Chapter 5

Parabolic Schrödinger operators

In this chapter we consider the parabolic Schrödinger operator

$$\mathcal{A} = \partial_t - \Delta + V$$
 on \mathbb{R}^{N+1}

where V = V(x,t) is a nonnegative potential which belongs to the parabolic Reverse Hölder class B_p for some p > 1. Examples of such potentials are all polynomials but also singular functions like $\max\{|x|, t^{\frac{1}{2}}\}^{\alpha}$ for $\alpha > -\frac{N+2}{p}$. We prove the L^p boundedness of the operators $D^2(\partial_t - \Delta + V)^{-1}$, $V(\partial_t - \Delta + V)^{-1}$ and $\partial_t(\partial_t - \Delta + V)^{-1}$, thus characterizing the domain of the operator \mathcal{A} on $L^p(\mathbb{R}^{N+1})$.

The wide literature on the characterization of the domain of (elliptic) Schrödinger operator can be divided in two classes, concerning the assumptions on the potential V. The equality $D(-\Delta + V) = D(-\Delta) \cap D(V)$ holds in $L^p(\mathbb{R}^N)$, $1 either assuming an oscillation condition like <math>|\nabla V| \leq cV^{3/2}$, see [37], or assuming that V belongs to suitable Reverse Hölder classes. The two conditions are incomparable but one find easily examples of polynomials (which satisfy a reverse Hölder inequality) for which the oscillation condition above fails.

In [41] Shen proved the L^p boundedness of $D^2(-\Delta+V)^{-1}$ on \mathbb{R}^N for 1 , $assuming <math>V \in B_p$ and under the restrictions $N \ge 3$, $p \ge \frac{N}{2}$, introducing an auxiliary function m(x, V), which is well defined for $p \ge \frac{N}{2}$ and allows to estimate the fundamental solution.

In a recent work, P. Auscher and B. Ali, see [3], extended Shen's result removing the original restrictions on the space dimension and on p. In their proof they use a criterion to prove L^p boundedness of operators in absence of kernels, see [42, Theorem 3.1], [2, Theorem 3.14], and weighted mean value inequalities for nonnegative subharmonic functions, with respect to Muckenhoupt weights. Following Shen's approach, W. Gao and Y. Jiang extended the results to the parabolic case. In [18], they consider the parabolic operator $\partial_t - \Delta + V$ where $V \in B_p$ is a nonnegative potential depending only on the space variables and, under the assumptions $N \ge 3$ and p > (N+2)/2, they prove the boundedness of $V(\partial_t - \Delta + V)^{-1}$ in L^p .

We obtain the L^p boundedness of $V\mathcal{A}^{-1}$ (and consequently of $\partial_t \mathcal{A}^{-1}$ and $D^2 \mathcal{A}^{-1}$) if $0 \leq V \in B_p$ for 1 , without any restriction on the space dimension;moreover, our potentials may also depend on the time variable. Our approachis similar to that of [3]. We use a more general version of the boundednesscriterion in absence of kernels in homogeneous spaces (see Theorem D.1.1) andthe Harnack inequality for subsolutions of the heat equation. A crucial role is $played by some properties of the <math>B_p$ weights, originally proved in the classical case when \mathbb{R}^N is equipped with the Lebesgue measure and the Euclidean distance. Since we need parabolic cylinders instead of balls of \mathbb{R}^N , we use the more general theory of B_p weights in homogeneous spaces, as treated in [48, Chapter I].

The chapter is organized as follows.

In Section 5.1 we introduce the reverse Hölder classes B_p and the Muckenhoupt classes A_p . We state some properties satisfied by these weights and we establish a relation between the two classes.

In Section 5.2 we define the parabolic Schrödinger operator in $L^p(\mathbb{R}^{N+1})$ and we prove some properties, in particular invertibility and consistency of the resolvent operators.

We start the last section by observing that $V\mathcal{A}^{-1}$ is always bounded in L^1 . Then, using the Harnack inequality for subsolutions of the heat equation and an approximation procedure, we prove a weighted mean value inequality for positive solutions of the equation $\mathcal{A}u = 0$ with respect to B_p weights which allows us to apply Shen's interpolation theorem and deduce the boundedness of $V\mathcal{A}^{-1}$ in L^p .

For the whole chapter we fix the following notation.

Notation

Given $X_0 = (x_0^1, ..., x_0^N, t_0), R > 0$, with parabolic cylinder of center $X_0 = (x_0, t_0)$ and radius R we mean the set

$$K = K(X_0, R) = \{ (x^1, ..., x^N, t) \in R^{N+1} : |x^i - x_0^i| < R, \ |t - t_0| < R^2 \}$$

5.1 The parabolic reverse Hölder classes

The classical theory about Muckenhoupt and reverse Hölder classes has been originately formulated for weights in \mathbb{R}^N endowed with the euclidean distance, see for example [47, Chapter V]. We will consider however potentials satisfying the "Reverse Hölder Property" with respect to cylinders rather than Euclidean balls. Many properties remain true in this setting. A theory on these classes of weights in homogeneous spaces (like \mathbb{R}^{N+1} with the parabolic distance) is presented for example in [48, Chapter I] to which we refer for the proofs of the results stated in this Section and needed in what follows. **Definition 5.1.1.** Let $1 . We say that <math>\omega \in B_p$, the class of the reverse Hölder weights of order p, if $\omega \in L^p_{loc}$, $\omega > 0$ a.e. and there exists a positive constant C such the inequality

$$\left(\frac{1}{|K|}\int_{K}\omega(x,t)^{p}\ dx\ dt\right)^{\frac{1}{p}} \leq \frac{C}{|K|}\int_{K}\omega(x,t)\ dx\ dt \tag{5.1}$$

holds, for every parabolic cylinder K. If $p = \infty$, the left hand side of the inequality above has to be replaced by the essential supremum of ω on K. The smallest positive constant C such that (5.1) holds is the B_p constant of ω .

