
Chapter II

Preliminary and auxiliary

results

In this chapter we collect some brief recalls on the main topics involved in
this work. These recalls are only intended to fix some notation and references
for the subsequent chapters and not to furnish a complete treatment of the
subject.

II.1 Recalls on semigroup’s theory

For the sake of completeness we collect here some basic definitions and
results on semigroup’s theory which will be frequently used in the sequel.
We refer to the monographs [48] and [64] for a complete introduction to the
subject.

Let E be a Banach space over the field K. We shall denote by L(E) the
space of all bounded linear operators in E.

A semigroup (or a one-parameter semigroup) of bounded linear operators
on E is a family (T (t))t≥0 of elements of L(E) such that

1. T (0) = I,

2. T (s+ t) = T (s)T (t) for every s, t ≥ 0,

where I denotes the identity operator on E.
A semigroup is said to be strongly continuous (or a C0-semigroup) if for

every t0 ≥ 0 and f ∈ E

lim
t→t0

‖T (t)f − T (t0)f‖ = 0 .

The growth bound of the semigroup is defined by

ω0 := inf { ω ∈ R | there exists M ≥ 0 such that ‖T (t)‖ ≤M exp(ωt)

for every t ≥ 0} .
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The generator of a C0-semigroup is a linear operator A : D(A) → E
defined by

Af := lim
t→0+

T (t)f − f

t
,

on the linear subspace

D(A) :=

{

f ∈ E | there exists lim
t→0+

T (t)f − f

t
∈ E

}

.

A semigroup is said to by uniformly continuous if for every t0 ≥ 0

lim
t→t0

‖T (t) − T (t0)‖ = 0 .

In this case we haveD(A) = E andA is bounded; conversely, if A is bounded,
we can set

T (t) := exp(tA) :=

∞
∑

n=0

tn

n!
An (t ≥ 0) ,

and we obtain a uniformly continuous semigroup whose generator is A.
A linear operator A : D(A) → E is said to be closed if D(A) endowed

with the graph norm

‖f‖A := ‖f‖ + ‖A(f)‖ , f ∈ D(A) ,

becomes a Banach space. In other words, the graph {(f,Af) | f ∈ D(A)} is
closed in E × E.

We say that a linear operator B : D(B) → E is an extension of A if
D(A) ⊂ D(B) and Af = Bf for every f ∈ D(A).

A linear operator A : D(A) → E is closable if there exists a closed
extension of A. The smallest closed extension A : D(A) → E of A is called
the closure of A.

A core for a linear operator A : D(A) → E is a linear subspace D0 of
D(A) which is dense in D(A) with respect to the graph norm.

If A : D(A) → E is a closed operator, we shall denote by ρ(A) its resolvent
set, i.e.,

ρ(A) := {λ ∈ K | λI −A is invertible} .
The spectrum σ(A) is defined as

σ(A) := K \ ρ(A) .

If λ ∈ ρ(A) we shall denote by R(λ,A) the inverse of λI −A.
If A is the generator of a C0-semigroup (T (t))t≥0 then ρ(A) 6= ∅. More-

over, if ω0 denotes the growth bound of (T (t))t≥0 we have, for every λ ∈ K

such that Reλ > ω0 and f ∈ E

R(λ,A)f =

∫ ∞

0
exp(−λt)T (t)f dt .

Now we recall a generation and approximation theorem which is very
important for our purposes.
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Theorem II.1.1 (Trotter’s approximation theorem) Let (Ln)n∈N be a
sequence of bounded linear operators on E and let (ρn)n∈N be a decreasing
sequence of positive real numbers tending to 0. Suppose that there exists
M ≥ 0 and ω ∈ R such that

‖Lk
n‖ ≤Meω ρn k , for every k, n ∈ N . (II.1.1)

Moreover, assume that D is a dense subspace of E and for every f ∈ D the
following Voronovskaja-type formula holds

Af := lim
n→∞

Ln(f) − f

ρn
.

If (λ−A)(D) is dense in E for some λ > ω, then the closure of A generates
a C0-semigroup (T (t))t≥0 and for every f ∈ E and every sequence (k(n))n∈N

of positive integers satisfying limn→+∞ k(n)/ρn = t, we have

T (t)f = lim
n→∞

Lk(n)
n (f) . (II.1.2)
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II.2 Feller’s classification and generation results

In different applications we need to consider suitable domains where a second-
order differential operator generates a C0-semigroup. In this context, the
classification of Feller may help us to decide the right choice of the domain
of our operators (see [52, 54, 53]). After the work of Feller, it was also
considered the problem of investigating the generation of a C0-semigroup
on an assigned domain. Necessary and sufficient conditions in order for A
to be the generator of a C0-semigroup in C(I) have been given by Clément
and Timmermans [44] when Ventcel’s boundary conditions are imposed at
the endpoints, and by Timmermans in [69] on the maximal domain. More
recently, the existence of a C0-semigroup has been characterized in [29] also
in the case of Neumann’s type boundary conditions at the endpoints. In
the space L1(I) the characterization of the generation of a C0-semigroup
has been completely achieved in [19] on the adjoint maximal domain, on the
adjoint Dirichlet domain and on the adjoint Neumann domain. However, all
the results obtained in [44], [69], [29] and [19] are very closely related to the
pioneer work by Feller [54].

