List of symbols

Let $1 \leq k \leq \infty, N \in \mathbb{N}, 0 < \alpha < 1, T > 0, a < b, u$ real valued function.

\mathbb{R}^{N}	euclidean N-dimensional space
Q(a,b)	$\mathbb{R}^N imes (a,b)$
Q_T	Q(0,T)
(X, d)	a metric space X endowed with the distance d
$(\cdot \cdot)$	scalar product or, in general, duality
x	euclidean norm of $x \in \mathbb{R}^N$
$B_{\rho}(x)$	open ball for the euclidean distance with centre x
	and radius ρ
E	Lebesgue measure of a given set E
χ_E	characteristic function of e set E
$\operatorname{supp} u$	support of a given function u
$D_i u$	partial derivative with respect to x_i
$\partial_t u$	partial derivative with respect to t
$D_{ij}u$	$D_i D_j u$
Du	(D_1u,\ldots,D_Nu)
D^2u	hessian matrix $(D_{ij}u)_{i,j=1,\ldots,N}$
$ Du ^2$	$\sum_{i=1}^{N} D_i u ^2$
$ D^2u ^2$	$\sum_{i,i=1}^{N} D_{ii}u ^2$
f^+, f^-	positive part $f \lor 0$ and negative part $-(f \land 0)$ of f
1	function identically equal to 1 everywhere
$\mathcal{L}(X)$	space of bounded linear operators from X to X
$C_b(\mathbb{R}^N)$	space of bounded continuous functions in \mathbb{R}^N
$C_b^j(\mathbb{R}^N)$	space of real functions with derivatives up to the order
U V	$j \text{ in } C_b(\mathbb{R}^N)$
$C^{\alpha}(\mathbb{R}^N)$	space of Hölder continuous functions
$C^{\alpha}_{loc}(\mathbb{R}^N)$	space of Hölder continuous functions in Ω for all
	bounded open set $\Omega \subset \mathbb{R}^N$
$C^{k+\alpha}(\mathbb{R}^N)$	space of functions such that the derivatives of order k
	are α -Hölder continuous
$C^{\infty}_{c}(\mathbb{R}^{N})$	space of test functions
$L^p(\mathbb{R}^N)$	usual Lebesgue space
$L^{\infty}_{c}(\mathbb{R}^{N})$	space of all bounded measurable functions
	on \mathbb{R}^N having compact support
$\mathcal{S}(\mathbb{R}^N)$	Schwartz space
$\mathcal{S}'(\mathbb{R}^N)$	space of tempered distributions
$B_b(\mathbb{R}^N)$	space of bounded Borel functions

$C_0(\mathbb{R}^N)$	space of continuous functions tending to 0 for
	$ x $ tending to $+\infty$
$C_0(B_{ ho})$	space of continuous functions in B_{ρ}
	vanishing on the boundary
BUC(Q(a.b))	space of bounded and uniformly continuous
	functions in $Q(a.b)$
$C^{2,1}(Q(a,b))$	space of functions continuous with their indicated
	derivatives
$C_{b}^{2,1}(Q(a,b))$	space of functions having bounded time
0 (1())	derivative and bounded space derivatives
	up to the second order
$BUC^{2,1}(Q(a,b))$	subspace of $C_{i}^{2,1}(Q(a, b))$ consisting of all
	functions for which u_{\pm} and $D^{\alpha}u$
	$ \alpha = 2$ are uniformly continuous in $O(a, b)$
$C^{2+\alpha,1+\frac{\alpha}{2}}(O(a,b))$	space of functions such that $\partial_{y} u$ and $D_{y} u$ are
$(\mathcal{Q}(u, 0))$	α Hölder continuous with respect to the
	parabolic distance
$\mathbf{u}_{i}(\mathbf{m}_{N})$	parabolic distance $L^{k}(\mathbb{D}^{N})$ having much
$W_k^{\circ}(\mathbb{R}^n)$	space of functions $u \in L^{\infty}(\mathbb{R}^{n})$ having weak
$\pi^{21}(\alpha(-1))$	space derivatives up to the order $j \text{in } L^{\infty}(\mathbb{R}^{n})$
$W_k^{2,1}(Q(a,b))$	space of functions $u \in L^{\kappa}(Q(a, b))$ having
	weak space derivatives $D^{\alpha}u \in L^{\kappa}(Q(a,b))$
	for $ \alpha \leq 2$ and weak time derivative
	$\partial_t u \in L^k(Q(a,b))$
$\ u\ _{W^{2,1}_k(Q(a,b))}$	$\ u\ _{L^k(Q(a,b))} + \ \partial_t u\ _{L^k(Q(a,b))}$
	$+\sum_{1 < \alpha < 2} \ D^{\alpha}u\ _{L^{k}(Q(a,b))}$
$[u]_{\alpha} \stackrel{\alpha}{\longrightarrow} O_{\mathcal{T}}$	$\sup_{x \in \mathbb{R}^N} \sup_{t \in (0,T)} \frac{ u(x,t) - u(y,t) }{ u(x,t) - u(y,t) }$
[]a, 2, & <i>i</i>	$ (x,y) \in \mathbb{R} x \in (0,T) x-y ^{\alpha}$ $ u(x,t) - u(s,x) $
	$+ \sup_{s \neq t, x \in \mathbb{R}^N} \frac{ t-s ^{\frac{\alpha}{2}}}{ t-s ^{\frac{\alpha}{2}}}$
$ u _{\alpha,\frac{\alpha}{2};Q_T}$	$\ u\ _{\infty} + [u]_{\alpha,\frac{\alpha}{2};Q_T}$
$ u _{2+\alpha,1+\frac{\alpha}{2};Q_T}$	$ u _{\infty} + [\partial_t u]_{\alpha,\frac{\alpha}{2};Q_T} + [D^2 u]_{\alpha,\frac{\alpha}{2};Q_T}$
$W \hookrightarrow H$	the space W is continuously embedded in H .
$l^1(\mathbb{R})$	space of sequences $(\lambda_n)_{n\in\mathbb{N}}$ such that
	$\sum_{n\in\mathbb{N}} \lambda_n <\infty.$