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Introduction

In the last years, owing to their connections with probability and stochastic ana-
lysis, there has been an increasing interest towards linear elliptic and parabolic
operators with unbounded coefficients. In literature, one can find a careful the-
ory concerning solutions of Cauchy problems associated with the above men-
tioned operators in several function spaces. Many aspects such as existence,
uniqueness, regularity, integral representation are object of study for numerous
authors.
We will deal with elliptic operators of form

Au(x) =

N∑

i,j=1

aij(x)Diju(x) +

N∑

i=1

Fi(x)Diu(x) − V (x)u(x)

with (aij) symmetric matrix satisfying the ellipticity condition, aij , Fi, V real-
valued functions, V positive potential. Under hölderianity assumptions on the
coefficients, an existence result for bounded classical solutions of the Cauchy
problem {

ut(x, t) = Au(x, t) x ∈ RN , t > 0,
u(x, 0) = f(x) x ∈ RN

with initial datum f ∈ Cb(RN ) holds (see [29], [4]). The solution is constructed
through an approximation procedure as the limit of solutions of Cauchy Dirichlet
problems in suitable bounded domains and is given by a certain semigroup T (t)
applied to the initial datum f .
Moreover it can be represented by the formula

u(x, t) =

∫

RN

p(x, y, t)f(y) dy t > 0, x ∈ RN

where p is a positive function called integral kernel. In the first four chapters
of this work, our attention is mainly devoted to the study of the integral kernel
p just introduced. In particular we prove upper bounds on these kernels. We
examined separately operators containing only the second and the first order
parts and Schrödinger operators characterized by a vanishing drift term (F = 0)
and second order part given by the Laplacian. The case of the whole operator is
not contemplated. The semigroup associated with the Schrödinger operator can
be built under weaker assumptions on the potential by means of the quadratic
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form method. It is sufficient the requirement V ∈ L1
loc(R

N ) to obtain a strongly
continuous analytic semigroup on L2(RN ) that can be extrapolated to Lp(RN )
for 1 ≤ p ≤ ∞ and that admits an integral representation.

If A is given by ∆ − V , the kernel p is pointwise dominated by the heat
kernel of the Laplacian in RN , that is

p(x, y, t) ≤ 1

(4πt)
N
2

exp

{
−|x− y|2

4t

}
, ∀ x, y ∈ RN .

For the presence of the positive potential, one expects more decay in the space
variables.
Deeper upper bounds for V (x) = |x|α with α > 2 can be found for example
in [13, Section 4.5]. Davies and Simon prove that p(x, y, t) ≤ c(t)ψ(x)ψ(y),
where ψ is the ground state of −A, that is the eigenfunction corresponding
to the smallest eigenvalue, and c has an explicit behaviour near 0. Similar
estimates can be found in [28] where upper bounds like p(x, y, t) ≤ c(t)φ(x)φ(y)
are obtained for a large class of potential tending to infinity as |x| → ∞ under the
main assumption that ω = 1/φ satisfies ω(x) → ∞ as |x| → ∞ and −Aω ≥ g◦ω
where g is a convex function growing faster then linearly. The behaviour of c(t)
near 0 is also shown to be precise. The authors are able to deduce estimates
for V (x) = |x|α for every α > 0 but the Davies and Simon bounds cannot be
achieved since the ground state does not satisfy their assumptions.
Sikora proves an other kind of estimates for V (x) = |x|α, α > 0, see[45] where
also lower bounds are proved. He obtains precise on-diagonal bounds of the form
p(x, x, t) ≤ h(x, t) and then he deduces off-diagonal bounds from the semigroups
law.
Potentials unbounded only in certain directions (like x2

1x
2
2x

2
3 in R3) are conside-

red by Kurata in [22] where upper bounds are proved. Such estimates are not
sharp but their main concern is the applicability to degenerate non homogeneous
potentials.
In the case of V (x) = |x|α we obtain estimates similar to those of Sikora ([45]).
However our method is not confined to special polynomial potentials but applies
also to logarithmic, exponential growths or more generally to radial increasing
potentials and potentials consisting of a radial part and lower order terms.
Moreover our approach allows us to obtain more precise bounds.
On the other hand we consider also bounds similar to the Davies and Simon ones
and, using the similarity between Schr̈odinger and Kolmogorov operators, we
improve the estimates obtained by Davies and Simon for V (x) = |x|α with α > 2
and we show that the same techinque works for other potentials too. As nice
application, we see how the Sikora type estimates combined with a Tauberian
theorem due to Karamata allow us to deduce some interesting information about
the asymptotic distribution of the eigenvalues of −A. When V has a polynomial
behaviour these results have been proved by Titchmarsh (see [51]) using cube-
decomposition methods. Our approach allows us to treat also potentials with
different growth.
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Kolmogorov operators, that is elliptic operators with unbounded drift term
and vanishing potential, have also been studied. Some results concerning point-
wise upper bounds for their kernels can be found for example in [27] where
the authors use Lyapunov functions techniques to prove estimates of the form
p(x, y, t) ≤ c(t)ω(y). We get inspiration from this paper to prove upper bounds
like p(x, y, t) ≤ c(t)ω(y, t).
In recent papers (see [6], [7] and [8]), Bogachev, Krylov, Röckner and Shaposh-
nikov prove existence and regularity properties for parabolic problems having
measures as initial data, they also deduce uniform boundedness of solutions but
we cannot compare their estimates with our results since the fundamental solu-
tion p is singular for t = 0.

Besides the kernel estimates, other aspects of Schr̈odinger operators were
widely investigated. For example, an interesting problem is the characterization
of the domain in which the operator generates a strongly continuous or an ana-
lytic semigroup. A natural question is under which conditions on the potential
V the domain of ∆−V in Lp(RN ) coincides with the intersection of the domain
of the Laplacian and the domain of the potential that is W 2,p(RN ) ∩ D(V )
where D(V ) = {u ∈ Lp(RN ) : V u ∈ Lp(RN )}. By the classical theory for
elliptic operators with bounded coefficients, the last description of the domain
is true for bounded potentials but in general a greater effort is needed to get
information on the domain in the unbounded case and additional assumptions
have to be required.
Cannarsa and Vespri (see [10]) prove that, assuming an oscillation condition

on the potential, namely |∇V | = o(V
3
2 ), the operator generates an analytic

semigroup in Lp(RN ) for 1 ≤ p ≤ ∞. Moreover with their approach they char-
acterize for 1 < p <∞. We remark that they consider a more general operator
containing also a drift term.
Metafune, Pruss, Rhandi and Schnaubelt (see [31]) improve the previous gene-
ration result. In particular they establish that, under suitable assumptions on
the drift term and the oscillation assumption above on the potential, the whole
elliptic operator A endowed with the natural domain D(∆)∩D(V ) generates an
analytic and contractive strongly continuous semigroup on Lp(RN ), 1 ≤ p <∞,
and on C0(RN ). The precise description of the domain corresponds to good
apriori estimates for the elliptic problem λu −Au = f . Moreover the maximal
regularity of type Lq for the inhomogeneus parabolic problem associated with
the given operator is deduced.
On the other hand the equality D(∆ − V ) = D(∆) ∩ D(V ) holds even if V
belongs to suitable Reverse Hölder classes (see for example [41] and [3]). The
oscillation condition and the reverse Hölder one are incomparable, it is easy to
find examples of polynomials which satisfy a reverse Hölder inequality for which
the oscillation condition fails and viceversa. The potential V (x, y) = x2y2 does

not satisfy |DV | ≤ γV
3
2 for any γ but it belongs to the reverse Hölder class

Bp for every 1 < p ≤ ∞. The potential V (x) = ex in R does not satisfy the
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doubling property and then it does not belong to any reverse Hölder class but
the oscillation condition obviously holds.
In [41] Shen proves the Lp boundedness of D2(−∆+V )−1 on RN for 1 < p <∞,
assuming V ∈ Bp and under the restrictions N ≥ 3, p ≥ N

2 , he introduces an

auxiliary function m(x, V ), which is well defined for p ≥ N
2 and allows him to

estimate the fundamental solution.
In a recent work, P. Auscher and B. Ben Ali , see [3], extend Shen’s result
removing the original restrictions on the space dimension and on p. In their
proof they use a criterion to prove the Lp boundedness of certain operators in
absence of kernels, see [42, Theorem 3.1], [2, Theorem 3.14], and some weighted
mean value inequalities for nonnegative subharmonic functions with respect to
Muckenhoupt weights.
Following Shen’s approach, W. Gao and Y. Jiang extend the previous results
to the parabolic case. In [18], they consider the parabolic operator ∂t − ∆ + V
where V ∈ Bp is a nonnegative potential depending only on the space variables
and, under the assumptions N ≥ 3 and p > (N + 2)/2, they prove the bound-
edness of V (∂t − ∆ + V )−1 in Lp.
We consider the parabolic Schrödinger operator, in particular we focus our at-
tention on the validity of apriori estimates for solutions of λu−∂tu+∆u−V u = f
in Lp(RN+1) and consequently on the characterization of the domain. We im-
prove the results of Gao and Jiang indeed a larger class of potentials is al-
lowed. We obtain the Lp boundedness of V (∂t − ∆ + V )−1 (and consequently
of ∂t(∂t −∆ + V )−1 and D2(∂t −∆ + V )−1) if the potential V belongs to some
parabolic Reverse Hölder class Bp for 1 < p < ∞, without any restriction on
the space dimension and on p; moreover we remark that our potentials may
also depend on the time variable. Our approach is similar to that of [3]. We
use a more general version of the boundedness criterion in absence of kernels in
homogeneous spaces (see Theorem D.1.1) and the Harnack inequality for subso-
lutions of the heat equation. A crucial role is played by some properties of the
Bp weights originally proved in the classical case that is when RN is equipped
with the Lebesgue measure and the Euclidean distance. Since we need parabolic
cylinders instead of balls of RN , we use the more general theory of Bp weights
in homogeneous spaces, as treated in [48, Chapter I].

The first chapter contains some introductory and known results. Specifically,
following [29, Section 4], we assume local uniform ellipticity and local hölderian-
ity on the coefficients to prove that there exists a positive semigroup (T (t))t≥0

such that, for any f ∈ Cb(RN ), u(x, t) = T (t)f(x) is a classical solution of the

Cauchy problem associated with A =
∑N

i,j=1 aijDij +
∑N

i=1 FiDi − V . T (t) is
the semigroup generated by A in a weak sense. The semigroup (T (t))t≥0 has a
smooth integral kernel whose behaviour will be examined later.
After that, in a special case we show how a different approach is possible. We
sketch the construction of the semigroup generated by Schrödinger operators
with locally integrable potentials by means of the quadratic form theory (see
[13]). The semigroup generated by ∆ − V is ultracontractive and, by the Dun-
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ford Pettis Theorem, it admits an integral kernel.

In Chapter 2 we prove upper and lower bounds for heat kernels of Schrödinger
semigroups and upper bounds for Kolmogorov semigroups. In both cases we
consider the semigroup built under hölderianity assumptions on the coefficients.
First we analyse Kolmogorov operators. We assume the existence of a Lyapunov
function for the operator A, i.e. a positive and smooth function V going to in-
finity for |x| → ∞ such that AV ≤ λV for some positive λ. This requirement is
not restrictive since for the operators we are interested in through this chapter
a function satisfying this property exists (see [27, Section 2]). This assumption
insures that the domain of the weak generator coincides with the maximal do-
main.
We introduce Lyapunov functions for the parabolic operator L = ∂t + A. The
definition is a little bit different from the one given in the elliptic case. We say
that a continuous function W : [0, T ] × RN → [0,+∞) is a Lyapunov function
for the operator L if it belongs to C2,1(QT ), lim|x|→∞W (x, t) = +∞ uniformly
with respect to t in compact sets of (0, T ] and there exists h : [0, T ] → [0,∞)
integrable in a neighborhood of 0 such that LW (x, t) ≤ h(t)W (x, t) for all
(x, t) ∈ QT . Note that we do not require that W (x, 0) tends to ∞ as |x| → ∞.
We prove that a similar functions is integrable with respect to the kernel p,
more precisely

∫
RN p(x, y, t)W (y, t) dy ≤ e

R
t

0
h(s)dsW (x, 0). Assuming growth

assumptions on the radial component of the drift, we provide a class of Lya-
punov functions for L. To achieve the main result, we preliminary establish
some integrability and regularity results for the kernel. Then, by using the es-
timate of the L1-norm of Lyapunov functions stated before, we prove pointwise
estimates of kernels of the form p(x, y, t) ≤ c(t)ω(y, t). The main ingredient
is an estimate of the L∞-norm of solutions of certain parabolic problems. We
explicitly write the bounds so obtained in correspondence of some particular
choices of the drift.
A similar method based upon the Lyapunov functions technique works also
for Schrödinger operators. In the second part of the chapter we deduce upper
bounds for Schrödinger semigroups even if a different approach gives sometimes
more refined estimates as it will be shown in Chapter 3. Here we assume that
the potential satisfies the oscillation hypothesis |DV | ≤ γV

3
2 + Cγ for small

values of γ.
The integrability of Lyapunov functions, a parabolic regularity result and an
interpolative estimate of the sup norm of functions in parabolic Sobolev spaces
play a crucial role in the proof of the wished estimates which are of the Sikora
form p(x, y, t) ≤ c(t)ω(x, t)ω(y, t) (see [45]). As application we see that this
method enables us to deduce small times upper bounds for potentials growing
in a polynomial, exponential or logarithmic way. The sharpness is discussed.
For V (x) = |x|α, 0 < α < 2, V (x) = exp{c|x|α} and V (x) = M log(1 + |x|2)
our estimates are sharp, the method does not give a precise estimate of certain
constants in ω which however will be obtained in the next chapter. The estimate
for V (x) = |x|α, α > 2, is exact concerning the decay in the space variable for a
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fixed time, sharp estimates for such potential are proved in Chapter 3 by consid-
ering suitable space-time regions. Finally large time estimates are deduced by
the previous ones by means of the simmetry of the kernel and by the semigroup
law.

The third chapter is devoted to the study of upper and lower bounds of
Schrödinger kernels. In some cases, the results here obtained cover the ones in
the previous chapter.
Given a positive potential V , for each positive s we consider the new potential
Vs equal to s in the level set corresponding to s and V otherwise. To obtain
the bound on p, as in [45], we estimate the difference between the kernels p and
ps and then we use the triangle inequality. In [45], Sikora uses the functional
calculus to estimate such a difference for the potential V (x) = |x|α. Our ap-
proach, though more elementary, yields more precise bounds and a wider class
of potentials can be studied. Once the difference is estimated, we observe that,
for radial potentials and in correspondence of a particular choice of s depending
on the potential, the measure of the level set is known and the bound can be
explicitely written as follows

p(x, x, t) ≤ 1

(4πt)
N
2

exp{−tV (cx)} +
C(N)

t
N
2

cNωN
(1 − c)N

exp

{
− (1 − c)2|x|2

4t

}

for all 0 < c < 1.
Low-order perturbations of the potentials above can be estimated in similar
way. We remark that we first obtain on diagonal estimates and then by the
semigroup law we deduce off diagonal estimates.
The natural question is whether such estimates are sharp. Considering suitable
space-time regions, one can control the gaussian term with the first addendum,
moreover in these regions similar lower estimates are true and the sharpness
follows.
As consequence we deduce a result concerning the asymptotic distribution of the
eigenvalues of −∆+V . Denoted by N(λ) the number of eigenvalues less then λ
and λn the eigenvalues of −∆+V , the Karamata Theorem relates the asymptotic
behaviour of N(λ) for λ→ ∞ with the behaviour of

∑
n e

−λnt for small values
of t, by Mercer’s Theorem we know that

∫
RN p(x, x, t) =

∑∞
n=1 e

−λnt, therefore
we can use the upper and lower estimates for p to achieve information on N(λ).

In Chapter 4, we prove once again upper bounds for Schrödinger semi-
groups. But this time we obtain Davies-type estimates. We recall that by
a result due to Davies, if V (x) = |x|α, α > 2, then for all α+2

α−2 < b < ∞,

p(x, y, t) ≤ c1 exp{c2t−b}ψ(x)ψ(y) for all x, y ∈ RN , 0 < t ≤ 1, where ψ is the
ground state of −∆+ |x|α. Moreover the lower bound on b is sharp in the sense

that if p(x, y, t) ≤ c(t)ψ(x)ψ(y) then c(t) ≥ c1 exp{c2t−
α+2
α−2 }. We improve this

estimate indeed we show that p(x, y, t) ≤ c1 exp{c2t−
α+2
α−2 }ψ(x)ψ(y) by using

the similarity between Schrödinger and Kolmogorov operators. If the function
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|∇φ|2 − 2∆φ is bounded from below in RN , then the operator ∆ − ∇φ · ∇ in
L2(RN ) is unitarily equivalent to the Schrödinger operator ∆−V with potential
V = 1

4 |∇φ|2 − 1
2∆φ in L2(RN ) (with respect to the Lebesgue measure), see [26,

Proposition 2.2]. In particular ∆−∇φ ·∇ = −T (∆−V )T−1 where T is the mul-

tiplication operator Tu = e
φ
2 u. Consequently the problems of finding estimates

for the kernels of the two operators are equivalent. We prove estimates for the
Kolmogorov kernel as in [27] and then we deduce estimates for the Schrödinger
kernel.

The last chapter is aimed at the description of the domain of parabolic
Schrödinger operators. As main result, we prove that, if the potential V is
in a parabolic Reverse Hölder class Bp, then ‖V u‖Lp(RN+1) ≤ C‖∂tu − ∆u +
V u‖Lp(RN+1) for all u in the maximal domain of the operator. By difference and
by parabolic regularity, the estimates for the Lp norm of D2u and ∂tu follow.
Consequently we deduce that the domain of ∂t −∆ + V is W 2,1

p (RN+1)∩D(V )

where D(V ) = {u ∈ Lp(RN+1) : V u ∈ Lp(RN+1)}.
Through this chapter, we define the parabolic reverse Hölder classes by repla-
cing cubes or balls of RN in the classical definition with parabolic cylinders and
we state some useful properties enjoyed by them. For istance Bp weights are in
some Muckenhoupt classes Ap and satisfy a self improvement property due to
Gehring. Some examples of Bp weights are provided.
We take care of giving a meaning to the operator. We get inspiration by an
elliptic Kato’s result (see [19]) to endow ∂t − ∆ + V in Lp with the maximal
domain {u ∈ Lp(RN+1) : V u ∈ L1

loc(R
N+1), (∂t − ∆ + V )u ∈ Lp(RN+1)}. We

prove that for every λ > 0, λ+∂t−∆+V is invertible and, for every 1 ≤ p <∞,
C∞
c is a core for the operator. The main tool is a parabolic version of Kato’s

inequality originally proved in the elliptic case and which we generalized to the
parabolic one.
Then we consider the operator on L1 and we prove the apriori estimates. This
is an easy task, indeed the claimed estimates for p = 1 immediately follow by
approximation and integration by parts. These estimates will play a key role in
the proof of the apriori estimates in the general case which is more involved and
requires a greater effort. We use a powerful criterion to prove the boundedness
of certain operators in absence of kernels. We turn our attention toward the
operator T = V (∂t + ∆ − V )−1| · |. Its boundedness in L1, which follows by
the previous apriori estimates, and a sort of reverse Hölder inequality which
follows by the properties of the Bp weights and by the Harnack inequality for
subsolution of the heat equation, thanks to the criterion mentioned above, give
the boundedness in Lp. The main result immediately follows.

Appendix A, B and C contain respectively the Karamata Theorem and a
weaker version of it used in Chapter 3 to study the asymptotic distribution of
the eigenvalues of the Schrödinger operators, a preliminary inequality needed
to prove an integration by parts formula (see [32]) and used in Chapter 5 to
study the parabolic Schrödinger operator in an infinite cylinder Q(S, T ) and
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some Embedding Theorems for parabolic Sobolev spaces useful in the second
chapter.

