nan − b− an(1 + b)

1 + an

∣

∣

∣

∣

‖D2f‖

≤
(

|nan − b| + 1

n
nan(b+ 1)

)

‖D2f‖

≤
(

|nan − b| + C2

n

)

‖D2f‖ .
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Finally from the above inequalities it follows

|n(Sn,an(f) − f)(x) −Af(x)|

≤ Lf ′′

2

(

1 + nan

n(1 + an)

)α/2

n

(

1 + nan

n(1 + an)
+
d
√
C1

n

)

+

(

|nan − b| + C2

n

)

‖D2f‖

≤ C3
1

nα/2
Lf ′′ +

(

|nan − b| + C2

n

)

‖D2f‖

≤ C

(

1

nα/2
+ |nan − b|

)

Mf ,

where Mf is the seminorm defined by (2.2.24). �

The preceding result allows us to get the quantitative estimate obtained
in Theorem 1.1.2 in the particular case where the growth bound of the
semigroup is equal to 0.

Theorem 2.2.11 Let (an)n∈N be a sequence of positive real numbers such
that (nan)n∈N converges to b ∈ R and consider the Stancu operators on
C(Kd) and the differential operator (2.2.22). Then, the closure of (A,C2(Kd))
generates a C0-semigroup (T (t))t≥0 on C(Kd) such that, for every t ≥ 0,
(k(n))n∈N sequence of positive integers and f ∈ C2,α(Kd), we have

‖T (t)f − Sk(n)
n,an

f‖ ≤ CMf t

(

1

nα/2
+ |nan − b|

)

(2.2.27)

+

(

∣

∣

∣

∣

k(n)

n
− t

∣

∣

∣

∣

+

√

2

π

√

k(n)

n

)

(

‖A(f)‖ +CMf

(

1

nα/2
+ |nan − b|

))

and taking k(n) := [nt],

‖T (t)f − S[nt]
n,an

f‖ ≤ CMf t

(

1

nα/2
+ |nan − b|

)

(2.2.28)

+
1√
n

(

1√
n

+

√

2t

π

)

(

‖A(f)‖ +CMf

(

1

nα/2
+ |nan − b|

))

.

In the particular case where an := b/n, estimate (2.2.27) becomes

‖T (t)f−Sk(n)
n,b/nf‖ ≤ CMf t

nα/2
+

(

∣

∣

∣

∣

k(n)

n
− t

∣

∣

∣

∣

+

√

2

π

√

k(n)

n

)

(

‖A(f)‖ +
CMf

nα/2

)

,

and if k(n) := [nt], from (2.2.28) we get

‖T (t)f − S
[nt]
n,b/nf‖ ≤ CMf t

nα/2
+

1√
n

(

1√
n

+

√

2t

π

)

(

‖A(f)‖ +
CMf

nα/2

)

.
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In order to approximate the resolvent operator of the closure of (A,C2(Kd)),
Let (sn)n≥1 be a sequence of positive integers tending to +∞ and for every
n ≥ 1, consider the linear operator Pλ,sn,n,an : C(Kd) → C(Kd) defined by

Pλ,sn,n,an(u) :=
1

n

sn
∑

k=0

e−λk/nSk
n,an

(u), u ∈ C(Kd).

We are now in a position to state the following result.

Theorem 2.2.12 For every n ≥ 1 and f ∈ C2,α(Kd), we have

‖Pλ,sn,n,an(f) −R(λ,A)f‖

≤ 1

(Reλ)2

(

‖A(f)‖ + CMf

(

1

nα/2
+ |nan − b|

))

+
1√
n

(

1√
nReλ

+
1√

2 (Reλ)3/2

) (

CMf

(

1

nα/2
+ |nan − b|

))

+
e−(Re λ)sn/n + |λ|3/2

n |Re
√

λ|
(

1 − Re λ
n

)

Reλ
‖f‖.

Hence, if we assume that

lim
n→+∞

sn

n
= +∞,

then the sequence (Pλ,sn,n,an)n≥1 strongly converges to R(λ,A) on C(Kd).

If we take in particular an := b/n, then

‖Pλ,sn,n,b/n(f) −R(λ,A)f‖ ≤ 1

(Reλ)2

(

‖A(u)‖ +
CMf

nα/2

)

+
1√
n

(

1√
nReλ

+
1√

2 (Reλ)3/2

)

CMf

nα/2

+
e−(Re λ)sn/n + |λ|3/2

n |Re
√

λ|
(

1 − Re λ
n

)

Reλ
‖f‖.

For the sake of simplicity, we have associated Stancu operators with a
sequence (an)n≥1 of real numbers; as observed in [24], all estimates concern-
ing Stancu operators remain valid if we take a sequence (an)n∈N of contin-
uous functions on Kd such that (nan)n∈N uniformly converges to a function
b ∈ C(Kd) and consequently also the results in this section are true in this
more general context. We explicitly observe that in this case the differential
operator A is more general, as well as the estimates on the semigroup and
the resolvent operators.


