
Chapter 1

Quantitative estimates

In this chapter we state our main results concerning with quantitative esti-
mates of the convergence in Trotter’s approximation theorem.

These estimates are related to the convergence of sequences of iterates of
linear operators to an assigned semigroup, and to the resolvent operator of
semigroups’s generator.

We make no restriction on the general assumptions in the classical Trot-
ter’s Theorem and we only require a quantitative estimates of the voronovskaja-
type formula in terms of suitable seminorms.

The results in this chapter are collected in [36, 37, 38].

1.1 Quantitative approximation of semigroups

We need a slight improvement of [64, Lemma III.5.1, p. 89]. On one hand
this will provide us better constants in the subsequent main result and on the
other hand it will be essential in order to avoid restrictions on the domain
of the resolvent operator in the next section.

Lemma 1.1.1 Let L : E → E be a linear operator on a Banach space E
and assume that there exist M > 0 and N ≥ 1 such that, for every k ≥ 1,

‖Lk‖ ≤MNk .

Then for every u ∈ E and k ≥ 1 we have

‖ek(L−I)u− Lku‖ ≤M

(

Nk−1

√

2k

π
+
ek(N−1) −Nk

N − 1

)

‖Lu− u‖ (1.1.1)

if N > 1 and

‖ek(L−I)u− Lku‖ ≤M

√

2k

π
‖Lu− u‖ (1.1.2)

if N = 1.
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Proof. Let N > 1; if 0 ≤ i < k, we have

‖Lku− Liu‖ =

k−1
∑

j=i

‖Lj+1u− Lju‖ =

k−1
∑

j=i

‖Lj(Lu− u)‖

≤ M ‖Lu− u‖
k−1
∑

j=i

N j

= M ‖Lu− u‖
(

1 −Nk

1 −N
− 1 −N i

1 −N

)

= M
Nk −N i

N − 1
‖Lu− u‖

and further

Nk −N i

N − 1
=

k−1
∑

j=i

N j ≤ (k − i)Nk−1 .

Similarly, if 0 ≤ k < i,

‖Lku− Liu‖ ≤M
N i −Nk

N − 1
‖Lu− u‖ .

Therefore we have

‖ek(L−I)u− Lku‖ = ‖e−k
∞
∑

i=0

ki

i!
(Liu− Lku)‖

≤ e−k
∞
∑

i=0

ki

i!
‖Liu− Lku‖

≤ e−k

(

k−1
∑

i=0

ki

i!
‖Liu− Lku‖ +

∞
∑

i=k+1

ki

i!
‖Liu− Lku‖

)

≤M
e−k

N − 1

(

k−1
∑

i=0

ki

i!
(Nk −N i) +

∞
∑

i=k+1

ki

i!
(N i −Nk)

)

‖Lu− u‖

= M
e−k

N − 1

(

2
k−1
∑

i=0

ki

i!
(Nk −N i) +

∞
∑

i=0

ki

i!
(N i −Nk)

)

‖Lu− u‖

= M e−k

(

2

k−1
∑

i=0

ki

i!

Nk −N i

N − 1
+

1

N − 1
(eNk −Nkek)

)

‖Lu− u‖

≤M e−k

(

2

k−1
∑

i=0

ki

i!
(k − i)Nk−1 +

eNk −Nkek

N − 1

)

‖Lu− u‖

= M e−k

(

2Nk−1

(

k

k−1
∑

i=0

ki

i!
−

k−1
∑

i=1

ki

(i− 1)!

)

+
eNk −Nkek

N − 1

)

×‖Lu− u‖
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= M e−k

(

2Nk−1

(

k

k−1
∑

i=0

ki

i!
− k

k−1
∑

i=1

ki−1

(i− 1)!

)

+
eNk −Nkek

N − 1

)

×‖Lu− u‖

= M e−k

(

2Nk−1k
kk

k!
+
eNk −Nkek

N − 1

)

‖Lu− u‖ .