Observe that $B_q \subset B_p$ if p < q. An important feature of the B_p weights is the following self improvement property due to Gehring.

Proposition 5.1.2. Assume that $\omega \in B_p$ for some $p < \infty$. Then there exists $\varepsilon > 0$, depending on the B_p constant of ω , such that $\omega \in B_{p+\varepsilon}$.

The following property connects B_p weights with Muckenhoupt classes. In particular it implies that B_p weights induce doubling measures.

Definition 5.1.3. Let $1 . We say that <math>\omega \in A_p$ if it is nonnegative and it satisfies the inequality

$$\frac{1}{|K|} \int_{K} \omega(x,t) dx \, dt \left[\frac{1}{|K|} \int_{K} \omega(x,t)^{-\frac{p'}{p}} \right] \le A < \infty$$

for all K parabolic cylinders and some positive constant A. The space A_1 consists of nonnegative functions ω such that

$$\frac{1}{|K|} \int_{K} \omega(x, t) dx \, dt \le A \omega(x, t)$$

for almost every $(x,t) \in K$, for all K parabolic cylinders and some positive constant A.

In both cases, the smallest constant for which the inequality holds is called the A_p bound of ω .

Proposition 5.1.4. If $\omega \in B_p$ for some p > 1, then there exists $1 \le t < \infty$ and c > 0, depending on p and the B_p constant of ω , such that the inequality

$$\left(\frac{1}{|K|}\int_{K}g\right)^{t} \leq \frac{c}{\omega(K)}\int_{K}g^{t}\omega$$
(5.2)

holds for all nonnegative functions g and all parabolic cylinders K. Here $\omega(K) = \int_{K} \omega$.

Remark 5.1.5. It is possible to prove that ω satisfies (5.2) is equivalent to say that $\omega \in A_t$ (see [47, Chapter V, 1.4]).

It is not hard to see that all polynomials belong to the reverse Hölder classes. The idea is that the space of all polynolmials of a fixed degree is a finite dimension space. Therefore all the norms are equivalent and the reverse Hölder inequality holds with a constant depending only on the degree of the polynomial and on N for all the cylinders with unitary radius. Up a rescaling the inequality follows for all the cylinders in \mathbb{R}^{N+1} . Also singular functions like $\max\{|x|, t^{\frac{1}{2}}\}^{\alpha}$ for $\alpha > -\frac{N+2}{p}$ belong to B_p . Here we give a proof.

Example 5.1.6. The functions $\max\{|x|, t^{\frac{1}{2}}\}^{\alpha}$ belong to B_p for $\alpha > -\frac{N+2}{p}$.

PROOF. Observe that it is sufficient to prove the inequality for parabolic cylinders of unitary radius. A change of variables provides the estimate in the general case.

The hypothesis $\alpha > -\frac{N+2}{p}$ insures integrability near 0. Note that $f(x,t) = \max\{|x|, t^{\frac{1}{2}}\}^{\alpha} = d(x, 0)^{\alpha}$ where d is the parabolic distance. Let $K(X_0, 1)$ be a parabolic cylinder of center X_0 and radius 1. Set

$$M = \max\left\{ \left(\int_{K(X_0,1)} f(X)^p \right)^{\frac{1}{p}} \left(\int_{K(X_0,1)} f(X) \right)^{-1}, X_0 : d(X_0,0) \le 2 \right\}.$$

Suppose $d(X_0, 0) > 2$. If $X \in K(X_0, 1)$ we have

$$\frac{d(X,0)}{d(X_0,0)} \le \frac{d(X-X_0,0)}{d(X_0,0)} + \frac{d(X_0,0)}{d(X_0,0)} \le 1 + \frac{1}{d(X_0,0)} \le \frac{3}{2}$$

and

$$\frac{d(X,0)}{d(X_0,0)} \ge \frac{d(X_0,0)}{d(X_0,0)} - \frac{d(X-X_0,0)}{d(X_0,0)} \ge 1 - \frac{1}{2} = \frac{1}{2}$$

Therefore if $d(X_0, 0) > 2$

$$\frac{1}{2} \le \frac{d(X,0)}{d(X_0,0)} \le \frac{3}{2}$$

and

$$\left(\int_{K(X_0,1)} f(X)^p\right)^{\frac{1}{p}} \le \left(\frac{3}{2}d(X_0,0)\right)^{\alpha} = \left(\frac{3}{2}\right)^{\alpha} \int_{K(X_0,1)} f(X_0)$$
$$\le 3^{\alpha} \int_{K(X_0,1)} f(X).$$

The reverse Hölder inequality is true with B_p constant given by the maximum between M and 3^{α} .