The whole Appendix D is devoted to the boundedness criterion used in Chap-
ter 3. It’s worth it aiming the attention to such result which is extremely helpful
and of own interest. A weaker version of such theorem appears in [42, Theorem
3.1], it is confined to the elliptic case and it is more restrictive concerning the
exponents involved. Namely, Shen, inspired by a paper of Caffarelli and Peral
(see [9]), proved that if T is a sublinear bounded operator on L2(RN ) such that,
given p > 2, there exist some positive constants α2 > α1 > 1, N > 0 for which

{
1

|B|

∫

B

|Tf |p dx
} 1

p

≤ N

{(
1

|α1B|

∫

α1B

|Tf |2 dx
) 1

2

+ sup
B′⊃B

(
1

|B′|

∫

B′

|f |2 dx
) 1

2

}

for any ball B ⊂ RN and any bounded measurable function f with compact
support contained in RN \α2B then T is bounded in Lq(RN ) for any 2 < q < p.
Following [42, Theorem 3.1], we prove the result stated above in a more general
setting, i.e. we replace balls of RN with parabolic cylinders and a whatever Lp0

space plays the role of the L2 space in the assumptions. For the proof we need a
revisited theory in the parabolic case concerning the Maximal Hardy-Littlewood
functions, the Lebesgue points and a Calderón-Zygmund decomposition.
We remark that, since RN+1 endowed with the parabolic distance is a homoge-
neous space, the result can be deduced by a more general version of this theorem
formulated by Auscher and Martell (see [2, Section5]).
As application we provide an alternative proof of the classical apriori estimates
for the operator ∂t−∆ and of the classical Calderón-Zygmund Theorem. These
operators are both bounded in L2 and satisfy the assumption of Shen’s Theo-
rem, this can be proved by means of Cacioppoli-type estimates and by Sobolev
Embedding Theorems in the parabolic case and by the mean value Theorem for
harmonic functions in the elliptic one.
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the realization of this thesis.
I am extremely grateful to my supervisor, Prof. G. Metafune, who has so
patiently and competently followed my work injecting enthusiasm into math-
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Chapter 1

Markov semigroups in RN

In this chapter we collect some preliminary results nedeed to develop the next
theory. In particular we introduce elliptic operators with unbounded coefficients
and we study the Markov semigroups associated with them.
We consider the operator

Au(x) =

N∑

i,j=1

aij(x)Diju(x) +

N∑

i=1

Fi(x)Diu(x) − V (x)u(x)

under the hypotheses: (aij) symmetric matrix, aij , Fi, V real-valued functions,
V ≥ 0. Moreover we assume the ellipticity condition

N∑

i,j=1

aij(x)ξiξj ≥ λ(x)|ξ|2

for every x, ξ ∈ RN , with infK λ(x) > 0 for every compact K ⊂ RN . The
operator so defined is locally uniformly elliptic, that is uniformly elliptic on
every compact subset of RN .
We introduce the realization of A in Cb(RN ) with Dmax(A) defined as follows

Dmax(A) = {u ∈ Cb(R
N ) ∩W 2,p

loc (RN ) for all p <∞ : Au ∈ Cb(R
N )}.

In the first section, we prove existence results for bounded classical solutions of
the Cauchy problem

{
ut(x, t) = Au(x, t) x ∈ RN , t > 0,
u(x, 0) = f(x) x ∈ RN

(1.1)

with initial datum f ∈ Cb(RN ) and under hölderianity assumptions on the
coefficients. Since the coefficients of the operator are not bounded, the classical
theory does not give a solution of the problem. The solution is constructed
through an approximation procedure as limit of solutions of Cauchy Dirichlet

1
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problems in suitable bounded domains and is given by a certain semigroup T (t)
applied to the initial datum f .
Moreover we prove that the solution can be represented by the formula

u(x, t) =

∫

RN

p(x, y, t)f(y) dy t > 0, x ∈ RN

where p is a positive function called the integral kernel. As above, p is obtained
as limit of kernels of solutions in bounded domains.
A continuity property of the operators T (t) is deduced.
In the second section we state and prove some results concerning the generator
in a weak sense of the semigroup so constructed.
The last section is devoted to the study of a particular elliptic operator with
unbounded coefficients, the so called Schrödinger operator. It is obtained in
correspondence of vanishing drift term (F = 0) and constant diagonal matrix
(aij). It’s formal expression is given by A = ∆ − V where V is an unbounded
positive potential as before. The existence of the semigroup generated (in a weak
sense) by such operator and of an integral kernel are obviously guaranted by
the theory developed in the first two sections under hölderianity hypothesis on
the potential. Anyway we will see how a different approach, the quadratic form
method, allows us to prove that, under the weaker assumption V ∈ L1

loc(R
N ),

the Schrödinger operator generates a semigroup on L2(RN ) that can be extra-
polated to Lp(RN ) for 1 ≤ p ≤ ∞ and admits an integral representation.

1.1 The Cauchy problem and the semigroup

Through this and the next section we assume the following hypothesis on the
coefficients of the operator:

(i) aij = aji for all i, j = 1, ...., N ;

(ii)
∑N

i,j=1 aij(x)ξiξj ≥ λ(x)|ξ|2 for every x, ξ ∈ RN , with infK λ(x) > 0 for

every compact K ⊂ RN ;

(iii) aij , Fi, V belong to Cαloc(R
N ) for some α ∈ (0, 1);

(iv) V (x) ≥ 0 for all x ∈ RN .

We will prove the following theorem.

Theorem 1.1.1. There exists a positive semigroup (T (t))t≥0 defined in Cb(RN )

such that, for any f ∈ Cb(RN ), u(x, t) = T (t)f(x) ∈ C
2+α,1+ α

2

loc (RN × (0,+∞))
and satisfies the differential equation

ut(x, t) =

N∑

i,j=1

aij(x)Diju(x) +

N∑

i=1

Fi(x)Diu(x) − V (x)u(x).
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Let us fix a ball Bρ in RN and consider the problem





ut(x, t) = Au(x, t) x ∈ Bρ, t > 0,
u(x, t) = 0 x ∈ ∂Bρ, t > 0
u(x, 0) = f(x) x ∈ RN .

(1.2)

Since the operator A is uniformly elliptic and the coefficients are bounded in
Bρ, there exists a unique solution uρ of the problem (1.2). In other words, the
operator Aρ = (A,Dρ(A)) with

Dρ(A) = {u ∈ C0(Bρ) ∩W 2,p(Bρ) for all p <∞ : Au ∈ C(Bρ)}

generates an analytic semigroups (Tρ(t))t≥0 in the space C(Bρ) and the function
uρ(x, t) = Tρ(t)f(x) solves (1.2).
Since the domain Dρ(A) is not dense in C(Bρ), the semigroup is not strongly
continuous at 0 indeed one can prove that Tρ(t)f converges uniformly to f in
Bρ as t → 0 if and only if f ∈ C0(Bρ). However the convergence is uniform
in compact sets Bσ for every σ < ρ and hence pointwise in Bρ. The operators
Tρ(t) are bounded in Lp(Bρ) for every 1 ≤ p < ∞ and are integral operators
indeed, for every ρ > 0, there exists a kernel pρ(x, y, t) such that

Tρ(t)f(x) =

∫

Bρ

pρ(x, y, t)f(y) dy (1.3)

for every f ∈ C(Bρ). The kernel pρ is positive and, for every fixed y ∈ Bρ,
0 < ε < τ , it belongs to C2+α,1+ α

2 (Bρ × (ε, τ)) as a function of (x, t) and
satisfies

∂tpρ = Apρ.

It follows that Tρ(t) are positive and satisfy the estimate ‖Tρ(t)f‖∞ ≤ ‖f‖∞,
moreover for every f ∈ C(Bρ) the function uρ(x, t) belongs to C2+α,1+ α

2 (Bρ ×
(ε, τ)). Finally, by the integral representation, we can immediately deduce a
continuity property of the operator Tρ(t). If (fn) ⊂ C(Bρ), f ∈ C(Bρ) satisfy
‖fn‖ ≤ C for every n ∈ N and fn → f pointwise, then Tρ(t)fn → Tρ(t)f point-
wise.
We refer to [25, Chapter 3] and [17, Chapter 3, Section 7] for a detailed descrip-
tion of the results mentioned above.
Now we would like to let ρ to infinity in order to define the semigroup associa-
ted with A in RN . To this aim we need an easy consequence of the parabolic
maximum principle.

Lemma 1.1.2. Let 0 ≤ f ∈ Cb(RN ) and let ρ < ρ1 < ρ2. Then for every t ≥ 0
and x ∈ Bρ we have 0 ≤ Tρ1(t)f(x) ≤ Tρ2(t)f(x).

Proof. First suppose that f ≡ 0 on the boundary ∂Bρ1 . Then, since
Tρ(t)f converges uniformly to f in Bρ1 as t → 0 if and only if f ∈ C0(Bρ1),
w(x, t) = Tρ2(t)f(x) − Tρ1(t)f(x) is continuous on Bρ1 × [0,∞), vanishes for
t = 0, is nonnegative for x ∈ ∂Bρ1 and solves a parabolic equation. By the
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maximum principle w(x, t) ≥ 0 in Bρ1 × [0,∞). In general, if f ∈ Cb(RN ),
we approximate it in the L2(Bρ2) norm with continuous functions vanishing
on ∂Bρ1 . Using the first part of the proof and the boundedness of Tρi

(t) in
L2(B(ρi)), i = 1, 2, the claim follows.

Proof (Theorem 1.1.1). If f ∈ Cb(RN ), x ∈ RN we set

T (t)f(x) := lim
ρ→∞

Tρ(t)f(x).

We know that this limit exists if f ≥ 0 by monotonicity, otherwise we write a
general f as f+ − f−. For the positive and the negative part of f the limit
above exists and then, since Tρ(t) is linear, T (t)f(x) is well defined. T (t) are
positive operators and ‖T (t)f‖∞ ≤ ‖f‖∞. Let us prove that the operators so
defined satisfy the semigroup law. Consider f ≥ 0. Let t, s > 0. Then

T (t+ s)f(x) = lim
ρ→∞

Tρ(t+ s)f(x) = lim
ρ→∞

Tρ(t)Tρ(s)f(x) ≤ T (t)T (s)f(x).

On the other hand, for every ρ1 > 0 we have

T (t+ s)f(x) = lim
ρ→∞

Tρ(t)Tρ(s)f(x) ≥ lim
ρ→∞

Tρ1(t)Tρ(s)f(x) = Tρ1(t)T (s)f(x)

and, letting ρ1 → ∞, it follows that T (t + s)f(x) ≥ T (t)T (s)f(x). Hence the
semigroup law is true if the semigroup is applied to a positive function. The
general case follows by linearity as above.
Set u(x, t) = T (t)f(x), uρ(x, t) = T (t)f(x) for t ≥ 0 and x ∈ RN . Fix positive
numbers ε, τ, σ with 0 < ε < τ . By the interior Schauder estimates ([17,
Chapter 3, Section 2]) there exists a positive constant C such that for ρ > σ

‖uρ‖C2+α,1+ α
2 (Bσ×[ε,τ ])

≤ C‖uρ‖∞ ≤ C‖f‖∞.

So by Ascoli’s Theorem it follows that uρ converges to u uniformly in Bσ× [ε, τ ].
Fix now σ1 < σ, ε < ε1 < τ1 < τ and apply again Schauder estimates. For
ρ2 > ρ1 > σ > σ1 we have

‖uρ2 − uρ1‖C2+α,1+ α
2 (Bσ1×[ε1,τ1])

≤ C‖uρ2 − uρ1‖L∞(Bσ×[ε,τ ]).

Then u ∈ C
2+α,1+ α

2

loc (RN × (0,∞)) and, letting ρ→ ∞ in the equation satisfied
by uρ, it follows that ∂tu = Au.

We have observed that the semigroup T (t) is not strongly continuous in
Cb(RN ). We are interested now in the conditions under which the continuity at
t = 0 holds.

Proposition 1.1.3. For every f ∈ C0(RN )

lim
t→0

T (t)f = f

uniformly on RN .
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Proof. Consider first f ∈ C2(RN ) with support contained in Bσ and let
ρ > σ. Then, for x ∈ Bρ,

Tρ(t)f(x) − f(x) =

∫ t

0

Tρ(s)Af(x) ds

and, letting ρ→ ∞ by dominated convergence,

T (t)f(x) − f(x) =

∫ t

0

T (s)Af(x) ds.

By the arbitrarity of ρ, the equality above holds for every x ∈ RN and, taking
the supremum over x ∈ RN ,

‖T (t)f − f‖∞ ≤ t‖Af‖∞.

This implies that T (t)f converges to f uniformly as t→ 0. By density the claim
follows.

Remark 1.1.4. By the previous proposition we cannot deduce that (T (t))t≥0

restricted to C0(RN ) is strongly continuous since no invariance property of
C0(RN ) under the semigroup is guaranteed.

As we have seen before, Tρ(t) are integral operators, therefore they can be
represented in integral form through a kernel pρ. In the next theorem we prove
that also T (t) is an integral operator and its kernel enjoies some regularity
properties.

Theorem 1.1.5. The following representation formula for T (t) holds

T (t)f(x) =

∫

RN

p(x, y, t) dy

for f ∈ Cb(RN ) and with p positive function such that for almost every y ∈ RN

it belongs to C
2+α,1+ α

2

loc (RN×(0,∞)) as a function of (x, t) and solves ∂tp = Ap.

Proof. Suppose 0 ≤ f ∈ Cb(RN ). By Lemma 1.1.2, Tρ(t)f converges
monotonically pointwise to T (t)f . Therefore, recalling that

Tρ(t)f(x) =

∫

Bρ

pρ(x, y, t)f(y) dy,

the kernels pρ increase with ρ. Then there exists

p(x, y, t) := lim
ρ→∞

pρ(x, y, t)

and, by monotone convergence,

T (t)f(x) = lim
ρ→∞

Tρ(t)f(x) = lim
ρ→∞

∫

Bρ

pρ(x, y, t)f(y) dy =

∫

RN

p(x, y, t)f(y) dy.
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The positivity of p immediately follows by the one of pρ. We show now the
regularity properties of p.
We have

∫
Bρ
pρ(x, y, t) dy ≤ 1 and, letting ρ → ∞,

∫
RN p(x, y, t) dy ≤ 1 so that

p(x, y, t) is finite for every t > 0, every x ∈ RN and almost every y ∈ RN .
Fix t1 > 0, σ > 0, x0 ∈ Bσ and let y0 ∈ RN such that p(x0, y0, t1) < ∞.
If ρ2 > ρ1 > σ + 1, the functions pρ1(·, y0, ·), pρ2(·, y0, ·) are solutions of the
equation ∂tu = Au in Bσ+1 × (0,∞) and the difference pρ2 − pρ1 is as well.
By the parabolic Harnack inequality (see [24, Chapter VII]), for every fixed
0 < ε < τ < t1

sup
ε≤t≤τ, x∈Bσ

[pρ2(x, y0, t) − pρ1(x, y0, t)] ≤ C inf
Bσ

[pρ2(x, y0, t1) − pρ1(x, y0, t1)]

≤ C[pρ2(x0, y0, t1) − pρ1(x0, y0, t1)].

Since p(x0, y0, t1) <∞, pρ(·, y0, ·) is a Cauchy sequence in C(Bσ × [ε, τ ]). Then
pρ(·, y0, ·) converges uniformly to p(·, y0, ·) in Bσ × [ε, τ ]. Fix now σ1 < σ, ε <
ε1 < τ1 < τ and apply the Schauder estimates. We have

‖pρ2 − pρ1‖C2+α,1+ α
2 (Bσ1×[ε1,τ1])

≤ C‖pρ2 − pρ1‖L∞(Bσ×[ε,τ ]).

Then p ∈ C
2+α,1+ α

2

loc (RN × (0,∞)) and, letting ρ→ ∞ in the equation satisfied
by pρ, it follows that and ∂tp = Ap.

Remark 1.1.6. By using the integral representation formula, we can extend the
semigroup to the space of the bounded measurable functions. If f ∈ Bb(RN ),
with T (t)f we mean the

∫
RN p(x, y, t)f(y) dy.

We now show the continuity up to t = 0 of u(x, t) and so we prove that we
have built not only a solution of the parabolic equation but a solution of the
Cauchy problem (1.1). Let us fix a notation. For any measurable set E ⊂ RN ,
with p(x,E, t) we denote the

∫
E
p(x, y, t) dy.

Theorem 1.1.7. Let f ∈ Cb(RN ). Then T (t)f converges to f as t → 0 uni-
formly on compact subsets of RN .

Proof. Let ρ > 0 and f1, f2 ∈ C0(RN ) such that 0 ≤ χBρ
≤ f1 ≤ χB2ρ

≤
f2 ≤ 1. By the positivity of T (t),

T (t)f1(x) ≤ p(x,B2ρ, t) ≤ T (t)f2(x)

for all x ∈ RN . By Proposition 1.1.3, T (t)f1 → f1, T (t)f2 → f2 uniformly on Bρ
as t → 0. We observe that f1 = f2 ≡ 1 on Bρ. It follows that p(x,B2ρ, t) → 1
on Bρ as t→ 0. Then

0 ≤ p(x,RN \B2ρ, t) = p(x,RN , t) − p(x,B2ρ, t) ≤ 1 − p(x,B2ρ, t) → 0 (1.4)

as t→ 0 uniformly on Bρ.
Let now f ∈ Cb(RN ) and η ∈ C0(RN ) such that 0 ≤ η ≤ 1, η = 1 on B2ρ,
supp (η) ∈ B3ρ. Then

T (t)f − f = T (t)f − T (t)(ηf) + T (t)(ηf) − ηf
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on Bρ. By Proposition 1.1.3, ‖T (t)(ηf) − ηf‖∞ → 0 as t → 0. Concerning the
remaining terms, by (1.4) we have

|T (t)f(x) − T (t)(ηf)(x)| = T (t)((1 − η)f)(x)

=

∫

RN

p(x, y, t)((1 − η(y))f(y)) dy

≤ p(x,RN \B2ρ, t)‖f‖∞ → 0

uniformly on Bρ. We conclude therefore that T (t)f → f uniformly on Bρ and
by the arbitrarity of ρ the claim follows.

Remark 1.1.8. We observe that, in general, the problem (1.1) is not uniquely
solvable in Cb(RN × [0,+∞)) ∩C2+α,1+ α

2 ((0,+∞) × RN ). Anyway we can say
that the solution found above is the minimal among all the positive solutions of
the given problem with positive initial datum. Infact, if f ≥ 0 and v is another
positive solution, then the maximum principle yields v(x, t) ≥ uρ(x, t) for all
t > 0, x ∈ Bρ, uρ defined as before and, letting ρ→ ∞, v ≥ u.

Now we prove some interesting continuity properties of the operators T (t).

Proposition 1.1.9. Let (gn) be a bounded sequence in Cb(RN ), g ∈ Cb(RN )
and suppose that gn(x) → g(x) for every x ∈ RN . Then, for every 0 < ε < τ
and σ > 0, T (t)gn(x) → T (t)g(x) uniformly for (x, t) ∈ Bσ × [ε, τ ]. If gn → g
uniformly on compact sets, then T (t)gn(x) → T (t)g(x) uniformly for (x, t) ∈
Bσ × [0, τ ].

Proof. Using the integral representation and the Lebesgue dominated con-
vergence Theorem, we immediately deduce that T (t)gn(x) → T (t)g(x) pointwise
in RN . Let K > 0 such that ‖gn‖∞ ≤ K for every n ∈ N. Then ‖T (t)gn‖∞ ≤ K
for every n ∈ N and, by the Schauder estimates, for every 0 < ε < τ and σ > 0
there exists C > 0 such that

sup
n

‖T (·)gn(·)‖C1(Bσ×[ε,τ ]) ≤ C.