Applying Stirling formula k! =
√

2πk kk e−k eθk/(12k), 0 ≤ θk ≤ 1, we obtain

‖ek(L−I)u− Lku‖

≤M e−k

(

2Nk−1k
kk

√
2πk kke−k

+
eNk −Nkek

N − 1

)

‖Lu− u‖

= M

(

Nk−1

√

2k

π
+
ek(N−1) −Nk

N − 1

)

‖Lu− u‖

and this yields (1.1.1). Finally (1.1.2) can be similarly shown using the
inequality ‖Lku− Liu‖ ≤M(k − i)‖Lu− u‖ whenever 0 ≤ i < k. �

Observe that (1.1.2) can be obtained from (1.1.1) taking the limit as
N → 1+.

Now we can state one of the main results. Starting with a sequence of lin-
ear operators and the generator of a C0-semigroup satisfying a quantitative
Voronovskaja-type formula, we can evaluate the norm difference between
the k(n)-iterate of the n-th linear operator and the semigroup. Suitable
choices of the sequence (k(n))n∈N ensure the convergence of the iterates to
the semigroup.

Namely, let (Ln)n∈N be a sequence of bounded linear operators on a
Banach space E and A : D → E a linear operator satisfying the hypotheses
of Trotter’s Theorem, i.e. the stability condition

‖Lk
n‖ ≤Meω k/n , (1.1.3)

and the Voronovskaja-type formula

Af = lim
n→∞

n(Lnf − f) .

Moreover, assume that D is a dense subspace of E and (λ−A)(D) is dense
in E for some λ > ω. Then from the classical Trotter’s theorem (see [70,
Theorem 5.1] or Theorem II.1.1) the closure of A generates a C0-semigroup
(T (t))t≥0 which can be represented as limit of iterates of Ln, i.e. T (t)f =

limn→∞L
k(n)
n (f) for every f ∈ E and every sequence (k(n))n∈N of positive

integers satisfying limn→+∞ k(n)/n = t. Moreover, we have the following
result.
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Theorem 1.1.2 Under the above assumptions, assume that D is a subspace
of D such that for every u ∈ D and n ∈ N, we have

‖n(Lnu− u)‖ ≤ ϕn(u) , (1.1.4)

and the following estimate of the Voronovskaja-type formula holds

‖n(Lnu− u) −Au‖ ≤ ψn(u) , (1.1.5)

where ϕn, ψn : D → [0,+∞[ are seminorms on the subspace D such that
limn→∞ ψn(u) = 0 for every u ∈ D.

Then for every t ≥ 0 and for every sequence (k(n))n≥1 of positive integers
and u ∈ D, we have

∥

∥

∥
T (t)u− Lk(n)

n u
∥

∥

∥
≤M2 t exp(ω eω/n t)ψn(u) (1.1.6)

+M

(

exp(ω eω/n tn)

∣

∣

∣

∣

k(n)

n
− t

∣

∣

∣

∣

+

√

2

π
eω k(n)/n

√

k(n)

n

+
ω

n

k(n)

n
exp

(

ω eω/n k(n)

n

))

ϕn(u)

where tn := sup{t, k(n)/n}.

Proof. Let n ≥ 1 and consider the linear bounded operator An := n(Ln−I).
It generates a uniformly continuous C0-semigroup (Sn(t))t≥0 on E given by

Sn(t) = et An = e−nt ent Ln = e−nt
+∞
∑

k=0

(n t)k

k!
Lk

n , t ≥ 0 .

Observe that D is a core for the closure of (A,D) and consequently, from
the first Trotter-Kato approximation theorem (see e.g. [48, Theorem 4.8, p.
209] and [64, Theorem III.4.4, p. 87]), we have that (Sn(t))t≥0 converges
strongly to the C0-semigroup (T (t))t≥0 .

Consequently

‖Sn(t)‖ ≤ e−nt
+∞
∑

k=0

(n t)k

k!
‖Lk

n‖ ≤Me−nt
+∞
∑

k=0

(n t)k

k!
eωk/n

= M exp
(

nt
(

eω/n − 1
))

, t ≥ 0 .

