
Chapter 2

Kernel estimates for

Markov semigroups

This chapter is devoted to the study of kernels of elliptic operators. As we have
seen in Chapter 1, even if the coefficients of the operators are unbounded, the
semigroup generated in the space of continuous and bounded functions admits
an integral representation through a kernel p. We are interested in finding
pointwise upper bounds for such kernels. However we will not consider the
whole operator, our attention will be first turned toward Kolmogorov operators
not containing a zero order derivative term. In a second moment we will analyse
also Schrödinger operators not containing a drift term.
In both cases we use Lyapunov function techniques.

2.1 Kernel estimates for a class of Kolmogorov

semigroups

We consider the second order elliptic operator

A =

N∑

i,j=1

aijDij +

N∑

i=1

FiDi = A0 + F ·D

where A0 =
∑N
i,j=1 aijDij and the associated parabolic problem

{
ut(x, t) = Au(x, t), x ∈ RN , t > 0,
u(x, 0) = f(x) x ∈ RN

(2.1)

with initial datum f ∈ Cb(RN ).
The operator A is endowed with the maximal domain in Cb(RN ) given by

Dmax(A) = {u ∈ Cb(R
N ) ∩W 2,p

loc (RN ) for all p <∞ : Au ∈ Cb(R
N )}.
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As proved in Chapter 1, assuming that (aij) is a symmetric matrix, aij ∈
Cαloc(R

N ), Fi ∈ Cαloc(R
N ) for some 0 < α < 1 and the ellipticity condition

λ|ξ|2 ≤
N∑

i,j=1

aij(x)ξiξj ≤ Λ|ξ|2

for every x, ξ ∈ RN and suitable 0 < λ ≤ Λ, it is possible to prove the
existence of a bounded classical solution of such problem, i.e. a function u ∈
C(RN × [0,+∞))∩C1,2(RN × (0,+∞)) which is bounded in RN × [0, T ] for any
T > 0 and satisfies ∂tu, D

2u ∈ Cα(RN × (0,+∞)) and (2.1). In their work,
Metafune, Pallara and Rhandi (see [27]), using Lyapunov functions independent
of t, prove estimates of the form

p(x, y, t) ≤ c(t)ω(y).

For instance, if the drift term is given by F (x) = −|x|r x|x| and the second order

part is the Laplacian, they prove that, for any γ < 1/(r+1) and for some positive

constants c1 and c2, p(x, y, t) ≤ c1 exp
(
c2t

− r+1
r−1

)
exp(−γ|y|r+1) for small times

t and for all x, y ∈ RN .
Following their idea, but considering Lyapunov functions depending also on the
time variable for the operator ∂t +A, we deduce estimates of the form

p(x, y, t) ≤ c(t)ω(y, t).

In particular, in the special case mentioned above, for small times, we obtain

p(x, y, t) ≤ c1t
−δ exp(−tαγ|y|r+1).

We remark that, although for 0 < t ≤ 1 exp{−c|y|r+1} ≤ exp{−ctα|y|r+1}, the
function c(t) blows up polynomially in our estimates and exponentially in [27].
Therefore, using Lyapunov functions for the parabolic operator depending also
on the time variable t, we gain a better behaviour for the function c(t).
We start by proving the integrability of certain Lyapunov functions with re-
spect to the measure p(x, ·, t)dy. Moreover an estimate of the L1-norm of the
Lyapunov functions with respect to the measure above is obtained. Assuming
suitable assumptions on the radial component of the drift F , examples of Lya-
punov functions for the parabolic operator are given.
Following [27, Section 3], it is proved how, underthe hypothesis of integrability
of some power k of the drift with respect to the measure p, the kernel is in some
Lebesgue spaces Lr or in some other spaces embedded in L∞ for k large enough.
Then the main result is proved, we apply an estimate for the L∞-norm of solu-
tions of certain parabolic problems to deduce the claimed result. An useful tool
employed here is a result of Sobolev regularity for transition probabilities.
In some recent papers, Bogachev, Krylov, Röckner and Shaposhnikov (see [6], [7]
and [8]) have proved existence and regularity properties for parabolic problems



23

having measures as initial data. The authors assume also integrability proper-
ties of the drift term, comparables to ours, and deduce the uniform boundedness
of the solutions in RN × [0, T ] whenever T < 1. Their results do not apply to
our situation since the fundamental solution p is singular for t = 0.

All over the section we will assume the existence of a Lyapunov function for
the operator A, that is a function 0 ≤ V ∈ C2(RN ) such that lim|x|→∞ V (x) =
+∞ and AV (x) ≤ λV (x) for some positive λ. We recall that this assumption
insures that the domain of the weak generator D̂ coincides with the maximal
domainDmax(A) (see Theorem 1.2.5). We will see later that Lyapunov functions
exist for the operators we are interested in.
Moreover, since we will deal with differential quotients and we have to apply the
integration by parts formula, we suppose that the coefficients aij of the operator
are of class C1

b (R
N ).

2.1.1 L
1- estimates of some Lyapunov functions

In this section we show how to obtain the integrability of certain unbounded
functions with respect to the kernel p. Later pointwise estimates will be deduced
from L1-bounds.
Our technique rests on the following definition, where L = ∂t +A.

We say that a continuous function W : [0, T ] × RN → [0,+∞) is a Lyapunov
function for the operator L if it belongs to C2,1(QT ), lim|x|→∞W (x, t) = +∞
uniformly with respect to t in compact sets of (0, T ] and there exists h : (0, T ] →
[0,∞) integrable in a neighborhood of 0 such that LW (x, t) ≤ h(t)W (x, t) for
all (x, t) ∈ QT . Note that we do not require thatW (x, 0) tends to ∞ as |x| → ∞.

We refer the reader to [30] for results similar to the next proposition, when
the Lyapunov function is independent of t.

Proposition 2.1.1. For each t ∈ [0, T ], a Lyapunov function W (·, t) is inte-
grable with respect to the measure p(x, ·, t). Moreover, setting

ξW (x, t) =

∫

RN

p(x, y, t)W (y, t)dy, (2.2)

the inequality

ξW (x, t) ≤ e
R

t
0
h(s)dsW (x, 0) (2.3)

holds.

Proof. Let us consider, for every α ≥ 0, ψα ∈ C∞
b (R) such that ψα(s) = s

for s ≤ α, ψα is constant in [α+1,∞), ψ′
α ≥ 0 and ψ′′

α ≤ 0. From the concavity
of ψα it follows that

sψ′
α(s) ≤ ψα(s) ∀ s ≥ 0. (2.4)
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Obviously ψα ◦W ∈ BUC(QT ) and, moreover, it belongs to BUC2,1(Q(ε, T ))
for every ε > 0, since is constant for t ≥ ε > 0 and large |x|. We set ξα(x, t) =∫

RN p(x, y, t)ψα(W (y, t))dy. For every fixed t ≥ ε, the function (ψα ◦W )(·, t)
belongs to Dmax(A), which coincides with the domain of the generator by the
assumption of the existence of Lyapunov functions for A. It follows that

∂tξα(·, t) = etAA(ψα ◦W )(·, t) + etA∂t(ψα ◦W )(·, t)

and then

∂tξα(x, t) =

∫

RN

p(x, y, t)L(ψα ◦W )(y, t)dy.

By a straightforward computation we obtain

L(ψα ◦W )(x, t) =ψ′
α(W (x, t))LW (x, t)

+ψ′′
α(W (x, t))

N∑

i,j=1

aijDjW (x, t)DiW (x, t)

≤ψ′
α(W (x, t))LW (x, t).

Thus, for t ≥ ε,

∂tξα(x, t) ≤
∫

RN

p(x, y, t)ψ′
α(W (y, t))LW (y, t)dy.

Using the property of W , the positivity of ψ′ and (2.4) we get

∂tξα(x, t) ≤ h(t)

∫

RN

p(x, y, t)ψα(W (y, t))dy = h(t)ξα(x, t).

Therefore for t ≥ ε

ξα(x, t) ≤ e
R

t

ε
h(s)dsξα(x, ε). (2.5)

Now we prove that ξα(x, ε) → ψα(W (x, 0)) as ε→ 0. We have

|ξα(x, ε) − ψα(W (x, 0))| =

∣∣∣∣
∫

RN

p(x, y, ε)ψα(W (y, ε))dy − ψα(W (x, 0)) dy

∣∣∣∣

≤
∫

RN

p(x, y, ε)|ψα(W (y, ε)) − ψα(W (y, 0))| dy

+ |T (ε)ψα(W (x, 0)) − ψα(W (x, 0))|.

The second term in the right member obviously goes to 0 as ε → 0 since ψα ◦
W ∈ Cb(RN ) and T (t)f → f as t → 0 uniformly on compact sets of RN

for f ∈ Cb(RN ) (see Theorem 1.1.7). Concerning the first addend, we fixe
R > |x| + 1 and we split it in the integral over BR and the integral over the
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complementary of BR. We have
∫

RN

p(x, y, ε)|ψα(W (y, ε)) − ψα(W (y, 0))| dy

=

∫

BR

p(x, y, ε)|ψα(W (y, ε)) − ψα(W (y, 0))| dy

+

∫

RN\BR

p(x, y, ε)|ψα(W (y, ε)) − ψα(W (y, 0))| dy.

The integral on BR tends to 0 as ε → 0 since ψα(W (y, ε)) → ψα(W (y, 0))
uniformly on BR. Consider the integral on the complementary of BR. Let hR
be a smooth function on RN such that χRN\BR

≤ hR ≤ χRN\BR−1
. Observe

that hR ∈ Dmax(A) and hence T (ε)hR → hR uniformly in RN since

T (ε)hR(x) − hR(x) =

∫ ε

0

T (s)AhR(x) ds

for all x ∈ RN (see [38, Proposition 3.2]). Therefore, given δ > 0, there exists
ε0 > 0 such that, for ε ≤ ε0, T (ε)hR ≤ δ + hR. By means of the previous
remarks, since |x| < R− 1, we deduce
∫

RN\BR

p(x, y, ε)|ψα(W (y, ε)) − ψα(W (y, 0))| ≤ 2(α+ 1)

∫

RN\BR

p(x, y, ε)

= 2(α+ 1)T (ε)χRN\BR
(x)

≤ 2(α+ 1)T (ε)hR(x)

≤ 2(α+ 1)[δ + hR(x)]

= 2(α+ 1)δ

for ε ≤ ε0. Letting ε→ 0 in (2.5) we obtain

ξα(x, t) ≤ e
R

t
0
h(s)dsψα(W (x, 0)).

Letting α→ ∞ in the previous inequality and using Fatou’s Lemma we get
∫

RN

p(x, y, t)W (y, t)dy ≤ lim infα→∞ξα(x, t) ≤ e
R

t
0
h(s)dsW (x, 0).

In the next proposition we prove that suitable exponential functions in x
and t are of Lyapunov for a class of Kolmogorov operators.

Proposition 2.1.2. Let L = ∂t +A0 + F ·D such that

lim sup
|x|→∞

|x|−rF (x) · x|x| < −c (2.6)

for some positive c and r > 1. Then, if α >
r + 1

r − 1
, δ <

c

Λ(r + 1)
and 0 < t ≤ 1,

W (x, t) = exp{δtα|x|r+1} is a Lyapunov function for L. Moreover ξW (x, t) ≤
CW (x, 0) = C for some positive constant C and for all x ∈ RN and 0 < t ≤ 1.
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Proof. An easy computation gives

LW (x, t) = δ(r + 1)tαW (x, t)

[
α

|x|r+1

t(r + 1)
+ (r − 1)|x|r−3

N∑

i,j=1

aijxixj

+ |x|r−1
N∑

i=1

aii + δ(r + 1)tα|x|2r−2
N∑

i,j=1

aijxixj + |x|rF · x|x|

]

≤ δ(r + 1)tαW (x, t)

[
α

|x|r+1

t(r + 1)
+
[
Λ(r − 1) +

N∑

i=1

aii
]
|x|r−1

+ Λδ(r + 1)tα|x|2r + |x|rF · x|x|

]
.

