Chapter 5

Parabolic Schrödinger operators

In this chapter we consider the parabolic Schrödinger operator

$$
\mathcal{A}=\partial_{t}-\Delta+V \quad \text { on } \quad \mathbb{R}^{N+1}
$$

where $V=V(x, t)$ is a nonnegative potential which belongs to the parabolic Reverse Hölder class B_{p} for some $p>1$. Examples of such potentials are all polynomials but also singular functions like $\max \left\{|x|, t^{\frac{1}{2}}\right\}^{\alpha}$ for $\alpha>-\frac{N+2}{p}$. We prove the L^{p} boundedness of the operators $D^{2}\left(\partial_{t}-\Delta+V\right)^{-1}, V\left(\partial_{t}-\Delta+V\right)^{-1}$ and $\partial_{t}\left(\partial_{t}-\Delta+V\right)^{-1}$, thus characterizing the domain of the operator \mathcal{A} on $L^{p}\left(\mathbb{R}^{N+1}\right)$.
The wide literature on the characterization of the domain of (elliptic) Schrödinger operator can be divided in two classes, concerning the assumptions on the potential V. The equality $D(-\Delta+V)=D(-\Delta) \cap D(V)$ holds in $L^{p}\left(\mathbb{R}^{N}\right)$, $1<p<\infty$ either assuming an oscillation condition like $|\nabla V| \leq c V^{3 / 2}$, see [37], or assuming that V belongs to suitable Reverse Hölder classes. The two conditions are incomparable but one find easily examples of polynomials (which satisfy a reverse Hölder inequality) for which the oscillation condition above fails.
In [41] Shen proved the L^{p} boundedness of $D^{2}(-\Delta+V)^{-1}$ on \mathbb{R}^{N} for $1<p<\infty$, assuming $V \in B_{p}$ and under the restrictions $N \geq 3, p \geq \frac{N}{2}$, introducing an auxiliary function $m(x, V)$, which is well defined for $p \geq \frac{N}{2}$ and allows to estimate the fundamental solution.
In a recent work, P. Auscher and B. Ali, see [3], extended Shen's result removing the original restrictions on the space dimension and on p. In their proof they use a criterion to prove L^{p} boundedness of operators in absence of kernels, see [42, Theorem 3.1], [2, Theorem 3.14], and weighted mean value inequalities for nonnegative subharmonic functions, with respect to Muckenhoupt weights. Following Shen's approach, W. Gao and Y. Jiang extended the results to the parabolic case. In [18], they consider the parabolic operator $\partial_{t}-\Delta+V$ where
$V \in B_{p}$ is a nonnegative potential depending only on the space variables and, under the assumptions $N \geq 3$ and $p>(N+2) / 2$, they prove the boundedness of $V\left(\partial_{t}-\Delta+V\right)^{-1}$ in L^{p}.
We obtain the L^{p} boundedness of $V \mathcal{A}^{-1}$ (and consequently of $\partial_{t} \mathcal{A}^{-1}$ and $D^{2} \mathcal{A}^{-1}$) if $0 \leq V \in B_{p}$ for $1<p<\infty$, without any restriction on the space dimension; moreover, our potentials may also depend on the time variable. Our approach is similar to that of [3]. We use a more general version of the boundedness criterion in absence of kernels in homogeneous spaces (see Theorem D.1.1) and the Harnack inequality for subsolutions of the heat equation. A crucial role is played by some properties of the B_{p} weights, originally proved in the classical case when \mathbb{R}^{N} is equipped with the Lebesgue measure and the Euclidean distance. Since we need parabolic cylinders instead of balls of \mathbb{R}^{N}, we use the more general theory of B_{p} weights in homogeneous spaces, as treated in [48, Chapter I].
The chapter is organized as follows.
In Section 5.1 we introduce the reverse Hölder classes B_{p} and the Muckenhoupt classes A_{p}. We state some properties satisfied by these weights and we establish a relation between the two classes.
In Section 5.2 we define the parabolic Schrödinger operator in $L^{p}\left(\mathbb{R}^{N+1}\right)$ and we prove some properties, in particular invertibility and consistency of the resolvent operators.
We start the last section by observing that $V \mathcal{A}^{-1}$ is always bounded in L^{1}. Then, using the Harnack inequality for subsolutions of the heat equation and an approximation procedure, we prove a weighted mean value inequality for positive solutions of the equation $\mathcal{A} u=0$ with respect to B_{p} weights which allows us to apply Shen's interpolation theorem and deduce the boundedness of $V \mathcal{A}^{-1}$ in L^{p}.

For the whole chapter we fix the following notation.

Notation

Given $X_{0}=\left(x_{0}^{1}, \ldots, x_{0}^{N}, t_{0}\right), R>0$, with parabolic cylinder of center $X_{0}=$ (x_{0}, t_{0}) and radius R we mean the set

$$
K=K\left(X_{0}, R\right)=\left\{\left(x^{1}, \ldots, x^{N}, t\right) \in R^{N+1}:\left|x^{i}-x_{0}^{i}\right|<R,\left|t-t_{0}\right|<R^{2}\right\} .
$$

5.1 The parabolic reverse Hölder classes

The classical theory about Muckenhoupt and reverse Hölder classes has been originately formulated for weights in \mathbb{R}^{N} endowed with the euclidean distance, see for example [47, Chapter V]. We will consider however potentials satisfying the "Reverse Hölder Property" with respect to cylinders rather than Euclidean balls. Many properties remain true in this setting. A theory on these classes of weights in homogeneous spaces (like \mathbb{R}^{N+1} with the parabolic distance) is presented for example in [48, Chapter I] to which we refer for the proofs of the results stated in this Section and needed in what follows.