Now, let (k(n))n≥1 be an increasing sequence of positive integers and let
u ∈ D. We have

∥

∥

∥T (t)u− Lk(n)
n u

∥

∥

∥ ≤ ‖T (t)u− Sn(t)u‖ +

∥

∥

∥

∥

Sn(t)u− Sn

(

k(n)

n

)

u

∥

∥

∥

∥

+

∥

∥

∥

∥

Sn

(

k(n)

n

)

u− Lk(n)
n u

∥

∥

∥

∥

, (1.1.7)
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and therefore we can get (1.1.6) by estimating each term in (1.1.7).

As regards the first term we observe that, for every n,m ≥ 1, we have

‖Sn(t)u− Sm(t)u‖ =

∥

∥

∥

∥

∫ 1

0

d

ds

(

esnt(Ln−I) e(1−s)mt(Lm−I)u
)

ds

∥

∥

∥

∥

≤
∫ 1

0

∥

∥

∥(nt(Ln − I) −mt(Lm − I)) esnt(Ln−I) e(1−s)mt(Lm−I)u
∥

∥

∥ ds

≤ t ‖n(Ln − I)u−m(Lm − I)u‖
∫ 1

0
‖Sn(st)‖ ‖Sm((1 − s)t)‖ ds .

If ω > 0 we have

∫ 1

0
‖Sn(st)‖ ‖Sm((1 − s)t)‖ ds ≤M2 ent(eω/n−1) − emt(eω/m−1)

nt
(

eω/n − 1
)

−mt
(

eω/m − 1
)

and hence

‖Sn(t)u− Sm(t)u‖

≤M2 ent(eω/n−1) − emt(eω/m−1)

nt
(

eω/n − 1
)

−mt
(

eω/m − 1
) t ‖n(Ln − I)u−m(Lm − I)u‖ .

Taking the limit as m→ +∞ and using the inequality

ex − 1 ≤ x ex , x ≥ 0 , (1.1.8)

we get

‖Sn(t)u− T (t)u‖ ≤ M2 e
nt(eω/n−1) − eωt

n
(

eω/n − 1
)

− ω
‖n(Ln − I)u−Au‖

≤ M2 e
nt(eω/n−1) − eωt

n
(

eω/n − 1
)

− ω
ψn(u)

≤ M2 e
ωt(ent(eω/n−1)−ωt − 1)

n
(

eω/n − 1
)

− ω
ψn(u)

≤ M2 e
ωtt(n

(

eω/n − 1
)

− ω)ent(eω/n−1)−ωt

n
(

eω/n − 1
)

− ω
ψn(u)

= M2 tent(eω/n−1) ψn(u)

≤ M2 teωteω/n
ψn(u) .

Similarly, if ω = 0 we obtain ‖Sn(t)u− T (t)u‖ ≤M2 t ψn(u).
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In regard to the second term in (1.1.7), using [64, Theorem I.2.4, d), p.
5] and (1.1.8), we have

∥

∥

∥

∥

Sn(t)u− Sn

(

k(n)

n

)

u

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∫ t

k(n)/n
Sn(s) (n(Ln − I))u ds

∥

∥

∥

∥

∥

≤M exp
(

n tn

(

eω/n − 1
))

∣

∣

∣

∣

k(n)

n
− t

∣

∣

∣

∣

‖n(Ln − I)u‖

≤M eω tn eω/n

∣

∣

∣

∣

k(n)

n
− t

∣

∣

∣

∣

ϕn(u) ,

where tn := max{t, k(n)/n}.
Finally, from Lemma 1.1.1 with N = eω/n, k = k(n) and L = Ln, we

obtain
∥

∥

∥

∥

Sn

(

k(n)

n

)

u− Lk(n)
n u

∥

∥

∥

∥

=
∥

∥

∥ek(n)(Ln−I)u− Lk(n)
n u

∥

∥

∥

≤M

(

eω(k(n)−1)/n

√

2k(n)

π
+
ek(n)(eω/n−1) − eω k(n)/n

eω/n − 1

)

‖n(Lu− u)‖
n

.