5.2 Definition of the operator and some properties

In this section we assume that $0 \leq V \in L^p_{loc}$ for some $1 \leq p \leq \infty$ and consider the parabolic operator

$$\mathcal{A} = \partial_t - \Delta + V$$

in L^p , endowed with the maximal domain

$$D_p(\mathcal{A}) = \{ u \in L^p : Vu \in L^1_{loc}, \ \mathcal{A}u \in L^p \}.$$

Observe that C_c^{∞} is contained in $D_p(\mathcal{A})$, since $V \in L_{loc}^p$. In some results, however, we shall only assume $0 \leq V \in L_{loc}^1$.

We shall prove that $\mathcal{A}_p := (\mathcal{A}, D_p(\mathcal{A}))$ is a closed operator, that C_c^{∞} is a core and that $\lambda + \mathcal{A}$ is invertible for positive λ . We follow Kato's strategy, see [19], where these results are obtained in the elliptic case. Our main result is the following.

Theorem 5.2.1. For every $\lambda > 0$ the operator $\lambda + \mathcal{A}_p$ is invertible and $\|(\lambda + \mathcal{A})^{-1}\|_p \leq \frac{1}{\lambda}$. Moreover, if $1 \leq p < \infty$, C_c^{∞} is a core for \mathcal{A}_p

The basic tool is a distributional inequality proved by Kato for the laplacian (see [39, Theorem X.2]). For completeness we provide here a short proof in the parabolic case.

Lemma 5.2.2 (Parabolic Kato's inequality). Let $u \in L^1_{loc}$ be such that $(\partial_t - \Delta)u \in L^1_{loc}$. Define

sign(u) =
$$\begin{cases} 0 & if \quad u(x) = 0\\ \overline{u(x)}/|u(x)| & if \quad u(x) \neq 0. \end{cases}$$

Then |u| satisfies the following distributional inequality

$$(\partial_t - \Delta)|u| \le \operatorname{Re}[\operatorname{sign}(u)(\partial_t - \Delta)u].$$

PROOF. We first suppose that $u \in C^{\infty}$. Define

$$u_{\varepsilon}(x) = \sqrt{|u|^2 + \varepsilon^2} \tag{5.3}$$

so that $u_{\varepsilon} \in C^{\infty}$. Since

$$u_{\varepsilon}\nabla u_{\varepsilon} = \operatorname{Re}[\overline{u}\nabla u]. \tag{5.4}$$

and $u_{\varepsilon} \geq |u|$, then (5.4) implies that

$$|\nabla u_{\varepsilon}| \le |\overline{u}| |u_{\varepsilon}|^{-1} |\nabla u| \le |\nabla u|.$$
(5.5)

Taking the divergence of (5.4) we obtain

$$u_{\varepsilon}\Delta u_{\varepsilon} + |\nabla u_{\varepsilon}|^2 = \operatorname{Re}(\overline{u}\Delta u) + |\nabla u|^2$$

so by (5.5)

$$\Delta u_{\varepsilon} \ge \operatorname{Re}[\operatorname{sign}_{\varepsilon}(u)\Delta u],\tag{5.6}$$

where $\operatorname{sign}_{\varepsilon}(u) = \overline{u}/u_{\varepsilon}$. Differentiating (5.3) with respect to t we obtain

$$\partial_t u_{\varepsilon} = \operatorname{Re}[\operatorname{sign}_{\varepsilon}(u)\partial_t u] \tag{5.7}$$

and, combining (5.6) and (5.7),

$$(\partial_t - \Delta)u_{\varepsilon} \le \operatorname{Re}[\operatorname{sign}_{\varepsilon}(u)(\partial_t - \Delta)u].$$
(5.8)

Let now $u \in L^1_{loc}$ be such that $(\Delta - \partial_t)u \in L^1_{loc}$ and let ϕ_n be an approximate identity. Since $u^n = u * \phi_n \in C^{\infty}$, then by (5.8)

$$(\partial_t - \Delta)(u^n)_{\varepsilon} \le \operatorname{Re}[\operatorname{sign}_{\varepsilon}(u^n)(\partial_t - \Delta)u^n].$$
(5.9)

Fix $\varepsilon > 0$ and let $n \to \infty$. Then $u^n \to u$ in L^1_{loc} and a.e. (passing to a subsequence, if necessary). Thus $\operatorname{sign}_{\varepsilon}(u^n) \to \operatorname{sign}_{\varepsilon}(u)$ a.e. Since $(\partial_t - \Delta)u^n = ((\partial_t - \Delta)u) * \phi_n$ and $(\partial_t - \Delta)u \in L^1_{loc}$, then $(\partial_t - \Delta)u^n \to (\partial_t - \Delta)u$ in L^1_{loc} , too. It is now easy to see that $\operatorname{sign}_{\varepsilon}(u^n)(\partial_t - \Delta)u^n$ converges in the sense of distributions to $\operatorname{sign}_{\varepsilon}(u)(\partial_t - \Delta)u$. Thus, letting $n \to \infty$ in (5.8) we conclude that

$$(\partial_t - \Delta)u_{\varepsilon} \leq \operatorname{Re}[\operatorname{sign}_{\varepsilon}(u)(\partial_t - \Delta)u].$$

Now taking $\varepsilon \to 0$ we obtain the desired inequality for u, since $\operatorname{sign}_{\varepsilon}(u) \to \operatorname{sign}(u)$ and $|\operatorname{sign}_{\varepsilon}(u)| \leq 1$.