Definition 5.1.1. Let $1<p \leq \infty$. We say that $\omega \in B_{p}$, the class of the reverse Hölder weights of order p, if $\omega \in L_{l o c}^{p}, \omega>0$ a.e. and there exists a positive constant C such the inequality

$$
\begin{equation*}
\left(\frac{1}{|K|} \int_{K} \omega(x, t)^{p} d x d t\right)^{\frac{1}{p}} \leq \frac{C}{|K|} \int_{K} \omega(x, t) d x d t \tag{5.1}
\end{equation*}
$$

holds, for every parabolic cylinder K. If $p=\infty$, the left hand side of the inequality above has to be replaced by the essential supremum of ω on K. The smallest positive constant C such that (5.1) holds is the B_{p} constant of ω.

Observe that $B_{q} \subset B_{p}$ if $p<q$. An important feature of the B_{p} weights is the following self improvement property due to Gehring.

Proposition 5.1.2. Assume that $\omega \in B_{p}$ for some $p<\infty$. Then there exists $\varepsilon>0$, depending on the B_{p} constant of ω, such that $\omega \in B_{p+\varepsilon}$.

The following property connects B_{p} weights with Muckenhoupt classes. In particular it implies that B_{p} weights induce doubling measures.

Definition 5.1.3. Let $1<p<\infty$. We say that $\omega \in A_{p}$ if it is nonnegative and it satisfies the inequality

$$
\frac{1}{|K|} \int_{K} \omega(x, t) d x d t\left[\frac{1}{|K|} \int_{K} \omega(x, t)^{-\frac{p^{\prime}}{p}}\right] \leq A<\infty
$$

for all K parabolic cylinders and some positive constant A.
The space A_{1} consists of nonnegative functions ω such that

$$
\frac{1}{|K|} \int_{K} \omega(x, t) d x d t \leq A \omega(x, t)
$$

for almost every $(x, t) \in K$, for all K parabolic cylinders and some positive constant A.
In both cases, the smallest constant for which the inequality holds is called the A_{p} bound of ω.
Proposition 5.1.4. If $\omega \in B_{p}$ for some $p>1$, then there exists $1 \leq t<\infty$ and $c>0$, depending on p and the B_{p} constant of ω, such that the inequality

$$
\begin{equation*}
\left(\frac{1}{|K|} \int_{K} g\right)^{t} \leq \frac{c}{\omega(K)} \int_{K} g^{t} \omega \tag{5.2}
\end{equation*}
$$

holds for all nonnegative functions g and all parabolic cylinders K. Here $\omega(K)=$ $\int_{K} \omega$.

Remark 5.1.5. It is possible to prove that ω satisfies (5.2) is equivalent to say that $\omega \in A_{t}$ (see [47, Chapter V, 1.4]).

It is not hard to see that all polynomials belong to the reverse Hölder classes. The idea is that the space of all polynolmials of a fixed degree is a finite dimension space. Therefore all the norms are equivalent and the reverse Hölder inequality holds with a constant depending only on the degree of the polynomial and on N for all the cylinders with unitary radius. Up a rescaling the inequality follows for all the cylinders in \mathbb{R}^{N+1}. Also singular functions like $\max \left\{|x|, t^{\frac{1}{2}}\right\}^{\alpha}$ for $\alpha>-\frac{N+2}{p}$ belong to B_{p}. Here we give a proof.
Example 5.1.6. The functions $\max \left\{|x|, t^{\frac{1}{2}}\right\}^{\alpha}$ belong to B_{p} for $\alpha>-\frac{N+2}{p}$.
Proof. Observe that it is sufficient to prove the inequality for parabolic cylinders of unitary radius. A change of variables provides the estimate in the general case.
The hypothesis $\alpha>-\frac{N+2}{p}$ insures integrability near 0 . Note that $f(x, t)=$ $\max \left\{|x|, t^{\frac{1}{2}}\right\}^{\alpha}=d(x, 0)^{\alpha}$ where d is the parabolic distance. Let $K\left(X_{0}, 1\right)$ be a parabolic cylinder of center X_{0} and radius 1 . Set

$$
M=\max \left\{\left(\int_{K\left(X_{0}, 1\right)} f(X)^{p}\right)^{\frac{1}{p}}\left(\int_{K\left(X_{0}, 1\right)} f(X)\right)^{-1}, X_{0}: d\left(X_{0}, 0\right) \leq 2\right\}
$$

Suppose $d\left(X_{0}, 0\right)>2$. If $X \in K\left(X_{0}, 1\right)$ we have

$$
\frac{d(X, 0)}{d\left(X_{0}, 0\right)} \leq \frac{d\left(X-X_{0}, 0\right)}{d\left(X_{0}, 0\right)}+\frac{d\left(X_{0}, 0\right)}{d\left(X_{0}, 0\right)} \leq 1+\frac{1}{d\left(X_{0}, 0\right)} \leq \frac{3}{2}
$$

and

$$
\frac{d(X, 0)}{d\left(X_{0}, 0\right)} \geq \frac{d\left(X_{0}, 0\right)}{d\left(X_{0}, 0\right)}-\frac{d\left(X-X_{0}, 0\right)}{d\left(X_{0}, 0\right)} \geq 1-\frac{1}{2}=\frac{1}{2}
$$

Therefore if $d\left(X_{0}, 0\right)>2$

$$
\frac{1}{2} \leq \frac{d(X, 0)}{d\left(X_{0}, 0\right)} \leq \frac{3}{2}
$$

and

$$
\begin{aligned}
\left(\int_{K\left(X_{0}, 1\right)} f(X)^{p}\right)^{\frac{1}{p}} & \leq\left(\frac{3}{2} d\left(X_{0}, 0\right)\right)^{\alpha}=\left(\frac{3}{2}\right)^{\alpha} \int_{K\left(X_{0}, 1\right)} f\left(X_{0}\right) \\
& \leq 3^{\alpha} \int_{K\left(X_{0}, 1\right)} f(X) .
\end{aligned}
$$

The reverse Hölder inequality is true with B_{p} constant given by the maximum between M and 3^{α}.