By Ascoli’s Theorem we deduce that the convergence is uniform in Bσ × [ε, τ ].
Let us prove the second statement. Without loss of generality we can suppose
g = 0 (otherwise we consider gn − g) and ‖gn‖∞ ≤ 1. Let σ, ε > 0 and, for
every ρ > 1, consider 0 ≤ fρ ∈ C0(RN ) such that χBρ−1 ≤ fρ ≤ χBρ

. Set

E = {s ≥ 0 : ∃ ρ > 0 such that inf
|x|≤σ, 0≤t≤s

T (t)(fρ(x) − 1) ≥ −ε}.

Obviously 0 ∈ E. Now we prove that E is open and closed together and so we
conclude that it coincides with the positive real axis. Let s ∈ E, then there
exists (sn) ⊂ E, sn → s for n → ∞. Suppose that there exists r ∈ N such that
sr ≥ s and let ρr be such that

inf
|x|≤σ, 0≤t≤sr

T (t)(fρr
− 1)(x) ≥ −ε.
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Then

inf
|x|≤σ, 0≤t≤s

T (t)(fρr
− 1)(x) ≥ inf

|x|≤σ, 0≤t≤sr

T (t)(fρr
− 1)(x) ≥ −ε

and s ∈ E. Otherwise sn < s for every n ∈ N. Since s1 ∈ E, there exists ρ1 > 0
such that

inf
|x|≤σ, 0≤t≤s1

T (t)(fρ1 − 1)(x) ≥ −ε.

Recalling that {fρ} is increasing, it turns out that the previous inequality is
satisfied for every ρ ≥ ρ1. By the first part of the proof, we know that T (·)fρ →
T (·)1 as ρ → ∞ uniformly in Bσ × [s1, s]. Therefore there exists ρ0 > 0 such
that

T (t)fρ(x) ≥ T (t)1− ε, t ∈ [s1, s], x ∈ Bσ, ρ ≥ ρ0.

If we choose ρ = max{ρ0, ρ1}, then

T (t)fρ(x) ≥ T (t)1− ε, t ∈ [0, s], x ∈ Bσ.

It follows that s ∈ E.
Now we prove that E is open. Let s ∈ E and ρ as in the definition of E. Since
T (s)fρ → T (s)1 as ρ → ∞ uniformly in compact sets, there exists ρ0 > 0 such

that T (s)fρ(x) ≥ T (s)1 − ε

2
for every x ∈ Bσ, ρ > ρ0. By Theorem 1.1.7,

T (s+ δ)fρ(x) ≥ T (s)1− ε for every x ∈ Bσ and δ sufficiently small. This shows
that E is open. We conclude that E = [0,∞). In particular, if τ > 0 is fixed, we
can find ρ > 0 such that p(x,Bρ, t) ≥ T (t)fρ(x) ≥ T (t)1 − ε for every x ∈ Bσ
and t ∈ [0, τ ]. Then we have

|T (t)gn(x)| ≤
∫

Bρ

p(x, y, t)|gn(y)| dy +

∫

RN\Bρ

p(x, y, t) dy ≤ sup
y∈Bρ

|gn(y)| + ε

for every x ∈ Bσ and t ∈ [0, τ ].
As consequence of the continuity result just proved, we deduce that (T (t))t≥0

is irreducible and satisfies the strong Feller property. We preliminary define
these two properties.

Definition 1.1.10. A semigroup ((T (t))t≥0 in Bb(RN ) is irreducible if for any
nonempty open set U ⊂ RN , T (t)χU (x) > 0 for every t > 0 and x ∈ RN .

Definition 1.1.11. We say that (T (t))t≥0 satisfies the strong Feller property if
T (t)f ∈ Cb(RN ) for any bounded Borel function f .

Proposition 1.1.12. The semigroup (T (t))t≥0 is irreducible and has the strong
Feller property.

Proof. The irreducibility immediately follows since the integral kernel p is
positive. Let f be a bounded Borel Function and let (fn) ∈ Cb(RN )a bounded
sequence such that fn(x) → f(x) for almost every x ∈ RN . By dominated
convergence, T (t)fn → T (t)f pointwise in RN . Using the interior Schauder
estimates, as in Proposition 1.1.9, we deduce that T (t)fn → T (t)f uniformly on
compact sets and then the limit T (t)f ∈ Cb(RN ).
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1.2 The weak generator of T (t)

In the previous section we have built a semigroup associated to the given elliptic
operator with unbounded coefficients and we have observed that in general it is
not strongly continuous in Cb(RN ), hence we cannot define it’s generator in the
usual sense. However, as we will see later, it is possible to define a generator in
a weak sense.
In this section we state only some results useful in the following chapters, in
particular we are interested in the conditions under which the domain of the
weak generator coincides with the maximal one. For example this equality will
be guaranted under the existence of suitable Lyapunov functions for the operator
A.
First we enunciate an existence result for the solution of the elliptic equation
associated with A.

Theorem 1.2.1. For any λ > 0, f ∈ Cb(RN ), there exists u ∈ Dmax(A) such
that

λu(x) −Au(x) = f(x), x ∈ RN .

Moreover the following estimate holds

‖u‖∞ ≤ 1

λ
‖f‖∞.

Finally, if f ≥ 0, then u ≥ 0.

We only sketch the proof. As in the parabolic case, the solution is obtained
as limit of solutions of the analogous of the equation above for Aρ, realization
of the operator A with homogeneous Dirichlet boundary conditions in balls of
RN of radius ρ.
Set Aρ = (A,Dρ(A)) where

Dρ(A) = {u ∈ C0(Bρ) ∩W 2,p(Bρ) for all p <∞ : Au ∈ C(Bρ)}

and uρ = R(λ,Aρ)f . For any λ > 0 there exists a linear operator R(λ) in
Cb(RN ) such that for any f ∈ Cb(RN ) the solution is given by

u(x) = (R(λ)f)(x) = lim
ρ→∞

R(λ,Aρ)f(x), x ∈ RN .

The family of operators {R(λ) : λ > 0} satisfies the estimate

‖R(λ)f‖∞ ≤ 1

λ
‖f‖∞, f ∈ Cb(R

N ),

moreover it is possible to prove that the operators R(λ) are injective and satify
the resolvent identity

R(λ)f −R(µ)f = (µ− λ)R(µ)R(λ)f, 0 < λ < µ.

We refer to [4, Theorem 2.1.1, Theorem 2.1.3] or [29, Theorem 3.4] for a detailed
proof of the last results. Then we can define the weak generator as the unique
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closed operator (Â, D̂) such that (0,+∞) ⊂ ρ(Â), ImR(λ) = D̂ and R(λ) =
R(λ, Â) for all λ > 0 (see [16, Chapter III, Proposition 4.6]). In some cases
the following equivalent direct description of the weak generator can be more
useful.

D(A1) =

{
f ∈ Cb(R

N ) : sup
t∈(0,1)

‖T (t)f − f‖∞
t

<∞ and ∃ g ∈ Cb(R
N ) :

lim
t→0+

(T (t)f)(x) − f(x)

t
= g(x) ∀ x ∈ RN

}

and, for all f ∈ D(A1),

(A1f)(x) = lim
t→0+

(T (t)f)(x) − f(x)

t
, x ∈ RN , f ∈ D(A1).

One can prove that (Â, D̂) = (A1, D(A1)) (see for example [4, Proposition
2.3.1]). The weak generator enjoies similar properties to those of the infinitesi-
mal generator. For example the following result remains true.

Proposition 1.2.2. For any f ∈ D̂, T (t)f ∈ D̂ and for any fixed x ∈ RN the
function (T (·)f)(x) is continuously differentiable in [0,+∞) with

d

dt
(T (t)f)(x) = (ÂT (t)f)(x) = (T (t)Âf)(x), t ≥ 0. (1.5)

(See [4, Proposition 2.3.5]) for the proof.)
Next propositions show the connections between Dmax(A) and D̂. We recall
that our goal is to find some conditions under which the maximal domain and
the domain of the weak generator coincide.

Proposition 1.2.3. The following statements hold.

(i) D̂ ⊂ Dmax(A) and Âu = Au for u ∈ D̂. The equality D̂ = Dmax(A) holds
if and only if λ−A is injective on Dmax(A) for some positive λ.

(ii) Set D(A) = Dmax(A) ∩ C0(RN ), we have the inclusion D(A) ⊂ D̂.

Proof. (i) The inclusion D̂ ⊂ Dmax(A) and the equality Âu = Au for
u ∈ D̂ follow from the definition of D̂ and Theorem 1.2.1. Concerning the
second statement, obviously λ−A is bijective from D̂ onto Cb(RN ). If it is also
injective on Dmax(A), then D̂ = Dmax(A).
(ii) Let v ∈ D(A), f = v − Av and u = R(1, A)f . If uρ = R(1, Aρ)f , then
(uρ − v)−A(uρ − v) = 0 in Bρ and hence, by the maximum principle, |uρ(x) −
v(x)| ≤ sup|x|=ρ |v(x)| for |x| ≤ ρ. Letting ρ → ∞ we obtain u = v and hence

v ∈ D̂.

Definition 1.2.4. We say that W is a Lyapunov function for A if W ∈ C2(RN ),
W ≥ 0, W goes to infinity as |x| → ∞ and λW −AW ≥ 0 for some positive λ.
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Theorem 1.2.5. Suppose that there exists a Lyapunov function W for A. Let
λ > 0. If u ∈ Dmax(A) satisfies λu − Au ≤ 0 (≥ 0), then u ≤ 0 (u ≥ 0). In
particular the operator λ−A is injective and then D̂ = Dmax(A).

We need the following maximum principle for solutions of elliptic equations.
For the proof we refer to [25, Theorem 3.1.10].

Lemma 1.2.6. Let u ∈ W 2,p
loc (RN ) for any p < ∞ and suppose that Au ∈

C(RN ). If u has a relative maximum (minimum) at the point x0 then Au(x0)+
V (x0)u(x0) ≤ 0 (Au(x0) + V (x0)u(x0) ≥ 0).

Proof (Theorem 1.2.5). For every ε > 0 set uε = u − εW . Obviously
λuε − Auε ≤ 0 in RN and lim|x|→∞ uε(x) = −∞. Let (xn) ⊂ RN be such
that supx∈RN uε(x) = limn→∞ uε(xn). Then (xn) is bounded and, without
restriction, we may assume that limn→∞ xn = x0. By Lemma 1.2.6, Auε(x0) ≤
−V (x0)uε(x0), then

λuε(x0) ≤ Auε(x0) ≤ −V (x0)uε(x0)

and hence
(λ+ V (x0))uε(x0) ≤ 0.

Since V is a positive potential, it follows uε(x0) ≤ 0 and then

uε ≤ max
x∈RN

uε(x) = uε(x0) ≤ 0.

Letting ε→ 0, we obtain u ≤ 0.

1.3 Schrödinger operators via form method

In this section we sketch the construction of the semigroup associated with the
Schrödinger operator A = ∆ − V by means of the method of the quadratic
forms. Moreover we will see how it is possible to represent this semigroup in
integral form through a kernel. All over the section we only require V positive
potential in L1

loc(R
N ).

1.3.1 From forms to semigroups

Let W a Hilbert space over the field K = C or K = R . A sesquilinear from
a : W ×W → K is a mapping satisfying

a(u+ v, w) = a(u,w) + a(v, w)

a(λu,w) = λa(u,w)

a(u, v + w) = a(u, v) + a(u,w)

a(u, λv) = λa(u, v)

for u, v, w ∈ W, λ ∈ K. In other words, a is linear in the first and antilinear
in the second variable. If K = R, then we say that a is bilinear.
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Definition 1.3.1. The form a is called continuous if there exists M ≥ 0 such
that

|a(u, v)| ≤M‖u‖W‖v‖W u, v ∈W.

The form is called coercive if there exists α > 0 such that

Re a(u, u) ≥ α‖u‖2
W , u ∈ W.

The form a is called symmetric if

a(u, v) = a(v, u) ∀u, v ∈W.

Assume from now on that the Hilbert space W is continuously and densely
embedded into another Hilbert space H and consider the operator A associated
with the form on H so defined

D(A) = {u ∈W : ∃ f ∈ H such that a(u, v) = (f |v)H for all v ∈W}
Au = f.

Observe that f is uniquely determined by u sinceW is dense inH . The following
theorem allows us to construct a semigroup associated with the form. For its
proof we refer to [49].

Theorem 1.3.2. Assume that a : W × W → K is a continuous, coercive
form where W →֒ H densely. Then the operator −A above defined generates a
strongly continuous holomorphic semigroup on H.

Unless we make a rescaling, we can prove that an assumption weaker than
the coercivity is sufficient to get a generation result.

Definition 1.3.3. Let W, H be Hilbert spaces over K = C or R such that
W →֒ H. Let a : W ×W → K a sesquilinear form. We call a elliptic (or more
precisely H-elliptic) if

Re a(u, u) + ω‖u‖2
H ≥ α‖u‖2

W

for some ω ∈ R, α > 0 and for all u ∈ W .

The last definition is equivalent to saying that the form aω : W ×W → K
defined by

aω(u, v) := a(u, v) + ω(u|v)H u, v ∈W

is coercive.

Remark 1.3.4. If A is the operator associated with the form a, then A+ ω is
the operator associated with the form aω. It follows that if W →֒ H densely and
a : W ×W → K is a continuous, elliptic form with ellipticity constant ω, then
the operator −(A+ ω) generates a holomorphic strongly continuous semigroup
Tω. Consequently −A generates the semigroup T given by T (t) = eωtTω(t).
So the assumption of coercivity on a in Theorem 1.3.2 can be replaced by the
ellipticity.



13

It is possible to prove the following density result on the domain.

Proposition 1.3.5. The domain D(A) of A is dense in W .

We are ready to prove a generation result for Schrödinger operators.

Example 1.3.6. Let K = R, H = L2(RN ), 0 ≤ V ∈ L1
loc(R

N ),

a1(u, v) =

∫

RN

∇u∇v dx, u, v ∈ W1 := W 1,2(RN ),

a2(u, v) =

∫

RN

V uv dx, u, v ∈W2 := L2(RN , (1 + V (x))dx)

and consider the form sum

a(u, v) =

∫

RN

∇u∇v dx +

∫

RN

V uv dx

defined on W = W1 ∩W2 with the scalar product

(u|v)W := (u|v)W1 + (u|v)W2 .

First, let us observe that W is complete indeed ‖u‖2
W = ‖u‖2

W1
+ ‖u‖2

W2
and

it is dense in L2(RN ). Moreover a is a symmetric, continuous, elliptic form on
L2(RN ) infact

a(u, v) =

∫

RN

∇u∇v +

∫

RN

V uv =

∫

RN

∇v∇u+

∫

RN

V vu = a(v, u);

|a(u, v)| ≤M(‖∇u‖L2(RN )‖∇v‖L2(RN ) + ‖V 1
2u‖L2(RN )‖V

1
2 v‖L2(RN ))

≤M(‖u‖W1‖v‖W1 + ‖u‖W2‖v‖W2) ≤M‖u‖W‖v‖W ;

a(u, u) + 2‖u‖2
L2(RN ) =

∫

RN

|∇u|2 +

∫

RN

|u|2 +

∫

RN

(V + 1)u2

= ‖u‖2
W1

+ ‖u‖2
W2

By Remark 1.3.4, we deduce that the operator −A associated with a given by

D(A) = {u ∈W 1,2(RN ) ∩ L2(RN , (1 + V (x))dx) : −∆u+ V u ∈ L2(RN )},
Au = −∆u+ V u

(where, for u ∈ L2(RN ), −∆u+V u ∈ L2(RN ) is considered in the distributional
sense) generates a strongly continuous holomorphic semigroup.

We can immediately prove the positivity of the semigroup generated by the
Schrödinger operator.

Proposition 1.3.7. Let V ≥ 0,∈ L1
loc(R

N ) a positive potential, then the semi-
group (T (t))t≥0 generated by −A = ∆ − V is positive.
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Proof. Let f ∈ L2(RN ), f ≤ 0, λ > 0, set u = (λ + A)−1f ∈ W 1,2(RN )
(The invertibility of λ+A is guaranteed by the Lax- Milgram Theorem). Then

λu− ∆u+ V u = f.

If we multiply both sides of the previous equality by u+ and integrate by parts
over RN , we obtain

λ

∫

RN

(u+)2 +

∫

RN

(∇u+)2 +

∫

RN

V (u+)2 =

∫

RN

fu+ ≤ 0.

This implies u+ ≡ 0 and so u ≤ 0. Recalling now that

T (t)f = lim
n→∞

(
I +

t

n
A

)−n
f

(see [16, Corollary 5.5]), we have the claim.
From the proposition above it immediately follows that a comparison prin-

ciple holds for semigroups generated by Schrödinger operators.

Corollary 1.3.8. Let (T1(t))t≥0, (T2(t))t≥0 be respectively the semigroups gen-
erated by the operators −A1 = ∆− V1 and −A2 = ∆− V2. If V1 ≤ V2, then for
every 0 ≤ f ∈ L2(RN ) and for all t ≥ 0, T1(t)f ≥ T2(t)f .

Proof. Let λ > 0, 0 ≤ f ∈ L2(RN ) and set u1 = (λ + A1)
−1f , u2 = (λ +

A2)
−1f . As in the proof of the Proposition 1.3.7, in virtue of the approximation

formula of the semigroup via the resolvent, it is sufficient to prove that u1 ≥ u2.
The functions u1, u2 satisfy

λu1 − ∆u1 + V1u1 = f

and
λu2 − ∆u2 + V2u2 = f.

Therefore the difference satisfies

λ(u1 − u2) − ∆(u1 − u2) + V1(u1 − u2) = (V2 − V1)u2.

Since f ≥ 0, by Proposition 1.3.7, u2 ≥ 0 and then, by the assumption, (V2 −
V1)u2 ≥ 0. By Proposition 1.3.7 again it follows u1 ≥ u2.

1.3.2 Contractivity properties

In light of the construction of the semigroup via forms method, some nice prop-
erties for (T (t))t≥0 can be deduced by keeping suitable assumptions on a. We
establish a contractivity result.
We need the following preliminary proposition.

Proposition 1.3.9. Let B be the generator of a strongly continuous semigroups
(T (t))t≥0 on H. Then ‖T (t)‖ ≤ 1 for all t ≥ 0 if and only if B is dissipative.
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Proof. Assume that B is dissipative, i.e.

Re (Bu, u) ≤ 0 u ∈ D(B).

Let u ∈ D(B). Then

d

dt
‖T (t)u‖2

H =
d

dt
(T (t)u|T (t)u)H = (BT (t)u|T (t)u)H + (T (t)u|BT (t)u)H

= 2Re(BT (t)u|T (t)u)H ≤ 0.

It follows that ‖T (·)u‖2
H is decreasing. In particular ‖T (t)u‖H ≤ ‖u‖H for all

t ≥ 0, u ∈ D(B). Since D(B) is dense in H , the claim follows.
Conversely, assume that T is contractive. Let u ∈ D(B). Then

‖T (t+ s)u‖H = ‖T (t)T (s)u‖H ≤ ‖T (s)u‖H t, s ≥ 0.

We deduce that ‖T (·)u‖2
H is decreasing and then

Re(Bu|u)H =
1

2

d

dt |t=0
‖T (t)u‖2

H ≤ 0.

Definition 1.3.10. We say that the sesquilinear form a is accretive if

Re a(u, u) ≥ 0 u ∈W.

Proposition 1.3.11. Let (T (t))t≥0 the semigroup on H associated with the
form a. Then (T (t))t≥0 is contractive if and only if a is accretive.

Proof. Suppose a accretive. Then Re(Au, u) = a(u, u) ≥ 0 for all u ∈
D(A). Thus −A is dissipative and the semigroup is contractive by Proposition
1.3.9. Viceversa, suppose that the semigroup is contractive, then, by Proposition
1.3.9 again, −A is dissipative, hence

Re a(u, u) = Re(Au|u)H ≥ 0 u ∈ D(A).