Considering suitable space-time regions it is possible to estimate the right hand
side in the previous inequality.

Let γ >
1

r − 1
. If |x| > 1

tγ
, 0 < t < 1,

LW (x, t) ≤ δ(r + 1)tαW (x, t)

[
α

|x|r+1

t(r + 1)
+
[
Λ(r − 1) +

N∑

i=1

aii
]
|x|r−1

+ Λδ(r + 1)tα|x|2r + |x|rF · x|x|

]

≤ δ(r + 1)tαW (x, t)

[
α

r + 1
|x|r+1+ 1

γ +
[
Λ(r − 1) +

N∑

i=1

aii
]
|x|r−1

+ Λδ(r + 1)|x|2r + |x|rF · x|x|

]

≤ δ(r + 1)tα|x|2rW (x, t)

[
α

r + 1
|x|r+1+ 1

γ
−2r

+
[
Λ(r − 1) +

N∑

i=1

aii
]
|x|−r−1 + Λδ(r + 1) + |x|−rF · x|x|

]
.

By assumption (2.6), if |x| is large enough,

LW (x, t) ≤ δ(r + 1)tα|x|2rW (x, t)

[
α

r + 1
|x|−r+1+ 1

γ

+
[
Λ(r − 1) +

N∑

i=1

aii
]
|x|−r−1 + Λδ(r + 1) − c

]
.

Since δ <
c

Λ(r + 1)
and γ >

1

r − 1
, for |x| large enough and belonging to the

considered region LW ≤ 0. For the remaining small values of x in this region
LW (x, t) ≤ C ≤ CW (x, t).
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If |x| ≤ 1

tγ
and is large enough in order that the term containing the drift is

negative,

LW (x, t) ≤

W (x, t)

[
δα

tγ(r+1)+1−α + δ(r + 1)

(
Λ(r − 1) +

N∑

i=1

aii

)
1

tγ(r−1)−α

+ Λδ2(r + 1)2
1

t2γr−2α

]
.

If we choose γ < α
r+1 , we have γ(r + 1) − α+ 1 < 1 and 2rγ − 2α < 0. If |x| is

small we obtain the estimate as in the other region. In any case

LW (x, t) ≤ h(t)W (x, t)

with h integrable near 0. Observe moreover that the conditions on γ are com-
patible since α > r+1

r−1 . The existence of Lyapunov functions for the elliptic
operator is guaranteed under the assumption (2.6) (see [27, Prop. 2.6]). Then
by Proposition 2.1.1 the estimate of ξW (x, t) follows.

Example 2.1.3. In particular, Proposition 2.1.2 applies if

L = ∂t + ∆ − |x|r x|x| ·D

with r > 1. Then, for α >
r + 1

r − 1
, δ < 1

r+1 and 0 < t ≤ 1, W (x, t) =

exp{δtα|x|r+1} is a Lyapunov function for L and ξW (x, t) ≤ CW (x, 0) = C
for some positive constant C, for all x ∈ RN and 0 < t ≤ 1.

2.1.2 Integrability and regularity results for the kernel

Following [27, Section 3 and Appendix A], in this subsection we collect some
useful and of independent interest results. We prove embedding theorems for
the spaces Hk,1 due to Krylov (see [21]) and, using the same methods, we deduce
also embedding theorems for the spaces Θk (see definitions below).
Then we fix T > 0, 0 < a0 < a < b < b0 ≤ T , assume b0 − b ≥ a − a0 and
consider p as a function depending on (y, t) ∈ RN × (0, T ) for arbitrary, but
fixed, x ∈ RN .
Setting

Γ(k, x, a0, b0) =

(∫

Q(a0,b0)

|F (y)|kp(x, y, t)dy dt
) 1

k

and making use of the embeddings above, we show global regularity result for
p with respect to the variables (y, t) assuming Γ(k, x, a0, b0) < ∞ for suitable
k ≥ 1.
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Definition 2.1.4. Given k ≥ 1, Hk,1(QT ) denotes the space of all functions
u ∈ W 1,0

k (QT ) with ∂tu ∈ (W 1,0
k′ (QT ))′, the dual space of W 1,0

k′ (QT ), endowed
with the norm

‖u‖Hk,1(QT ) := ‖∂tu‖(W 1,0

k′
(QT ))′ + ‖u‖W 1,0

k
(QT ),

with 1
k + 1

k′ = 1.

Definition 2.1.5. For k > 2, Θk(QT ) is the space of all functions u belonging
to W 1,0

k (QT ) such that there exists C > 0 for which

∣∣∣∣
∫

QT

u∂tφdx dt

∣∣∣∣ ≤ C

(
‖φ‖

L
k

k−2 (QT )
+ ‖Dφ‖

L
k

k−1 (QT )

)

for every φ such that the right hand side above is finite. Observe that k
k−1 = k′

and k
k−2 =

(
k
2

)′
. Θk(QT ) is a Banach space endowed with the norm

‖u‖Θk(QT ) = ‖u‖W 1,0
k

(QT ) + ‖∂tu‖ k
2 ,k;QT

,

where ‖∂tu‖ k
2 ,k;QT

is the best constant such that the above estimate holds.

By using a reflection argument and standard approximation by smooth func-
tions methods one can prove the following extension and density results.

Lemma 2.1.6. There exists linear, continuous extension operators

E1 : Hk,1(QT ) → Hk,1(RN+1)

and

E2 : Θk(QT ) → Θk(RN+1).

Lemma 2.1.7. The restrictions of functions in C∞
c (RN+1) to QT are dense in

Hk,1(QT ) and in Θk(QT ).

Theorem 2.1.8. The following embeddings of Hk,1 in Lr spaces hold.

(i) If 1 < k < N + 2, then Hk,1(QT ) is continuously embedded in Lr(QT ) for
1
r = 1

k − 1
N+2 .

(ii) If k = N + 2, then Hk,1(QT ) is continuously embedded in Lr(QT ) for
N + 2 ≤ r <∞.

(iii) If k > N + 2, then Hk,1(QT ) is continuously embedded in L∞(QT ).

Proof. Since the restrictions of functions in the space C∞
c (RN+1) are dense

in Hk,1(QT ), in any case we will prove the estimate

‖u‖Lr(QT ) ≤ ‖u‖Hk,1(QT ) (2.7)
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for every function u ∈ C∞
c (RN+1) and some positive constant C independent of

u. Let G be the fundamental solution of the operator ∂t −∆ in RN+1 given by

G(x, t) =

{
1

(4πt)
N
2

exp
(
− 1

4t |x|2
)

if t > 0

0 if t ≤ 0.
(2.8)

Let u ∈ C∞
c (RN+1), ψ ∈ C∞

c (QT ) and set φ = G ∗ ψ. Then φ ∈ C2(RN+1)
and, by [20, Theorem 8.4.2], it satisfies ∂tφ − ∆φ = ψ. Moreover, since ψ has
support in RN × [0, T ], then G ∗ ψ = GT ∗ ψ where GT = Gχ[0,T ]. By simple

computations it immediately follows that GT ∈ Ls(RN+1) for 1 ≤ s < N+2
N

and DGT ∈ Ls(RN+1) for 1 ≤ s < N+2
N+1 where the gradient is understood

with respect to the space variable. Young’s inequality yields ‖φ‖W 1,0
s (QT ) ≤

C‖ψ‖L1(QT ).
We have ∣∣∣∣

∫

QT

uψ dxdt

∣∣∣∣ =

∣∣∣∣
∫

QT

u(∂tφ− ∆φ) dx dt

∣∣∣∣ (2.9)

=

∣∣∣∣
∫

QT

u∂tφ+Du ·Dφ) dx dt

∣∣∣∣
≤ C‖u‖Hk,1(QT )‖φ‖W 1,0

k′
(QT ).

Let us prove (i). Let 1 < k < N + 2, r such that 1
r = 1

k − 1
N+2 . By Theorem

A.0.8, ‖φ‖W 2,1

r′
(QT ) ≤ c‖ψ‖Lr′(QT ), by the embedding W 2,1

r′ (QT ) ⊂ W 1,0
k′ (QT )

(see Theorem A.0.9) and the previous inequality (2.9), we obtain
∣∣∣∣
∫

QT

uψ dxdt

∣∣∣∣ ≤ C‖u‖Hk,1(QT )‖φ‖W 1,0

k′
(QT ) ≤ C‖u‖Hk,1(QT )‖φ‖W 2,1

r′
(QT )

≤ C‖u‖Hk,1(QT )‖ψ‖Lr′(QT ).

This implies (2.7).
Let now k = N + 2, N + 2 ≤ r <∞ and choose 1 < s < N+2

N+1 such that

1

k′
=

1

s
+

1

r′
− 1.

Young’s inequality yields ‖φ‖W 1,0

k′
(QT ) ≤ C‖ψ‖Lr′(QT ) and then by 2.9 we deduce

(ii). Finally, if k > N + 2, then k′ < N+2
N+1 and by Young’s inequality we get

‖φ‖W 1,0

k′
(QT ) ≤ C‖ψ‖L1(QT ). By (2.9),

∣∣∣∣
∫

QT

uψ dxdt

∣∣∣∣ ≤ C‖u‖Hk,1(QT )‖φ‖W 1,0

k′
(QT ) ≤ C‖u‖Hk,1(QT )‖ψ‖L1(QT ).

Theorem 2.1.9. If k > N + 2, then Θk(QT ) is continuously embedded in
L∞(QT ). Moreover the following estimate holds

‖u‖L∞(QT ) ≤ C(‖Du‖Lk(QT ) + ‖∂tu‖ k
2 ,k;QT

).
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Proof. Let u ∈ C∞
c (RN+1) and φ, ψ as in the proof of the previous theorem.

As before we have
∣∣∣∣
∫

QT

uψ dxdt

∣∣∣∣ =

∣∣∣∣
∫

QT

u(∂tφ− ∆φ) dx dt

∣∣∣∣ =

∣∣∣∣
∫

QT

(u∂tφ+Du ·Dφ) dx dt

∣∣∣∣
(2.10)

≤ (‖Du‖Lk(QT ) + ‖∂tu‖ k
2 ,k;QT

)

(
‖Dφ‖

L
k

k−1 (QT )
+ ‖φ‖

L
k

k−2 (QT )

)
.

Now, since k > N + 2, k′ < N+2
N+1 and k

k−2 < N+2
N . By Young’s inequality we

get ‖φ‖W 1,0

k′
(QT ) ≤ C‖ψ‖L1(QT ) and ‖φ‖

L
k

k−2 (QT )
≤ C‖ψ‖L1(QT ). Therefore

∣∣∣∣
∫

QT

uψ dxdt

∣∣∣∣ ≤ (‖Du‖Lk(QT ) + ‖∂tu‖ k
2 ,k;QT

)‖ψ‖L1(QT ).

and the claim follows.

The embedding theorems above allow us to prove some integrability and
regularity properties for the kernel p. A preliminary lemma is needed.