5.2 Definition of the operator and some properties

In this section we assume that $0 \leq V \in L_{l o c}^{p}$ for some $1 \leq p \leq \infty$ and consider the parabolic operator

$$
\mathcal{A}=\partial_{t}-\Delta+V
$$

in L^{p}, endowed with the maximal domain

$$
D_{p}(\mathcal{A})=\left\{u \in L^{p}: V u \in L_{l o c}^{1}, \mathcal{A} u \in L^{p}\right\}
$$

Observe that C_{c}^{∞} is contained in $D_{p}(\mathcal{A})$, since $V \in L_{\text {loc }}^{p}$. In some results, however, we shall only assume $0 \leq V \in L_{\text {loc }}^{1}$.
We shall prove that $\mathcal{A}_{p}:=\left(\mathcal{A}, D_{p}(\mathcal{A})\right)$ is a closed operator, that C_{c}^{∞} is a core and that $\lambda+\mathcal{A}$ is invertible for positive λ. We follow Kato's strategy, see [19], where these results are obtained in the elliptic case.
Our main result is the following.
Theorem 5.2.1. For every $\lambda>0$ the operator $\lambda+\mathcal{A}_{p}$ is invertible and $\|(\lambda+$ $\mathcal{A})^{-1} \|_{p} \leq \frac{1}{\lambda}$. Moreover, if $1 \leq p<\infty, C_{c}^{\infty}$ is a core for \mathcal{A}_{p}

The basic tool is a distributional inequality proved by Kato for the laplacian (see [39, Theorem X.2]). For completeness we provide here a short proof in the parabolic case.

Lemma 5.2.2 (Parabolic Kato's inequality). Let $u \in L_{\text {loc }}^{1}$ be such that ($\partial_{t}-$ $\Delta) u \in L_{l o c}^{1}$. Define

$$
\operatorname{sign}(u)=\left\{\begin{array}{lll}
0 & \text { if } & u(x)=0 \\
\overline{u(x)} /|u(x)| & \text { if } & u(x) \neq 0
\end{array}\right.
$$

Then $|u|$ satisfies the following distributional inequality

$$
\left(\partial_{t}-\Delta\right)|u| \leq \operatorname{Re}\left[\operatorname{sign}(u)\left(\partial_{t}-\Delta\right) u\right] .
$$

Proof. We first suppose that $u \in C^{\infty}$. Define

$$
\begin{equation*}
u_{\varepsilon}(x)=\sqrt{|u|^{2}+\varepsilon^{2}} \tag{5.3}
\end{equation*}
$$

so that $u_{\varepsilon} \in C^{\infty}$. Since

$$
\begin{equation*}
u_{\varepsilon} \nabla u_{\varepsilon}=\operatorname{Re}[\bar{u} \nabla u] . \tag{5.4}
\end{equation*}
$$

and $u_{\varepsilon} \geq|u|$, then (5.4) implies that

$$
\begin{equation*}
\left|\nabla u_{\varepsilon}\right| \leq|\bar{u}|\left|u_{\varepsilon}\right|^{-1}|\nabla u| \leq|\nabla u| . \tag{5.5}
\end{equation*}
$$

Taking the divergence of (5.4) we obtain

$$
u_{\varepsilon} \Delta u_{\varepsilon}+\left|\nabla u_{\varepsilon}\right|^{2}=\operatorname{Re}(\bar{u} \Delta u)+|\nabla u|^{2}
$$

so by (5.5)

$$
\begin{equation*}
\Delta u_{\varepsilon} \geq \operatorname{Re}\left[\operatorname{sign}_{\varepsilon}(u) \Delta u\right], \tag{5.6}
\end{equation*}
$$

where $\operatorname{sign}_{\varepsilon}(u)=\bar{u} / u_{\varepsilon}$. Differentiating (5.3) with respect to t we obtain

$$
\begin{equation*}
\partial_{t} u_{\varepsilon}=\operatorname{Re}\left[\operatorname{sign}_{\varepsilon}(u) \partial_{t} u\right] \tag{5.7}
\end{equation*}
$$

and, combining (5.6) and (5.7),

$$
\begin{equation*}
\left(\partial_{t}-\Delta\right) u_{\varepsilon} \leq \operatorname{Re}\left[\operatorname{sign}_{\varepsilon}(u)\left(\partial_{t}-\Delta\right) u\right] \tag{5.8}
\end{equation*}
$$

Let now $u \in L_{l o c}^{1}$ be such that $\left(\Delta-\partial_{t}\right) u \in L_{l o c}^{1}$ and let ϕ_{n} be an approximate identity. Since $u^{n}=u * \phi_{n} \in C^{\infty}$, then by (5.8)

$$
\begin{equation*}
\left(\partial_{t}-\Delta\right)\left(u^{n}\right)_{\varepsilon} \leq \operatorname{Re}\left[\operatorname{sign}_{\varepsilon}\left(u^{n}\right)\left(\partial_{t}-\Delta\right) u^{n}\right] \tag{5.9}
\end{equation*}
$$

Fix $\varepsilon>0$ and let $n \rightarrow \infty$. Then $u^{n} \rightarrow u$ in $L_{l o c}^{1}$ and a.e. (passing to a subsequence, if necessary). Thus $\operatorname{sign}_{\varepsilon}\left(u^{n}\right) \rightarrow \operatorname{sign}_{\varepsilon}(u)$ a.e. Since $\left(\partial_{t}-\Delta\right) u^{n}=$ $\left(\left(\partial_{t}-\Delta\right) u\right) * \phi_{n}$ and $\left(\partial_{t}-\Delta\right) u \in L_{l o c}^{1}$, then $\left(\partial_{t}-\Delta\right) u^{n} \rightarrow\left(\partial_{t}-\Delta\right) u$ in $L_{l o c}^{1}$, too. It is now easy to see that $\operatorname{sign}_{\varepsilon}\left(u^{n}\right)\left(\partial_{t}-\Delta\right) u^{n}$ converges in the sense of distributions to $\operatorname{sign}_{\varepsilon}(u)\left(\partial_{t}-\Delta\right) u$. Thus, letting $n \rightarrow \infty$ in (5.8) we conclude that

$$
\left(\partial_{t}-\Delta\right) u_{\varepsilon} \leq \operatorname{Re}\left[\operatorname{sign}_{\varepsilon}(u)\left(\partial_{t}-\Delta\right) u\right]
$$

Now taking $\varepsilon \rightarrow 0$ we obtain the desired inequality for u, $\operatorname{since}^{\operatorname{sign}} \boldsymbol{s i n}_{\varepsilon}(u) \rightarrow$ $\operatorname{sign}(u)$ and $\left|\operatorname{sign}_{\varepsilon}(u)\right| \leq 1$.