Since D(A) is dense in W (see Proposition 1.3.5), Re a(u, u) ≥ 0 for all u ∈
W .

Example 1.3.12. The form associated with the Schrödinger operator defined
in Example 1.3.6 is accretive infact for all u ∈W

a(u, u) =

∫

RN

|∇u|2 +

∫

RN

V u2 ≥ 0.

Therefore the semigroup generated by ∆ − V is contractive on L2(RN ).
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1.3.3 Symmetric forms

Our next goal is to prove that symmetric forms are associated with symmetric
operators and symmetric semigroups.
Let H be a Hilbert space over K = R or C and let A be a densely defined
operator on H with domain D(A). Then the adjoint A∗ of A is defined by

D(A∗) := {u ∈ H : ∃ f ∈ H s.t. (Av|u)H = (v|f)H ∀ u ∈ D(A)},
A∗u := f.

Since D(A) is dense in H , the element f is uniquely determined by u. It is easy
to prove the following preliminary proposition whose proof is omitted.

Proposition 1.3.13. Assume that λ ∈ ρ(A) ∩ R.
Then λ ∈ ρ(A∗) and R(λ,A)∗ = R(λ,A∗). Moreover the following are equivalent

(a) A = A∗;

(b) A is symmetric;

(c) R(λ,A)∗ = R(λ,A).

If (a) holds, then we say that A is selfadjoint.

Let now a be a continuous, elliptic, sesquilinear form defined as before on a
dense Hilbert space W continuously embedded in H and let A, (T (t))t≥0 be the
associated operator and semigroup respectively. Since −A is the generator of
a holomorphic semigroup, ρ(A) ∩ R is nonempty and we can apply Proposition
1.3.13. Denote by a∗ : W ×W → K the adjoint form of a given by

a∗(u, v) := a(v, u) u, v ∈ W.

It is natural to investigate about the relations between a∗ and the adjoint op-
erator A∗. The following result can be found in [49, Lemma 2.2.3].

Proposition 1.3.14. The adjoint A∗ of A coincides with the operator on H
associated with a∗.

By Proposition 1.3.13 and the Post Widder inversion formula the following
proposition immediately follows.

Proposition 1.3.15. The adjoint operator −A∗ generates the adjoint semi-
group (T (t)∗)t≥0 of (T (t))t≥0.

Proof. It is sufficient to recall that for every strongly continuous semigroup
(T (t))t≥0 on H with generator (A,D(A)) one has

T (t)u = lim
n→∞

(
I − t

n
A

)−n
u ∀ u ∈ H.

See [16, Corollary 5.5] for the last formula.

Remark 1.3.16. In particular we obtained that if a = a∗, then A = A∗ and
T (t) = T (t)∗ for every t ≥ 0. In the case of the Schrödinger operator, we have
therefore that it generates a symmetric semigroup.
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1.3.4 Ultracontractivity

We finally prove, by using the Berling-Deny conditions and some extrapolation
theorems, that the semigroup generated by ∆ − V is ultracontractive and so,
by the Dunford-Pettis Theorem, it admits an integral kernel. We state the
key ultracontractivity result keeping in mind the application to Schrödinger
operators, however it remain true in a slightly more general setting.
Let H = L2(RN ), W be a Hilbert space such that W →֒ L2(RN ) is dense. We
assume that u ∈ W implies u∧1 ∈W . Furthermore we assume that N ≥ 2 and

W →֒ Lq(RN ) where
1

q
=

1

2
− 1

N
.

Theorem 1.3.17. Let a : W ×W → R be a bilinear, continuous, symmetric
form such that for some µ > 0

a(u, u) ≥ µ‖u‖2
W

and a(u∧ 1, (u− 1)+) ≥ 0 for all u ∈ W . Denote by T the semigroup associated
with a on L2(RN ). Then there exists a constant c > 0 which depends on W
such that

‖T (t)‖L(L1,L∞) ≤ cµ−N
2 t−

N
2 t > 0.

Proof. Since W is continuously embedded in Lq, there exists a positive
constant c such that

‖u‖Lq ≤ c‖u‖W ∀u ∈ W.

Observe that, by the Berling Deny conditions and since a is symmetric and so A
selfadjoint, L1(RN )∩L∞(RN ) is invariant under the semigroup and (T (t))t≥0 =
(T (t)∗)t≥0 defined on L2(RN ) extends to a positive contraction semigroup Tp(t)
on Lp(RN ) for all 1 ≤ p ≤ ∞ (see [13, Theorem 1.4.1]). In particular we have
‖T (t)‖L(Lq) ≤ 1, hence ‖T (·)f‖Lq is decreasing for all f ∈ Lq(RN ). Conse-
quently, for f ∈W , we have

t‖T (t)f‖2
Lq =

∫ t

0

‖T (t)f‖2
Lqds ≤

∫ t

0

‖T (s)f‖2
Lqds ≤ c2

∫ t

0

‖T (s)f‖2
Wds

≤ c2

µ

∫ t

0

a(T (s)f, T (s)f)ds =
c2

µ

∫ t

0

(AT (s)f |T (s)f)L2ds

= − c2

2µ

∫ t

0

d

ds
‖T (s)f‖2

L2 =
c2

2µ
(‖f‖2

L2 − ‖T (t)f‖2
L2)

≤ c2

2µ
‖f‖2

L2.

So we obtained that
‖T (t)f‖Lq ≤ c√

2µ
t−

1
2 ‖f‖L2.

By [12, Lemma II.1] it follows that

‖T (t)‖L(L1,L∞) ≤ Cµ− N
2 t−

N
2 ∀ t > 0.
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Remark 1.3.18. If a is a bilinear, continuous, symmetric and elliptic form with
positive ellipticity constant ω, such that a(u ∧ 1, (u − 1)+) ≥ 0 for all u ∈ W ,
after a rescaling we obtain that there exists a positive constant c such that

‖T (t)‖L(L1,L∞) ≤ ceωtt−
N
2 t > 0.

Example 1.3.19. The form associated with the Schrödinger operator is con-
tinuous, symmetric and elliptic with positive ellipticity constant. Moreover if
u ∈ W 1,2(RN ) ∩ L2(RN , (1 + V (x))dx) then (u ∧ 1) belongs to the same space
indeed we have

∇(u ∧ 1) = ∇uχ{u≤1};∫

RN

(u ∧ 1)2 =

∫

{u≤1}
u2 +

∫

{u>1}
1 ≤ 2

∫

RN

u2 <∞;

∫

RN

(1 + V )(u ∧ 1)2 =

∫

{u≤1}
(1 + V )u2 +

∫

{u>1}
(1 + V )

≤ 2

∫

RN

(1 + V )u2 <∞.

By Stampacchia’s Lemma and some straightforward computations,

∇(u − 1)+ = ∇uχ{u≥1};

∇u(x) = 0 a.e. on {u = 1};

a(u ∧ 1, (u− 1)+) =

∫

RN

∇(u ∧ 1)∇(u− 1)+ +

∫

RN

V (u ∧ 1)(u− 1)+

=

∫

{u≥1}
V (u − 1)+ ≥ 0.

It follows that there exist C, ω positive constants such that the semigroup
generated by ∆ − V satisfies

‖T (t)‖L(L1,L∞) ≤ ceωtt−
N
2 ∀ t > 0.

Thanks to the Dunford-Pettis criterion we are finally able to deduce the
existence of an integral kernel.
Given p ∈ L∞(RN × RN ),

(Bpf)(x) =

∫

RN

p(x, y)f(y) dy

defines a bounded operator Bp ∈ L(L1(RN ), L∞(RN )) and

‖Bp‖L(L1,L∞) ≤ ‖p‖L∞(RN×RN ).

A kind of converse is true. The proof of the following result can be found in [1,
Theorem 1.3].



19

Theorem 1.3.20. (Dunford- Pettis) Let 1 ≤ r <∞, B ∈ L(Lr(RN )) such that
‖B‖L(L1(RN ),L∞(RN )) <∞. Then there exists p ∈ L∞(RN × RN ) such that

(Bf)(x) =

∫

RN

p(x, y)f(y) dy

almost everywhere for all f ∈ L1(RN )∩Lr(RN ). In that case B ≥ 0 if and only
if p ≥ 0.

Summarizing, through this section, we proved that, without assuming höl-
derianity assumptions, but only requiring local integrability on the positive po-
tential, the semigroup generated by the Schrödinger operator is an integral
operator. There exists therefore a positive kernel p(x, y, t) such that

(T (t)f)(x) =

∫

RN

p(x, y, t)f(y)dy ∀ x ∈ RN , t > 0, f ∈ L1(RN ).

Moreover there exists C, ω > 0 such that

‖p(·, ·, t)‖L∞(RN×RN ) ≤ Ceωtt−
N
2

for all t > 0.

Remark 1.3.21. By Corollary 1.3.8, it follows that, if p1 and p2 are the kernels
corresponding respectively to the Schrödinger operators ∆−V1 and ∆−V2 with
V1 ≤ V2, then p1 ≥ p2. In particular, choosing V1 ≡ 0, it follows that the kernel
of the semigroup generated by the Schrödinger operator is pointwise dominated
by the heat kernel of the Laplacian.

Remark 1.3.22. By the representation formula and the symmetry of the semi-
group generated by a Schrödinger operator, it follows that the kernel is symmet-
ric with respect to the variables x and y, moreover the contractivity of (T (t))t≥0

in L∞(RN ) yields
∫

RN p(x, y, t) dy ≤ 1 for all t > 0 and x ∈ RN .
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Chapter 2

Kernel estimates for

Markov semigroups

This chapter is devoted to the study of kernels of elliptic operators. As we have
seen in Chapter 1, even if the coefficients of the operators are unbounded, the
semigroup generated in the space of continuous and bounded functions admits
an integral representation through a kernel p. We are interested in finding
pointwise upper bounds for such kernels. However we will not consider the
whole operator, our attention will be first turned toward Kolmogorov operators
not containing a zero order derivative term. In a second moment we will analyse
also Schrödinger operators not containing a drift term.
In both cases we use Lyapunov function techniques.

2.1 Kernel estimates for a class of Kolmogorov

semigroups

We consider the second order elliptic operator

A =

N∑

i,j=1

aijDij +

N∑

i=1

FiDi = A0 + F ·D

where A0 =
∑N
i,j=1 aijDij and the associated parabolic problem

{
ut(x, t) = Au(x, t), x ∈ RN , t > 0,
u(x, 0) = f(x) x ∈ RN

(2.1)

with initial datum f ∈ Cb(RN ).
The operator A is endowed with the maximal domain in Cb(RN ) given by

Dmax(A) = {u ∈ Cb(R
N ) ∩W 2,p

loc (RN ) for all p <∞ : Au ∈ Cb(R
N )}.
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As proved in Chapter 1, assuming that (aij) is a symmetric matrix, aij ∈
Cαloc(R

N ), Fi ∈ Cαloc(R
N ) for some 0 < α < 1 and the ellipticity condition

λ|ξ|2 ≤
N∑

i,j=1

aij(x)ξiξj ≤ Λ|ξ|2

for every x, ξ ∈ RN and suitable 0 < λ ≤ Λ, it is possible to prove the
existence of a bounded classical solution of such problem, i.e. a function u ∈
C(RN × [0,+∞))∩C1,2(RN × (0,+∞)) which is bounded in RN × [0, T ] for any
T > 0 and satisfies ∂tu, D

2u ∈ Cα(RN × (0,+∞)) and (2.1). In their work,
Metafune, Pallara and Rhandi (see [27]), using Lyapunov functions independent
of t, prove estimates of the form

p(x, y, t) ≤ c(t)ω(y).

For instance, if the drift term is given by F (x) = −|x|r x|x| and the second order

part is the Laplacian, they prove that, for any γ < 1/(r+1) and for some positive

constants c1 and c2, p(x, y, t) ≤ c1 exp
(
c2t

− r+1
r−1

)
exp(−γ|y|r+1) for small times

t and for all x, y ∈ RN .
Following their idea, but considering Lyapunov functions depending also on the
time variable for the operator ∂t +A, we deduce estimates of the form

p(x, y, t) ≤ c(t)ω(y, t).

In particular, in the special case mentioned above, for small times, we obtain

p(x, y, t) ≤ c1t
−δ exp(−tαγ|y|r+1).

We remark that, although for 0 < t ≤ 1 exp{−c|y|r+1} ≤ exp{−ctα|y|r+1}, the
function c(t) blows up polynomially in our estimates and exponentially in [27].
Therefore, using Lyapunov functions for the parabolic operator depending also
on the time variable t, we gain a better behaviour for the function c(t).
We start by proving the integrability of certain Lyapunov functions with re-
spect to the measure p(x, ·, t)dy. Moreover an estimate of the L1-norm of the
Lyapunov functions with respect to the measure above is obtained. Assuming
suitable assumptions on the radial component of the drift F , examples of Lya-
punov functions for the parabolic operator are given.
Following [27, Section 3], it is proved how, underthe hypothesis of integrability
of some power k of the drift with respect to the measure p, the kernel is in some
Lebesgue spaces Lr or in some other spaces embedded in L∞ for k large enough.
Then the main result is proved, we apply an estimate for the L∞-norm of solu-
tions of certain parabolic problems to deduce the claimed result. An useful tool
employed here is a result of Sobolev regularity for transition probabilities.
In some recent papers, Bogachev, Krylov, Röckner and Shaposhnikov (see [6], [7]
and [8]) have proved existence and regularity properties for parabolic problems
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having measures as initial data. The authors assume also integrability proper-
ties of the drift term, comparables to ours, and deduce the uniform boundedness
of the solutions in RN × [0, T ] whenever T < 1. Their results do not apply to
our situation since the fundamental solution p is singular for t = 0.

All over the section we will assume the existence of a Lyapunov function for
the operator A, that is a function 0 ≤ V ∈ C2(RN ) such that lim|x|→∞ V (x) =
+∞ and AV (x) ≤ λV (x) for some positive λ. We recall that this assumption
insures that the domain of the weak generator D̂ coincides with the maximal
domainDmax(A) (see Theorem 1.2.5). We will see later that Lyapunov functions
exist for the operators we are interested in.
Moreover, since we will deal with differential quotients and we have to apply the
integration by parts formula, we suppose that the coefficients aij of the operator
are of class C1

b (R
N ).

2.1.1 L
1- estimates of some Lyapunov functions

In this section we show how to obtain the integrability of certain unbounded
functions with respect to the kernel p. Later pointwise estimates will be deduced
from L1-bounds.
Our technique rests on the following definition, where L = ∂t +A.

We say that a continuous function W : [0, T ] × RN → [0,+∞) is a Lyapunov
function for the operator L if it belongs to C2,1(QT ), lim|x|→∞W (x, t) = +∞
uniformly with respect to t in compact sets of (0, T ] and there exists h : (0, T ] →
[0,∞) integrable in a neighborhood of 0 such that LW (x, t) ≤ h(t)W (x, t) for
all (x, t) ∈ QT . Note that we do not require thatW (x, 0) tends to ∞ as |x| → ∞.

We refer the reader to [30] for results similar to the next proposition, when
the Lyapunov function is independent of t.

Proposition 2.1.1. For each t ∈ [0, T ], a Lyapunov function W (·, t) is inte-
grable with respect to the measure p(x, ·, t). Moreover, setting

ξW (x, t) =

∫

RN

p(x, y, t)W (y, t)dy, (2.2)

the inequality

ξW (x, t) ≤ e
R

t
0
h(s)dsW (x, 0) (2.3)

holds.

Proof. Let us consider, for every α ≥ 0, ψα ∈ C∞
b (R) such that ψα(s) = s

for s ≤ α, ψα is constant in [α+1,∞), ψ′
α ≥ 0 and ψ′′

α ≤ 0. From the concavity
of ψα it follows that

sψ′
α(s) ≤ ψα(s) ∀ s ≥ 0. (2.4)
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Obviously ψα ◦W ∈ BUC(QT ) and, moreover, it belongs to BUC2,1(Q(ε, T ))
for every ε > 0, since is constant for t ≥ ε > 0 and large |x|. We set ξα(x, t) =∫

RN p(x, y, t)ψα(W (y, t))dy. For every fixed t ≥ ε, the function (ψα ◦W )(·, t)
belongs to Dmax(A), which coincides with the domain of the generator by the
assumption of the existence of Lyapunov functions for A. It follows that

∂tξα(·, t) = etAA(ψα ◦W )(·, t) + etA∂t(ψα ◦W )(·, t)

and then

∂tξα(x, t) =

∫

RN

p(x, y, t)L(ψα ◦W )(y, t)dy.

By a straightforward computation we obtain

L(ψα ◦W )(x, t) =ψ′
α(W (x, t))LW (x, t)

+ψ′′
α(W (x, t))

N∑

i,j=1

aijDjW (x, t)DiW (x, t)

≤ψ′
α(W (x, t))LW (x, t).

Thus, for t ≥ ε,

∂tξα(x, t) ≤
∫

RN

p(x, y, t)ψ′
α(W (y, t))LW (y, t)dy.

Using the property of W , the positivity of ψ′ and (2.4) we get

∂tξα(x, t) ≤ h(t)

∫

RN

p(x, y, t)ψα(W (y, t))dy = h(t)ξα(x, t).

Therefore for t ≥ ε

ξα(x, t) ≤ e
R

t

ε
h(s)dsξα(x, ε). (2.5)

Now we prove that ξα(x, ε) → ψα(W (x, 0)) as ε→ 0. We have

|ξα(x, ε) − ψα(W (x, 0))| =

∣∣∣∣
∫

RN

p(x, y, ε)ψα(W (y, ε))dy − ψα(W (x, 0)) dy

∣∣∣∣

≤
∫

RN

p(x, y, ε)|ψα(W (y, ε)) − ψα(W (y, 0))| dy

+ |T (ε)ψα(W (x, 0)) − ψα(W (x, 0))|.

The second term in the right member obviously goes to 0 as ε → 0 since ψα ◦
W ∈ Cb(RN ) and T (t)f → f as t → 0 uniformly on compact sets of RN

for f ∈ Cb(RN ) (see Theorem 1.1.7). Concerning the first addend, we fixe
R > |x| + 1 and we split it in the integral over BR and the integral over the
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complementary of BR. We have
∫

RN

p(x, y, ε)|ψα(W (y, ε)) − ψα(W (y, 0))| dy

=

∫

BR

p(x, y, ε)|ψα(W (y, ε)) − ψα(W (y, 0))| dy

+

∫

RN\BR

p(x, y, ε)|ψα(W (y, ε)) − ψα(W (y, 0))| dy.

The integral on BR tends to 0 as ε → 0 since ψα(W (y, ε)) → ψα(W (y, 0))
uniformly on BR. Consider the integral on the complementary of BR. Let hR
be a smooth function on RN such that χRN\BR

≤ hR ≤ χRN\BR−1
. Observe

that hR ∈ Dmax(A) and hence T (ε)hR → hR uniformly in RN since

T (ε)hR(x) − hR(x) =

∫ ε

0

T (s)AhR(x) ds

for all x ∈ RN (see [38, Proposition 3.2]). Therefore, given δ > 0, there exists
ε0 > 0 such that, for ε ≤ ε0, T (ε)hR ≤ δ + hR. By means of the previous
remarks, since |x| < R− 1, we deduce
∫

RN\BR

p(x, y, ε)|ψα(W (y, ε)) − ψα(W (y, 0))| ≤ 2(α+ 1)

∫

RN\BR

p(x, y, ε)

= 2(α+ 1)T (ε)χRN\BR
(x)

≤ 2(α+ 1)T (ε)hR(x)

≤ 2(α+ 1)[δ + hR(x)]

= 2(α+ 1)δ

for ε ≤ ε0. Letting ε→ 0 in (2.5) we obtain

ξα(x, t) ≤ e
R

t
0
h(s)dsψα(W (x, 0)).