Remark 5.2.3. Changing t with -t one obtains that if u, $(\partial_t + \Delta)u \in L^1_{loc}$, then

$$(\partial_t + \Delta)|u| \le \operatorname{Re}[\operatorname{sign}(u)(\partial_t + \Delta)u].$$

The following results are easy consequences of Kato's inequality.

Lemma 5.2.4. Let $0 \leq V \in L^1_{loc}$. Assume that $u, (\partial_t - \Delta)u, Vu \in L^1_{loc}$ and set, for $\lambda \geq 0$, $f = (\lambda + A)u$. Then

$$(\lambda + \partial_t - \Delta + V)|u| \le |f|. \tag{5.10}$$

PROOF. The claim immediately follows by Lemma 5.2.2. Indeed

$$(\lambda + \partial_t - \Delta + V)|u| \le \operatorname{Re}[\operatorname{sign}(u)((\partial_t - \Delta)u + \lambda u + Vu)] = \operatorname{Re}[f\operatorname{sign}(u)] \le |f|.$$

Lemma 5.2.5. For every positive $\lambda > 0$ the operator $(\lambda + \partial_t - \Delta)^{-1}$ is a positive map of S' onto itself.

PROOF. Since $\lambda - \partial_t - \Delta$ is invertible from S onto S, its adjoint operator $\lambda + \partial_t - \Delta$ is invertible from S' into itself. Let now $0 \leq \psi \in S'$ and let $\phi \in S'$ be such that $0 \leq \psi = (\lambda + \partial_t - \Delta)\phi$. If $0 \leq u \in S$, then

$$\langle \phi, u \rangle = \langle (\lambda + \partial_t - \Delta)^{-1} (\lambda + \partial_t - \Delta) \phi, u \rangle = \langle (\lambda + \partial_t - \Delta) \phi, (\lambda - \partial_t - \Delta)^{-1} u \rangle \ge 0$$

since $(\lambda - \partial_t - \Delta)^{-1}$ is positive on S, by the maximum principle. This proves that $\phi = (\lambda + \partial_t - \Delta)^{-1} \psi$ is positive.

An estimate for the resolvent operator easily follows.

Proposition 5.2.6. Let $1 \le p \le \infty$, $\lambda > 0$. Then, if $u \in D_p(\mathcal{A})$,

$$\lambda \|u\|_p \le \|(\lambda + \mathcal{A})u\|_p. \tag{5.11}$$

PROOF. Let $u \in D_p(\mathcal{A})$, set $f = (\lambda + \mathcal{A})u \in L^p$. By (5.10)

$$|\lambda + \partial_t - \Delta)|u| \le (\lambda + \mathcal{A})|u| \le |f|$$

and Lemma 5.2.5 yields

$$|u| \le (\lambda + \partial_t - \Delta)^{-1} |f|.$$
(5.12)

Then

$$||u||_p \le ||(\lambda + \partial_t - \Delta)^{-1}|f|||_p \le \frac{1}{\lambda} ||f||_p.$$

The positivity of the resolvent is proved along the same way.

Proposition 5.2.7. Let $0 \leq V \in L^1_{loc}$ and $\lambda > 0$. If $u, (\partial_t - \Delta)u, Vu \in L^1_{loc}$ and $f = (\lambda + A)u \geq 0$, then $u \geq 0$.

PROOF. Subtracting the equality $f = (\lambda + A)u \ge 0$ from (5.10) we obtain $(\lambda + \partial_t - \Delta + V)(|u| - u) \le 0$, hence $(\lambda + \partial_t - \Delta)(|u| - u) \le 0$. Lemma 5.2.5 implies $|u| - u \le 0$ so that u = |u|.

Proposition 5.2.8. For every $1 \le p \le \infty$, the operator \mathcal{A}_p is closed. Moreover, if $\lambda > 0$, $\lambda + \mathcal{A}_p$ has closed range.

PROOF. Let $(u_n) \subset D_p(\mathcal{A})$ such that

$$u_n \to u$$
, $\mathcal{A}u_n = (\partial_t - \Delta)u_n + Vu_n = f_n \to f \text{ in } L^p$.

We apply (5.10) to $u = u_n - u_m$, $f = f_n - f_m$ and $\lambda = 0$ obtaining

$$(\partial_t - \Delta + V)|u_n - u_m| \le |f_n - f_m|.$$

Then, for every $0 \leq \phi \in C_c^{\infty}$

$$0 \le \langle V|u_n - u_m|, \phi \rangle \le \langle |f_n - f_m|, \phi \rangle + \langle |u_n - u_m|, (\Delta + \partial_t)\phi \rangle.$$

Letting n, m to infinity, the right hand side of the previous inequality tends to 0 and this shows that $Vu_n\phi$ is a Cauchy sequence in L^1 . Since its limit is $Vu\phi$ we conclude (by the arbitrariness of ϕ) that $Vu \in L^1_{loc}$ and that $Vu_n \to Vu$ in L^1_{loc} . Then $f_n = (\partial_t - \Delta + V)u_n \to (\partial_t - \Delta + V)u$ in the sense of distributions. On the other hand $f_n \to f$ in L^p , therefore $u \in D_p(\mathcal{A})$ and $f = (\partial_t - \Delta + V)u \in L^p$. This proves the closedness of \mathcal{A} .