Lemma 2.1.10. Let 0 ≤ t1 < t2 and φ ∈ C2,1(Q(t1, t2)) such that φ(·, t) has
compact support for every t ∈ [t1, t2]. Then

∫

Q(t1,t2)

(∂tφ(y, t) +Aφ(y, t))p(x, y, t) dy dt

=

∫

RN

(p(x, y, t2)φ(y, t2) − p(x, y, t1)φ(y, t1))dy.

Proof. Note that if ψ ∈ C2
c (R

N ) then by Proposition 1.2.2 and by Propo-
sition 1.2.3

∂tT (t)ψ = T (t)Aψ.

Let φ(y, t) be as in the statement. We have

∂t(T (t)φ(·, t)) = T (t)∂tφ(·, t) + T (t)Aφ(·, t).

Integrating this identity over the interval [t1, t2] and writing T (t) in terms of
the kernel we obtain the claim.

Recall that, for every k ≥ 1, Γ(k, x, a0, b0) = (
∫
Q(a0,b0) |F (y)|kp(x, y, t) dy) 1

k .

Proposition 2.1.11. If Γ(1, x, a0, b0) < ∞, then p ∈ Lr(Q(a0, b0)) for all
r ∈ [1, N+2

N+1) and

‖p‖Lr(Q(a0,b0)) ≤ C(1 + Γ(1, x, a0, b0))

for some constant C > 0.
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Proof. Consider φ ∈ C2,1(QT ) such that φ(·, T ) = 0 and such that φ(·, t)
has compact support for all t. By Lemma 2.1.10, we deduce
∫

Q(a0,b0)

p(∂tφ+A0φ)dy dt = −
∫

Q(a0,b0)

pF ·Dφdy dt

+

∫

RN

(p(x, y, b0)φ(y, b0) − p(x, y, a0)φ(y, a0))dy

where A0 =
∑N

i,j=1 aijDij . Since
∫

RN p(x, y, t) ≤ 1 for all t ≥ 0, x ∈ RN , it
follows that
∣∣∣∣∣

∫

Q(a0,b0)

p(∂tφ+A0φ)dy dt

∣∣∣∣∣ ≤ Γ(1, x, a0, b0)‖φ‖W 1,0
∞ (Q(a0,b0))

+ 2‖φ‖∞ (2.11)

≤ (2 + Γ(1, x, a0, b0))‖φ‖W 1,0
∞ (Q(a0,b0)).

Fix ψ ∈ C∞
c (Q(a0, b0)) and consider the parabolic problem

{
∂tφ+ A0φ = ψ in QT ,
φ(y, T ) = 0 y ∈ RN .

(2.12)

By the Schauder theory (see Theorem A.0.10), there exists a solution φ ∈
C2+α,1+ α

2 (QT ). Fixing r′1 > N + 2, by Theorem A.0.8, we have that φ ∈
W 2,1
r′1

(QT ) and satisfies

‖φ‖W 2,1

r′
1

(QT ) ≤ C‖ψ‖
Lr′

1(Q(a0,b0))

and, by the Sobolev embedding Theorems (see Theorem A.0.9) and the previous
inequality, we deduce that

‖φ‖W 1,0
∞ (Q(a0,b0)) ≤ ‖φ‖W 1,0

∞ (QT ) ≤ C‖φ‖W 2,1

r′1
(QT ) ≤ C‖ψ‖

Lr′1(Q(a0,b0))
. (2.13)

Observe that the solution of the parabolic problem just found cannot be imme-
diately inserted in (2.11) since in general it is not with compact support with
respect to the space variable. Anyway we can approximate the solution φ with
functions which satisfy (2.11) as follows. Let θ ∈ C∞

c (RN ) such that θ(y) = 1 for
|y| ≤ 1 and, for each n ∈ N, consider φn(y, t) = θ( yn )φ(y, t). Then φn satisfies
(2.11) and, letting n→ ∞ by dominated convergence, by (2.13) we obtain

∣∣∣∣∣

∫

Q(a0,b0)

pψdy dt

∣∣∣∣∣ ≤ C(1 + Γ(1, x, a0, b0))‖ψ‖Lr′
1(Q(a0,b0))

.

This proves that p ∈ Lr1(Q(a0, b0)) where 1
r1

+ 1
r′1

= 1. By the arbitrarity of

r′1 > N + 2, it follows that p ∈ Lr(Q(a0, b0)) for all 1 ≤ r < N+2
N+1 with

‖p‖Lr(Q(a0,b0)) ≤ C(1 + Γ(1, x, a0, b0)).
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Lemma 2.1.12. If Γ(k, x, a0, b0) < ∞ for some k > 1 and p ∈ Lr(Q(a0, b0))
for some 1 < r ≤ ∞, then p ∈ Hs,1(Q(a, b)) for s := rk

r+k−1 if r <∞ and s = k
if r = ∞.

Proof. Let η be a smooth function such that 0 ≤ η ≤ 1, η(t) = 1 for
a ≤ t ≤ b, η(t) = 0 for t ≤ a0 and t ≥ b0 and |η′| ≤ 2

a−a0
. Let φ ∈ C2,1(QT )

such that φ(·, t) has compact support for all t. Then also ηφ has compact
support for all t and by Lemma 2.1.10, setting q = ηp, we obtain

∫

QT

q(∂tφ+A0φ)dy, dt = −
∫

QT

(qF ·Dφ+ pφ∂tη)dy dt.

Now we estimate the right hand side of the previous equality by using the Hölder
inequality and the integrability assumption on p. We have

∫

Q(a0,b0)

|F |spsdy dt =

∫

Q(a0,b0)

|F |sp s
k ps(1−

1
k
)dy dt

≤
(∫

Q(a0,b0)

|F |kp dy dt
) s

k
(∫

Q(a0,b0)

p
s(k−1)

k−s dy dt

)1− s
k

=

(∫

Q(a0,b0)

|F |kp dy dt
) s

k
(∫

Q(a0,b0)

prdy dt

)1− s
k

≤ Γ(k, x, a0, b0)
s

(∫

Q(a0,b0)

prdy dt

)1− s
k

,

hence we have

‖Fp‖Ls(Q(a0,b0)) ≤ C‖p‖
k−1

k

Lr(Q(a0,b0))

where C is a generic constant depending on k, x, a0, b0. Therefore

∣∣∣∣
∫

QT

q(∂tφ+A0φ)dy, dt

∣∣∣∣ ≤ C‖p‖
k−1

k

Lr(Q(a0,b0))
‖φ‖W 1,0

s′
(QT )

with 1
s + 1

s′ = 1. Observe that we can replace φ by its difference quotients with
respect to the variable y given by

τ−hφ(y, t) :=
1

|h| (φ(y − hej , t) − φ(y, t)), (y, t) ∈ QT , 0 6= h ∈ R.

In this way and recalling that aij ∈ C1
b (R

N ), we obtain

∣∣∣∣
∫

QT

τhq(∂tφ+A0φ)dy, dt

∣∣∣∣ ≤ C‖p‖
k−1

k

Lr(Q(a0,b0))‖φ‖W 1,0

s′
(QT ) (2.14)

where C depends on k, x, a0, b0 and the C1
b (R

N ) norm of the coefficients aij .
Observe that, since q ∈ Ls(QT ), by approximation, as in the proof of Lemma
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2.1.11, the inequality (2.14) remains true for functions φ ∈W 2,1
s′ (QT ). Moreover,

since q ∈ Ls(QT ), then |τhq|s−2τhq ∈ Ls
′

(QT ). By Theorem A.0.8, there exists
φ ∈ W 2,1

s′ (QT ) such that

{
∂tφ+A0φ = |τhq|s−2τhq in QT ,
φ(y, T ) = 0 y ∈ RN

(2.15)

and

‖φ‖W 2,1

s′
(QT ) ≤ C‖|τhq|s−1‖Ls′(QT ).

By (2.14), we get

∫

QT

|τhq|sdy dt ≤ C‖p‖
k−1

k

Lr(Q(a0,b0))‖τhq‖s−1
Ls(QT ),

By means of the properties of the differential quotients we deduce

‖Dq‖Ls(QT ) ≤ C‖p‖
k−1

k

Lr(QT ).

This implies Dq ∈ Ls(QT ) and so q ∈ W 1,0
s (QT ) and p ∈ W 1,0

s (Q(a, b)). Con-
cerning the first order time derivative, by the estimate above, integrating by
parts and recalling that aij ∈ C1

b (R
N ), we have

∣∣∣∣
∫

QT

q∂tφdy dt

∣∣∣∣ ≤
∣∣∣∣
∫

QT

qA0φdy dt

∣∣∣∣+ C‖p‖
k−1

k

Lr(Q(a0,b0))
‖φ‖W 1,0

s′
(QT )

≤

∣∣∣∣∣∣

∫

QT

N∑

i,j=1

aijDiφDjq dy dt

∣∣∣∣∣∣
+ C‖p‖

k−1
k

Lr(Q(a0,b0))
‖φ‖W 1,0

s′
(QT )

≤ C‖Dq‖Ls(QT )‖φ‖W 1,0

s′
(QT ) + C‖p‖

k−1
k

Lr(Q(a0,b0))‖φ‖W 1,0

s′
(QT )

≤ C‖p‖
k−1

k

Lr(Q(a0,b0))
‖φ‖W 1,0

s′
(QT )

and the claim follows.

Proposition 2.1.13. If Γ(k, x, a0, b0) < ∞ for some 1 < k ≤ N + 2, then p ∈
Lr(Q(a, b)) for all r ∈ [1, N+2

N+2−k ) and p ∈ Hs,1(Q(a, b)) for all s ∈ (1, N+2
N+3−k ).

Proof. The result follows by applying iteratively Lemma 2.1.12 and Propo-
sition 2.1.11.
Let r1 < N+2

N+1 . Observe that Γ(h, x, a0, b0) ≤ CΓ(k, x, a0, b0) for h ≤ k and
for some positive constant C. Therefore we can apply Proposition 2.1.11 and
deduce p ∈ Lr1(Q(a0, b0)). Fix a parameter m (to be chosen later) depending

on k and r. Set an = a0 + n(a−a0)
m , bn = b0 − n(b0−b)

m for n = 1, .....,m. Suppose

that p ∈ Lrn(Q(a0, b0)) and take sn := krn

k+rn−1 . Then 1 < sn < rn, sn < k and

rn = sn(k−1)
k−sn

. As in the previous proof, we consider q = ηp with η(t) = 1 for
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an+1 ≤ t ≤ bn+1 and η(t) = 0 for t ≤ an, t ≥ bn, |η′| ≤ 2m
a−a0

. As in the proof
of Lemma 2.1.12, we get

∣∣∣∣
∫

QT

q∂tφdy dt

∣∣∣∣ ≤ C‖p‖
k−1

k

Lrn(Q(an,bn))‖φ‖W 1,0

s′n
(QT )

and

‖Dq‖Lsn(QT ) ≤ C‖p‖
k−1

k

Lrn(Q(an,bn)).

with C depending on k, x, a0, b0. Therefore p ∈ Hsn,1(Q(an+1, bn+1)). By
the embedding Theorem for the Hs,1 spaces (see Theorem 2.1.8), we have that
p ∈ Lrn+1(Q(an+1, bn+1)) where

1

rn+1
=

1

sn
− 1

N + 2
=
k + rn − 1

krn
− 1

N + 2
=

1

rn

(
1 − 1

k

)
+

1

k
− 1

N + 2
.