Using (1.1.8), we have

ek(n)(eω/n−1) − eω k(n)/n

eω/n − 1
≤ ek(n) (ω/n) eω/n − eω k(n)/n

eω/n − 1

=
eω k(n)/n(eω (eω/n−1) k(n)/n − 1)

eω/n − 1

≤ ω (eω/n − 1)
k(n)

n

eω k(n)/n eω (eω/n−1)k(n)/n

eω/n − 1

= ω
k(n)

n
eω eω/nk(n)/n

and consequently
∥

∥

∥

∥

Sn

(

k(n)

n

)

u− Lk(n)
n u

∥

∥

∥

∥

≤M

(

eω k(n)/n

√

2

π

√

k(n)

n
+
ω

n

k(n)

n
eω eω/nk(n)/n

)

ϕn(u) .

If ω = 0, from (1.1.2) we get ‖Sn(k(n)/n)u−Lk(n)
n u‖ ≤M

√

2
π

√
k(n)

n ϕn(u).

Hence, collecting the above inequalities, from (1.1.7) we get

∥

∥

∥
T (t)u− Lk(n)

n u
∥

∥

∥
≤M2 t eω t eω/n

ψn(u) +M eω tn eω/n

∣

∣

∣

∣

k(n)

n
− t

∣

∣

∣

∣

ϕn(u)

+M

(

eω k(n)/n

√

2

π

√

k(n)

n
+
ω

n

k(n)

n
eω eω/nk(n)/n

)

ϕn(u)
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if ω > 0 and

∥

∥

∥T (t)u− Lk(n)
n u

∥

∥

∥ ≤M2 t ψn(u)+M

∣

∣

∣

∣

k(n)

n
− t

∣

∣

∣

∣

ϕn(u)+M

√

2

π

√

k(n)

n
ϕn(u)

if ω = 0, as required. �

Remarks 1.1.3

1. From the preceding result, the order of convergence of (L
k(n)
n )n≥1

to T (t) on the subspace D depends on the order of convergence of
(ψn)n≥1 (and eventually of (ϕn)n≥1) to 0, on the order of convergence
of |t− k(n)/n|n≥1 to 0 (the best choice is k(n) = [nt] which gives an

order of convergence of 1/n) and on
√

k(n)/n which behaves like
√

t/n
as n→ +∞. In most applications, an asymptotic behavior like

√

t/n
as n→ +∞ can be obtained.

2. We can always take ϕn(u) := ‖Au‖ + ψn(u) but we have preferred to
introduce an independent estimate of ‖n(Ln−I)u‖ since some applica-
tions can be more precise, as in the case of Stancu-Schnabl operators
considered in the next section.

3. If the operators Ln are linear contractions, then the stability condition
(1.1.3) on its iterates is automatically satisfied and from the represen-
tation (II.1.2) we obtain that the semigroup (T (t))t≥0 is itself of linear
contractions.

4. If u ∈ D and Lnu = u for every n ≥ 1, the proof of Theorem 1.1.2
also gives T (t)u = u for every t ≥ 0. Hence, the semigroup preserves
every function which is preserved by all approximating operators.

5. Observe that estimate (1.1.6) holds uniformly with respect to t in
compact intervals. �

In concrete applications, we often take k(n) = [nt]. In this case we
obviously have tn = t and

∣

∣

∣

∣

[nt]

n
− t

∣

∣

∣

∣

=
nt− [nt]

n
≤ 1

n
.

Hence estimate (1.1.6) yields

∥

∥

∥
T (t)u− L[nt]

n u
∥

∥

∥
≤M2 t exp(ω eω/n t)ψn(u) (1.1.9)

+
M√
n

(

exp(ω eω/n t)√
n

+

√

2t

π
eω t +

ω t√
n

exp
(

ω eω/n t
)

)

ϕn(u) .
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In most applications the growth bound ω of the semigroup will be equal
to 0; in this particular case (1.1.6) and (1.1.9) become respectively

∥

∥

∥T (t)u− Lk(n)
n u

∥

∥

∥ ≤M2 t ψn(u) +M

(

∣

∣

∣

∣

k(n)

n
− t

∣

∣

∣

∣

+

√

2

π

√

k(n)

n

)

ϕn(u)

(1.1.10)
and

∥

∥

∥T (t)u− L[nt]
n u

∥

∥

∥ ≤M2 t ψn(u) +
M√
n

(

1√
n

+

√

2t

π

)

ϕn(u) . (1.1.11)
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1.2 Estimate of the resolvent operator

1.2.1 Quantitative estimate of the convergence to the resol-

vent operator

The next result is concerned with the approximation of the resolvent oper-
ator of the closure of (A,D).