Finally, $\lambda + A$ has closed range, by (5.11).

PROOF (Theorem 5.2.1). Assume first that $1 \leq p < \infty$. Since \mathcal{A}_p is closed and has closed range, we have only to prove that $(\lambda + \mathcal{A})(C_c^{\infty})$ is dense in L^p .

Let $u \in L^{p'}$ such that $\int (\lambda + \partial_t - \Delta + V)\phi u = 0$ for every $\phi \in C_c^{\infty}$. We have to show that u = 0. Evidently u satisfies $\lambda u - \partial_t u - \Delta u + Vu = 0$ in the sense of distributions and, since $V \in L_{loc}^p$ and $u \in L^{p'}$, $Vu \in L_{loc}^1$. Thus $u \in D_{p'}(\mathcal{B})$ and $(\lambda + \mathcal{B})u = 0$, where $\mathcal{B} = -\partial_t - \Delta + V$. The injectivity of $\lambda + \mathcal{B}$ (that follows from Proposition 5.2.6 changing t to -t) implies u = 0 and proves the density of $(\lambda + \mathcal{A})(C_c^{\infty})$ in L^p .

Next we consider the case where $p = \infty$. Let $0 \leq f \in L^{\infty}$ and consider a sequence $f_n \in L^{\infty} \cap L^1$ such that $0 \leq f_n \nearrow f$. By the first part of the proof, there are $u_n \in D_1(\mathcal{A})$ such that $(\lambda + \mathcal{A})u_n = f_n$. By Proposition 5.2.7 the sequence (u_n) is increasing and consists of nonnegative functions and, since $\lambda ||u_n||_{\infty} \leq ||f_n||_{\infty} \leq ||f_{\parallel}|_{\infty}$, its (pointwise) limit u belongs to L^{∞} . Moreover $Vu_n \to Vu$ in L^1_{loc} because $V \in L^{\infty}_{loc}$ and $u_n \to u$, $0 \leq u_n \leq u$. Hence $f_n = (\lambda + \mathcal{A})u_n \to (\lambda + \partial_t - \Delta)u + Vu$ in the sense of distributions. But $f_n \to f$ monotonically and then $(\lambda + \mathcal{A})u = f$. This means that $u \in D_{\infty}(\mathcal{A})$ and $(\lambda + \mathcal{A})u = f$. Since a general $f \in L^{\infty}$ is a linear combination of positive elements, the proof is complete. \Box

Finally, we prove the consistency of the resolvent operators.

Proposition 5.2.9. Let $1 \le p \le q$ and $0 \le V \in L^q_{loc}$. If $\lambda > 0$ and $f \in L^p \cap L^q$, then $(\lambda + \mathcal{A}_p)^{-1} f = (\lambda + \mathcal{A}_q)^{-1} f$.

PROOF. Let $u = (\lambda + \mathcal{A}_p)^{-1} f$, $v = (\lambda + \mathcal{A}_q)^{-1} f$ and w = u - v. Then $w, Vw \in L^1_{loc}$ and $(\partial_t - \Delta)w = -(\lambda + V)w \in L^1_{loc}$. Since $(\lambda + \mathcal{A})w = 0$, by Proposition 5.2.7 we deduce that w = 0.

5.3 Characterization of the domain of \mathcal{A}

In this section we assume that all functions are real-valued.

5.3.1 The operator \mathcal{A} on L^1 .

It is easy to obtain a-priori estimates for p = 1, leading to a (partial) description of $D_1(\mathcal{A})$. They will also play a key role in the proof of the a-priori estimates in L^p .

Lemma 5.3.1. Assume that $0 \leq V \in L^1_{loc}$. For every $u \in D_1(\mathcal{A})$ we have

$$\|Vu\|_{1} \le \|\mathcal{A}u\|_{1}, \quad \|(\partial_{t} - \Delta)u\|_{1} \le 2\|\mathcal{A}u\|_{1}.$$
(5.13)

PROOF. Let $h_n : \mathbb{R} \to \mathbb{R}$ be a sequence of smooth functions such that $|h_n| \leq C$, $h'_n(s) \geq 0$ and $h_n(s) \to \operatorname{sign}(s)$ for $n \to \infty$ and for every $s \in \mathbb{R}$. Let H_n be such that $H'_n = h_n$ and $H_n(0) = 0$. If $u \in C_c^{\infty}$ then, by the Lebesgue convergence Theorem, we have

$$\int_{\mathbb{R}^{N+1}} \operatorname{sign}(u) \partial_t u = \lim_n \int_{\mathbb{R}^{N+1}} h_n(u) \partial_t u = \lim_n \int_{\mathbb{R}^{N+1}} \partial_t (H_n(u)) = 0, \quad (5.14)$$

$$-\int_{\mathbb{R}^{N+1}}\operatorname{sign}(u)\Delta u = -\lim_{n}\int_{\mathbb{R}^{N+1}}h_{n}(u)\Delta u = \lim_{n}\int_{\mathbb{R}^{N+1}}|\nabla u|^{2}h_{n}'(u) \ge 0.$$
(5.15)

Therefore, if Au = f we obtain

$$\int_{\mathbb{R}^{N+1}} V|u| \le \int_{\mathbb{R}^{N+1}} \operatorname{sign}(u)(\partial_t - \Delta + V)u = \int_{\mathbb{R}^{N+1}} f \operatorname{sign}(u) \le \int_{\mathbb{R}^{N+1}} |f|$$

and the first inequality is proved for $u \in C_c^{\infty}$. Since C_c^{∞} is a core for \mathcal{A}_1 it is easily seen that it extends to every $u \in D_1(\mathcal{A})$.