Since 1
r1
> N+1

N+2 , it follows that

1

r2
− 1

r1
< −1

k

(
1 − 1

N + 2

)
+

1

k
− 1

N + 2
=

1

N + 2

(
1

k
− 1

)
< 0.

By induction, since
1

rn+1
= g

(
1

rn

)
with g increasing function,

(
1

rn

)
is a

positive and decreasing sequence which converges to N+2−k
N+2 . This implies that,

for any r < N+2
N+2−k , after a finite number of steps m, we get rn > r and

p ∈ Lr(Q(a, b)). Finally, by Lemma 2.1.12, we handle p ∈ Hs,1(Q(a, b)) for all
s ∈ (1, N+2

N+3−k ).

Corollary 2.1.14. If Γ(k, x, a0, b0) < ∞ for some k > N + 2, then p ∈
L∞(Q(a, b)).

Proof. By assumption, Γ(k, x, a0, b0) < ∞ for some k > N + 2, there-
fore Γ(N + 2, x, a0, b0) ≤ CΓ(k, x, a0, b0) < ∞ and, by Proposition 2.1.13,
p ∈ Lr(Q(a, b)) for all r ∈ [1,∞). By Proposition 2.1.12, p ∈ Hs,1(Q(a, b)) for all
1 < s < k and then, choosing s > N+2, by Theorem 2.1.8, p ∈ L∞(Q(a, b)).

2.1.3 Pointwise estimates of kernels

We recall that T is a fixed positive number and a0, a, b, b0 are such that
0 < a0 < a < b < b0 ≤ T . Assume that W1, W2 are Lyapunov functions for L,
W1 ≤W2 and there exists 1 ≤ ω ∈ C2(RN × (0,∞)) such that for some positive
constants c1(a0, b0), c2(a0, b0), c3(a0, b0), c4(a0, b0), c5(a0, b0) and k > N + 2

ω ≤ c1W1; |Dω| ≤ c2ω
k−1

k W
1
k

1 ;

|D2ω| ≤ c3ω
k−2

k W
2
k

1 ; |∂tω| ≤ c4ω
k−2

k W
2
k

1 ; (2.16)

ω|F |k ≤ c5W2 (2.17)
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pointwise almost everywhere in Q(a0, b0). Using the notation of the previous
section, we write ξ1(x, t) to denote

∫
RN p(x, y, t)W1(y, t)dy and ξ2 for the anal-

ogous integral with W2. Under these assumptions the following main theorem
can be stated.

Theorem 2.1.15. There exists a positive constant C such that

0 < ω(y, t)p(x, y, t) ≤ C

[
(ck2 + c5 + c

k
2
3 + c

k
2
2 c

1
2
5 )

∫ b0

a0

ξ2 (2.18)

+

(
c1

(a− a0)
k
2

+ c
k
2
4

)∫ b0

a0

ξ1

]
(2.19)

for all x, y ∈ RN and a ≤ t ≤ b.

As preliminary result we prove an estimate of the L∞ norm of solutions of
certain parabolic problems.

Theorem 2.1.16. Let k > N + 2, v ∈ Lk(QT ), w ∈ L
k
2 (QT ) and assume that

u ∈ Lk(QT ) satisfies
∫

QT

u(∂tφ+A0φ) dx dt =

∫

QT

(v ·Dφ+ wφ) dx dt (2.20)

for every φ ∈ C2,1(QT ) such that φ(·, t) has compact support for every t. Then
u ∈ Θk(QT ) and

‖u‖L∞(QT ) ≤ C‖u‖Θk(QT ) ≤ C(‖v‖Lk(QT ) + ‖w‖
L

k
2 (QT )

)

where C is a positive constant depending on N, T, k and the C1
b -norm of the

coefficients aij.

Proof. First we prove that

‖u‖Lk(QT ) ≤ C(‖v‖Lk(QT ) + ‖w‖
L

k
2 (QT )

). (2.21)

As in other proofs, we observe that, since u ∈ Lk(QT ), by approximation, (2.20)
holds for functions φ ∈ W 2,1

k′ (QT ). Let ψ ∈ C∞
c (QT ). By Theorem A.0.8 there

exists φ ∈ W 2,1
k′ (QT ) such that

{
∂tφ+ A0φ = ψ in QT ,
φ(x, T ) = 0, x ∈ RN

and the estimate
‖φ‖W 2,1

k′
(QT ) ≤ C‖ψ‖Lk′(QT )

holds with a constant C depending on k, T and the coefficients aij . Moreover
by the Sobolev embedding theorems (see Theorem A.0.9)

‖φ‖
L

k
k−2 (QT )

≤ C‖φ‖W 2,1

k′
(QT ).
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By assumption (2.20), we deduce
∣∣∣∣
∫

QT

uψ

∣∣∣∣ ≤ C(‖v‖Lk(QT )‖Dφ‖Lk′(QT ) + ‖w‖
L

k
2 (QT )

‖φ‖
L

k
k−2 (QT )

)

≤ C(‖v‖Lk(QT ) + ‖w‖
L

k
2 (QT )

)‖ψ‖Lk′(QT )

and so the estimate for the ‖u‖Lk(QT ) follows.

Now let us prove the claim. As proved above, we have
∣∣∣∣
∫

QT

u(∂tφ+A0φ)

∣∣∣∣ ≤ C

(
‖v‖Lk(QT )‖Dφ‖Lk′(QT ) + ‖w‖

L
k
2 (QT )

‖φ‖
L

k
k−2 (QT )

)

for all φ ∈ W 2,1
k′ (QT ). Replacing φ by its differential quotients with respect to

the space variable, we obtain
∣∣∣∣
∫

QT

τhu(∂tφ+A0φ)

∣∣∣∣ ≤ C
[(
‖u‖Lk(QT ) + ‖v‖Lk(QT )

)
‖φ‖W 2,1

k′
(QT )

+ ‖w‖
L

k
2 (QT )

‖Dφ‖
L

k
k−2 (QT )

]
.

By Sobolev embedding Theorem (see Theorem A.0.9),

‖Dφ‖Ls(QT ) ≤ C‖φ‖W 2,1
k

k−1

(QT )

if
1

s
= 1− 1

k
− 1

N + 2
. Since

k

k − 1
<

k

k − 2
< s by the assumption k > N + 2,

we have
‖Dφ‖

L
k

k−2 (QT )
≤ C‖φ‖W 2,1

k
k−1

(QT )

and so
∣∣∣∣
∫

QT

τhu(∂tφ+A0φ)

∣∣∣∣ ≤ C
(
‖u‖Lk(QT ) + ‖v‖Lk(QT ) + ‖w‖

L
k
2 (QT )

)
‖φ‖W 2,1

k′
(QT ).

(2.22)

Let now φ ∈ W 2,1
k′ (QT ) such that

{
∂tφ+A0φ = |τhu|k−2τhu, in QT
φ(x, T ) = 0, x ∈ RN

and
‖φ‖W 2,1

k′
(QT ) ≤ ‖|τhu|k−1‖Lk′(QT ) = ‖τhu‖k−1

Lk(QT )
.

For a φ so done, by (2.22), we deduce u ∈ W 1,0
k (QT ) and

‖Du‖Lk(QT ) ≤ C
(
‖u‖Lk(QT ) + ‖v‖Lk(QT ) + ‖w‖

L
k
2 (QT )

)
. (2.23)
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Consider the time derivative. By assumption we have

∫

QT

u∂tφdx dt =

∫

QT


−

N∑

i,j=1

aij(Dijφ)u+ v ·Dφ+ wφ


 dx dt

=

∫

QT




N∑

i,j=1

aijDiuDjφ+

N∑

i,j=1

(Diaij)uDjφ+ v ·Dφ+ wφ


 dx dt

and, as above,
∣∣∣∣
∫

QT

u∂tφdx dt

∣∣∣∣ ≤ C
[
(‖Du‖Lk(QT ) + ‖u‖Lk(QT ) + ‖v‖Lk(QT ))‖Dφ‖Lk′ (QT )

+ ‖w‖
L

k
2 (QT )

‖φ‖
L

k
k−2 (QT )

]
.

By (2.23) we obtain
∣∣∣∣
∫

QT

u∂tφdx dt

∣∣∣∣ ≤ C
[
(‖u‖Lk(QT ) + ‖v‖Lk(QT ) + ‖w‖

L
k
2 (QT )

)‖Dφ‖Lk′(QT )

+ ‖w‖
L

k
2 (QT )

‖φ‖
L

k
k−2 (QT )

]

and, by (2.21),
∣∣∣∣
∫

QT

u∂tφdx dt

∣∣∣∣ ≤ C
[
(‖v‖Lk(QT ) + ‖w‖

L
k
2 (QT )

)‖Dφ‖Lk′(QT )

+ ‖w‖
L

k
2 (QT )

‖φ‖
L

k
k−2 (QT )

]
.

(2.21), (2.23) and the last inequality imply that u ∈ Θk(QT ) with

‖u‖Θk(QT ) = ‖u‖W 1,0
k

(QT ) + ‖∂tu‖ k
2 ,k;QT

≤ C(‖v‖Lk(QT ) + ‖w‖
L

k
2 (QT )

).

Finally, Theorem 2.1.9 implies

‖u‖L∞(QT ) ≤ C1‖u‖Θk(QT ) ≤ C2(‖v‖Lk(QT ) + ‖w‖
L

k
2 (QT )

).

We can prove the main theorem.
Proof. (Theorem 2.1.15) In the first part of the proof we assume that ω is
bounded.
Let Γ(k, x, a0, b0) = (

∫
Q(a0,b0)

|F (y)|kp(x, y, t)dy dt) 1
k . Then, by (2.17) and

Proposition 2.1.1,

Γ(k, x, a0, b0) ≤
∫

Q(a0,b0)

ω|F (y)|kp(x, y, t)dy dt

≤ c5

∫

Q(a0,b0)

p(x, y, t)W2(y, t) ≤ c5

∫ b0

a0

ξ2(x, t) <∞.
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From Corollary 2.1.14, p ∈ L∞(Q(a, b)). Let η be a smooth function such that
η(t) = 1 for a ≤ t ≤ b, η(t) = 0 for t ≤ a0, t ≥ b0, |η′| ≤ 2

a−a0
and let

ψ ∈ C2,1(QT ) be such that ψ(·, t) has compact support for every t. We set

q = η
k
2 p and φ(y, t) = η

k
2 (t)ω(y, t)ψ(y, t). By Lemma 2.1.10, we obtain

∫

QT

(∂tφ(y, t) +Aφ(y, t))p(x, y, t)dy dt = 0

and then, after some computations,

∫

QT

ωq(−∂tψ −A0ψ)dy dt =

∫

QT

[
q

(
ψA0ω + 2

N∑

i,j=1

aijDiωDjψ

+ ωF ·Dψ + ψF ·Dω + ψ∂tω

)
+
k

2
pωψη

k−2
2 ∂tη

]
dy dt.

Since ω is bounded, ωq ∈ L1(QT ) ∩ L∞(QT ). By Theorem (2.1.16),

‖ωq‖L∞(QT ) ≤ C
(
‖qDω‖Lk(QT ) + ‖ωqF‖Lk(QT ) + ‖qD2ω‖

L
k
2 (QT )

(2.24)

+ ‖qF ·Dω‖
L

k
2 (QT )

+ ‖q∂tω‖
L

k
2 (QT )

+
1

a− a0
‖pωη k−2

2 ‖
L

k
2 (QT )

)

where C depends on N, k, T and the C1
b -norm of aij . Now we estimate the

right hand side in (2.24) by using (2.16) and (2.17).