Remark 5.2.3. Changing t with $-t$ one obtains that if $u,\left(\partial_{t}+\Delta\right) u \in L_{l o c}^{1}$, then

$$
\left(\partial_{t}+\Delta\right)|u| \leq \operatorname{Re}\left[\operatorname{sign}(u)\left(\partial_{t}+\Delta\right) u\right]
$$

The following results are easy consequences of Kato's inequality.
Lemma 5.2.4. Let $0 \leq V \in L_{l o c}^{1}$. Assume that $u,\left(\partial_{t}-\Delta\right) u, V u \in L_{l o c}^{1}$ and set, for $\lambda \geq 0, f=(\lambda+\mathcal{A}) u$. Then

$$
\begin{equation*}
\left(\lambda+\partial_{t}-\Delta+V\right)|u| \leq|f| \tag{5.10}
\end{equation*}
$$

Proof. The claim immediately follows by Lemma 5.2.2. Indeed

$$
\left(\lambda+\partial_{t}-\Delta+V\right)|u| \leq \operatorname{Re}\left[\operatorname{sign}(u)\left(\left(\partial_{t}-\Delta\right) u+\lambda u+V u\right)\right]=\operatorname{Re}[f \operatorname{sign}(u)] \leq|f| .
$$

Lemma 5.2.5. For every positive $\lambda>0$ the operator $\left(\lambda+\partial_{t}-\Delta\right)^{-1}$ is a positive map of \mathcal{S}^{\prime} onto itself.

Proof. Since $\lambda-\partial_{t}-\Delta$ is invertible from \mathcal{S} onto \mathcal{S}, its adjoint operator $\lambda+\partial_{t}-\Delta$ is invertible from \mathcal{S}^{\prime} into itself. Let now $0 \leq \psi \in \mathcal{S}^{\prime}$ and let $\phi \in \mathcal{S}^{\prime}$ be such that $0 \leq \psi=\left(\lambda+\partial_{t}-\Delta\right) \phi$. If $0 \leq u \in \mathcal{S}$, then
$\langle\phi, u\rangle=\left\langle\left(\lambda+\partial_{t}-\Delta\right)^{-1}\left(\lambda+\partial_{t}-\Delta\right) \phi, u\right\rangle=\left\langle\left(\lambda+\partial_{t}-\Delta\right) \phi,\left(\lambda-\partial_{t}-\Delta\right)^{-1} u\right\rangle \geq 0$
since $\left(\lambda-\partial_{t}-\Delta\right)^{-1}$ is positive on \mathcal{S}, by the maximum principle. This proves that $\phi=\left(\lambda+\partial_{t}-\Delta\right)^{-1} \psi$ is positive.

An estimate for the resolvent operator easily follows.

Proposition 5.2.6. Let $1 \leq p \leq \infty, \lambda>0$. Then, if $u \in D_{p}(\mathcal{A})$,

$$
\begin{equation*}
\lambda\|u\|_{p} \leq\|(\lambda+\mathcal{A}) u\|_{p} . \tag{5.11}
\end{equation*}
$$

Proof. Let $u \in D_{p}(\mathcal{A})$, set $f=(\lambda+\mathcal{A}) u \in L^{p}$. $\mathrm{By}(5.10)$

$$
\left(\lambda+\partial_{t}-\Delta\right)|u| \leq(\lambda+\mathcal{A})|u| \leq|f|
$$

and Lemma 5.2.5 yields

$$
\begin{equation*}
|u| \leq\left(\lambda+\partial_{t}-\Delta\right)^{-1}|f| \tag{5.12}
\end{equation*}
$$

Then

$$
\|u\|_{p} \leq\left\|\left(\lambda+\partial_{t}-\Delta\right)^{-1}|f|\right\|_{p} \leq \frac{1}{\lambda}\|f\|_{p}
$$

The positivity of the resolvent is proved along the same way.
Proposition 5.2.7. Let $0 \leq V \in L_{l o c}^{1}$ and $\lambda>0$. If $u,\left(\partial_{t}-\Delta\right) u, V u \in L_{l o c}^{1}$ and $f=(\lambda+\mathcal{A}) u \geq 0$, then $u \geq 0$.

Proof. Subtracting the equality $f=(\lambda+\mathcal{A}) u \geq 0$ from (5.10) we obtain $\left(\lambda+\partial_{t}-\Delta+V\right)(|u|-u) \leq 0$, hence $\left(\lambda+\partial_{t}-\Delta\right)(|u|-u) \leq 0$. Lemma 5.2.5 implies $|u|-u \leq 0$ so that $u=|u|$.

Proposition 5.2.8. For every $1 \leq p \leq \infty$, the operator \mathcal{A}_{p} is closed. Moreover, if $\lambda>0, \lambda+\mathcal{A}_{p}$ has closed range.