The second inequality follows from the first, since $(\partial_t - \Delta) = \mathcal{A} - V$. The characterization of the domain of \mathcal{A}_1 is an immediate consequence of

the lemma above. We refer to [50] for similar results in the elliptic case.

Proposition 5.3.2. If $0 \leq V \in L^1_{loc}$, then

$$D_1(\mathcal{A}) = \{ u \in L^1 : Vu \in L^1, \ (\partial_t - \Delta)u \in L^1 \}.$$

5.3.2 A priori estimates in $L^p(\mathbb{R}^{N+1})$.

We investigate when (5.13) holds for other values of p. We remark that (5.13) can fail even for p = 2 and in the elliptic case, see e.g. [31, Example 3.7]. The B_p property of the potential is a sufficient condition to characterize the

The B_p property of the potential is a sufficient condition to characterize the domain of the operator. In fact we prove the following result.

Theorem 5.3.3. Let $1 . If <math>0 \le V \in B_p$ then there exists a positive constant C depending only on p and the B_p constant of V, such that

$$\|Vu\|_p \le C \|\partial_t u - \Delta u + Vu\|_p \tag{5.16}$$

for all $u \in D_p(\mathcal{A})$. In particular,

$$D_p(\mathcal{A}) = \{ u \in W_p^{2,1} : Vu \in L^p \}.$$

We will apply Theorem D.1.1 to the operator $T = V\mathcal{A}^{-1}|\cdot|$ with $p_0 = 1$, a suitable $q_0 > p$ and $\alpha_1 = 3$, $\alpha_2 = 4$. Therefore we have to prove that, if K is a parabolic cylinder and $f \in L_c^{\infty}$ has support in $\mathbb{R}^{N+1} \setminus 4K$, $u = \mathcal{A}^{-1}f$ satisfies

$$\left(\frac{1}{|K|} \int_{K} (V|u|)^{q_0}\right)^{\frac{1}{q_0}} \le \frac{C}{|3K|} \int_{3K} V|u|$$

for some positive C independent of f. Observe that u satisfies the homogeneous equation

$$\mathcal{A}u = (\partial_t - \Delta + V)u = 0$$

in 4K. As first step we prove a mean value inequality for functions u as above.

Lemma 5.3.4. Assume that $0 < \varepsilon \leq V \in L_{loc}^p$. For every r > 0 there exists a positive constant C = C(r) (hence independent of ε) such that

$$\sup_{K} u \le C \left(\frac{1}{|3K|} \int_{3K} u^r \right)^{\frac{1}{r}}$$

for all parabolic cylinders K, $0 \leq f \in L_c^{\infty}(\mathbb{R}^{N+1})$ with support in $\mathbb{R}^{N+1} \setminus 4K$ and $u = \mathcal{A}^{-1}f$.

PROOF. Let $K = K((x_0, t_0), R)$ a parabolic cylinder and $0 \le f \in L_c^{\infty}(\mathbb{R}^{N+1})$ with support in $\mathbb{R}^{N+1} \setminus 4K$. By Theorem 5.2.1 there exists $u \in D_p(\mathcal{A})$ such that

$$\mathcal{A}u = f$$
 in \mathbb{R}^{N+1} .

By Proposition 5.2.7 $u \ge 0$. We are going to use Harnack's inequality where, however, more regularity on the solutions is required and then an approximation procedure is needed. Let \mathcal{A}_k be the operators with bounded potentials $V_k = V \land k$. For every k let $0 \le u_k$ be such that $(\partial_t - \Delta + V_k)u_k = f$. The functions u_k are solutions of parabolic equations with bounded coefficients, then for all $k \in \mathbb{N}$ $u_k \in W_q^{2,1}(\mathbb{R}^{N+1})$ for all $1 < q < \infty$. Since f has support in $\mathbb{R}^{N+1} \setminus 4K$,

$$(\partial_t - \Delta)u_k = -V_k u_k \le 0$$
 in $4K$.

Given a parabolic cylinder $K = K((x_0, t_0), R)$ and a positive constant c > 0, we denote by cK the cylinder with the same center as K and radius cR and by \widetilde{K} the set $K \cap \{t < t_0\}$.