‖ωqF‖Lk(QT ) =

(∫

QT

|ωqF |k
) 1

k

≤
(∫

QT

(qω)k−1ωq|F |k
) 1

k

≤ c5(a0, b0)
1
k

(∫

QT

(qω)k−1qW2

) 1
k

≤ c5(a0, b0)
1
k ‖ωq‖

k−1
k

L∞(QT )

(∫ b0

a0

ξ2dt

) 1
k

.

In a similar way

‖pωη k−2
2 ‖

L
k
2 (QT )

≤ c1(a0, b0)
2
k ‖ωq‖

k−2
k

L∞

(∫ b0

a0

ξ1dt

) 2
k

;

‖qDω‖Lk(QT ) ≤ c2(a0, b0)‖ωq‖
k−1

k

L∞(QT )

(∫ b0

a0

ξ1dt

) 1
k

;

‖qD2ω‖
L

k
2 (QT )

≤ c3(a0, b0)‖ωq‖
k−2

k

L∞(QT )

(∫ b0

a0

ξ1dt

) 2
k

;

‖q∂tω‖
L

k
2 (QT )

≤ c4(a0, b0)‖ωq‖
k−2

k

L∞(QT )

(∫ b0

a0

ξ1dt

) 2
k
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and

‖qF ·Dω‖
L

k
2 (QT )

≤ c2(a0, b0)c5(a0, b0)
1
k ‖ωq‖

k−2
k

L∞(QT )

(∫ b0

a0

ξ2dt

) 2
k

.

Therefore, by (2.24) and the bounds above,

‖ωq‖L∞(QT ) ≤ C

[
(c2(a0, b0) + c5(a0, b0)

1
k )‖ωq‖

k−1
k

L∞(QT )

(∫ b0

a0

ξ2

) 1
k

+ (c3(a0, b0) + c2(a0, b0)c5(a0, b0)
1
k )‖ωq‖

k−2
k

L∞(QT )

(∫ b0

a0

ξ2

) 2
k

+

(
c1(a0, b0)

2
k

a− a0
+ c4(a0, b0)

)
‖ωq‖

k−2
k

L∞(QT )

(∫ b0

a0

ξ1

) 2
k
]

and then

‖ωq‖
2
k

L∞(QT ) ≤ C

[
(c2(a0, b0) + c5(a0, b0)

1
k )‖ωq‖

1
k

L∞(QT )

(∫ b0

a0

ξ2

) 1
k

+ (c3(a0, b0) + c2(a0, b0)c5(a0, b0)
1
k )

(∫ b0

a0

ξ2

) 2
k

+

(
c1(a0, b0)

2
k

a− a0
+ c4(a0, b0)

)(∫ b0

a0

ξ1

) 2
k
]
.

Setting

A = (c2(a0, b0) + c5(a0, b0)
1
k )

(∫ b0

a0

ξ2

) 1
k

,

B = (c3(a0, b0) + c2(a0, b0)c5(a0, b0)
1
k )

(∫ b0

a0

ξ2

) 2
k

+

(
c1(a0, b0)

2
k

a− a0
+ c4(a0, b0)

)(∫ b0

a0

ξ1

) 2
k

and X = ‖ωq‖
1
k

L∞(QT ), the inequality above can be written as X2 ≤ AX + B

and so X ≤ A+
√
A2+4B
2 . It easily follows that

0 < ω(y, t)p(x, y, t)

≤ C

[
(ck2 + c5 + c

k
2
3 + c

k
2
2 c

1
2
5 )

∫ b0

a0

ξ2 +

(
c1

(a− a0)
k
2

+ c
k
2
4

)∫ b0

a0

ξ1

]
.

If ω is not bounded, we set ωε =
ω

1 + εω
. Obviously ωε is bounded. It is

easy to see that ωε satisfies (2.16) and (2.17) with constants c1, c2, c3, c4, c5
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independent of ε. Then the estimate of ‖ωεq‖L∞(QT ) holds with constants in
the right hand side of the previuos inequality which do not depend on ε. Letting
ε→ 0 we deduce the claim.

Remark 2.1.17. If W is a Lyapunov function for the operator A, in particular
it is a Lyapunov function for L indeed it does not depend on the time variable
and so it satisfies ∂tW = 0 and LW = AW ≤ λW . We can therefore apply
Theorem 2.1.15 to deduce upper bounds on the kernels as in [27, Theorem 4.1].

Proposition 2.1.18. Suppose that the drift satisfies

lim sup
|x|→∞

|x|−rF (x) · x|x| < −c (2.25)

for some r > 1 and c > 0. Fix T = 1, then if α >
r + 1

r − 1
, δ <

c

Λ(r + 1)
,

k > N + 2

p(x, y, t) ≤ C

t
αkr
r+1−1

exp{−δtα|y|r+1}

for all x, y ∈ RN , 0 < t ≤ 1 and for a suitable constant C.

Proof. Let us verify assumptions (2.16) and (2.17).
Let

W1(x, t) = W2(x, t) = exp{tαδ1|x|r+1}, ω = exp{tαδ|x|r+1}
with δ < δ1 <

c

Λ(r + 1)
. By Proposition 2.1.2 we know that W1 is a Lyapunov

function for L. Obviously ω ≥ 1 and ω ≤W1 with constant c1 = 1. We have to
find c2(a0, b0) such that

|Dω| ≤ c2(a0, b0)ω
k−1

k W
1
k

1

that is

δtα(r + 1)|x|r exp
{
tαδ|x|r+1

}

≤ c2(a0, b0) exp

{
k − 1

k
δtα|x|r+1

}
exp

{
1

k
δ1t

α|x|r+1

}

or, equivalently,

δtα(r + 1)|x|r ≤ c2(a0, b0) exp

{(
δ
k − 1

k
+
δ1
k

− δ

)
tα|x|r+1

}

= c2(a0, b0) exp

{
δ1 − δ

k
tα|x|r+1

}
.

Observing that

δtα(r + 1)|x|r =
1

|x|δ(r + 1)
k

δ1 − δ

δ1 − δ

k
tα|x|r+1

≤ δ(r + 1)
k

δ1 − δ
exp

{
δ1 − δ

k
tα|x|r+1

}
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for |x| ≥ 1 and
δtα(r + 1)|x|r ≤ δ(r + 1)

for |x| < 1, we obtain that the desired inequality is true with

c2 = δ(r + 1)max

{
1,

k

δ1 − δ

}
,

independent of a0 and b0.
Similarly we obtain that

|D2ω| ≤ C(δ2t2α(r + 1)2|x|2r + δtα(r + 1)(r − 1 +N)|x|r−1)

≤ c3 exp

{
2(δ1 − δ)

k
tα|x|r+1

}

with c3 not depending on a0 and b0.
Concerning c4(a0, b0), we have

|∂tω| = δαtα−1|x|r+1 exp{tαδ|x|r+1}

≤ c4(a0, b0) exp

{
k − 2

k
tαδ|x|r+1

}
exp

{
δ1

2

k
|x|r+1

}

or equivalently

δαtα−1|x|r+1 =
α

t

k

2(δ1 − δ)
δ
2(δ1 − δ)

k
tα|x|r+1

≤ c4(a0, b0) exp

{
2(δ1 − δ)

k
tαδ|x|r+1

}

with c4(a0, b0) =
αδk

2(δ1 − δ)a0
.

Finally, we have to find c5(a0, b0) such that

exp{δtα|x|r+1}|x|kr ≤ c5(a0, b0) exp{δ1tα|x|r+1}.
The function

f(s) =
skr

exp{(δ2 − δ)tαsr+1}

attaints its maximum for s =
c(k, r, δ, δ1)

t
α

r+1
. Therefore f(s) ≤ c

t
αkr
r+1

and we can

set

c5(a0, b0) =
c(k, r, δ, δ1)

a
αkr
r+1

0

.

From (2.18), choosing a0 = 1
2 t, a = t, b = 3

2 t, b0 = 2t and estimating ξ1 as in
Proposition 2.1.2, we deduce

p(x, y, t) ≤ C

(
1

t
αkr
r+1−1

+
1

t
αkr

2(r+1)
−1

+
1

t
k
2−1

)
exp{−δtα|y|r+1}

≤ C

t
αkr
r+1−1

exp{−δtα|y|r+1}
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for all x, y ∈ RN and t ≤ 1.

Remark 2.1.19. The estimate of the kernel proved in Proposition 2.1.18 in
particular holds when A is given by ∆− |x|r x

|x| ·D. In the unidimensional case,

consider for example the operator A = D2 − x3D. We deduce the following
bound for the kernel. If α > 2, δ < 1

4 , k > 3

p(x, y, t) ≤ C

t
3αk
4 −1

exp{−δtαy4}

for some positive C and for all x, y ∈ R, 0 < t ≤ 1.

2.2 Heat kernel bounds for Schrödinger opera-

tors

A method similar to the one applied in the first section works also for Schrö-
dinger operators. In this section, using Lyapunov functions techniques and
parabolic regularity, we prove pointwise upper bounds on the kernel p.
We will deal with the problem of finding upper bounds for the kernels of
Schrödinger operators in the next chapter too. The approach will be differ-
ent and sometimes will give more refined estimates. Anyway, it is interesting to
complete the study started in the previous section and to prove some estimates
for Schrödinger operators making use of suitable Lyapunov functions.
We consider the operator A = −∆ + V with a nonnegative potential V ∈
Cαloc(R

N ), 0 < α < 1. According to the results previously obtained, the semi-
group e−tA generated by the operator −A can be represented in the form

e−tAf(x) =

∫

RN

p(x, y, t)f(y)dy, t > 0, x ∈ RN ,

where p is a positive C
2+α,2+α,1+ α

2

loc function, symmetric with respect to x and
y which is pointwise dominated by the heat kernel of the Laplacian in RN , see
Remark 1.3.21. More refined bounds are known when the potential V tends to
∞ at infinity in a polynomial way, see [13, Corollary 4.5.5] or [45] where also
lower bounds are proved. In the case of V (x) = |x|α we obtain estimates similar
to those in [45]. However our method does not allow us to prove Davies-Simon
estimate. On the other hand, it is not confined to special polynomial potentials
but applies also to logarithmic or exponential growths.
As in the case of Kolmogorov operators, given a Lyapunov function ω we esti-
mate the integral of ω against the kernel p, that is the function

ξω(x, t) =

∫

RN

p(x, y, t)ω(y, t) dy.

Then we use parabolic regularity for Schrödinger operators with unbounded
coefficients to deduce L∞- bounds for ωp from the L1-bounds. The same argu-
ments have been applied in [28] but with Lyapunov functions independent of t,
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yielding estimates in the form of Davies and Simon.
To shorten the notation we use L = ∂t − A = ∂t + ∆ − V . Observe however
that the parabolic operator associated with A is ∂t +A and not L.

2.2.1 Integrability of Lyapunov functions

Since p admits Gaussian estimates, it is clear that any function with, say, an
exponential growth is integrable with respect to p. Taking into account the
growth of the potential V it is possible to integrate functions diverging very fast
at infinity.

We say that ω : QT → [0,+∞) is a Lyapunov function for the operator L
if it belongs to C2,1(QT ), lim|x|→∞ω(x, t) = +∞ uniformly with respect to t
in compact sets of (0, T ] and there exists h : (0,∞) → [0,∞) integrable in a
neighborhood of 0 such that Lω(x, t) ≤ h(t)ω(x, t) for all (x, t) ∈ QT . Note that
we do not require that ω(x, 0) tends to ∞ as |x| → ∞.