Proof. Let $\left(u_{n}\right) \subset D_{p}(\mathcal{A})$ such that

$$
u_{n} \rightarrow u, \quad \mathcal{A} u_{n}=\left(\partial_{t}-\Delta\right) u_{n}+V u_{n}=f_{n} \rightarrow f \text { in } L^{p} .
$$

We apply (5.10) to $u=u_{n}-u_{m}, f=f_{n}-f_{m}$ and $\lambda=0$ obtaining

$$
\left(\partial_{t}-\Delta+V\right)\left|u_{n}-u_{m}\right| \leq\left|f_{n}-f_{m}\right| .
$$

Then, for every $0 \leq \phi \in C_{c}^{\infty}$

$$
0 \leq\langle V| u_{n}-u_{m}|, \phi\rangle \leq\langle | f_{n}-f_{m}|, \phi\rangle+\langle | u_{n}-u_{m}\left|,\left(\Delta+\partial_{t}\right) \phi\right\rangle .
$$

Letting n, m to infinity, the right hand side of the previous inequality tends to 0 and this shows that $V u_{n} \phi$ is a Cauchy sequence in L^{1}. Since its limit is $V u \phi$ we conclude (by the arbitrariness of ϕ) that $V u \in L_{l o c}^{1}$ and that $V u_{n} \rightarrow V u$ in $L_{l o c}^{1}$. Then $f_{n}=\left(\partial_{t}-\Delta+V\right) u_{n} \rightarrow\left(\partial_{t}-\Delta+V\right) u$ in the sense of distributions. On the other hand $f_{n} \rightarrow f$ in L^{p}, therefore $u \in D_{p}(\mathcal{A})$ and $f=\left(\partial_{t}-\Delta+V\right) u \in L^{p}$. This proves the closedness of \mathcal{A}.
Finally, $\lambda+\mathcal{A}$ has closed range, by (5.11).

Proof (Theorem 5.2.1). Assume first that $1 \leq p<\infty$. Since \mathcal{A}_{p} is closed and has closed range, we have only to prove that $(\lambda+\mathcal{A})\left(C_{c}^{\infty}\right)$ is dense in L^{p}.

Let $u \in L^{p^{\prime}}$ such that $\int\left(\lambda+\partial_{t}-\Delta+V\right) \phi u=0$ for every $\phi \in C_{c}^{\infty}$. We have to show that $u=0$. Evidently u satisfies $\lambda u-\partial_{t} u-\Delta u+V u=0$ in the sense of distributions and, since $V \in L_{l o c}^{p}$ and $u \in L^{p^{\prime}}, V u \in L_{l o c}^{1}$. Thus $u \in D_{p^{\prime}}(\mathcal{B})$ and $(\lambda+\mathcal{B}) u=0$, where $\mathcal{B}=-\partial_{t}-\Delta+V$. The injectivity of $\lambda+\mathcal{B}$ (that follows from Proposition 5.2.6 changing t to $-t$) implies $u=0$ and proves the density of $(\lambda+\mathcal{A})\left(C_{c}^{\infty}\right)$ in L^{p}.

Next we consider the case where $p=\infty$. Let $0 \leq f \in L^{\infty}$ and consider a sequence $f_{n} \in L^{\infty} \cap L^{1}$ such that $0 \leq f_{n} \nearrow f$. By the first part of the proof, there are $u_{n} \in D_{1}(\mathcal{A})$ such that $(\lambda+\mathcal{A}) u_{n}=f_{n}$. By Proposition 5.2.7 the sequence $\left(u_{n}\right)$ is increasing and consists of nonnegative functions and, since $\lambda\left\|u_{n}\right\|_{\infty} \leq\left\|f_{n}\right\|_{\infty} \leq\|f\|_{\infty}$, its (pointwise) limit u belongs to L^{∞}. Moreover $V u_{n} \rightarrow V u$ in $L_{l o c}^{1}$ because $V \in L_{l o c}^{\infty}$ and $u_{n} \rightarrow u, 0 \leq u_{n} \leq u$. Hence $f_{n}=(\lambda+\mathcal{A}) u_{n} \rightarrow\left(\lambda+\partial_{t}-\Delta\right) u+V u$ in the sense of distributions. But $f_{n} \rightarrow f$ monotonically and then $(\lambda+\mathcal{A}) u=f$. This means that $u \in D_{\infty}(\mathcal{A})$ and $(\lambda+\mathcal{A}) u=f$. Since a general $f \in L^{\infty}$ is a linear combination of positive elements, the proof is complete.

Finally, we prove the consistency of the resolvent operators.
Proposition 5.2.9. Let $1 \leq p \leq q$ and $0 \leq V \in L_{\text {loc }}^{q}$. If $\lambda>0$ and $f \in L^{p} \cap L^{q}$, then $\left(\lambda+\mathcal{A}_{p}\right)^{-1} f=\left(\lambda+\mathcal{A}_{q}\right)^{-1} f$.

Proof. Let $u=\left(\lambda+\mathcal{A}_{p}\right)^{-1} f, v=\left(\lambda+\mathcal{A}_{q}\right)^{-1} f$ and $w=u-v$. Then $w, V w \in L_{l o c}^{1}$ and $\left(\partial_{t}-\Delta\right) w=-(\lambda+V) w \in L_{l o c}^{1}$. Since $(\lambda+\mathcal{A}) w=0$, by Proposition 5.2.7 we deduce that $w=0$.

5.3 Characterization of the domain of \mathcal{A}

In this section we assume that all functions are real-valued.

5.3.1 The operator \mathcal{A} on L^{1}.

It is easy to obtain a-priori estimates for $p=1$, leading to a (partial) description of $D_{1}(\mathcal{A})$. They will also play a key role in the proof of the a-priori estimates in L^{p}.

Lemma 5.3.1. Assume that $0 \leq V \in L_{\text {loc }}^{1}$. For every $u \in D_{1}(\mathcal{A})$ we have

$$
\begin{equation*}
\|V u\|_{1} \leq\|\mathcal{A} u\|_{1}, \quad\left\|\left(\partial_{t}-\Delta\right) u\right\|_{1} \leq 2\|\mathcal{A} u\|_{1} . \tag{5.13}
\end{equation*}
$$