Let K_1 be the cylinder of center $(x_0, t_0 + R^2)$ and radius $\sqrt{2R}$. Obviously $K \subset \widetilde{K_1}$ and $\widetilde{2K_1} \subset 2K_1 \subset 3K \subset 4K$. It follows that

$$(\partial_t - \Delta)u_k = -V_k u_k \le 0$$
 in $2\overline{K_1}$

By [24, Theorem 7.21] or see [35], for any r > 0 there exists C = C(r) > 0 such that

$$\sup_{\widetilde{K}_1} u_k \le C \left(\frac{1}{R^{n+2}} \int_{\widetilde{2K}_1} u_k^r \right)^{\frac{1}{r}}$$

and hence

$$\sup_{K} u_{k} \leq \sup_{\widetilde{K_{1}}} u_{k} \leq C \left(\frac{1}{R^{n+2}} \int_{2\widetilde{K_{1}}} u_{k}^{r} \right)^{\frac{1}{r}} \leq C \left(\frac{1}{R^{n+2}} \int_{3K} u_{k}^{r} \right)^{\frac{1}{r}} \qquad (5.17)$$

$$= C \left(\frac{1}{|3K|} \int_{3K} u_{k}^{r} \right)^{\frac{1}{r}}.$$

Let us observe that the constant C is independent of the potential V_k . This allows us to let $k \to \infty$ in the above inequality. Let $k, m \in \mathbb{N}$ with k > m. Then

$$\partial_t (u_k - u_m) - \Delta (u_k - u_m) + V_k (u_k - u_m) = (V_m - V_k)u_m \le 0$$

and by Proposition 5.2.7 (or simply by the maximum principle) $u_k - u_m \leq 0$. Therefore (u_k) is decreasing and converges pointwise to a function $w \geq 0$. Moreover, by Lemma 5.3.1, $||V_k u_k||_1 \leq ||f||_1$ for every $k \in \mathbb{N}$ and then, by Fatou's Lemma, $Vw \in L^1$. By Proposition 5.2.6, $||u_k||_q \leq C||f||_q$ for all $1 \leq C$

 $q\leq\infty$ and, since $u_k\to w$ pointwise, $w\in L^q$ for all $1\leq q\leq\infty.$ Since for every $\phi\in C_c^\infty$

$$\int_{\mathbb{R}^{N+1}} u_k(-\partial_t \phi - \Delta \phi + V_k \phi) = \int_{\mathbb{R}^{N+1}} f\phi,$$

letting k to infinity we get

$$\int_{\mathbb{R}^{N+1}} w(-\partial_t \phi - \Delta \phi + V \phi) = \int_{\mathbb{R}^{N+1}} f \phi$$

and therefore $\mathcal{A}w = f$ in the sense of distributions. This shows that w belongs to $D_p(\mathcal{A})$ and, by Theorem 5.2.1, w = u, that is u_k converges to u pointwise. Since u_k is decreasing, (5.17) yields

$$\sup_{K} u \le \sup_{K} u_{k} \le C \left(\frac{1}{|3K|} \int_{3K} (u_{k})^{r} \right)^{\frac{1}{r}}.$$
 (5.18)

Finally, u_k is decreasing, therefore $u_k^r \leq u_1^r \in L^1$ and letting $k \to \infty$ in (5.18) we obtain the thesis by dominated convergence.

Now we prove that Lemma 5.3.4 holds if we replace the Lebesgue measure with that induced by the density V.

Lemma 5.3.5. Suppose $0 < \varepsilon \le V \in B_p$ and fix $0 < s < \infty$ and u as in Lemma 5.3.4. Then for every cylinder K

$$\sup_{K} u \leq \left(\frac{C}{V(3K)} \int_{3K} V u^{s}\right)^{\frac{1}{s}}$$

where C depends only on s, p and the B_p constant of V and

$$V(3K) = \int_{3K} V.$$

PROOF. Let $0 < s < \infty$ and K be a parabolic cylinder of \mathbb{R}^{N+1} . We fix t as in Proposition 5.1.4. By using Lemma 5.3.4 with $r = \frac{s}{t}$ and (5.2) we obtain

$$\sup_{K} u \le C \left(\frac{1}{|3K|} \int_{3K} u^{\frac{s}{t}} \right)^{\frac{t}{s}} \le C \left(\frac{1}{V(3K)} \int_{3K} V u^{s} \right)^{\frac{1}{s}}.$$

By combining the estimate in Lemma 5.3.5 and the B_q property we deduce the following.

Corollary 5.3.6. Let $0 < \varepsilon \leq V \in B_p$, $0 < s < \infty$ and u as in Lemma 5.3.4. Then for every cylinder K

$$\left(\frac{1}{|K|}\int_{K} (Vu^{s})^{p}\right)^{\frac{1}{p}} \leq \frac{C}{|3K|}\int_{3K} Vu^{s},$$

where C depends only on s, p and the B_p constant of V.

PROOF. By using the B_p property of V and Lemma 5.3.5 we obtain

$$\begin{split} \left(\frac{1}{|K|}\int_{K}(Vu^{s})^{p}\right)^{\frac{1}{p}} &\leq \left(\frac{1}{|K|}\int_{K}V^{p}\right)^{\frac{1}{p}}\sup_{K}u^{s} \leq C\left(\frac{1}{|K|}\int_{K}V\right)\sup_{K}u^{s} \\ &\leq \frac{C}{|3K|}\int_{3K}Vu^{s}. \end{split}$$

We can now prove our main result.