In the sequel we consider an interval I :=]r1, r2[ with −∞ ≤ r1 < r2 ≤
+∞ and two continuous real functions α, β : I → R with α > 0 in I. We
define the second-order differential operator

Au(x) := α(x)u′′(x) + β(x)u′(x) , u ∈ C(I) ∩C2(I) .

In order to state the main characterizations, we fix x0 ∈ I and define, for
every x ∈ I,

W (x) := exp

(

−
∫ x

x0

β(t)

α(t)
dt

)

(II.2.1)

and

Q(x) :=
1

α(x)W (x)

∫ x

x0

W (s) ds , R(x) := W (x)

∫ x

x0

1

α(s)W (s)
ds .

(II.2.2)

It is also useful to set I1 :=]r1, x0] and I2 := [x0, r2[. The endpoint ri,
i = 1, 2 is said to be

a regular boundary if Q ∈ L1(Ii) , R ∈ L1(Ii) ;
an exit boundary if Q /∈ L1(Ii) , R ∈ L1(Ii) ;
an entrance boundary if Q ∈ L1(Ii) , R /∈ L1(Ii) ;
a natural boundary if Q /∈ L1(Ii) , R /∈ L1(Ii) .

(II.2.3)

The following generation results will be used in the sequel.

First, we consider the maximal domain of A defined as follows

DM (A) = {u ∈ C(Ī) ∩ C2(I) | Au ∈ C(Ī)} . (II.2.4)
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Theorem II.2.1 (Feller [54], Timmermans [69]) The linear operator (A,DM (A))
generates a C0-semigroup in C(I) if and only if r1 ed r2 are both entrance
or natural endpoints. The semigroup is of positive contractions whenever it
exists.

If we consider Ventcel’s boundary condition, we get the following domain
of A

DV (A) = {u ∈ C(I) ∩ C2(I) | lim
x→r1,r2

Au(x) = 0} (II.2.5)

and we have the following generation result.

Theorem II.2.2 (Feller [54], Clément-Timmermans [44]) The linear
operator (A,DV (A)) generates a C0-semigroup in C(I) if and only if both
r1 and r2 are not entrance boundary points. The semigroup is of positive
contractions whenever it exists.
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II.3 Cosine functions

In this section we briefly collect some definitions and properties of cosine
functions. We limit ourselves to those notions which are strictly necessary
for the sequel. An organic treatment of the subject can be found in the
monographs [50, 17] and in the paper by Sova [68].

A family (C(t))t∈R of linear operators on a Banach space E is a cosine
function if the following conditions are satisfied

1. C(0) = I,

2. C(s+ t) + C(s− t) = 2C(s)C(t) for every s, t ≥ 0.

A cosine function is said to be strongly continuous (or a C0-cosine func-
tion) if for every t0 ≥ 0 and f ∈ E

lim
t→t0

‖C(t)f −C(t0)f‖ = 0 .

The infinitesimal generator of a strongly continuous cosine function is the
linear operator A : D(A) → E defined by

A(f) := lim
t→0

C(t)u− 2u+ C(−t)u
h2

on

D(A) :=

{

u ∈ E | lim
t→0

C(t)u− 2u+ C(−t)u
h2

∈ E
}

.

If a linear operator A : D(A) → E generates a strongly continuous cosine
function (C(t))t∈R, then the solution of the second-order hyperbolic problem































∂2

∂t2
u(t, x) = Au(t, x) , t ∈ R ;

u(0, x) = u0(x) , x ∈ R ;

∂

∂t
u(t, x)|t=0 = u1(x) , x ∈ R .

is given by

u(t, x) = C(t)u0(x) +

∫ t

0
C(s)u1(x) ds .

If (C(t))t∈R is a cosine function on E, there exist ω ∈ R and C0 ≥ 0 such
that

‖C(t)‖ ≤ C0 e
ω |t|.

For every Reλ > ω, we have λ2 ∈ ρ(A) and

R(λ2, A)u =
1

λ

∫ +∞

0
e−λ tC(t)u dt , u ∈ E .