Proof. Let $h_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be a sequence of smooth functions such that $\left|h_{n}\right| \leq C, h_{n}^{\prime}(s) \geq 0$ and $h_{n}(s) \rightarrow \operatorname{sign}(s)$ for $n \rightarrow \infty$ and for every $s \in \mathbb{R}$. Let H_{n} be such that $H_{n}^{\prime}=h_{n}$ and $H_{n}(0)=0$. If $u \in C_{c}^{\infty}$ then, by the Lebesgue convergence Theorem, we have

$$
\begin{equation*}
\int_{\mathbb{R}^{N+1}} \operatorname{sign}(u) \partial_{t} u=\lim _{n} \int_{\mathbb{R}^{N+1}} h_{n}(u) \partial_{t} u=\lim _{n} \int_{\mathbb{R}^{N+1}} \partial_{t}\left(H_{n}(u)\right)=0 \tag{5.14}
\end{equation*}
$$

$$
\begin{equation*}
-\int_{\mathbb{R}^{N+1}} \operatorname{sign}(u) \Delta u=-\lim _{n} \int_{\mathbb{R}^{N+1}} h_{n}(u) \Delta u=\lim _{n} \int_{\mathbb{R}^{N+1}}|\nabla u|^{2} h_{n}^{\prime}(u) \geq 0 . \tag{5.15}
\end{equation*}
$$

Therefore, if $\mathcal{A} u=f$ we obtain

$$
\int_{\mathbb{R}^{N+1}} V|u| \leq \int_{\mathbb{R}^{N+1}} \operatorname{sign}(u)\left(\partial_{t}-\Delta+V\right) u=\int_{\mathbb{R}^{N+1}} f \operatorname{sign}(u) \leq \int_{\mathbb{R}^{N+1}}|f|
$$

and the first inequality is proved for $u \in C_{c}^{\infty}$. Since C_{c}^{∞} is a core for \mathcal{A}_{1} it is easily seen that it extends to every $u \in D_{1}(\mathcal{A})$.

The second inequality follows from the first, since $\left(\partial_{t}-\Delta\right)=\mathcal{A}-V$.
The characterization of the domain of \mathcal{A}_{1} is an immediate consequence of the lemma above. We refer to [50] for similar results in the elliptic case.
Proposition 5.3.2. If $0 \leq V \in L_{l o c}^{1}$, then

$$
D_{1}(\mathcal{A})=\left\{u \in L^{1} \quad: \quad V u \in L^{1},\left(\partial_{t}-\Delta\right) u \in L^{1}\right\}
$$

5.3.2 A priori estimates in $L^{p}\left(\mathbb{R}^{N+1}\right)$.

We investigate when (5.13) holds for other values of p. We remark that (5.13) can fail even for $p=2$ and in the elliptic case, see e.g. [31, Example 3.7].
The B_{p} property of the potential is a sufficient condition to characterize the domain of the operator. In fact we prove the following result.
Theorem 5.3.3. Let $1<p<\infty$. If $0 \leq V \in B_{p}$ then there exists a positive constant C depending only on p and the \bar{B}_{p} constant of V, such that

$$
\begin{equation*}
\|V u\|_{p} \leq C\left\|\partial_{t} u-\Delta u+V u\right\|_{p} \tag{5.16}
\end{equation*}
$$

for all $u \in D_{p}(\mathcal{A})$. In particular,

$$
D_{p}(\mathcal{A})=\left\{u \in W_{p}^{2,1}: V u \in L^{p}\right\} .
$$

We will apply Theorem D.1.1 to the operator $T=V \mathcal{A}^{-1}|\cdot|$ with $p_{0}=1$, a suitable $q_{0}>p$ and $\alpha_{1}=3, \alpha_{2}=4$. Therefore we have to prove that, if K is a parabolic cylinder and $f \in L_{c}^{\infty}$ has support in $\mathbb{R}^{N+1} \backslash 4 K, u=\mathcal{A}^{-1} f$ satisfies

$$
\left(\frac{1}{|K|} \int_{K}(V|u|)^{q_{0}}\right)^{\frac{1}{q_{0}}} \leq \frac{C}{|3 K|} \int_{3 K} V|u|
$$

for some positive C independent of f. Observe that u satisfies the homogeneous equation

$$
\mathcal{A} u=\left(\partial_{t}-\Delta+V\right) u=0
$$

in $4 K$. As first step we prove a mean value inequality for functions u as above.
Lemma 5.3.4. Assume that $0<\varepsilon \leq V \in L_{\text {loc }}^{p}$. For every $r>0$ there exists a positive constant $C=C(r)$ (hence independent of ε) such that

$$
\sup _{K} u \leq C\left(\frac{1}{|3 K|} \int_{3 K} u^{r}\right)^{\frac{1}{r}}
$$

for all parabolic cylinders $K, 0 \leq f \in L_{c}^{\infty}\left(\mathbb{R}^{N+1}\right)$ with support in $\mathbb{R}^{N+1} \backslash 4 K$ and $u=\mathcal{A}^{-1} f$.

Proof. Let $K=K\left(\left(x_{0}, t_{0}\right), R\right)$ a parabolic cylinder and $0 \leq f \in L_{c}^{\infty}\left(\mathbb{R}^{N+1}\right)$ with support in $\mathbb{R}^{N+1} \backslash 4 K$. By Theorem 5.2 .1 there exists $u \in D_{p}(\mathcal{A})$ such that

$$
\mathcal{A} u=f \quad \text { in } \mathbb{R}^{N+1}
$$

By Proposition 5.2.7 $u \geq 0$. We are going to use Harnack's inequality where, however, more regularity on the solutions is required and then an approximation procedure is needed. Let \mathcal{A}_{k} be the operators with bounded potentials $V_{k}=$ $V \wedge k$. For every k let $0 \leq u_{k}$ be such that $\left(\partial_{t}-\Delta+V_{k}\right) u_{k}=f$. The functions u_{k} are solutions of parabolic equations with bounded coefficients, then for all $k \in \mathbb{N} u_{k} \in W_{q}^{2,1}\left(\mathbb{R}^{N+1}\right)$ for all $1<q<\infty$. Since f has support in $\mathbb{R}^{N+1} \backslash 4 K$,

$$
\left(\partial_{t}-\Delta\right) u_{k}=-V_{k} u_{k} \leq 0 \quad \text { in } \quad 4 K
$$