If E is a real Banach space we consider the complexification Ec ∼ E×E
defined as usual by defining (α + iβ)u := (αu, βu) for every α, β ∈ R and
u ∈ E. An operator L : E → E can be regarded as acting on Ec by setting
L(u, v) = (L(u), L(v)) for every u, v ∈ E.

At this point, for every n ≥ 1 we define the linear operator Mλ,n : Ec →
Ec as follows

Mλ,nu :=

∫ +∞

0
e−λ tL[n t]

n u dt , u ∈ Ec .

Theorem 1.2.1 Consider the same assumptions of Theorem 1.1.2. If ω ≥
0, then for every n ≥ 1, λ ∈ C such that Reλ > ω eω/n and u ∈ D, we have

‖R(λ,A)u−Mλ,nu‖ ≤ M2

(Reλ− ω eω/n)2
ψn(u) +

M√
n

(

1√
n (Reλ− ω eω/n)

+
1√

2 (Reλ− ω)3/2
+

ω√
n (Reλ− ω eω/n)2

)

ϕn(u) . (1.2.1)

In particular, we have that the sequence (Mλ,n)n≥1 strongly converges to
R(λ,A).

Proof. Let λ ∈ C such that Reλ > ω eω/n. Using the integral representa-
tion of the resolvent operator (see, e.g., [48, Theorem II.1.10, (i), p. 55] and
Chapter II) and taking into account (1.1.9) and the elementary properties
of the gamma function, for every n ≥ 1 and u ∈ D we have

‖R(λ,A)u−Mλ,nu‖ ≤
∫ +∞

0
e−Re λ t‖T (t)u− L[nt]

n u‖ dt, (1.2.2)
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then

‖R(λ,A)u−Mλ,nu‖ ≤M2 ψn(u)

∫ +∞

0
t exp

(

(ωeω/n − Reλ) t
)

dt

+
M

n
ϕn(u)

∫ +∞

0
exp

(

(ωeω/n − Reλ) t
)

dt

+M ϕn(u)

√

2

π n

∫ +∞

0

√
t exp ((ω − Reλ)t) dt

+M ϕn(u)
ω

n

∫ +∞

0
t exp

(

(ωeω/n − Reλ) t
)

dt

=
M2

(Reλ− ω eω/n)2
ψn(u) +

M

n(Reλ− ω eω/n)
ϕn(u)

+
M√

2n (Reλ− ω)3/2
ϕn(u) +

Mω

n(Reλ− ω eω/n)2
ϕn(u) .

Finally, the last part is a consequence of the density of D and the fact that
estimate (1.2.2) imply that the sequence (Mλ,nu)n≥1 converges to R(λ,A)u
for every u ∈ D. �

Remark 1.2.2 We explicitly point out that estimate (1.2.1) holds whenever
Reλ > ω if n is large enough (namely n > ω/ log(Reλ/ω)), since
limn→+∞ eω/n = 1. �

In the particular case ω = 0 we get, for every n ≥ 1, λ ∈ C such that
Reλ > 0 and u ∈ D,

‖R(λ,A)u−Mλ,nu‖ ≤ M2

(Reλ)2
ψn(u) +

M√
nReλ

(

1√
n

+
1√

2Reλ

)

ϕn(u) .

(1.2.3)

1.2.2 Approximation processes for resolvent operators

In this section we introduce some general sequences of linear operators,
obtained from classical approximation processes, which approximate the re-
solvent operators of the generator of the C0-semigroups.