Letting α→ ∞ in the previous inequality and using Fatou’s Lemma we get
∫

RN

p(x, y, t)W (y, t)dy ≤ lim infα→∞ξα(x, t) ≤ e
R

t
0
h(s)dsW (x, 0).

In the next proposition we prove that suitable exponential functions in x
and t are of Lyapunov for a class of Kolmogorov operators.

Proposition 2.1.2. Let L = ∂t +A0 + F ·D such that

lim sup
|x|→∞

|x|−rF (x) · x|x| < −c (2.6)

for some positive c and r > 1. Then, if α >
r + 1

r − 1
, δ <

c

Λ(r + 1)
and 0 < t ≤ 1,

W (x, t) = exp{δtα|x|r+1} is a Lyapunov function for L. Moreover ξW (x, t) ≤
CW (x, 0) = C for some positive constant C and for all x ∈ RN and 0 < t ≤ 1.
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Proof. An easy computation gives

LW (x, t) = δ(r + 1)tαW (x, t)

[
α

|x|r+1

t(r + 1)
+ (r − 1)|x|r−3

N∑

i,j=1

aijxixj

+ |x|r−1
N∑

i=1

aii + δ(r + 1)tα|x|2r−2
N∑

i,j=1

aijxixj + |x|rF · x|x|

]

≤ δ(r + 1)tαW (x, t)

[
α

|x|r+1

t(r + 1)
+
[
Λ(r − 1) +

N∑

i=1

aii
]
|x|r−1

+ Λδ(r + 1)tα|x|2r + |x|rF · x|x|

]
.

Considering suitable space-time regions it is possible to estimate the right hand
side in the previous inequality.

Let γ >
1

r − 1
. If |x| > 1

tγ
, 0 < t < 1,

LW (x, t) ≤ δ(r + 1)tαW (x, t)

[
α

|x|r+1

t(r + 1)
+
[
Λ(r − 1) +

N∑

i=1

aii
]
|x|r−1

+ Λδ(r + 1)tα|x|2r + |x|rF · x|x|

]

≤ δ(r + 1)tαW (x, t)

[
α

r + 1
|x|r+1+ 1

γ +
[
Λ(r − 1) +

N∑

i=1

aii
]
|x|r−1

+ Λδ(r + 1)|x|2r + |x|rF · x|x|

]

≤ δ(r + 1)tα|x|2rW (x, t)

[
α

r + 1
|x|r+1+ 1

γ
−2r

+
[
Λ(r − 1) +

N∑

i=1

aii
]
|x|−r−1 + Λδ(r + 1) + |x|−rF · x|x|

]
.

By assumption (2.6), if |x| is large enough,

LW (x, t) ≤ δ(r + 1)tα|x|2rW (x, t)

[
α

r + 1
|x|−r+1+ 1

γ

+
[
Λ(r − 1) +

N∑

i=1

aii
]
|x|−r−1 + Λδ(r + 1) − c

]
.

Since δ <
c

Λ(r + 1)
and γ >

1

r − 1
, for |x| large enough and belonging to the

considered region LW ≤ 0. For the remaining small values of x in this region
LW (x, t) ≤ C ≤ CW (x, t).
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If |x| ≤ 1

tγ
and is large enough in order that the term containing the drift is

negative,

LW (x, t) ≤

W (x, t)

[
δα

tγ(r+1)+1−α + δ(r + 1)

(
Λ(r − 1) +

N∑

i=1

aii

)
1

tγ(r−1)−α

+ Λδ2(r + 1)2
1

t2γr−2α

]
.

If we choose γ < α
r+1 , we have γ(r + 1) − α+ 1 < 1 and 2rγ − 2α < 0. If |x| is

small we obtain the estimate as in the other region. In any case

LW (x, t) ≤ h(t)W (x, t)

with h integrable near 0. Observe moreover that the conditions on γ are com-
patible since α > r+1

r−1 . The existence of Lyapunov functions for the elliptic
operator is guaranteed under the assumption (2.6) (see [27, Prop. 2.6]). Then
by Proposition 2.1.1 the estimate of ξW (x, t) follows.

Example 2.1.3. In particular, Proposition 2.1.2 applies if

L = ∂t + ∆ − |x|r x|x| ·D

with r > 1. Then, for α >
r + 1

r − 1
, δ < 1

r+1 and 0 < t ≤ 1, W (x, t) =

exp{δtα|x|r+1} is a Lyapunov function for L and ξW (x, t) ≤ CW (x, 0) = C
for some positive constant C, for all x ∈ RN and 0 < t ≤ 1.

2.1.2 Integrability and regularity results for the kernel

Following [27, Section 3 and Appendix A], in this subsection we collect some
useful and of independent interest results. We prove embedding theorems for
the spaces Hk,1 due to Krylov (see [21]) and, using the same methods, we deduce
also embedding theorems for the spaces Θk (see definitions below).
Then we fix T > 0, 0 < a0 < a < b < b0 ≤ T , assume b0 − b ≥ a − a0 and
consider p as a function depending on (y, t) ∈ RN × (0, T ) for arbitrary, but
fixed, x ∈ RN .
Setting

Γ(k, x, a0, b0) =

(∫

Q(a0,b0)

|F (y)|kp(x, y, t)dy dt
) 1

k

and making use of the embeddings above, we show global regularity result for
p with respect to the variables (y, t) assuming Γ(k, x, a0, b0) < ∞ for suitable
k ≥ 1.
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Definition 2.1.4. Given k ≥ 1, Hk,1(QT ) denotes the space of all functions
u ∈ W 1,0

k (QT ) with ∂tu ∈ (W 1,0
k′ (QT ))′, the dual space of W 1,0

k′ (QT ), endowed
with the norm

‖u‖Hk,1(QT ) := ‖∂tu‖(W 1,0

k′
(QT ))′ + ‖u‖W 1,0

k
(QT ),

with 1
k + 1

k′ = 1.

Definition 2.1.5. For k > 2, Θk(QT ) is the space of all functions u belonging
to W 1,0

k (QT ) such that there exists C > 0 for which

∣∣∣∣
∫

QT

u∂tφdx dt

∣∣∣∣ ≤ C

(
‖φ‖

L
k

k−2 (QT )
+ ‖Dφ‖

L
k

k−1 (QT )

)

for every φ such that the right hand side above is finite. Observe that k
k−1 = k′

and k
k−2 =

(
k
2

)′
. Θk(QT ) is a Banach space endowed with the norm

‖u‖Θk(QT ) = ‖u‖W 1,0
k

(QT ) + ‖∂tu‖ k
2 ,k;QT

,

where ‖∂tu‖ k
2 ,k;QT

is the best constant such that the above estimate holds.

By using a reflection argument and standard approximation by smooth func-
tions methods one can prove the following extension and density results.

Lemma 2.1.6. There exists linear, continuous extension operators

E1 : Hk,1(QT ) → Hk,1(RN+1)

and

E2 : Θk(QT ) → Θk(RN+1).

Lemma 2.1.7. The restrictions of functions in C∞
c (RN+1) to QT are dense in

Hk,1(QT ) and in Θk(QT ).

Theorem 2.1.8. The following embeddings of Hk,1 in Lr spaces hold.

(i) If 1 < k < N + 2, then Hk,1(QT ) is continuously embedded in Lr(QT ) for
1
r = 1

k − 1
N+2 .

(ii) If k = N + 2, then Hk,1(QT ) is continuously embedded in Lr(QT ) for
N + 2 ≤ r <∞.

(iii) If k > N + 2, then Hk,1(QT ) is continuously embedded in L∞(QT ).

Proof. Since the restrictions of functions in the space C∞
c (RN+1) are dense

in Hk,1(QT ), in any case we will prove the estimate

‖u‖Lr(QT ) ≤ ‖u‖Hk,1(QT ) (2.7)
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for every function u ∈ C∞
c (RN+1) and some positive constant C independent of

u. Let G be the fundamental solution of the operator ∂t −∆ in RN+1 given by

G(x, t) =

{
1

(4πt)
N
2

exp
(
− 1

4t |x|2
)

if t > 0

0 if t ≤ 0.
(2.8)

Let u ∈ C∞
c (RN+1), ψ ∈ C∞

c (QT ) and set φ = G ∗ ψ. Then φ ∈ C2(RN+1)
and, by [20, Theorem 8.4.2], it satisfies ∂tφ − ∆φ = ψ. Moreover, since ψ has
support in RN × [0, T ], then G ∗ ψ = GT ∗ ψ where GT = Gχ[0,T ]. By simple

computations it immediately follows that GT ∈ Ls(RN+1) for 1 ≤ s < N+2
N

and DGT ∈ Ls(RN+1) for 1 ≤ s < N+2
N+1 where the gradient is understood

with respect to the space variable. Young’s inequality yields ‖φ‖W 1,0
s (QT ) ≤

C‖ψ‖L1(QT ).
We have ∣∣∣∣

∫

QT

uψ dxdt

∣∣∣∣ =

∣∣∣∣
∫

QT

u(∂tφ− ∆φ) dx dt

∣∣∣∣ (2.9)

=

∣∣∣∣
∫

QT

u∂tφ+Du ·Dφ) dx dt

∣∣∣∣
≤ C‖u‖Hk,1(QT )‖φ‖W 1,0

k′
(QT ).

Let us prove (i). Let 1 < k < N + 2, r such that 1
r = 1

k − 1
N+2 . By Theorem

A.0.8, ‖φ‖W 2,1

r′
(QT ) ≤ c‖ψ‖Lr′(QT ), by the embedding W 2,1

r′ (QT ) ⊂ W 1,0
k′ (QT )

(see Theorem A.0.9) and the previous inequality (2.9), we obtain
∣∣∣∣
∫

QT

uψ dxdt

∣∣∣∣ ≤ C‖u‖Hk,1(QT )‖φ‖W 1,0

k′
(QT ) ≤ C‖u‖Hk,1(QT )‖φ‖W 2,1

r′
(QT )

≤ C‖u‖Hk,1(QT )‖ψ‖Lr′(QT ).

This implies (2.7).
Let now k = N + 2, N + 2 ≤ r <∞ and choose 1 < s < N+2

N+1 such that

1

k′
=

1

s
+

1

r′
− 1.

Young’s inequality yields ‖φ‖W 1,0

k′
(QT ) ≤ C‖ψ‖Lr′(QT ) and then by 2.9 we deduce

(ii). Finally, if k > N + 2, then k′ < N+2
N+1 and by Young’s inequality we get

‖φ‖W 1,0

k′
(QT ) ≤ C‖ψ‖L1(QT ). By (2.9),

∣∣∣∣
∫

QT

uψ dxdt

∣∣∣∣ ≤ C‖u‖Hk,1(QT )‖φ‖W 1,0

k′
(QT ) ≤ C‖u‖Hk,1(QT )‖ψ‖L1(QT ).

Theorem 2.1.9. If k > N + 2, then Θk(QT ) is continuously embedded in
L∞(QT ). Moreover the following estimate holds

‖u‖L∞(QT ) ≤ C(‖Du‖Lk(QT ) + ‖∂tu‖ k
2 ,k;QT

).
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Proof. Let u ∈ C∞
c (RN+1) and φ, ψ as in the proof of the previous theorem.

As before we have
∣∣∣∣
∫

QT

uψ dxdt

∣∣∣∣ =

∣∣∣∣
∫

QT

u(∂tφ− ∆φ) dx dt

∣∣∣∣ =

∣∣∣∣
∫

QT

(u∂tφ+Du ·Dφ) dx dt

∣∣∣∣
(2.10)

≤ (‖Du‖Lk(QT ) + ‖∂tu‖ k
2 ,k;QT

)

(
‖Dφ‖

L
k

k−1 (QT )
+ ‖φ‖

L
k

k−2 (QT )

)
.

Now, since k > N + 2, k′ < N+2
N+1 and k

k−2 < N+2
N . By Young’s inequality we

get ‖φ‖W 1,0

k′
(QT ) ≤ C‖ψ‖L1(QT ) and ‖φ‖

L
k

k−2 (QT )
≤ C‖ψ‖L1(QT ). Therefore

∣∣∣∣
∫

QT

uψ dxdt

∣∣∣∣ ≤ (‖Du‖Lk(QT ) + ‖∂tu‖ k
2 ,k;QT

)‖ψ‖L1(QT ).

and the claim follows.

The embedding theorems above allow us to prove some integrability and
regularity properties for the kernel p. A preliminary lemma is needed.

Lemma 2.1.10. Let 0 ≤ t1 < t2 and φ ∈ C2,1(Q(t1, t2)) such that φ(·, t) has
compact support for every t ∈ [t1, t2]. Then

∫

Q(t1,t2)

(∂tφ(y, t) +Aφ(y, t))p(x, y, t) dy dt

=

∫

RN

(p(x, y, t2)φ(y, t2) − p(x, y, t1)φ(y, t1))dy.

Proof. Note that if ψ ∈ C2
c (R

N ) then by Proposition 1.2.2 and by Propo-
sition 1.2.3

∂tT (t)ψ = T (t)Aψ.

Let φ(y, t) be as in the statement. We have

∂t(T (t)φ(·, t)) = T (t)∂tφ(·, t) + T (t)Aφ(·, t).

Integrating this identity over the interval [t1, t2] and writing T (t) in terms of
the kernel we obtain the claim.

Recall that, for every k ≥ 1, Γ(k, x, a0, b0) = (
∫
Q(a0,b0) |F (y)|kp(x, y, t) dy) 1

k .

Proposition 2.1.11. If Γ(1, x, a0, b0) < ∞, then p ∈ Lr(Q(a0, b0)) for all
r ∈ [1, N+2

N+1) and

‖p‖Lr(Q(a0,b0)) ≤ C(1 + Γ(1, x, a0, b0))

for some constant C > 0.
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Proof. Consider φ ∈ C2,1(QT ) such that φ(·, T ) = 0 and such that φ(·, t)
has compact support for all t. By Lemma 2.1.10, we deduce
∫

Q(a0,b0)

p(∂tφ+A0φ)dy dt = −
∫

Q(a0,b0)

pF ·Dφdy dt

+

∫

RN

(p(x, y, b0)φ(y, b0) − p(x, y, a0)φ(y, a0))dy

where A0 =
∑N

i,j=1 aijDij . Since
∫

RN p(x, y, t) ≤ 1 for all t ≥ 0, x ∈ RN , it
follows that
∣∣∣∣∣

∫

Q(a0,b0)

p(∂tφ+A0φ)dy dt

∣∣∣∣∣ ≤ Γ(1, x, a0, b0)‖φ‖W 1,0
∞ (Q(a0,b0))

+ 2‖φ‖∞ (2.11)

≤ (2 + Γ(1, x, a0, b0))‖φ‖W 1,0
∞ (Q(a0,b0)).

Fix ψ ∈ C∞
c (Q(a0, b0)) and consider the parabolic problem

{
∂tφ+ A0φ = ψ in QT ,
φ(y, T ) = 0 y ∈ RN .

(2.12)

By the Schauder theory (see Theorem A.0.10), there exists a solution φ ∈
C2+α,1+ α

2 (QT ). Fixing r′1 > N + 2, by Theorem A.0.8, we have that φ ∈
W 2,1
r′1

(QT ) and satisfies

‖φ‖W 2,1

r′
1

(QT ) ≤ C‖ψ‖
Lr′

1(Q(a0,b0))

and, by the Sobolev embedding Theorems (see Theorem A.0.9) and the previous
inequality, we deduce that

‖φ‖W 1,0
∞ (Q(a0,b0)) ≤ ‖φ‖W 1,0

∞ (QT ) ≤ C‖φ‖W 2,1

r′1
(QT ) ≤ C‖ψ‖

Lr′1(Q(a0,b0))
. (2.13)

Observe that the solution of the parabolic problem just found cannot be imme-
diately inserted in (2.11) since in general it is not with compact support with
respect to the space variable. Anyway we can approximate the solution φ with
functions which satisfy (2.11) as follows. Let θ ∈ C∞

c (RN ) such that θ(y) = 1 for
|y| ≤ 1 and, for each n ∈ N, consider φn(y, t) = θ( yn )φ(y, t). Then φn satisfies
(2.11) and, letting n→ ∞ by dominated convergence, by (2.13) we obtain

∣∣∣∣∣

∫

Q(a0,b0)

pψdy dt

∣∣∣∣∣ ≤ C(1 + Γ(1, x, a0, b0))‖ψ‖Lr′
1(Q(a0,b0))

.

This proves that p ∈ Lr1(Q(a0, b0)) where 1
r1

+ 1
r′1

= 1. By the arbitrarity of

r′1 > N + 2, it follows that p ∈ Lr(Q(a0, b0)) for all 1 ≤ r < N+2
N+1 with

‖p‖Lr(Q(a0,b0)) ≤ C(1 + Γ(1, x, a0, b0)).
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Lemma 2.1.12. If Γ(k, x, a0, b0) < ∞ for some k > 1 and p ∈ Lr(Q(a0, b0))
for some 1 < r ≤ ∞, then p ∈ Hs,1(Q(a, b)) for s := rk

r+k−1 if r <∞ and s = k
if r = ∞.

Proof. Let η be a smooth function such that 0 ≤ η ≤ 1, η(t) = 1 for
a ≤ t ≤ b, η(t) = 0 for t ≤ a0 and t ≥ b0 and |η′| ≤ 2

a−a0
. Let φ ∈ C2,1(QT )

such that φ(·, t) has compact support for all t. Then also ηφ has compact
support for all t and by Lemma 2.1.10, setting q = ηp, we obtain

∫

QT

q(∂tφ+A0φ)dy, dt = −
∫

QT

(qF ·Dφ+ pφ∂tη)dy dt.

Now we estimate the right hand side of the previous equality by using the Hölder
inequality and the integrability assumption on p. We have

∫

Q(a0,b0)

|F |spsdy dt =

∫

Q(a0,b0)

|F |sp s
k ps(1−

1
k
)dy dt

≤
(∫

Q(a0,b0)

|F |kp dy dt
) s

k
(∫

Q(a0,b0)

p
s(k−1)

k−s dy dt

)1− s
k

=

(∫

Q(a0,b0)

|F |kp dy dt
) s

k
(∫

Q(a0,b0)

prdy dt

)1− s
k

≤ Γ(k, x, a0, b0)
s

(∫

Q(a0,b0)

prdy dt

)1− s
k

,

hence we have

‖Fp‖Ls(Q(a0,b0)) ≤ C‖p‖
k−1

k

Lr(Q(a0,b0))

where C is a generic constant depending on k, x, a0, b0. Therefore

∣∣∣∣
∫

QT

q(∂tφ+A0φ)dy, dt

∣∣∣∣ ≤ C‖p‖
k−1

k

Lr(Q(a0,b0))
‖φ‖W 1,0

s′
(QT )

with 1
s + 1

s′ = 1. Observe that we can replace φ by its difference quotients with
respect to the variable y given by

τ−hφ(y, t) :=
1

|h| (φ(y − hej , t) − φ(y, t)), (y, t) ∈ QT , 0 6= h ∈ R.

In this way and recalling that aij ∈ C1
b (R

N ), we obtain

∣∣∣∣
∫

QT

τhq(∂tφ+A0φ)dy, dt

∣∣∣∣ ≤ C‖p‖
k−1

k

Lr(Q(a0,b0))‖φ‖W 1,0

s′
(QT ) (2.14)

where C depends on k, x, a0, b0 and the C1
b (R

N ) norm of the coefficients aij .
Observe that, since q ∈ Ls(QT ), by approximation, as in the proof of Lemma
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2.1.11, the inequality (2.14) remains true for functions φ ∈W 2,1
s′ (QT ). Moreover,

since q ∈ Ls(QT ), then |τhq|s−2τhq ∈ Ls
′

(QT ). By Theorem A.0.8, there exists
φ ∈ W 2,1

s′ (QT ) such that

{
∂tφ+A0φ = |τhq|s−2τhq in QT ,
φ(y, T ) = 0 y ∈ RN

(2.15)

and

‖φ‖W 2,1

s′
(QT ) ≤ C‖|τhq|s−1‖Ls′(QT ).