In the proof of the proposition below we need to approximate e−tA with the
semigroups generated by some Schrödinger operators with bounded potentials.
To this purpose we fix 0 ≤ η ∈ C∞

c (R) decreasing such that η(s) = 1 for |s| ≤ 1,
η(s) = 0 for |s| ≥ 2 and define Vn(x) = η

(
| xn |
)
V (x). Let moreover e−tAn

be the semigroup generated by −An = ∆ − Vn and pn(x, y, t) its kernel. By
the maximum principle one easily obtains that pn ≥ pn+1 and that pn → p
pointwise. Note that a Lyapunov function for A always exists since V ≥ 0 (take
for example V (x) = 1 + |x|2, x ∈ RN ) and therefore the maximum principle
holds for bounded C2,1 solutions of the Cauchy problem associated with the
Schrödinger operator.

Lemma 2.2.1. Consider the analytic semigroup generated by −An in Cb(RN ).
Then, for every f ∈ C2+α

b (RN ) the function e−tAnf(x) converges to e−tAf(x)
in C2,1(RN × [0, T ]).

Proof. Let f ∈ C2+α
b (RN ). Set un(x, t) = e−tAnf(x), u(x, t) = e−tAf(x).

Let us fix a radius ρ > 0. If n > ρ + 1, by the Schauder estimates for the
operator A (see [20, Theorem 8.1.1]) we obtain

‖un‖C2+α,1+ α
2 (Bρ×[0,T ])

≤ C(‖un‖L∞(RN×[0,∞)) + ‖f‖C2+α(RN )).

By Ascoli’s Theorem the sequence (un) converges to a function v in C2,1(RN ×
[0,∞)). Since ∂tun+Anun = 0 in Bρ× (0, T ] for n > ρ we have ∂tv+Av = 0 in
RN × (0, T ]. Moreover v(x, 0) = f(x) and |v(x, t)| ≤ ‖f‖∞. Consider now the
difference w = u− v. Obviously w ∈ C2,1(RN × [0, T ]), is bounded and satisfies

{
∂tw +Aw = 0 in RN × (0, T ]
w(x, 0) = 0 in RN .

By the maximum principle it follows w = 0 and then un converges to u in
C2,1(RN × [0,∞)).
Observe that if f is only a Cb(RN ) function un converges pointwise to u.

We also need the following lemma.
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Lemma 2.2.2. Assume that V ∈ L∞(RN ) and let f ∈ BUC(QT ). Then the
function

F (x, t) =

∫

RN

p(x, y, t)f(y, t) dy

is continuous in QT . Moreover, if f ∈ BUC2,1(QT ), then

∂tF (x, t) =

∫

RN

p(x, y, t)Lf(y, t) dt

with L = ∂t −A.

Proof. Since V is bounded, the semigroup (e−tA)t≥0 is strongly continuous in
BUC(RN ) (the space of bounded and uniformly continuous functions on RN ).
Writing F (·, t) = e−tAf(·, t) its continuity easily follows. If f ∈ BUC2,1(QT ),
then, for every fixed t, the function f(·, t) belongs to the domain of the generator
of (e−tA)t≥0 in BUC(RN ). It follows that

∂tF (·, t) = −e−tAAf(·, t) + e−tA∂tf(·, t)

and the proof follows.

We refer the reader to [28, Proposition 2.5] and to [5, Lemma 2.32] for results
similar to the next proposition, when the Lyapunov function is independent of
t.

Proposition 2.2.3. For each t ∈ [0, T ], the Lyapunov function ω(·, t) is inte-
grable with respect to the measure p(x, ·, t). Moreover, setting

ξω(x, t) =

∫

RN

p(x, y, t)ω(y, t)dy, (2.26)

the inequality

ξω(x, t) ≤ e
R

t
0
h(s)dsω(x, 0) (2.27)

holds.

Proof. Let us consider, for every α ≥ 0, ψα ∈ C∞
b (R) such that ψα(s) = s for

s ≤ α, ψα is constant in [α+ 1,∞), ψ′
α ≥ 0 and ψ′′

α ≤ 0. From the concavity of
ψα it follows that

sψ′
α(s) ≤ ψα(s) ∀ s ≥ 0. (2.28)

Obviously ψα ◦ ω ∈ BUC(QT ) and, moreover, it belongs to BUC2,1(Q(ε, T ))
for every ε > 0, since is constant for t ≥ ε > 0 and large |x|. According with the
previous notation we set ξnα(x, t) =

∫
RN pn(x, y, t)ψα(ω(y, t))dy. Lemma 2.2.2

yields for t ≥ ε

∂tξ
n
α(x, t) =

∫

RN

pn(x, y, t)Ln(ψα ◦ ω)(y, t)dy
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where Ln = ∂t −An. By (2.28) we obtain

Ln(ψα ◦ ω)(x, t) = ψ′
α(ω(x, t))Lnω(x, t) + Vn(x)[ψ′

α(ω(x, t))ω(x, t)

− ψα(ω(x, t))] − ψ′′
α(ω(x, t))|Dω(x, t)|2

≤ ψ′
α(ω(x, t))Lnω(x, t).

Thus, for t ≥ ε,

∂tξ
n
α(x, t) ≤

∫

RN

pn(x, y, t)ψ
′
α(ω(y, t))Lnω(y, t)dy

≤
∫

RN

pn(x, y, t)ψ
′
α(ω(y, t))Lω(y, t)dy

if n is sufficiently large since, for fixed α, the function ψ′
α(ω(y, t)) has compact

support. Using the property of ω, the positivity of ψ′ and (2.28) again we get

∂tξ
n
α(x, t) ≤ h(t)

∫

RN

pn(x, y, t)ψα(ω(y, t))dy = h(t)ξnα(x, t).

Therefore, by Gronwall’s Lemma, for t ≥ ε.

ξnα(x, t) ≤ e
R

t
ε
h(s)dsξα(x, ε).

Since ξα(x, ε) → ψα(ω(x, 0)) as ε→ 0, by Lemma 2.2.2, letting ε→ 0 we obtain

ξnα(x, t) ≤ e
R

t
ε
h(s)dsψα(ω(x, 0)).

Letting α→ ∞ in the previous inequality and using Fatou’s Lemma we get
∫

RN

pn(x, y, t)ω(y, t)dy ≤ lim infα→∞ξ
n
α(x, t) ≤ e

R
t
0
h(s)dsω(x, 0).

Letting n→ ∞, the first member in the previous inequality tends to ξω(x, t)
by monotone convergence so the claim follows.

2.2.2 Regularity for parabolic problems and some inter-

polative estimates

We prove a parabolic regularity result needed in the following subsection to
deduce pointwise estimates for the kernels.

Theorem 2.2.4. Let 1 < k < ∞ and suppose that for every γ > 0 there exists
Cγ > 0 such that |DV | ≤ γV

3
2 + Cγ. If u ∈ Lk(QT ) ∩W 2,1

k (BR × [0, T ]) for
every R > 0 solves

{
∂tu− ∆u+ V u = g in QT
u(y, 0) = 0 y ∈ RN

with g ∈ Lk(QT ), then

‖u‖W 2,1
k

(QT ) + ‖V u‖Lk(QT ) ≤ C0‖g‖Lk(QT )

where C0 depends on N, k, T and Cγ .
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Proof. By [31, Proposition 6.5], there exists a function z ∈W 2,1
k (QT ) with

V z ∈ Lk(QT ) which solves the problem above and satisfies the estimate

‖z‖W 2,1
k

(QT ) + ‖V z‖Lk(QT ) ≤ C‖g‖Lk(QT ).

Then we have to prove that u = z. The difference w = u − z ∈ Lk(QT ) ∩
W 2,1
k (BR × [0, T ]) for every R > 0 and satisfies

∫

QT

w(−∂tφ− ∆φ+ V φ) = 0 (2.29)

for every φ ∈ C2,1(QT ) vanishing at the time T and with support in BR× [0, T ]
for some R > 0. By density (2.29) holds for every φ ∈ W 2,1

k′ (QT ) such that φ

vanishes at the time T and V φ ∈ Lk
′

(QT ). By using [31, Proposition 6.5] again,
we obtain that, given ψ ∈ Lk

′

(QT ), there exists φ ∈W 2,1
k′ (QT ) with φ(·, T ) = 0

and V φ ∈ Lk
′

(QT ) such that −∂tφ− ∆φ+ V φ = ψ. Therefore
∫

QT

wψ = 0

for every ψ ∈ Lk
′

(QT ) and then w = 0 and u = v.
The following interpolative estimate for the sup norm of u will be crucial in

the next section.

Proposition 2.2.5. Assume that k > N+2
2 . Then there exists C > 0 such that

for every u ∈W 2,1
k (QT ) the estimate

‖u‖L∞(QT ) ≤ C‖u‖1−θ
L1(QT )‖u‖θW 2,1

k
(QT )

holds with

θ =
N + 2

(N + 2)

(
1 − 1

k

)
+ 2

.

Proof. Since there exists a linear extension operator from W 2,1
k (QT ) to

W 2,1
k (RN+1) which is also continuous from Lr(QT ) to Lr(RN+1) for 1 ≤ r ≤ ∞

we prove the claimed estimate for functions in W 2,1
k (RN+1). Let R be an unitary

cube of RN+1. We start by proving that there exists a positive constant C such
that

‖u‖L∞(R) ≤ C(‖u‖L1(R) + ‖∂tu‖Lk(R) + ‖D2u‖Lk(R))

for every u ∈W 2,1
k (R). Suppose that this is not true, then for every n ∈ N there

exists un ∈W 2,1
k (R) such that

‖un‖L∞(R) ≥ n(‖un‖L1(R) + ‖∂tun‖Lk(R) + ‖D2un‖Lk(R)). (2.30)

We can also suppose ‖un‖L∞(R) = 1. Obviously we have ‖un‖Lk(R) ≤ 1 and, by

(2.30), we deduce that (un)n∈N is bounded in W 2,1
k (R). Since the embedding of
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W 2,1
k (R) into C(R) is compact (see Theorem A.0.9), there exists a subsequence

(unk
) converging in L∞(R) to some function v ∈ C(R). In particular (unk

)
converges to v in L1(R), but, by (2.30), ‖un‖L1(R) ≤ 1

n and then v = 0. This is
a contraddiction since ‖un‖L∞(R) = 1. It immediately follows that there exists
a positive constant C such that

‖u‖L∞(RN+1) ≤ C(‖u‖L1(RN+1) + ‖∂tu‖Lk(RN+1) + ‖D2u‖Lk(RN+1))

for every u ∈W 2,1
k (RN+1). Let λ > 0. Choosing v(x, t) = u(λx, λ2t), we get

‖u‖L∞(RN+1) ≤ C(λ−(N+2)‖u‖L1(RN+1)

+ λ(2−N+2
k

)(‖∂tu‖Lk(RN+1) + ‖D2u‖Lk(RN+1)))

for all λ > 0 and u ∈ W 2,1
k (RN+1). It follows that the function

g(λ) = ‖u‖L∞(RN+1) − C(λ−(N+2)‖u‖L1(RN+1)

+ λ(2−N+2
k

)(‖∂tu‖Lk(RN+1) + ‖D2u‖Lk(RN+1))) ≤ 0

for all λ > 0 and, in particular, minimising over λ, in correspondence of

λ =

[
N + 2

2 − N+2
k

‖u‖L1(RN+1)

‖∂tu‖Lk(RN+1) + ‖D2u‖Lk(RN+1)

] k
4k+Nk−N−2

,

we obtain then claimed inequality.
Finally, we state an interpolative inequality.