The main aim is the possibility of representing the resolvent operators in
terms of classical approximation operators.

First, we consider a sequence of (Ln)n≥1 of linear operators on a complex
Banach space E (we consider its complexification if E is real) and assume
that the hypotheses of Trotter’s Theorem ore satisfied.

Now, let (an)n≥1 be a sequence of positive integers tending to +∞. For
every n ≥ 1, we consider the linear operator Pλ,an,n : E → E defined by

Pλ,an,nu :=
1

n

an
∑

k=0

e−λk/nLk
nu , u ∈ E . (1.2.4)
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Theorem 1.2.3 If the sequence (an)n≥1 satisfies

lim
n→+∞

an

n
= +∞ , (1.2.5)

then limn→+∞ Pλ,an,nu = R(λ,A)u for every u ∈ E.

Proof. Since Reλ > ω we have
∥

∥e−λ/nLn

∥

∥ ≤ Me−(Re λ−ω)/n and conse-

quently ‖Pλ,an,n‖ ≤ M/(1 − e−(Re λ−ω)). Hence the sequence (Pλ,an,n)n≥1

is equibounded and we can show the convergence property on the dense
subspace D. Let u ∈ D; from [1, (1.3)], we have

R(λ,A)u = lim
n→∞

1

n

∞
∑

k=0

e−λk/n 1 − e−λ/n

λ/n
Lk

nu

and consequently

‖Pλ,an,nu−R(λ,A)u‖ ≤ 1

n

∥

∥

∥

∥

∥

an
∑

k=0

e−λk/nLk
nu−

∞
∑

k=0

e−λk/n 1 − e−λ/n

λ/n
Lk

nu

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

1

n

∞
∑

k=0

e−λk/n 1 − e−λ/n

λ/n
Lk

nu−R(λ,A)u

∥

∥

∥

∥

∥

.

(1.2.6)

The second term in (1.2.6) tends to 0 by [1, (1.3)]. As regards to the first
term, it is majored by

M

n
‖u‖

+∞
∑

k=an+1

e−(Re λ−ω)k/n +
1

n

∥

∥

∥

∥

∥

+∞
∑

k=0

e−λk/n

(

1 − 1 − e−λ/n

λ/n

)

Lk
nu

∥

∥

∥

∥

∥

≤ M

n
(

1 − e−(Re λ−ω)/n
) ‖u‖

(

e−(Re λ−ω)(an+1)/n +

∣

∣

∣

∣

∣

1 − 1 − e−λ/n

λ/n

∣

∣

∣

∣

∣

)

.

(1.2.7)

Since limn→+∞ n
(

1 − e−(Re λ−ω)/n
)

= Reλ − ω, the assumption (1.2.5) en-
sures that the first term in (1.2.6) tends to 0 and this completes the proof.
�

Our next aim is to provide a quantitative estimate in the above Theorem
1.2.3. Now we assume that there exist the seminorms ϕn, ψn : D → [0,+∞[
on a subspace D of D such that limn→∞ ψn(u) = 0 for every u ∈ D and

‖n(Lnu− u)‖ ≤ ϕn(u) , ‖n(Lnu− u) −Au‖ ≤ ψn(u) . (1.2.8)



12 Chapter 1: Quantitative estimates

Theorem 1.2.4 Under assumptions (1.2.5) and (1.2.8), for every n >
ω/ log(Reλ/ω) (or n ≥ 1 if ω = 0) and u ∈ D, we have

‖Pλ,an,nu−R(λ,A)u‖ ≤ M2

(Reλ− ω eω/n)2
ψn(u) +

M√
n

(

1√
n (Reλ− ω eω/n)

+
1√

2 (Reλ− ω)3/2
+

ω√
n (Reλ− ω eω/n)2

)

ϕn(u)

+
M
(

e−(Re λ−ω)an/n + |λ|3/2

n |Re
√

λ|

)

(Reλ− ω)
(

1 − Re λ−ω
n

) ‖u‖ . (1.2.9)

Proof. We estimate the two terms at the righthand side of (1.2.6). Set
λ = |λ| eiθ; from the series expansion of e−λ/n, we get