By (2.14), we get

∫

QT

|τhq|sdy dt ≤ C‖p‖
k−1

k

Lr(Q(a0,b0))‖τhq‖s−1
Ls(QT ),

By means of the properties of the differential quotients we deduce

‖Dq‖Ls(QT ) ≤ C‖p‖
k−1

k

Lr(QT ).

This implies Dq ∈ Ls(QT ) and so q ∈ W 1,0
s (QT ) and p ∈ W 1,0

s (Q(a, b)). Con-
cerning the first order time derivative, by the estimate above, integrating by
parts and recalling that aij ∈ C1

b (R
N ), we have

∣∣∣∣
∫

QT

q∂tφdy dt

∣∣∣∣ ≤
∣∣∣∣
∫

QT

qA0φdy dt

∣∣∣∣+ C‖p‖
k−1

k

Lr(Q(a0,b0))
‖φ‖W 1,0

s′
(QT )

≤

∣∣∣∣∣∣

∫

QT

N∑

i,j=1

aijDiφDjq dy dt

∣∣∣∣∣∣
+ C‖p‖

k−1
k

Lr(Q(a0,b0))
‖φ‖W 1,0

s′
(QT )

≤ C‖Dq‖Ls(QT )‖φ‖W 1,0

s′
(QT ) + C‖p‖

k−1
k

Lr(Q(a0,b0))‖φ‖W 1,0

s′
(QT )

≤ C‖p‖
k−1

k

Lr(Q(a0,b0))
‖φ‖W 1,0

s′
(QT )

and the claim follows.

Proposition 2.1.13. If Γ(k, x, a0, b0) < ∞ for some 1 < k ≤ N + 2, then p ∈
Lr(Q(a, b)) for all r ∈ [1, N+2

N+2−k ) and p ∈ Hs,1(Q(a, b)) for all s ∈ (1, N+2
N+3−k ).

Proof. The result follows by applying iteratively Lemma 2.1.12 and Propo-
sition 2.1.11.
Let r1 < N+2

N+1 . Observe that Γ(h, x, a0, b0) ≤ CΓ(k, x, a0, b0) for h ≤ k and
for some positive constant C. Therefore we can apply Proposition 2.1.11 and
deduce p ∈ Lr1(Q(a0, b0)). Fix a parameter m (to be chosen later) depending

on k and r. Set an = a0 + n(a−a0)
m , bn = b0 − n(b0−b)

m for n = 1, .....,m. Suppose

that p ∈ Lrn(Q(a0, b0)) and take sn := krn

k+rn−1 . Then 1 < sn < rn, sn < k and

rn = sn(k−1)
k−sn

. As in the previous proof, we consider q = ηp with η(t) = 1 for
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an+1 ≤ t ≤ bn+1 and η(t) = 0 for t ≤ an, t ≥ bn, |η′| ≤ 2m
a−a0

. As in the proof
of Lemma 2.1.12, we get

∣∣∣∣
∫

QT

q∂tφdy dt

∣∣∣∣ ≤ C‖p‖
k−1

k

Lrn(Q(an,bn))‖φ‖W 1,0

s′n
(QT )

and

‖Dq‖Lsn(QT ) ≤ C‖p‖
k−1

k

Lrn(Q(an,bn)).

with C depending on k, x, a0, b0. Therefore p ∈ Hsn,1(Q(an+1, bn+1)). By
the embedding Theorem for the Hs,1 spaces (see Theorem 2.1.8), we have that
p ∈ Lrn+1(Q(an+1, bn+1)) where

1

rn+1
=

1

sn
− 1

N + 2
=
k + rn − 1

krn
− 1

N + 2
=

1

rn

(
1 − 1

k

)
+

1

k
− 1

N + 2
.

Since 1
r1
> N+1

N+2 , it follows that

1

r2
− 1

r1
< −1

k

(
1 − 1

N + 2

)
+

1

k
− 1

N + 2
=

1

N + 2

(
1

k
− 1

)
< 0.

By induction, since
1

rn+1
= g

(
1

rn

)
with g increasing function,

(
1

rn

)
is a

positive and decreasing sequence which converges to N+2−k
N+2 . This implies that,

for any r < N+2
N+2−k , after a finite number of steps m, we get rn > r and

p ∈ Lr(Q(a, b)). Finally, by Lemma 2.1.12, we handle p ∈ Hs,1(Q(a, b)) for all
s ∈ (1, N+2

N+3−k ).

Corollary 2.1.14. If Γ(k, x, a0, b0) < ∞ for some k > N + 2, then p ∈
L∞(Q(a, b)).

Proof. By assumption, Γ(k, x, a0, b0) < ∞ for some k > N + 2, there-
fore Γ(N + 2, x, a0, b0) ≤ CΓ(k, x, a0, b0) < ∞ and, by Proposition 2.1.13,
p ∈ Lr(Q(a, b)) for all r ∈ [1,∞). By Proposition 2.1.12, p ∈ Hs,1(Q(a, b)) for all
1 < s < k and then, choosing s > N+2, by Theorem 2.1.8, p ∈ L∞(Q(a, b)).

2.1.3 Pointwise estimates of kernels

We recall that T is a fixed positive number and a0, a, b, b0 are such that
0 < a0 < a < b < b0 ≤ T . Assume that W1, W2 are Lyapunov functions for L,
W1 ≤W2 and there exists 1 ≤ ω ∈ C2(RN × (0,∞)) such that for some positive
constants c1(a0, b0), c2(a0, b0), c3(a0, b0), c4(a0, b0), c5(a0, b0) and k > N + 2

ω ≤ c1W1; |Dω| ≤ c2ω
k−1

k W
1
k

1 ;

|D2ω| ≤ c3ω
k−2

k W
2
k

1 ; |∂tω| ≤ c4ω
k−2

k W
2
k

1 ; (2.16)

ω|F |k ≤ c5W2 (2.17)
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pointwise almost everywhere in Q(a0, b0). Using the notation of the previous
section, we write ξ1(x, t) to denote

∫
RN p(x, y, t)W1(y, t)dy and ξ2 for the anal-

ogous integral with W2. Under these assumptions the following main theorem
can be stated.

Theorem 2.1.15. There exists a positive constant C such that

0 < ω(y, t)p(x, y, t) ≤ C

[
(ck2 + c5 + c

k
2
3 + c

k
2
2 c

1
2
5 )

∫ b0

a0

ξ2 (2.18)

+

(
c1

(a− a0)
k
2

+ c
k
2
4

)∫ b0

a0

ξ1

]
(2.19)

for all x, y ∈ RN and a ≤ t ≤ b.

As preliminary result we prove an estimate of the L∞ norm of solutions of
certain parabolic problems.

Theorem 2.1.16. Let k > N + 2, v ∈ Lk(QT ), w ∈ L
k
2 (QT ) and assume that

u ∈ Lk(QT ) satisfies
∫

QT

u(∂tφ+A0φ) dx dt =

∫

QT

(v ·Dφ+ wφ) dx dt (2.20)

for every φ ∈ C2,1(QT ) such that φ(·, t) has compact support for every t. Then
u ∈ Θk(QT ) and

‖u‖L∞(QT ) ≤ C‖u‖Θk(QT ) ≤ C(‖v‖Lk(QT ) + ‖w‖
L

k
2 (QT )

)

where C is a positive constant depending on N, T, k and the C1
b -norm of the

coefficients aij.

Proof. First we prove that

‖u‖Lk(QT ) ≤ C(‖v‖Lk(QT ) + ‖w‖
L

k
2 (QT )

). (2.21)

As in other proofs, we observe that, since u ∈ Lk(QT ), by approximation, (2.20)
holds for functions φ ∈ W 2,1

k′ (QT ). Let ψ ∈ C∞
c (QT ). By Theorem A.0.8 there

exists φ ∈ W 2,1
k′ (QT ) such that

{
∂tφ+ A0φ = ψ in QT ,
φ(x, T ) = 0, x ∈ RN

and the estimate
‖φ‖W 2,1

k′
(QT ) ≤ C‖ψ‖Lk′(QT )

holds with a constant C depending on k, T and the coefficients aij . Moreover
by the Sobolev embedding theorems (see Theorem A.0.9)

‖φ‖
L

k
k−2 (QT )

≤ C‖φ‖W 2,1

k′
(QT ).
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By assumption (2.20), we deduce
∣∣∣∣
∫

QT

uψ

∣∣∣∣ ≤ C(‖v‖Lk(QT )‖Dφ‖Lk′(QT ) + ‖w‖
L

k
2 (QT )

‖φ‖
L

k
k−2 (QT )

)

≤ C(‖v‖Lk(QT ) + ‖w‖
L

k
2 (QT )

)‖ψ‖Lk′(QT )

and so the estimate for the ‖u‖Lk(QT ) follows.

Now let us prove the claim. As proved above, we have
∣∣∣∣
∫

QT

u(∂tφ+A0φ)

∣∣∣∣ ≤ C

(
‖v‖Lk(QT )‖Dφ‖Lk′(QT ) + ‖w‖

L
k
2 (QT )

‖φ‖
L

k
k−2 (QT )

)

for all φ ∈ W 2,1
k′ (QT ). Replacing φ by its differential quotients with respect to

the space variable, we obtain
∣∣∣∣
∫

QT

τhu(∂tφ+A0φ)

∣∣∣∣ ≤ C
[(
‖u‖Lk(QT ) + ‖v‖Lk(QT )

)
‖φ‖W 2,1

k′
(QT )

+ ‖w‖
L

k
2 (QT )

‖Dφ‖
L

k
k−2 (QT )

]
.

By Sobolev embedding Theorem (see Theorem A.0.9),

‖Dφ‖Ls(QT ) ≤ C‖φ‖W 2,1
k

k−1

(QT )

if
1

s
= 1− 1

k
− 1

N + 2
. Since

k

k − 1
<

k

k − 2
< s by the assumption k > N + 2,

we have
‖Dφ‖

L
k

k−2 (QT )
≤ C‖φ‖W 2,1

k
k−1

(QT )

and so
∣∣∣∣
∫

QT

τhu(∂tφ+A0φ)

∣∣∣∣ ≤ C
(
‖u‖Lk(QT ) + ‖v‖Lk(QT ) + ‖w‖

L
k
2 (QT )

)
‖φ‖W 2,1

k′
(QT ).

(2.22)

Let now φ ∈ W 2,1
k′ (QT ) such that

{
∂tφ+A0φ = |τhu|k−2τhu, in QT
φ(x, T ) = 0, x ∈ RN

and
‖φ‖W 2,1

k′
(QT ) ≤ ‖|τhu|k−1‖Lk′(QT ) = ‖τhu‖k−1

Lk(QT )
.

For a φ so done, by (2.22), we deduce u ∈ W 1,0
k (QT ) and

‖Du‖Lk(QT ) ≤ C
(
‖u‖Lk(QT ) + ‖v‖Lk(QT ) + ‖w‖

L
k
2 (QT )

)
. (2.23)
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Consider the time derivative. By assumption we have

∫

QT

u∂tφdx dt =

∫

QT


−

N∑

i,j=1

aij(Dijφ)u+ v ·Dφ+ wφ


 dx dt

=

∫

QT




N∑

i,j=1

aijDiuDjφ+

N∑

i,j=1

(Diaij)uDjφ+ v ·Dφ+ wφ


 dx dt

and, as above,
∣∣∣∣
∫

QT

u∂tφdx dt

∣∣∣∣ ≤ C
[
(‖Du‖Lk(QT ) + ‖u‖Lk(QT ) + ‖v‖Lk(QT ))‖Dφ‖Lk′ (QT )

+ ‖w‖
L

k
2 (QT )

‖φ‖
L

k
k−2 (QT )

]
.

By (2.23) we obtain
∣∣∣∣
∫

QT

u∂tφdx dt

∣∣∣∣ ≤ C
[
(‖u‖Lk(QT ) + ‖v‖Lk(QT ) + ‖w‖

L
k
2 (QT )

)‖Dφ‖Lk′(QT )

+ ‖w‖
L

k
2 (QT )

‖φ‖
L

k
k−2 (QT )

]

and, by (2.21),
∣∣∣∣
∫

QT

u∂tφdx dt

∣∣∣∣ ≤ C
[
(‖v‖Lk(QT ) + ‖w‖

L
k
2 (QT )

)‖Dφ‖Lk′(QT )

+ ‖w‖
L

k
2 (QT )

‖φ‖
L

k
k−2 (QT )

]
.

(2.21), (2.23) and the last inequality imply that u ∈ Θk(QT ) with

‖u‖Θk(QT ) = ‖u‖W 1,0
k

(QT ) + ‖∂tu‖ k
2 ,k;QT

≤ C(‖v‖Lk(QT ) + ‖w‖
L

k
2 (QT )

).

Finally, Theorem 2.1.9 implies

‖u‖L∞(QT ) ≤ C1‖u‖Θk(QT ) ≤ C2(‖v‖Lk(QT ) + ‖w‖
L

k
2 (QT )

).

We can prove the main theorem.
Proof. (Theorem 2.1.15) In the first part of the proof we assume that ω is
bounded.
Let Γ(k, x, a0, b0) = (

∫
Q(a0,b0)

|F (y)|kp(x, y, t)dy dt) 1
k . Then, by (2.17) and

Proposition 2.1.1,

Γ(k, x, a0, b0) ≤
∫

Q(a0,b0)

ω|F (y)|kp(x, y, t)dy dt

≤ c5

∫

Q(a0,b0)

p(x, y, t)W2(y, t) ≤ c5

∫ b0

a0

ξ2(x, t) <∞.
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From Corollary 2.1.14, p ∈ L∞(Q(a, b)). Let η be a smooth function such that
η(t) = 1 for a ≤ t ≤ b, η(t) = 0 for t ≤ a0, t ≥ b0, |η′| ≤ 2

a−a0
and let

ψ ∈ C2,1(QT ) be such that ψ(·, t) has compact support for every t. We set

q = η
k
2 p and φ(y, t) = η

k
2 (t)ω(y, t)ψ(y, t). By Lemma 2.1.10, we obtain

∫

QT

(∂tφ(y, t) +Aφ(y, t))p(x, y, t)dy dt = 0

and then, after some computations,

∫

QT

ωq(−∂tψ −A0ψ)dy dt =

∫

QT

[
q

(
ψA0ω + 2

N∑

i,j=1

aijDiωDjψ

+ ωF ·Dψ + ψF ·Dω + ψ∂tω

)
+
k

2
pωψη

k−2
2 ∂tη

]
dy dt.

Since ω is bounded, ωq ∈ L1(QT ) ∩ L∞(QT ). By Theorem (2.1.16),

‖ωq‖L∞(QT ) ≤ C
(
‖qDω‖Lk(QT ) + ‖ωqF‖Lk(QT ) + ‖qD2ω‖

L
k
2 (QT )

(2.24)

+ ‖qF ·Dω‖
L

k
2 (QT )

+ ‖q∂tω‖
L

k
2 (QT )

+
1

a− a0
‖pωη k−2

2 ‖
L

k
2 (QT )

)

where C depends on N, k, T and the C1
b -norm of aij . Now we estimate the

right hand side in (2.24) by using (2.16) and (2.17).

‖ωqF‖Lk(QT ) =

(∫

QT

|ωqF |k
) 1

k

≤
(∫

QT

(qω)k−1ωq|F |k
) 1

k

≤ c5(a0, b0)
1
k

(∫

QT

(qω)k−1qW2

) 1
k

≤ c5(a0, b0)
1
k ‖ωq‖

k−1
k

L∞(QT )

(∫ b0

a0

ξ2dt

) 1
k

.

In a similar way

‖pωη k−2
2 ‖

L
k
2 (QT )

≤ c1(a0, b0)
2
k ‖ωq‖

k−2
k

L∞

(∫ b0

a0

ξ1dt

) 2
k

;

‖qDω‖Lk(QT ) ≤ c2(a0, b0)‖ωq‖
k−1

k

L∞(QT )

(∫ b0

a0

ξ1dt

) 1
k

;

‖qD2ω‖
L

k
2 (QT )

≤ c3(a0, b0)‖ωq‖
k−2

k

L∞(QT )

(∫ b0

a0

ξ1dt

) 2
k

;

‖q∂tω‖
L

k
2 (QT )

≤ c4(a0, b0)‖ωq‖
k−2

k

L∞(QT )

(∫ b0

a0

ξ1dt

) 2
k
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and

‖qF ·Dω‖
L

k
2 (QT )

≤ c2(a0, b0)c5(a0, b0)
1
k ‖ωq‖

k−2
k

L∞(QT )

(∫ b0

a0

ξ2dt

) 2
k

.

Therefore, by (2.24) and the bounds above,

‖ωq‖L∞(QT ) ≤ C

[
(c2(a0, b0) + c5(a0, b0)

1
k )‖ωq‖

k−1
k

L∞(QT )

(∫ b0

a0

ξ2

) 1
k

+ (c3(a0, b0) + c2(a0, b0)c5(a0, b0)
1
k )‖ωq‖

k−2
k

L∞(QT )

(∫ b0

a0

ξ2

) 2
k

+

(
c1(a0, b0)

2
k

a− a0
+ c4(a0, b0)

)
‖ωq‖

k−2
k

L∞(QT )

(∫ b0

a0

ξ1

) 2
k
]

and then

‖ωq‖
2
k

L∞(QT ) ≤ C

[
(c2(a0, b0) + c5(a0, b0)

1
k )‖ωq‖

1
k

L∞(QT )

(∫ b0

a0

ξ2

) 1
k

+ (c3(a0, b0) + c2(a0, b0)c5(a0, b0)
1
k )

(∫ b0

a0

ξ2

) 2
k

+

(
c1(a0, b0)

2
k

a− a0
+ c4(a0, b0)

)(∫ b0

a0

ξ1

) 2
k
]
.

Setting

A = (c2(a0, b0) + c5(a0, b0)
1
k )

(∫ b0

a0

ξ2

) 1
k

,

B = (c3(a0, b0) + c2(a0, b0)c5(a0, b0)
1
k )

(∫ b0

a0

ξ2

) 2
k

+

(
c1(a0, b0)

2
k

a− a0
+ c4(a0, b0)

)(∫ b0

a0

ξ1

) 2
k

and X = ‖ωq‖
1
k

L∞(QT ), the inequality above can be written as X2 ≤ AX + B

and so X ≤ A+
√
A2+4B
2 . It easily follows that

0 < ω(y, t)p(x, y, t)

≤ C

[
(ck2 + c5 + c

k
2
3 + c

k
2
2 c

1
2
5 )

∫ b0

a0

ξ2 +

(
c1

(a− a0)
k
2

+ c
k
2
4

)∫ b0

a0

ξ1

]
.

If ω is not bounded, we set ωε =
ω

1 + εω
. Obviously ωε is bounded. It is

easy to see that ωε satisfies (2.16) and (2.17) with constants c1, c2, c3, c4, c5
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independent of ε. Then the estimate of ‖ωεq‖L∞(QT ) holds with constants in
the right hand side of the previuos inequality which do not depend on ε. Letting
ε→ 0 we deduce the claim.

Remark 2.1.17. If W is a Lyapunov function for the operator A, in particular
it is a Lyapunov function for L indeed it does not depend on the time variable
and so it satisfies ∂tW = 0 and LW = AW ≤ λW . We can therefore apply
Theorem 2.1.15 to deduce upper bounds on the kernels as in [27, Theorem 4.1].

Proposition 2.1.18. Suppose that the drift satisfies

lim sup
|x|→∞

|x|−rF (x) · x|x| < −c (2.25)

for some r > 1 and c > 0. Fix T = 1, then if α >
r + 1

r − 1
, δ <

c

Λ(r + 1)
,

k > N + 2

p(x, y, t) ≤ C

t
αkr
r+1−1

exp{−δtα|y|r+1}

for all x, y ∈ RN , 0 < t ≤ 1 and for a suitable constant C.