Proposition 2.2.6. Let 1 ≤ k ≤ ∞ and suppose that for every γ > 0 there
exists Cγ > 0 such that |DV | ≤ γV

3
2 + Cγ . Then there exists two constants

m, µ0 such that for every u ∈ W 2,1
k (QT ) with V u ∈ Lk(QT ) the following

estimate holds for 0 < µ ≤ µ0

‖V 1
2Du‖Lk(QT ) ≤ µ‖u‖W 2,1

k
(QT ) +

m

µ
‖V u‖Lk(QT ).

Proof. Let u be a smooth function with compact support contained in
BR × [0, T ] for some R > 0. By [31, Proposition 2.3] there exist two positive
constants m, µ0 such that for 0 < µ ≤ µ0

∫

RN

V (x)
k
2 |Du(x, t)|k dx ≤ µk

∫

RN

|∆u(x, t)|k dx+
mk

µk

∫

RN

V (x)k|u(x, t)|k dx.

Integrating over [0, T ] with respect to t, the estimate follows for smooth and
with compact support functions. By density we deduce the claim.

2.2.3 Pointwise estimates on kernels

To prove the main result of this paper we need the following assumptions on
the potential V and on the Lyapunov function ω.
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(A1) 0 ≤ V ∈ C1(RN ) and ∀ γ > 0 there exists Cγ > 0 : |DV | ≤ γV
3
2 + Cγ ;

(A2) 0 < ω ∈ C2,1(RN × ([0,∞)) is a Lyapunov function satisfying

|∂tω|
ω

+
|Dω|2
ω2

+
|∆ω|
ω

≤ γV + C (2.31)

where γ, C are suitable positive constants. We denote by ξω the function in-
troduced in 2.26 and relative to ω and fix 0 < a0 < a < b < b0 < T with the
property b0 − b ≥ a− a0.

Theorem 2.2.7. There exists γ0 > 0 such that if assumptions (A1) and (A2)
are satisfied with γ < γ0, then

ω(y, t)p(x, y, t) ≤ C

(a− a0)
N+2

2

∫ b0

a0

ξω(x, t)dt

for a ≤ t ≤ b and x, y ∈ RN .

Proof. In the whole proof x will be considered as a parameter and we regard the
kernel as a function of the variables (y, t). Similarly, all the differential operators
with respect to the space variables will act on the y variable. Observe that p
satisfies pt = ∆p − V p for y ∈ RN , t > 0. Moreover it belongs to Lk(Q(a, b))
for every 1 ≤ k ≤ ∞ since it admits Gaussian estimates. Let η be a smooth
function such that 0 ≤ η ≤ 1, η(t) = 1 for a ≤ t ≤ b, η(t) = 0 for t ≤ a0 and
t ≥ b0, 0 ≤ |ηt| ≤ 2

a−a0
and set q = ηkp. Then q ∈ Lk(QT ) ∩W 2,1

k (BR × [0, T ])
for all R > 0 and satisfies the parabolic problem

{
∂tq − ∆q + V q = kηk−1pηt in QT
q(y, 0) = 0 y ∈ RN .

From Theorem 2.2.4 it follows that, for all 1 < k < ∞, q ∈ W 2,1
k (QT ) and

V q ∈ Lk(QT ). In particular, from Proposition 2.2.6, V
1
2Dq ∈ Lk(QT ). Let

ωε = ω/(1 + εω) for 0 < ε < 1. We have

Dωε
ωε

=
Dω

ω(1 + εω)
;

∂tωε
ωε

=
∂tω

ω(1 + εω)
;

∆ωε
ωε

=
∆ω

ω(1 + εω)
− 2ε

(1 + εω)2
|Dω|2
ω

.

Using the last equations we obtain estimates like (2.31) for ωε, namely

|∂tωε|
ωε

+
|Dωε|2
ω2
ε

+
|∆ωε|
ωε

≤ 3(γV + C). (2.32)

The function ωεq satisfies the parabolic equation




∂t(ωεq) − ∆(ωεq) + V ωεq = (∂tωε)q + kηk−1pωεηt
−q∆ωε − 2Dωε ·Dq in QT

ωε(y, 0)q(y, 0) = 0 y ∈ RN .
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Observe that V ωεq ∈ Lk(QT ) since ωε is bounded and V q ∈ Lk(QT ). In a
similar way we obtain that kηk−1pωεηt ∈ Lk(QT ). Using (2.32) we see that the
other terms in the right hand side of the previous equality are in Lk(QT ). In
fact we have

|∂tωε|q ≤ γV ωεq + Cωεq ∈ Lk(QT ).

Similarly for the remaining terms. This implies that ωεq ∈ W 2,1
k (QT ). We

rewrite the previous equation in the form





∂t(ωεq) − ∆(ωεq) + V ωεq = (∂tωε)q + kηk−1pωεηt

−2
Dωε
ωε

D(ωεq) − q∆ωε + 2
|Dωε|2
ωε

q in QT

ωε(y, 0)q(y, 0) = 0 y ∈ RN

and estimate the Lk-norm of the right hand side choosing k greater then N+2
2 .

We have

‖(∂tωε)q‖Lk(QT ) ≤ γ‖ωεqV ‖Lk(QT ) + C‖ωεq‖Lk(QT ) (2.33)

≤ γ‖ωεqV ‖Lk(QT ) + C‖ωεq‖
k−1

k

L∞(QT )

(∫

Q(a0,b0)

ωp

) 1
k

‖kηk−1pωεηt‖Lk(QT ) ≤
2k

a− a0
‖ωεq‖

k−1
k

L∞(QT )

(∫

Q(a0,b0)

ωp

) 1
k

(2.34)

∥∥∥∥q
(

∆ωε − 2
|Dωε|2
ωε

)∥∥∥∥
Lk(QT )

≤ 6

[
γ‖V ωεq‖Lk(QT ) (2.35)

+ C‖ωεq‖
k−1

k

L∞(QT )

(∫

QT

ωq

) 1
k
]

(2.36)

and finally, using Proposition 2.2.6 and the interpolative inequality

‖D(ωεq)‖Lk(QT ) ≤ δ‖ωεq‖W 2,1
k

(QT ) +
K

δ
‖ωεq‖Lk(QT ),

for all δ > 0 we obtain
∥∥∥∥
Dωε
ωε

D(ωεq)

∥∥∥∥
Lk(QT )

≤
√

3
{
γ

1
2 ‖V 1

2D(ωεq)‖Lk(QT ) (2.37)

+ C
1
2 ‖D(ωεq)‖Lk(QT )

}
(2.38)

≤
√

3

{
γ

1
2

(
µ‖ωεq‖W 2,1

k
(QT ) +

m

µ
‖V ωεq‖Lk(QT )

)

+ C
1
2

(
δ‖ωεq‖W 2,1

k
(QT ) +

K

δ
‖ωεq‖Lk(QT )

)}
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for all δ > 0 and µ ≤ µ0. Setting

Λ =
2

a− a0

(∫

Q(a0,b0)

ωp

) 1
k

=
2

a− a0

(∫ b0

a0

ξω(x, t)dt

) 1
k

,

from (2.33), (2.34), (2.35) and (2.37) and Theorem 2.2.4, we obtain

‖ωεq‖W 2,1
k

(QT ) + ‖V ωεq‖Lk(QT ) ≤ C0

{(
k + 7C

a− a0

2

+
a− a0

2

√
3C

1
2
K

δ

)
‖ωεq‖

k−1
k

L∞(QT )Λ +
(√

3γ
1
2µ+

√
3C

1
2 δ
)
‖ωεq‖W 2,1

k
(QT )

+

(
7γ +

√
3γ

1
2
m

µ

)
‖V ωεq‖Lk(QT )

}

for all δ > 0 and µ ≤ µ0. Choosing γ, δ small enough so that
√

3C0(γ
1
2µ0 +

C
1
2 δ) < 1 and C0(7γ +

√
3γ

1
2m/µ0) < 1 we deduce

‖ωεq‖W 2,1
k

(QT ) + ‖V ωεq‖Lk(QT ) ≤ C‖ωεq‖
k−1

k

L∞(QT )Λ,

with C independent of ε. By Proposition 2.2.5 we have

‖ωεq‖L∞(QT ) ≤ C‖ωεq‖1−θ
L1(QT )‖ωεq‖θW 2,1

k
(QT )

with θ = N+2
(N+2)(1− 1

k
)+2

and therefore

‖ωεq‖W 2,1
k

(QT ) ≤ CΛ‖ωεq‖(1−θ) k−1
k

L1(QT ) ‖ωεq‖θ
k−1

k

W 2,1
k

(QT )
.

This yields

‖ωεq‖W 2,1
k

(QT ) ≤ CΛ‖ωεq‖(
1−N+2

2k )(1− 1
k
)

L1(QT )

≤ CΛ‖ωq‖(1−
N+2
2k )(1− 1

k
)

L1(QT ) .

Using again the interpolative estimate of Proposition 2.2.5 we obtain

‖ωεq‖L∞(QT ) ≤ C‖ωεq‖1−θ
L1(QT )‖ωεq‖θW 2,1

k
(QT )

≤ CΛ‖ωq‖(1−
N+2
2k )

L1(QT )

and, finally, estimating the integrals of ωεq trough ξω,

ωε(y, t)p(x, y, t) ≤ C
1

(a− a0)
N+2

2

∫ b0

a0

ξω(x, t)dt

for a ≤ t ≤ b and x, y ∈ RN . Observing that the constant in the right hand
side does not depend on ε and letting ε→ 0 we conclude the proof.



51

2.2.4 Small time estimates

In this section we apply Theorem 2.2.7 to get explicit bounds, for small times,
of the heat kernels of some Schrödinger operators with unbounded potentials.

Proposition 2.2.8. Assume that V (x) ≥ M |x|α for some α > 2, M > 0.

Then there exist 0 < c < 2
√
M

2+α , C > 0 such that

p(x, y, t) ≤ C

t
N
2

exp
{
−ct(|x|1+ α

2 + |y|1+ α
2 )
}

for all x, y ∈ RN and 0 < t ≤ 1.

Proof. By Remark 1.3.21 we may assume that V (x) = M |x|α. We define
ω(x, t) = exp{ct|x|1+ α

2 }. By an easy computation we get

Lω(x, t) = ω(x, t)
[
c|x|1+ α

2 + c2(1 +
α

2
)2t2|x|α

+ c(1 +
α

2
)(
α

2
− 1 +N)t|x|α

2 −1 − V (x)
]

≤ ω(x, t)|x|α
[
c|x|1−α

2 + c2(1 +
α

2
)2t2

+ c(1 +
α

2
)(
α

2
− 1 +N)t|x|− α

2 −1 −M
]
.

Recalling that t ≤ 1, α ≥ 2 and c < 2
√
M

2+α , we see that the last member in the
previous inequality is negative for |x| large. If |x| is small clearly there exists a
positive constant λ such that Lω ≤ λ ≤ λω. This proves that ω is a Lyapunov
function with h(t) = λ and for 0 < t ≤ 1, so, from the Proposition 2.2.3, it
follows that

ξω(x, t) ≤ eλtω(x, 0) = eλt ≤ C

for t small. Now we verify the hypotheses of Theorem 2.2.7. Obviously the
potential V is positive, smooth and it is easy to see that V satisfies (A1).
Moreover

|Dω|2
ω2

+
|∆ω|
ω

≤ c2t2
(
1 +

α

2

)2

|x|α + c
(
1 +

α

2

)(α
2
− 1 +N

)
t|x|α

2 −1

≤
[
c2
(
1 +

α

2

)2

+ c
(
1 +

α

2

)(α
2
− 1 +N

)]
|x|α.

and
|∂tω|
|ω| = c|x|1+ α

2 ≤ c|x|α.