1 − 1 − e−λ/n

λ/n
=

+∞
∑

k=2

(−1)k λk−1

nk−1k!
= −

+∞
∑

k=1

|λ|keik(θ+π)

nk(k + 1)!
. (1.2.10)

Set for simplicity for every k ∈ N, bk :=
∑k

j=0 e
ij(θ+π) and ck := |λ|k/(nk ·

(k + 1)!). For every r ∈ N we obtain

r
∑

k=1

cke
ik(θ+π) =

r
∑

k=1

ck bk −
r
∑

k=1

ck bk−1 =

r
∑

k=1

(ck − ck−1) bk + cr+1 br − c1 b0

and, letting r → +∞,
∣

∣

∑+∞
k=1 cke

ik(θ+π)
∣

∣ ≤ ∑+∞
k=1(ck − ck−1) |bk| + c1 |b0|.

Since

|bk| =

∣

∣

∣

∣

∣

1 − ei(k+1)(θ+π)

1 − ei(θ+π)

∣

∣

∣

∣

∣

≤ 2
√

(1 + cos θ)2 + sin2 θ
=

2
√

2(1 + cos θ)

=
1

|cos(θ/2)|
we conclude

∣

∣

∣

∣

∣

+∞
∑

k=1

cke
ik(θ+π)

∣

∣

∣

∣

∣

≤ 1

|cos(θ/2)|

(

+∞
∑

k=1

(ck − ck−1) + c1

)

=
2c1

|cos(θ/2)| .

Hence, from (1.2.10) we obtain
∣

∣

∣

∣

∣

1 − 1 − e−λ/n

λ/n

∣

∣

∣

∣

∣

≤ |λ|
n |sin((θ + π)/2)| =

|λ|
n |cos(θ/2)| =

|λ|3/2

n
∣

∣

∣Re
√
λ
∣

∣

∣

.

(1.2.11)

Since 1 − ex ≥ −x(1 + x) whenever x ≤ 0, we have

1

n
(

1 − e−(Re λ−ω)/n
) ≤ 1

(Reλ− ω) (1 − (Reλ− ω)/n)
(1.2.12)
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and consequently, from (1.2.7) we get the following estimate of the first term
in (1.2.6)

1

n

∥

∥

∥

∥

∥

an
∑

k=0

e−λk/nLk
nu−

∞
∑

k=0

e−λk/n 1 − e−λ/n

λ/n
Lk

nu

∥

∥

∥

∥

∥

≤

M
(

e−(Re λ−ω)an/n + |λ|3/2

n|Re
√

λ|

)

(Reλ− ω) (1 − (Reλ− ω)/n)
‖u‖ .

In order to estimate the second term in (1.2.6), we consider the operator
Mλ,n introduced in the previous section and observe that

Mλ,nu :=

∫ +∞

0
e−λ tL[n t]

n u dt =

∞
∑

k=0

e−λk/n 1 − e−λ/n

λ
Lk

nu , u ∈ E

the last equality is valid since L
[nt]
n is independent of t on each interval

[k/n, (k + 1)/n[. Then we can estimate the second term in (1.2.6) by
Theorem 1.2.1

‖R(λ,A)u −Mλ,nu‖ ≤ M2

(Reλ− ω eω/n)2
ψn(u) +

M√
n

(

1√
n (Reλ− ω eω/n)

+
1√

2 (Reλ− ω)3/2
+

ω√
n (Reλ− ω eω/n)2

)

ϕn(u) .

Using the above inequalities the proof is complete. �

Taking an ≥ [n log n/Reλ], estimate (1.2.9) becomes

‖Pλ,an,nu−R(λ,A)u‖ ≤ C1(λ)ψn(u)+
C2(λ)√

n
ϕn(u)+

C3(λ)

n
‖u‖ , (1.2.13)

for every ω ≥ 0, u ∈ D and n > ω/ log(Reλ/ω) (or n ≥ 1 if ω = 0), where
Ci(λ), i = 1, 2, 3, are suitable constants depending only on λ.