Proof. Let us verify assumptions (2.16) and (2.17).
Let

W1(x, t) = W2(x, t) = exp{tαδ1|x|r+1}, ω = exp{tαδ|x|r+1}
with δ < δ1 <

c

Λ(r + 1)
. By Proposition 2.1.2 we know that W1 is a Lyapunov

function for L. Obviously ω ≥ 1 and ω ≤W1 with constant c1 = 1. We have to
find c2(a0, b0) such that

|Dω| ≤ c2(a0, b0)ω
k−1

k W
1
k

1

that is

δtα(r + 1)|x|r exp
{
tαδ|x|r+1

}

≤ c2(a0, b0) exp

{
k − 1

k
δtα|x|r+1

}
exp

{
1

k
δ1t

α|x|r+1

}

or, equivalently,

δtα(r + 1)|x|r ≤ c2(a0, b0) exp

{(
δ
k − 1

k
+
δ1
k

− δ

)
tα|x|r+1

}

= c2(a0, b0) exp

{
δ1 − δ

k
tα|x|r+1

}
.

Observing that

δtα(r + 1)|x|r =
1

|x|δ(r + 1)
k

δ1 − δ

δ1 − δ

k
tα|x|r+1

≤ δ(r + 1)
k

δ1 − δ
exp

{
δ1 − δ

k
tα|x|r+1

}
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for |x| ≥ 1 and
δtα(r + 1)|x|r ≤ δ(r + 1)

for |x| < 1, we obtain that the desired inequality is true with

c2 = δ(r + 1)max

{
1,

k

δ1 − δ

}
,

independent of a0 and b0.
Similarly we obtain that

|D2ω| ≤ C(δ2t2α(r + 1)2|x|2r + δtα(r + 1)(r − 1 +N)|x|r−1)

≤ c3 exp

{
2(δ1 − δ)

k
tα|x|r+1

}

with c3 not depending on a0 and b0.
Concerning c4(a0, b0), we have

|∂tω| = δαtα−1|x|r+1 exp{tαδ|x|r+1}

≤ c4(a0, b0) exp

{
k − 2

k
tαδ|x|r+1

}
exp

{
δ1

2

k
|x|r+1

}

or equivalently

δαtα−1|x|r+1 =
α

t

k

2(δ1 − δ)
δ
2(δ1 − δ)

k
tα|x|r+1

≤ c4(a0, b0) exp

{
2(δ1 − δ)

k
tαδ|x|r+1

}

with c4(a0, b0) =
αδk

2(δ1 − δ)a0
.

Finally, we have to find c5(a0, b0) such that

exp{δtα|x|r+1}|x|kr ≤ c5(a0, b0) exp{δ1tα|x|r+1}.
The function

f(s) =
skr

exp{(δ2 − δ)tαsr+1}

attaints its maximum for s =
c(k, r, δ, δ1)

t
α

r+1
. Therefore f(s) ≤ c

t
αkr
r+1

and we can

set

c5(a0, b0) =
c(k, r, δ, δ1)

a
αkr
r+1

0

.

From (2.18), choosing a0 = 1
2 t, a = t, b = 3

2 t, b0 = 2t and estimating ξ1 as in
Proposition 2.1.2, we deduce

p(x, y, t) ≤ C

(
1

t
αkr
r+1−1

+
1

t
αkr

2(r+1)
−1

+
1

t
k
2−1

)
exp{−δtα|y|r+1}

≤ C

t
αkr
r+1−1

exp{−δtα|y|r+1}



42

for all x, y ∈ RN and t ≤ 1.

Remark 2.1.19. The estimate of the kernel proved in Proposition 2.1.18 in
particular holds when A is given by ∆− |x|r x

|x| ·D. In the unidimensional case,

consider for example the operator A = D2 − x3D. We deduce the following
bound for the kernel. If α > 2, δ < 1

4 , k > 3

p(x, y, t) ≤ C

t
3αk
4 −1

exp{−δtαy4}

for some positive C and for all x, y ∈ R, 0 < t ≤ 1.

2.2 Heat kernel bounds for Schrödinger opera-

tors

A method similar to the one applied in the first section works also for Schrö-
dinger operators. In this section, using Lyapunov functions techniques and
parabolic regularity, we prove pointwise upper bounds on the kernel p.
We will deal with the problem of finding upper bounds for the kernels of
Schrödinger operators in the next chapter too. The approach will be differ-
ent and sometimes will give more refined estimates. Anyway, it is interesting to
complete the study started in the previous section and to prove some estimates
for Schrödinger operators making use of suitable Lyapunov functions.
We consider the operator A = −∆ + V with a nonnegative potential V ∈
Cαloc(R

N ), 0 < α < 1. According to the results previously obtained, the semi-
group e−tA generated by the operator −A can be represented in the form

e−tAf(x) =

∫

RN

p(x, y, t)f(y)dy, t > 0, x ∈ RN ,

where p is a positive C
2+α,2+α,1+ α

2

loc function, symmetric with respect to x and
y which is pointwise dominated by the heat kernel of the Laplacian in RN , see
Remark 1.3.21. More refined bounds are known when the potential V tends to
∞ at infinity in a polynomial way, see [13, Corollary 4.5.5] or [45] where also
lower bounds are proved. In the case of V (x) = |x|α we obtain estimates similar
to those in [45]. However our method does not allow us to prove Davies-Simon
estimate. On the other hand, it is not confined to special polynomial potentials
but applies also to logarithmic or exponential growths.
As in the case of Kolmogorov operators, given a Lyapunov function ω we esti-
mate the integral of ω against the kernel p, that is the function

ξω(x, t) =

∫

RN

p(x, y, t)ω(y, t) dy.

Then we use parabolic regularity for Schrödinger operators with unbounded
coefficients to deduce L∞- bounds for ωp from the L1-bounds. The same argu-
ments have been applied in [28] but with Lyapunov functions independent of t,
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yielding estimates in the form of Davies and Simon.
To shorten the notation we use L = ∂t − A = ∂t + ∆ − V . Observe however
that the parabolic operator associated with A is ∂t +A and not L.

2.2.1 Integrability of Lyapunov functions

Since p admits Gaussian estimates, it is clear that any function with, say, an
exponential growth is integrable with respect to p. Taking into account the
growth of the potential V it is possible to integrate functions diverging very fast
at infinity.

We say that ω : QT → [0,+∞) is a Lyapunov function for the operator L
if it belongs to C2,1(QT ), lim|x|→∞ω(x, t) = +∞ uniformly with respect to t
in compact sets of (0, T ] and there exists h : (0,∞) → [0,∞) integrable in a
neighborhood of 0 such that Lω(x, t) ≤ h(t)ω(x, t) for all (x, t) ∈ QT . Note that
we do not require that ω(x, 0) tends to ∞ as |x| → ∞.

In the proof of the proposition below we need to approximate e−tA with the
semigroups generated by some Schrödinger operators with bounded potentials.
To this purpose we fix 0 ≤ η ∈ C∞

c (R) decreasing such that η(s) = 1 for |s| ≤ 1,
η(s) = 0 for |s| ≥ 2 and define Vn(x) = η

(
| xn |
)
V (x). Let moreover e−tAn

be the semigroup generated by −An = ∆ − Vn and pn(x, y, t) its kernel. By
the maximum principle one easily obtains that pn ≥ pn+1 and that pn → p
pointwise. Note that a Lyapunov function for A always exists since V ≥ 0 (take
for example V (x) = 1 + |x|2, x ∈ RN ) and therefore the maximum principle
holds for bounded C2,1 solutions of the Cauchy problem associated with the
Schrödinger operator.

Lemma 2.2.1. Consider the analytic semigroup generated by −An in Cb(RN ).
Then, for every f ∈ C2+α

b (RN ) the function e−tAnf(x) converges to e−tAf(x)
in C2,1(RN × [0, T ]).

Proof. Let f ∈ C2+α
b (RN ). Set un(x, t) = e−tAnf(x), u(x, t) = e−tAf(x).

Let us fix a radius ρ > 0. If n > ρ + 1, by the Schauder estimates for the
operator A (see [20, Theorem 8.1.1]) we obtain

‖un‖C2+α,1+ α
2 (Bρ×[0,T ])

≤ C(‖un‖L∞(RN×[0,∞)) + ‖f‖C2+α(RN )).

By Ascoli’s Theorem the sequence (un) converges to a function v in C2,1(RN ×
[0,∞)). Since ∂tun+Anun = 0 in Bρ× (0, T ] for n > ρ we have ∂tv+Av = 0 in
RN × (0, T ]. Moreover v(x, 0) = f(x) and |v(x, t)| ≤ ‖f‖∞. Consider now the
difference w = u− v. Obviously w ∈ C2,1(RN × [0, T ]), is bounded and satisfies

{
∂tw +Aw = 0 in RN × (0, T ]
w(x, 0) = 0 in RN .

By the maximum principle it follows w = 0 and then un converges to u in
C2,1(RN × [0,∞)).
Observe that if f is only a Cb(RN ) function un converges pointwise to u.

We also need the following lemma.
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Lemma 2.2.2. Assume that V ∈ L∞(RN ) and let f ∈ BUC(QT ). Then the
function

F (x, t) =

∫

RN

p(x, y, t)f(y, t) dy

is continuous in QT . Moreover, if f ∈ BUC2,1(QT ), then

∂tF (x, t) =

∫

RN

p(x, y, t)Lf(y, t) dt

with L = ∂t −A.

Proof. Since V is bounded, the semigroup (e−tA)t≥0 is strongly continuous in
BUC(RN ) (the space of bounded and uniformly continuous functions on RN ).
Writing F (·, t) = e−tAf(·, t) its continuity easily follows. If f ∈ BUC2,1(QT ),
then, for every fixed t, the function f(·, t) belongs to the domain of the generator
of (e−tA)t≥0 in BUC(RN ). It follows that

∂tF (·, t) = −e−tAAf(·, t) + e−tA∂tf(·, t)

and the proof follows.

We refer the reader to [28, Proposition 2.5] and to [5, Lemma 2.32] for results
similar to the next proposition, when the Lyapunov function is independent of
t.

Proposition 2.2.3. For each t ∈ [0, T ], the Lyapunov function ω(·, t) is inte-
grable with respect to the measure p(x, ·, t). Moreover, setting

ξω(x, t) =

∫

RN

p(x, y, t)ω(y, t)dy, (2.26)

the inequality

ξω(x, t) ≤ e
R

t
0
h(s)dsω(x, 0) (2.27)

holds.

Proof. Let us consider, for every α ≥ 0, ψα ∈ C∞
b (R) such that ψα(s) = s for

s ≤ α, ψα is constant in [α+ 1,∞), ψ′
α ≥ 0 and ψ′′

α ≤ 0. From the concavity of
ψα it follows that

sψ′
α(s) ≤ ψα(s) ∀ s ≥ 0. (2.28)

Obviously ψα ◦ ω ∈ BUC(QT ) and, moreover, it belongs to BUC2,1(Q(ε, T ))
for every ε > 0, since is constant for t ≥ ε > 0 and large |x|. According with the
previous notation we set ξnα(x, t) =

∫
RN pn(x, y, t)ψα(ω(y, t))dy. Lemma 2.2.2

yields for t ≥ ε

∂tξ
n
α(x, t) =

∫

RN

pn(x, y, t)Ln(ψα ◦ ω)(y, t)dy
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where Ln = ∂t −An. By (2.28) we obtain

Ln(ψα ◦ ω)(x, t) = ψ′
α(ω(x, t))Lnω(x, t) + Vn(x)[ψ′

α(ω(x, t))ω(x, t)

− ψα(ω(x, t))] − ψ′′
α(ω(x, t))|Dω(x, t)|2

≤ ψ′
α(ω(x, t))Lnω(x, t).

Thus, for t ≥ ε,

∂tξ
n
α(x, t) ≤

∫

RN

pn(x, y, t)ψ
′
α(ω(y, t))Lnω(y, t)dy

≤
∫

RN

pn(x, y, t)ψ
′
α(ω(y, t))Lω(y, t)dy

if n is sufficiently large since, for fixed α, the function ψ′
α(ω(y, t)) has compact

support. Using the property of ω, the positivity of ψ′ and (2.28) again we get

∂tξ
n
α(x, t) ≤ h(t)

∫

RN

pn(x, y, t)ψα(ω(y, t))dy = h(t)ξnα(x, t).

Therefore, by Gronwall’s Lemma, for t ≥ ε.

ξnα(x, t) ≤ e
R

t
ε
h(s)dsξα(x, ε).

Since ξα(x, ε) → ψα(ω(x, 0)) as ε→ 0, by Lemma 2.2.2, letting ε→ 0 we obtain

ξnα(x, t) ≤ e
R

t
ε
h(s)dsψα(ω(x, 0)).

Letting α→ ∞ in the previous inequality and using Fatou’s Lemma we get
∫

RN

pn(x, y, t)ω(y, t)dy ≤ lim infα→∞ξ
n
α(x, t) ≤ e

R
t
0
h(s)dsω(x, 0).

Letting n→ ∞, the first member in the previous inequality tends to ξω(x, t)
by monotone convergence so the claim follows.

2.2.2 Regularity for parabolic problems and some inter-

polative estimates

We prove a parabolic regularity result needed in the following subsection to
deduce pointwise estimates for the kernels.

Theorem 2.2.4. Let 1 < k < ∞ and suppose that for every γ > 0 there exists
Cγ > 0 such that |DV | ≤ γV

3
2 + Cγ. If u ∈ Lk(QT ) ∩W 2,1

k (BR × [0, T ]) for
every R > 0 solves

{
∂tu− ∆u+ V u = g in QT
u(y, 0) = 0 y ∈ RN

with g ∈ Lk(QT ), then

‖u‖W 2,1
k

(QT ) + ‖V u‖Lk(QT ) ≤ C0‖g‖Lk(QT )

where C0 depends on N, k, T and Cγ .
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Proof. By [31, Proposition 6.5], there exists a function z ∈W 2,1
k (QT ) with

V z ∈ Lk(QT ) which solves the problem above and satisfies the estimate

‖z‖W 2,1
k

(QT ) + ‖V z‖Lk(QT ) ≤ C‖g‖Lk(QT ).

Then we have to prove that u = z. The difference w = u − z ∈ Lk(QT ) ∩
W 2,1
k (BR × [0, T ]) for every R > 0 and satisfies

∫

QT

w(−∂tφ− ∆φ+ V φ) = 0 (2.29)

for every φ ∈ C2,1(QT ) vanishing at the time T and with support in BR× [0, T ]
for some R > 0. By density (2.29) holds for every φ ∈ W 2,1

k′ (QT ) such that φ

vanishes at the time T and V φ ∈ Lk
′

(QT ). By using [31, Proposition 6.5] again,
we obtain that, given ψ ∈ Lk

′

(QT ), there exists φ ∈W 2,1
k′ (QT ) with φ(·, T ) = 0

and V φ ∈ Lk
′

(QT ) such that −∂tφ− ∆φ+ V φ = ψ. Therefore
∫

QT

wψ = 0

for every ψ ∈ Lk
′

(QT ) and then w = 0 and u = v.
The following interpolative estimate for the sup norm of u will be crucial in

the next section.

Proposition 2.2.5. Assume that k > N+2
2 . Then there exists C > 0 such that

for every u ∈W 2,1
k (QT ) the estimate

‖u‖L∞(QT ) ≤ C‖u‖1−θ
L1(QT )‖u‖θW 2,1

k
(QT )

holds with

θ =
N + 2

(N + 2)

(
1 − 1

k

)
+ 2

.

Proof. Since there exists a linear extension operator from W 2,1
k (QT ) to

W 2,1
k (RN+1) which is also continuous from Lr(QT ) to Lr(RN+1) for 1 ≤ r ≤ ∞

we prove the claimed estimate for functions in W 2,1
k (RN+1). Let R be an unitary

cube of RN+1. We start by proving that there exists a positive constant C such
that

‖u‖L∞(R) ≤ C(‖u‖L1(R) + ‖∂tu‖Lk(R) + ‖D2u‖Lk(R))

for every u ∈W 2,1
k (R). Suppose that this is not true, then for every n ∈ N there

exists un ∈W 2,1
k (R) such that

‖un‖L∞(R) ≥ n(‖un‖L1(R) + ‖∂tun‖Lk(R) + ‖D2un‖Lk(R)). (2.30)

We can also suppose ‖un‖L∞(R) = 1. Obviously we have ‖un‖Lk(R) ≤ 1 and, by

(2.30), we deduce that (un)n∈N is bounded in W 2,1
k (R). Since the embedding of
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W 2,1
k (R) into C(R) is compact (see Theorem A.0.9), there exists a subsequence

(unk
) converging in L∞(R) to some function v ∈ C(R). In particular (unk

)
converges to v in L1(R), but, by (2.30), ‖un‖L1(R) ≤ 1

n and then v = 0. This is
a contraddiction since ‖un‖L∞(R) = 1. It immediately follows that there exists
a positive constant C such that

‖u‖L∞(RN+1) ≤ C(‖u‖L1(RN+1) + ‖∂tu‖Lk(RN+1) + ‖D2u‖Lk(RN+1))

for every u ∈W 2,1
k (RN+1). Let λ > 0. Choosing v(x, t) = u(λx, λ2t), we get

‖u‖L∞(RN+1) ≤ C(λ−(N+2)‖u‖L1(RN+1)

+ λ(2−N+2
k

)(‖∂tu‖Lk(RN+1) + ‖D2u‖Lk(RN+1)))

for all λ > 0 and u ∈ W 2,1
k (RN+1). It follows that the function

g(λ) = ‖u‖L∞(RN+1) − C(λ−(N+2)‖u‖L1(RN+1)

+ λ(2−N+2
k

)(‖∂tu‖Lk(RN+1) + ‖D2u‖Lk(RN+1))) ≤ 0

for all λ > 0 and, in particular, minimising over λ, in correspondence of

λ =

[
N + 2

2 − N+2
k

‖u‖L1(RN+1)

‖∂tu‖Lk(RN+1) + ‖D2u‖Lk(RN+1)

] k
4k+Nk−N−2

,

we obtain then claimed inequality.
Finally, we state an interpolative inequality.

Proposition 2.2.6. Let 1 ≤ k ≤ ∞ and suppose that for every γ > 0 there
exists Cγ > 0 such that |DV | ≤ γV

3
2 + Cγ . Then there exists two constants

m, µ0 such that for every u ∈ W 2,1
k (QT ) with V u ∈ Lk(QT ) the following

estimate holds for 0 < µ ≤ µ0

‖V 1
2Du‖Lk(QT ) ≤ µ‖u‖W 2,1

k
(QT ) +

m

µ
‖V u‖Lk(QT ).

Proof. Let u be a smooth function with compact support contained in
BR × [0, T ] for some R > 0. By [31, Proposition 2.3] there exist two positive
constants m, µ0 such that for 0 < µ ≤ µ0

∫

RN

V (x)
k
2 |Du(x, t)|k dx ≤ µk

∫

RN

|∆u(x, t)|k dx+
mk

µk

∫

RN

V (x)k|u(x, t)|k dx.

Integrating over [0, T ] with respect to t, the estimate follows for smooth and
with compact support functions. By density we deduce the claim.

2.2.3 Pointwise estimates on kernels

To prove the main result of this paper we need the following assumptions on
the potential V and on the Lyapunov function ω.
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(A1) 0 ≤ V ∈ C1(RN ) and ∀ γ > 0 there exists Cγ > 0 : |DV | ≤ γV
3
2 + Cγ ;

(A2) 0 < ω ∈ C2,1(RN × ([0,∞)) is a Lyapunov function satisfying

|∂tω|
ω

+
|Dω|2
ω2

+
|∆ω|
ω

≤ γV + C (2.31)

where γ, C are suitable positive constants. We denote by ξω the function in-
troduced in 2.26 and relative to ω and fix 0 < a0 < a < b < b0 < T with the
property b0 − b ≥ a− a0.