Choosing c small enough the hypotheses of Theorem 2.2.7 are fulfilled and there
exists C > 0 such that

ω(y, t)p(x, y, t) ≤ C

(a− a0)
N+2

2

∫ b0

a0

ξω(x, t)dt
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for 0 < a ≤ t ≤ b ≤ 1 and x, y in RN . Setting a0 = t
2 , a = t, b = 3

2 t, b0 = 2t
we obtain

p(x, y, t) ≤ C

t
N+2

2

ω(y, t)−1

∫ 3
2 t

t
2

eλsds ≤ C

t
N
2

ω(y, t)−1 =
C

t
N
2

exp{−ct|y|1+ α
2 }.

Using the symmetry of p in x and y one has also

p(x, y, t) ≤ C

t
N
2

exp{−ct|x|1+ α
2 }.

Multiplying the right and the left hand side in the inequalities obtained above,
we deduce

p(x, y, t) ≤ C

t
N
2

exp{− c

2
t(|x|1+ α

2 + |y|1+ α
2 )}.

Proposition 2.2.9. Assume that V (x) ≥ M |x|α for some 0 < α ≤ 2, M > 0.
Then there exist 0 < c < M, C > 0 such that

p(x, y, t) ≤ C

t
N
2

exp
{
−ct[(|x|2 + 1)

α
2 + (|y|2 + 1)

α
2 ]
}

for all x, y ∈ RN and 0 < t ≤ 1.

Proof. As before we assume that V (x) = M |x|α. Let ω(x, t) = exp{ct(|x|2 +
1)

α
2 }. By an easy computation we get

Lω(x, t) = ω(x, t)
[
c(|x|2 + 1)

α
2 + c2α2t2|x|2(|x|2 + 1)α−2

+ cα(α − 2)t|x|2(|x|2 + 1)
α
2 −2 + ctαN(|x|2 + 1)

α
2 −1 − V (x)

]
.

Proceeding as in the proof of the Proposition 2.2.8 we conclude the proof.

Proposition 2.2.10. Assume that V (x) ≥ M exp{c|x|α} for some α > 0, c,
M > 0. Then there exist c1, c2, C > 0 such that

p(x, y, t) ≤ C

t
N
2

exp{−tc1(exp{c2|x|α} + exp{c2|y|α})}

for all x, y ∈ RN and 0 < t ≤ 1.

Proof. As before we assume that V (x) = M exp{c|x|α}.
Let ω(x, t) = exp{c1t exp{c2|x|α}}. By an easy computation we get

Lω(x, t) = ω(x, t)
[
c1 exp{c2|x|α} + t2c21c

2
2α

2|x|2α−2 exp{2c2|x|α}
+ tc1c2α

2 exp{c2|x|α}|x|2α−2 + tc1c2α(α − 2 +N) exp{c2|x|α}|x|α−2

− V (x)
]

= ω(x, t) exp{c|x|α}
[
c1 exp{(c2 − c)|x|α}

+ t2c21c
2
2α

2|x|2α−2 exp{(2c2 − c)|x|α} + tc1c2α
2 exp{(c2 − c)|x|α}|x|2α−2

+ tc1c2α(α− 2 +N) exp{(c2 − c)|x|α}|x|α−2 −M
]
.
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Recalling that t ≤ 1, estimating the polynomial factors with exponentials and
choosing c2 small enough, we obtain that, for |x| large, the last member in
the previous inequality is negative. If |x| is small, by continuity there exists a
positive constant λ such that Aω ≤ λ ≤ λω. This proves that ω is a Lyapunov
function with h(t) = λ and for 0 < t ≤ 1 and then Proposition 2.2.3 gives
ξω(x, t) ≤ C for t small. The potential V satisfies assumption (A1). Moreover

|Dω|2
ω2

+
|∆ω|
ω

= 2t2c21c
2
2α

2 exp{2c2|x|α}|x|2α−2

+ tc1c2α
2 exp{c2|x|α}|x|2α−2

+ tc1c2α(α− 2 +N) exp{c2|x|α}|x|α−2

and
|∂tω|
|ω| = c1 exp{c2|x|α}.

Therefore (A2) is satisfied choosing c1 and c2 small enough and Theorem 2.2.7
yields

ω(y, t)p(x, y, t) ≤ C

(a− a0)
N+2

2

∫ b0

a0

ξω(x, t)dt

for 0 < a ≤ t ≤ b ≤ 1 and x, y in RN . As in Proposition 2.2.8 one concludes
the proof.

Proposition 2.2.11. Assume V (x) ≥M log(1+ |x|2). Then there exists C > 0
and α < M such that

p(x, y, t) ≤ C

t
N
2

(1 + |x|2)−α
2 t(1 + |y|2)− α

2 t

for all x, y ∈ RN and 0 < t ≤ 1.

Proof. Let ω(x, t) = (1 + |x|2)αt. Then

Lω(x, t) = ω(x, t)

[
α log(1 + |x|2) +

αt(αt− 1)4|x|2
(1 + |x|2)2 +

2αtN

1 + |x|2

− M log(1 + |x|2)
]
≤ 0

for |x| large since t ≤ 1 and α < M . Hence ω is a Lyapunov function. Moreover
V satisfies (A1) and

|∂tω|
ω

= α log(1 + |x|2),

|Dω|2
ω2

+
|∆ω|
ω

≤ 4α2 |x|2
(1 + |x|2)2 + 4α(α+ 1)

|x|2
(1 + |x|2)2 +

2αN

1 + |x|2 .

Choosing α small enough we can apply Theorem 2.2.7 and obtain

ω(y, t)p(x, y, t) ≤ C

(a− a0)
N+2

2

∫ b0

a0

ξω(x, t)dt.
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for 0 < a ≤ t ≤ b ≤ 1 and x, y in RN . Arguing as in the examples before, one
concludes the proof.

Remark 2.2.12. We can easily add a Gaussian term in our estimates as follows.
For example, multiplying the left and the right hand side in Proposition 2.2.8
respectively with the left and right hand side of the Gaussian bound

p(x, y, t) ≤ C

t
N
2

exp

{
−c |x− y|2

t

}
,

we find

p(x, y, t) ≤ C

t
N
2

exp
{
−c1t(|x|1+

α
2 + |y|1+ α

2 )
}

exp

{
−c2

|x− y|2
t

}

for suitable c1, c2 , C > 0. The other cases are similar.

Remark 2.2.13. Finally we discuss the sharpness of the estimate proving lower
bounds similar to the upper bounds obtained in the examples above with the
method of [13, Theorem 4.5.10].

We start with the potential V (x) = |x|α, 0 < α ≤ 2, considered in Propo-
sition 2.2.9. We consider the ball B1(x) of center x and radius 1 and the
Schrödinger operator AD in B1(x) with Dirichlet boundary conditions. The
maximum principle yields e−tA ≥ e−tAD in B1(x). Since V ≤ (1 + |x|)α in
B1(x) we have e−tA ≥ e−tAD ≥ e−t(1+|x|α)e−t∆D in B1(x), where ∆D is the
Laplacian with Dirichlet boundary conditions. Taking the inequality for the
corresponding kernels and using the estimate

p∆D
(x, x, t) ≥ ct−N/2,

see [13, Lemma 3.3.3], we obtain

pA(x, x, t) ≥ e−t(1+|x|α)p∆D
(x, x, t) ≥ C

t
N
2

e−t(1+|x|α)

for some positive constant C. This shows that Proposition 2.2.9 is sharp, con-
cerning the exponent α appearing in the exponential. Our method does not give
a precise estimate of the constant c which, however, turns out to be 1 + ε, see
[45] and the next chapter.

In a similar way we obtain that, if V (x) = exp{c|x|α} for some α, c > 0,
then, as above,

p(x, x, t) ≥ C

t
N
2

exp{−t exp{c(1 + |x|)α}}.

Therefore in the case of exponential potentials the estimate in 2.2.10 is sharp,
with the exception of constants c1, c2.

For a logarithmic potentials V = M log(1 + |x|2) of Proposition 2.2.11, the
same method gives the lower bound

p(x, x, t) ≥ C

t
N
2

exp{−t log[1 + (1 + |x|)2]} =
C

t
N
2

(1 + (1 + |x|)2)−Mt.
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Finally we consider the case of V (x) = |x|α with α > 2, see Proposition
2.2.8. As in [45] we have

p(x, x, t) =
∑

n

e−λntφn(x)2 ≥ e−λ1tφ1(x)
2

where (φn), (λn) are the eigenfunctions and the eigenvalues of −A, respectively.
Since

φ1(x) ≥ C exp{−c|x|1+α/2},
see [13, Corollary 4.5.7], we see that, for a fixed t, Proposition 2.2.8 gives the
exact decay in the space variables. Also in this case we refer the reader to [45]
and to the next chapter for more precise space-time estimates.

2.2.5 Large time estimates

As in [45], large time estimates are easily deduced from small time estimates.

Proposition 2.2.14. Let λ1 be the smallest eigenvalue of A. Then there exist
positive constants C, c, δ such that for t ≥ 1, x ∈ RN

p(x, x, t) ≤ Ce−λ1t exp{−c|x|1+ α
2 }

if V (x) ≥M |x|α and α > 2,

p(x, x, t) ≤ Ce−λ1t exp{−c(|x|2 + 1)
α
2 }

if V (x) ≥M |x|α and 0 < α ≤ 2,

p(x, x, t) ≤ Ce−λ1t exp{−c exp{c|x|α}}
if V (x) ≥M exp{c1|x|α} and

p(x, x, t) ≤ Ce−λ1t(1 + |x|2)−δ

if V (x) ≥M log(1 + |x|2).
Proof. Let e−tA be the semigroup generated by −A. We note that

‖e−tA‖L2→L2 = e−λ1t; (2.39)

e−tAp(x, ·, s) = p(x, ·, s+ t) (2.40)

and
p(x, x, t) = ‖p(x, ·, t/2)‖2

L2 (2.41)

for all t, s > 0 and x ∈ RN . Therefore, if t > 1, by (2.39), (2.40) and (2.41), we
have

p(x, x, t) =

∥∥∥∥p(x, ·,
t

2
)

∥∥∥∥
2

L2

= ‖e−(t/2−1/2)Ap(x, ·, 1/2)‖2
L2

≤ e−λ1(t−1)‖p(x, ·, 1/2)‖2
L2 = Ce−λ1tp(x, x, 1).

Estimating p(x, x, 1) as in Propositions 2.2.8, 2.2.9, 2.2.10 and 2.2.11, the proof
follows.
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Remark 2.2.15. Off-diagonal estimates for large times can be deduced from
on-diagonal bounds by the following computation

|p(x, y, t)| =

∣∣∣∣
∫
p(x, z, t/2)p(z, y, t/2)

∣∣∣∣dz ≤ ‖p(x, ·, t/2)‖2‖p(y, ·, t/2)‖2

= p(x, x, t)
1
2 p(y, y, t)

1
2 .

As in Remark 2.2.12, a Gaussian factor can be added to all the estimates of this
section.