Given a parabolic cylinder $K=K\left(\left(x_{0}, t_{0}\right), R\right)$ and a positive constant $c>0$, we denote by $c K$ the cylinder with the same center as K and radius $c R$ and by \widetilde{K} the set $K \cap\left\{t<t_{0}\right\}$.
Let K_{1} be the cylinder of center $\left(x_{0}, t_{0}+R^{2}\right)$ and radius $\sqrt{2} R$. Obviously $K \subset \widetilde{K_{1}}$ and $\widetilde{2 K_{1}} \subset 2 K_{1} \subset 3 K \subset 4 K$. It follows that

$$
\left(\partial_{t}-\Delta\right) u_{k}=-V_{k} u_{k} \leq 0 \quad \text { in } \quad \widetilde{2 K_{1}} .
$$

By [24, Theorem 7.21] or see [35], for any $r>0$ there exists $C=C(r)>0$ such that

$$
\sup _{\widetilde{K_{1}}} u_{k} \leq C\left(\frac{1}{R^{n+2}} \int_{\widetilde{2 K_{1}}} u_{k}^{r}\right)^{\frac{1}{r}}
$$

and hence

$$
\begin{align*}
\sup _{K} u_{k} & \leq \sup _{\widetilde{K_{1}}} u_{k} \leq C\left(\frac{1}{R^{n+2}} \int_{\overparen{2 K_{1}}} u_{k}^{r}\right)^{\frac{1}{r}} \leq C\left(\frac{1}{R^{n+2}} \int_{3 K} u_{k}^{r}\right)^{\frac{1}{r}} \tag{5.17}\\
& =C\left(\frac{1}{|3 K|} \int_{3 K} u_{k}^{r}\right)^{\frac{1}{r}}
\end{align*}
$$

Let us observe that the constant C is independent of the potential V_{k}. This allows us to let $k \rightarrow \infty$ in the above inequality.
Let $k, m \in \mathbb{N}$ with $k>m$. Then

$$
\partial_{t}\left(u_{k}-u_{m}\right)-\Delta\left(u_{k}-u_{m}\right)+V_{k}\left(u_{k}-u_{m}\right)=\left(V_{m}-V_{k}\right) u_{m} \leq 0
$$

and by Proposition 5.2 .7 (or simply by the maximum principle) $u_{k}-u_{m} \leq$ 0 . Therefore $\left(u_{k}\right)$ is decreasing and converges pointwise to a function $w \geq 0$. Moreover, by Lemma 5.3.1, $\left\|V_{k} u_{k}\right\|_{1} \leq\|f\|_{1}$ for every $k \in \mathbb{N}$ and then, by Fatou's Lemma, $V w \in L^{1}$. By Proposition 5.2.6, $\left\|u_{k}\right\|_{q} \leq C\|f\|_{q}$ for all $1 \leq$
$q \leq \infty$ and, since $u_{k} \rightarrow w$ pointwise, $w \in L^{q}$ for all $1 \leq q \leq \infty$.
Since for every $\phi \in C_{c}^{\infty}$

$$
\int_{\mathbb{R}^{N+1}} u_{k}\left(-\partial_{t} \phi-\Delta \phi+V_{k} \phi\right)=\int_{\mathbb{R}^{N+1}} f \phi,
$$

letting k to infinity we get

$$
\int_{\mathbb{R}^{N+1}} w\left(-\partial_{t} \phi-\Delta \phi+V \phi\right)=\int_{\mathbb{R}^{N+1}} f \phi
$$

and therefore $\mathcal{A} w=f$ in the sense of distributions. This shows that w belongs to $D_{p}(\mathcal{A})$ and, by Theorem 5.2.1, $w=u$, that is u_{k} converges to u pointwise. Since u_{k} is decreasing, (5.17) yields

$$
\begin{equation*}
\sup _{K} u \leq \sup _{K} u_{k} \leq C\left(\frac{1}{|3 K|} \int_{3 K}\left(u_{k}\right)^{r}\right)^{\frac{1}{r}} . \tag{5.18}
\end{equation*}
$$

Finally, u_{k} is decreasing, therefore $u_{k}^{r} \leq u_{1}^{r} \in L^{1}$ and letting $k \rightarrow \infty$ in (5.18) we obtain the thesis by dominated convergence.

Now we prove that Lemma 5.3.4 holds if we replace the Lebesgue measure with that induced by the density V.
Lemma 5.3.5. Suppose $0<\varepsilon \leq V \in B_{p}$ and fix $0<s<\infty$ and u as in Lemma 5.3.4. Then for every cylinder K

$$
\sup _{K} u \leq\left(\frac{C}{V(3 K)} \int_{3 K} V u^{s}\right)^{\frac{1}{s}}
$$

where C depends only on s, p and the B_{p} constant of V and

$$
V(3 K)=\int_{3 K} V
$$

Proof. Let $0<s<\infty$ and K be a parabolic cylinder of \mathbb{R}^{N+1}. We fix t as in Proposition 5.1.4. By using Lemma 5.3.4 with $r=\frac{s}{t}$ and (5.2) we obtain

$$
\sup _{K} u \leq C\left(\frac{1}{|3 K|} \int_{3 K} u^{\frac{s}{t}}\right)^{\frac{t}{s}} \leq C\left(\frac{1}{V(3 K)} \int_{3 K} V u^{s}\right)^{\frac{1}{s}}
$$

By combining the estimate in Lemma 5.3 .5 and the B_{q} property we deduce the following.

Corollary 5.3.6. Let $0<\varepsilon \leq V \in B_{p}, 0<s<\infty$ and u as in Lemma 5.3.4. Then for every cylinder K

$$
\left(\frac{1}{|K|} \int_{K}\left(V u^{s}\right)^{p}\right)^{\frac{1}{p}} \leq \frac{C}{|3 K|} \int_{3 K} V u^{s}
$$

where C depends only on s, p and the B_{p} constant of V.