PROOF (Theorem 5.3.3). Suppose first that $0 < \varepsilon \leq V \in B_p$ for some ε . By

Proposition 5.1.2 there exists $q_0 > p$ such that $V \in \overline{B}_{q_0}$. Let K be a parabolic cylinder in \mathbb{R}^{N+1} and $f \in L_c^{\infty}(\mathbb{R}^{N+1})$ with support in $\mathbb{R}^{N+1} \setminus 4K$. We set $T = V\mathcal{A}^{-1} |\cdot|$. Then Tf = Vu and $u \geq 0$ by Proposition 5.2.7. Note that, since $V \ge \varepsilon > 0$, Proposition 5.2.9 shows that T acts in a consistent way in the L^q scale. By Corollary 5.3.6 with s = 1,

$$\left(\frac{1}{|K|}\int_{K} (Tf)^{q_{0}}\right)^{\frac{1}{q_{0}}} = \left(\frac{1}{|K|}\int_{K} (Vu)^{q_{0}}\right)^{\frac{1}{q_{0}}} \le \frac{C}{|3K|}\int_{3K} Vu = \frac{C}{|3K|}\int_{3K} |Tf|.$$

By Lemma 5.3.1 T is bounded on L^1 and, by Proposition 5.2.7, it is also sublinear. Choosing $p_0 = 1$ and q_0 as above in Theorem D.1.1, we deduce that

$$\|Vu\|_p = \|Tf\|_p \le C\|f\|_p \tag{5.19}$$

for every $f \in L_c^{\infty}$, where C depends only on p and the B_p constant of V. Since, by Proposition 5.2.7 again, the operator $V\mathcal{A}^{-1}$ preserves positivity, we have that $|V\mathcal{A}^{-1}f| \leq Tf$. Therefore by 5.19 we deduce that

$$\|V\mathcal{A}^{-1}f\|_p \le C\|f\|_p$$

for every $f \in L_c^{\infty}$ and finally, by approximation, for every $f \in L^p$. Then the identity

$$(\partial_t - \Delta)u = f - Vu \in L^p$$

proves, by parabolic regularity, that the distribution u belongs to $W_p^{2,1}$. Then

$$D_p(\mathcal{A}) \subset \{ u \in W_p^{2,1} : Vu \in L^p \}$$

and, since the opposite inclusion is obvious, the characterization of the domain is proved. Now we prove (5.16) in the general case when $V \ge 0$. Let $u \in D_p(A)$. then for every $\varepsilon > 0$ we have

$$\|(V+\varepsilon)u\|_p \le C \|\partial_t u - \Delta u + (V+\varepsilon)u\|_p.$$

Since C depends only on p and the B_p constant of $V + \varepsilon$ which is independent of $0 < \varepsilon \leq 1$, letting $\varepsilon \to 0$ the proof is complete.

Finally we show that the results of this section hold when the time variable varies in an interval, rather than in the whole space. We fix $-\infty \leq S < T \leq \infty$ and consider the set

$$Q(S,T) = \mathbb{R}^N \times (S,T)$$

and the operator \mathcal{A} endowed with the domain

$$D_p^{S,T} = \left\{ u \in W_p^{2,1}\left(Q(S,T)\right) : Vu \in L^p\left(Q(S,T)\right), \quad u(\cdot,S) = 0 \right\}.$$

Clearly the initial condition $u(\cdot, S) = 0$ makes sense only when $S > -\infty$.

Proposition 5.3.7. If $1 , <math>0 \le V \in B_p$ and $\lambda > 0$, then the operator $\lambda + \mathcal{A}$ is invertible from $D_p^{S,T}$ to $L^p(Q(S,T))$.

PROOF. Given $f \in L^p(Q(S,T))$, let $g \in L^p$ be its extension by 0 outside the time interval (S,T) and $u \in D_p(\mathcal{A})$ such that $\lambda u + \mathcal{A}u = g$ in \mathbb{R}^{N+1} (hence in Q(S,T)). Since $\lambda u + \mathcal{A}u = 0$ for $t \leq S$ (when $S > -\infty$), multiplying this identity by $u|u|^{p-2}$ and integrating by parts we get u = 0 for $t \leq S$, hence $u(\cdot, S) = 0$ and $u \in D_p^{S,T}$. Infact we have

$$\int_{Q(-\infty,S)} (\lambda + V) |u|^p + \frac{1}{p} \int_{Q(-\infty,S)} \partial_t (|u|^p) - \int_{Q(-\infty,S)} u |u|^{p-2} \Delta u = 0,$$

which implies, since $\int_{Q(-\infty,S)} u|u|^{p-2}\Delta u \leq 0$ (see Appendix C),

$$\int_{Q(-\infty,S)} (\lambda+V)|u|^p + \frac{1}{p} \int_{\mathbb{R}^N} \int_{-\infty}^S \partial_t(|u|^p) \le 0$$

and then u = 0 for $t \leq S$. This proves the existence part. Concerning uniqueness, assume that $v \in D_p^{S,T}$ satisfies $\lambda v + \mathcal{A}v = 0$ in $Q_{S,T}$. Multiplying by $v|v|^{p-2}$, integrating by parts as above and using the initial condition one easily shows that v = 0.

As usual, if the interval (S,T) is finite, the condition $\lambda > 0$ in not needed.