Proof. By using the B_{p} property of V and Lemma 5.3 .5 we obtain

$$
\begin{aligned}
\left(\frac{1}{|K|} \int_{K}\left(V u^{s}\right)^{p}\right)^{\frac{1}{p}} & \leq\left(\frac{1}{|K|} \int_{K} V^{p}\right)^{\frac{1}{p}} \sup _{K} u^{s} \leq C\left(\frac{1}{|K|} \int_{K} V\right) \sup _{K} u^{s} \\
& \leq \frac{C}{|3 K|} \int_{3 K} V u^{s} .
\end{aligned}
$$

We can now prove our main result.
Proof (Theorem 5.3.3). Suppose first that $0<\varepsilon \leq V \in B_{p}$ for some ε. By Proposition 5.1.2 there exists $q_{0}>p$ such that $V \in B_{q_{0}}$.
Let K be a parabolic cylinder in \mathbb{R}^{N+1} and $f \in L_{c}^{\infty}\left(\mathbb{R}^{N+1}\right)$ with support in $\mathbb{R}^{N+1} \backslash 4 K$. We set $T=V \mathcal{A}^{-1}|\cdot|$. Then $T f=V u$ and $u \geq 0$ by Proposition 5.2.7. Note that, since $V \geq \varepsilon>0$, Proposition 5.2.9 shows that T acts in a consistent way in the L^{q} scale. By Corollary 5.3 .6 with $s=1$,

$$
\left(\frac{1}{|K|} \int_{K}(T f)^{q_{0}}\right)^{\frac{1}{q_{0}}}=\left(\frac{1}{|K|} \int_{K}(V u)^{q_{0}}\right)^{\frac{1}{q_{0}}} \leq \frac{C}{|3 K|} \int_{3 K} V u=\frac{C}{|3 K|} \int_{3 K}|T f| .
$$

By Lemma 5.3.1 T is bounded on L^{1} and, by Proposition 5.2.7, it is also sublinear. Choosing $p_{0}=1$ and q_{0} as above in Theorem D.1.1, we deduce that

$$
\begin{equation*}
\|V u\|_{p}=\|T f\|_{p} \leq C\|f\|_{p} \tag{5.19}
\end{equation*}
$$

for every $f \in L_{c}^{\infty}$, where C depends only on p and the B_{p} constant of V. Since, by Proposition 5.2.7 again, the operator $V \mathcal{A}^{-1}$ preserves positivity, we have that $\left|V \mathcal{A}^{-1} f\right| \leq T f$. Therefore by 5.19 we deduce that

$$
\left\|V \mathcal{A}^{-1} f\right\|_{p} \leq C\|f\|_{p}
$$

for every $f \in L_{c}^{\infty}$ and finally, by approximation, for every $f \in L^{p}$. Then the identity

$$
\left(\partial_{t}-\Delta\right) u=f-V u \in L^{p}
$$

proves, by parabolic regularity, that the distribution u belongs to $W_{p}^{2,1}$. Then

$$
D_{p}(\mathcal{A}) \subset\left\{u \in W_{p}^{2,1}: V u \in L^{p}\right\}
$$

and, since the opposite inclusion is obvious, the characterization of the domain is proved. Now we prove (5.16) in the general case when $V \geq 0$. Let $u \in D_{p}(A)$. then for every $\varepsilon>0$ we have

$$
\|(V+\varepsilon) u\|_{p} \leq C\left\|\partial_{t} u-\Delta u+(V+\varepsilon) u\right\|_{p}
$$

Since C depends only on p and the B_{p} constant of $V+\varepsilon$ which is independent of $0<\varepsilon \leq 1$, letting $\varepsilon \rightarrow 0$ the proof is complete.

Finally we show that the results of this section hold when the time variable varies in an interval, rather than in the whole space. We fix $-\infty \leq S<T \leq \infty$ and consider the set

$$
Q(S, T)=\mathbb{R}^{N} \times(S, T)
$$

and the operator \mathcal{A} endowed with the domain

$$
D_{p}^{S, T}=\left\{u \in W_{p}^{2,1}(Q(S, T)): V u \in L^{p}(Q(S, T)), \quad u(\cdot, S)=0\right\}
$$

Clearly the initial condition $u(\cdot, S)=0$ makes sense only when $S>-\infty$.
Proposition 5.3.7. If $1<p<\infty, 0 \leq V \in B_{p}$ and $\lambda>0$, then the operator $\lambda+\mathcal{A}$ is invertible from $D_{p}^{S, T}$ to $L^{p}(Q(S, T))$.

Proof. Given $f \in L^{p}(Q(S, T))$, let $g \in L^{p}$ be its extension by 0 outside the time interval (S, T) and $u \in D_{p}(\mathcal{A})$ such that $\lambda u+\mathcal{A} u=g$ in \mathbb{R}^{N+1} (hence in $Q(S, T)$). Since $\lambda u+\mathcal{A} u=0$ for $t \leq S$ (when $S>-\infty$), multiplying this identity by $u|u|^{p-2}$ and integrating by parts we get $u=0$ for $t \leq S$, hence $u(\cdot, S)=0$ and $u \in D_{p}^{S, T}$. Infact we have

$$
\int_{Q(-\infty, S)}(\lambda+V)|u|^{p}+\frac{1}{p} \int_{Q(-\infty, S)} \partial_{t}\left(|u|^{p}\right)-\int_{Q(-\infty, S)} u|u|^{p-2} \Delta u=0
$$

which implies, since $\int_{Q(-\infty, S)} u|u|^{p-2} \Delta u \leq 0$ (see Appendix C),

$$
\int_{Q(-\infty, S)}(\lambda+V)|u|^{p}+\frac{1}{p} \int_{\mathbb{R}^{N}} \int_{-\infty}^{S} \partial_{t}\left(|u|^{p}\right) \leq 0
$$

and then $u=0$ for $t \leq S$. This proves the existence part. Concerning uniqueness, assume that $v \in D_{p}^{S, T}$ satisfies $\lambda v+\mathcal{A} v=0$ in $Q_{S, T}$. Multiplying by $v|v|^{p-2}$, integrating by parts as above and using the initial condition one easily shows that $v=0$.
As usual, if the interval (S, T) is finite, the condition $\lambda>0$ in not needed.