Theorem 2.2.7. There exists γ0 > 0 such that if assumptions (A1) and (A2)
are satisfied with γ < γ0, then

ω(y, t)p(x, y, t) ≤ C

(a− a0)
N+2

2

∫ b0

a0

ξω(x, t)dt

for a ≤ t ≤ b and x, y ∈ RN .

Proof. In the whole proof x will be considered as a parameter and we regard the
kernel as a function of the variables (y, t). Similarly, all the differential operators
with respect to the space variables will act on the y variable. Observe that p
satisfies pt = ∆p − V p for y ∈ RN , t > 0. Moreover it belongs to Lk(Q(a, b))
for every 1 ≤ k ≤ ∞ since it admits Gaussian estimates. Let η be a smooth
function such that 0 ≤ η ≤ 1, η(t) = 1 for a ≤ t ≤ b, η(t) = 0 for t ≤ a0 and
t ≥ b0, 0 ≤ |ηt| ≤ 2

a−a0
and set q = ηkp. Then q ∈ Lk(QT ) ∩W 2,1

k (BR × [0, T ])
for all R > 0 and satisfies the parabolic problem

{
∂tq − ∆q + V q = kηk−1pηt in QT
q(y, 0) = 0 y ∈ RN .

From Theorem 2.2.4 it follows that, for all 1 < k < ∞, q ∈ W 2,1
k (QT ) and

V q ∈ Lk(QT ). In particular, from Proposition 2.2.6, V
1
2Dq ∈ Lk(QT ). Let

ωε = ω/(1 + εω) for 0 < ε < 1. We have

Dωε
ωε

=
Dω

ω(1 + εω)
;

∂tωε
ωε

=
∂tω

ω(1 + εω)
;

∆ωε
ωε

=
∆ω

ω(1 + εω)
− 2ε

(1 + εω)2
|Dω|2
ω

.

Using the last equations we obtain estimates like (2.31) for ωε, namely

|∂tωε|
ωε

+
|Dωε|2
ω2
ε

+
|∆ωε|
ωε

≤ 3(γV + C). (2.32)

The function ωεq satisfies the parabolic equation




∂t(ωεq) − ∆(ωεq) + V ωεq = (∂tωε)q + kηk−1pωεηt
−q∆ωε − 2Dωε ·Dq in QT

ωε(y, 0)q(y, 0) = 0 y ∈ RN .
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Observe that V ωεq ∈ Lk(QT ) since ωε is bounded and V q ∈ Lk(QT ). In a
similar way we obtain that kηk−1pωεηt ∈ Lk(QT ). Using (2.32) we see that the
other terms in the right hand side of the previous equality are in Lk(QT ). In
fact we have

|∂tωε|q ≤ γV ωεq + Cωεq ∈ Lk(QT ).

Similarly for the remaining terms. This implies that ωεq ∈ W 2,1
k (QT ). We

rewrite the previous equation in the form





∂t(ωεq) − ∆(ωεq) + V ωεq = (∂tωε)q + kηk−1pωεηt

−2
Dωε
ωε

D(ωεq) − q∆ωε + 2
|Dωε|2
ωε

q in QT

ωε(y, 0)q(y, 0) = 0 y ∈ RN

and estimate the Lk-norm of the right hand side choosing k greater then N+2
2 .

We have

‖(∂tωε)q‖Lk(QT ) ≤ γ‖ωεqV ‖Lk(QT ) + C‖ωεq‖Lk(QT ) (2.33)

≤ γ‖ωεqV ‖Lk(QT ) + C‖ωεq‖
k−1

k

L∞(QT )

(∫

Q(a0,b0)

ωp

) 1
k

‖kηk−1pωεηt‖Lk(QT ) ≤
2k

a− a0
‖ωεq‖

k−1
k

L∞(QT )

(∫

Q(a0,b0)

ωp

) 1
k

(2.34)

∥∥∥∥q
(

∆ωε − 2
|Dωε|2
ωε

)∥∥∥∥
Lk(QT )

≤ 6

[
γ‖V ωεq‖Lk(QT ) (2.35)

+ C‖ωεq‖
k−1

k

L∞(QT )

(∫

QT

ωq

) 1
k
]

(2.36)

and finally, using Proposition 2.2.6 and the interpolative inequality

‖D(ωεq)‖Lk(QT ) ≤ δ‖ωεq‖W 2,1
k

(QT ) +
K

δ
‖ωεq‖Lk(QT ),

for all δ > 0 we obtain
∥∥∥∥
Dωε
ωε

D(ωεq)

∥∥∥∥
Lk(QT )

≤
√

3
{
γ

1
2 ‖V 1

2D(ωεq)‖Lk(QT ) (2.37)

+ C
1
2 ‖D(ωεq)‖Lk(QT )

}
(2.38)

≤
√

3

{
γ

1
2

(
µ‖ωεq‖W 2,1

k
(QT ) +

m

µ
‖V ωεq‖Lk(QT )

)

+ C
1
2

(
δ‖ωεq‖W 2,1

k
(QT ) +

K

δ
‖ωεq‖Lk(QT )

)}
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for all δ > 0 and µ ≤ µ0. Setting

Λ =
2

a− a0

(∫

Q(a0,b0)

ωp

) 1
k

=
2

a− a0

(∫ b0

a0

ξω(x, t)dt

) 1
k

,

from (2.33), (2.34), (2.35) and (2.37) and Theorem 2.2.4, we obtain

‖ωεq‖W 2,1
k

(QT ) + ‖V ωεq‖Lk(QT ) ≤ C0

{(
k + 7C

a− a0

2

+
a− a0

2

√
3C

1
2
K

δ

)
‖ωεq‖

k−1
k

L∞(QT )Λ +
(√

3γ
1
2µ+

√
3C

1
2 δ
)
‖ωεq‖W 2,1

k
(QT )

+

(
7γ +

√
3γ

1
2
m

µ

)
‖V ωεq‖Lk(QT )

}

for all δ > 0 and µ ≤ µ0. Choosing γ, δ small enough so that
√

3C0(γ
1
2µ0 +

C
1
2 δ) < 1 and C0(7γ +

√
3γ

1
2m/µ0) < 1 we deduce

‖ωεq‖W 2,1
k

(QT ) + ‖V ωεq‖Lk(QT ) ≤ C‖ωεq‖
k−1

k

L∞(QT )Λ,

with C independent of ε. By Proposition 2.2.5 we have

‖ωεq‖L∞(QT ) ≤ C‖ωεq‖1−θ
L1(QT )‖ωεq‖θW 2,1

k
(QT )

with θ = N+2
(N+2)(1− 1

k
)+2

and therefore

‖ωεq‖W 2,1
k

(QT ) ≤ CΛ‖ωεq‖(1−θ) k−1
k

L1(QT ) ‖ωεq‖θ
k−1

k

W 2,1
k

(QT )
.

This yields

‖ωεq‖W 2,1
k

(QT ) ≤ CΛ‖ωεq‖(
1−N+2

2k )(1− 1
k
)

L1(QT )

≤ CΛ‖ωq‖(1−
N+2
2k )(1− 1

k
)

L1(QT ) .

Using again the interpolative estimate of Proposition 2.2.5 we obtain

‖ωεq‖L∞(QT ) ≤ C‖ωεq‖1−θ
L1(QT )‖ωεq‖θW 2,1

k
(QT )

≤ CΛ‖ωq‖(1−
N+2
2k )

L1(QT )

and, finally, estimating the integrals of ωεq trough ξω,

ωε(y, t)p(x, y, t) ≤ C
1

(a− a0)
N+2

2

∫ b0

a0

ξω(x, t)dt

for a ≤ t ≤ b and x, y ∈ RN . Observing that the constant in the right hand
side does not depend on ε and letting ε→ 0 we conclude the proof.
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2.2.4 Small time estimates

In this section we apply Theorem 2.2.7 to get explicit bounds, for small times,
of the heat kernels of some Schrödinger operators with unbounded potentials.

Proposition 2.2.8. Assume that V (x) ≥ M |x|α for some α > 2, M > 0.

Then there exist 0 < c < 2
√
M

2+α , C > 0 such that

p(x, y, t) ≤ C

t
N
2

exp
{
−ct(|x|1+ α

2 + |y|1+ α
2 )
}

for all x, y ∈ RN and 0 < t ≤ 1.

Proof. By Remark 1.3.21 we may assume that V (x) = M |x|α. We define
ω(x, t) = exp{ct|x|1+ α

2 }. By an easy computation we get

Lω(x, t) = ω(x, t)
[
c|x|1+ α

2 + c2(1 +
α

2
)2t2|x|α

+ c(1 +
α

2
)(
α

2
− 1 +N)t|x|α

2 −1 − V (x)
]

≤ ω(x, t)|x|α
[
c|x|1−α

2 + c2(1 +
α

2
)2t2

+ c(1 +
α

2
)(
α

2
− 1 +N)t|x|− α

2 −1 −M
]
.

Recalling that t ≤ 1, α ≥ 2 and c < 2
√
M

2+α , we see that the last member in the
previous inequality is negative for |x| large. If |x| is small clearly there exists a
positive constant λ such that Lω ≤ λ ≤ λω. This proves that ω is a Lyapunov
function with h(t) = λ and for 0 < t ≤ 1, so, from the Proposition 2.2.3, it
follows that

ξω(x, t) ≤ eλtω(x, 0) = eλt ≤ C

for t small. Now we verify the hypotheses of Theorem 2.2.7. Obviously the
potential V is positive, smooth and it is easy to see that V satisfies (A1).
Moreover

|Dω|2
ω2

+
|∆ω|
ω

≤ c2t2
(
1 +

α

2

)2

|x|α + c
(
1 +

α

2

)(α
2
− 1 +N

)
t|x|α

2 −1

≤
[
c2
(
1 +

α

2

)2

+ c
(
1 +

α

2

)(α
2
− 1 +N

)]
|x|α.

and
|∂tω|
|ω| = c|x|1+ α

2 ≤ c|x|α.

Choosing c small enough the hypotheses of Theorem 2.2.7 are fulfilled and there
exists C > 0 such that

ω(y, t)p(x, y, t) ≤ C

(a− a0)
N+2

2

∫ b0

a0

ξω(x, t)dt
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for 0 < a ≤ t ≤ b ≤ 1 and x, y in RN . Setting a0 = t
2 , a = t, b = 3

2 t, b0 = 2t
we obtain

p(x, y, t) ≤ C

t
N+2

2

ω(y, t)−1

∫ 3
2 t

t
2

eλsds ≤ C

t
N
2

ω(y, t)−1 =
C

t
N
2

exp{−ct|y|1+ α
2 }.

Using the symmetry of p in x and y one has also

p(x, y, t) ≤ C

t
N
2

exp{−ct|x|1+ α
2 }.

Multiplying the right and the left hand side in the inequalities obtained above,
we deduce

p(x, y, t) ≤ C

t
N
2

exp{− c

2
t(|x|1+ α

2 + |y|1+ α
2 )}.

Proposition 2.2.9. Assume that V (x) ≥ M |x|α for some 0 < α ≤ 2, M > 0.
Then there exist 0 < c < M, C > 0 such that

p(x, y, t) ≤ C

t
N
2

exp
{
−ct[(|x|2 + 1)

α
2 + (|y|2 + 1)

α
2 ]
}

for all x, y ∈ RN and 0 < t ≤ 1.

Proof. As before we assume that V (x) = M |x|α. Let ω(x, t) = exp{ct(|x|2 +
1)

α
2 }. By an easy computation we get

Lω(x, t) = ω(x, t)
[
c(|x|2 + 1)

α
2 + c2α2t2|x|2(|x|2 + 1)α−2

+ cα(α − 2)t|x|2(|x|2 + 1)
α
2 −2 + ctαN(|x|2 + 1)

α
2 −1 − V (x)

]
.

Proceeding as in the proof of the Proposition 2.2.8 we conclude the proof.

Proposition 2.2.10. Assume that V (x) ≥ M exp{c|x|α} for some α > 0, c,
M > 0. Then there exist c1, c2, C > 0 such that

p(x, y, t) ≤ C

t
N
2

exp{−tc1(exp{c2|x|α} + exp{c2|y|α})}

for all x, y ∈ RN and 0 < t ≤ 1.

Proof. As before we assume that V (x) = M exp{c|x|α}.
Let ω(x, t) = exp{c1t exp{c2|x|α}}. By an easy computation we get

Lω(x, t) = ω(x, t)
[
c1 exp{c2|x|α} + t2c21c

2
2α

2|x|2α−2 exp{2c2|x|α}
+ tc1c2α

2 exp{c2|x|α}|x|2α−2 + tc1c2α(α − 2 +N) exp{c2|x|α}|x|α−2

− V (x)
]

= ω(x, t) exp{c|x|α}
[
c1 exp{(c2 − c)|x|α}

+ t2c21c
2
2α

2|x|2α−2 exp{(2c2 − c)|x|α} + tc1c2α
2 exp{(c2 − c)|x|α}|x|2α−2

+ tc1c2α(α− 2 +N) exp{(c2 − c)|x|α}|x|α−2 −M
]
.
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Recalling that t ≤ 1, estimating the polynomial factors with exponentials and
choosing c2 small enough, we obtain that, for |x| large, the last member in
the previous inequality is negative. If |x| is small, by continuity there exists a
positive constant λ such that Aω ≤ λ ≤ λω. This proves that ω is a Lyapunov
function with h(t) = λ and for 0 < t ≤ 1 and then Proposition 2.2.3 gives
ξω(x, t) ≤ C for t small. The potential V satisfies assumption (A1). Moreover

|Dω|2
ω2

+
|∆ω|
ω

= 2t2c21c
2
2α

2 exp{2c2|x|α}|x|2α−2

+ tc1c2α
2 exp{c2|x|α}|x|2α−2

+ tc1c2α(α− 2 +N) exp{c2|x|α}|x|α−2

and
|∂tω|
|ω| = c1 exp{c2|x|α}.

Therefore (A2) is satisfied choosing c1 and c2 small enough and Theorem 2.2.7
yields

ω(y, t)p(x, y, t) ≤ C

(a− a0)
N+2

2

∫ b0

a0

ξω(x, t)dt

for 0 < a ≤ t ≤ b ≤ 1 and x, y in RN . As in Proposition 2.2.8 one concludes
the proof.

Proposition 2.2.11. Assume V (x) ≥M log(1+ |x|2). Then there exists C > 0
and α < M such that

p(x, y, t) ≤ C

t
N
2

(1 + |x|2)−α
2 t(1 + |y|2)− α

2 t

for all x, y ∈ RN and 0 < t ≤ 1.

Proof. Let ω(x, t) = (1 + |x|2)αt. Then

Lω(x, t) = ω(x, t)

[
α log(1 + |x|2) +

αt(αt− 1)4|x|2
(1 + |x|2)2 +

2αtN

1 + |x|2

− M log(1 + |x|2)
]
≤ 0

for |x| large since t ≤ 1 and α < M . Hence ω is a Lyapunov function. Moreover
V satisfies (A1) and

|∂tω|
ω

= α log(1 + |x|2),

|Dω|2
ω2

+
|∆ω|
ω

≤ 4α2 |x|2
(1 + |x|2)2 + 4α(α+ 1)

|x|2
(1 + |x|2)2 +

2αN

1 + |x|2 .

Choosing α small enough we can apply Theorem 2.2.7 and obtain

ω(y, t)p(x, y, t) ≤ C

(a− a0)
N+2

2

∫ b0

a0

ξω(x, t)dt.
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for 0 < a ≤ t ≤ b ≤ 1 and x, y in RN . Arguing as in the examples before, one
concludes the proof.

Remark 2.2.12. We can easily add a Gaussian term in our estimates as follows.
For example, multiplying the left and the right hand side in Proposition 2.2.8
respectively with the left and right hand side of the Gaussian bound

p(x, y, t) ≤ C

t
N
2

exp

{
−c |x− y|2

t

}
,

we find

p(x, y, t) ≤ C

t
N
2

exp
{
−c1t(|x|1+

α
2 + |y|1+ α

2 )
}

exp

{
−c2

|x− y|2
t

}

for suitable c1, c2 , C > 0. The other cases are similar.

Remark 2.2.13. Finally we discuss the sharpness of the estimate proving lower
bounds similar to the upper bounds obtained in the examples above with the
method of [13, Theorem 4.5.10].

We start with the potential V (x) = |x|α, 0 < α ≤ 2, considered in Propo-
sition 2.2.9. We consider the ball B1(x) of center x and radius 1 and the
Schrödinger operator AD in B1(x) with Dirichlet boundary conditions. The
maximum principle yields e−tA ≥ e−tAD in B1(x). Since V ≤ (1 + |x|)α in
B1(x) we have e−tA ≥ e−tAD ≥ e−t(1+|x|α)e−t∆D in B1(x), where ∆D is the
Laplacian with Dirichlet boundary conditions. Taking the inequality for the
corresponding kernels and using the estimate

p∆D
(x, x, t) ≥ ct−N/2,

see [13, Lemma 3.3.3], we obtain

pA(x, x, t) ≥ e−t(1+|x|α)p∆D
(x, x, t) ≥ C

t
N
2

e−t(1+|x|α)

for some positive constant C. This shows that Proposition 2.2.9 is sharp, con-
cerning the exponent α appearing in the exponential. Our method does not give
a precise estimate of the constant c which, however, turns out to be 1 + ε, see
[45] and the next chapter.

In a similar way we obtain that, if V (x) = exp{c|x|α} for some α, c > 0,
then, as above,

p(x, x, t) ≥ C

t
N
2

exp{−t exp{c(1 + |x|)α}}.

Therefore in the case of exponential potentials the estimate in 2.2.10 is sharp,
with the exception of constants c1, c2.

For a logarithmic potentials V = M log(1 + |x|2) of Proposition 2.2.11, the
same method gives the lower bound

p(x, x, t) ≥ C

t
N
2

exp{−t log[1 + (1 + |x|)2]} =
C

t
N
2

(1 + (1 + |x|)2)−Mt.
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Finally we consider the case of V (x) = |x|α with α > 2, see Proposition
2.2.8. As in [45] we have

p(x, x, t) =
∑

n

e−λntφn(x)2 ≥ e−λ1tφ1(x)
2

where (φn), (λn) are the eigenfunctions and the eigenvalues of −A, respectively.
Since

φ1(x) ≥ C exp{−c|x|1+α/2},
see [13, Corollary 4.5.7], we see that, for a fixed t, Proposition 2.2.8 gives the
exact decay in the space variables. Also in this case we refer the reader to [45]
and to the next chapter for more precise space-time estimates.

2.2.5 Large time estimates

As in [45], large time estimates are easily deduced from small time estimates.

Proposition 2.2.14. Let λ1 be the smallest eigenvalue of A. Then there exist
positive constants C, c, δ such that for t ≥ 1, x ∈ RN

p(x, x, t) ≤ Ce−λ1t exp{−c|x|1+ α
2 }

if V (x) ≥M |x|α and α > 2,

p(x, x, t) ≤ Ce−λ1t exp{−c(|x|2 + 1)
α
2 }

if V (x) ≥M |x|α and 0 < α ≤ 2,

p(x, x, t) ≤ Ce−λ1t exp{−c exp{c|x|α}}
if V (x) ≥M exp{c1|x|α} and

p(x, x, t) ≤ Ce−λ1t(1 + |x|2)−δ

if V (x) ≥M log(1 + |x|2).
Proof. Let e−tA be the semigroup generated by −A. We note that

‖e−tA‖L2→L2 = e−λ1t; (2.39)

e−tAp(x, ·, s) = p(x, ·, s+ t) (2.40)

and
p(x, x, t) = ‖p(x, ·, t/2)‖2

L2 (2.41)

for all t, s > 0 and x ∈ RN . Therefore, if t > 1, by (2.39), (2.40) and (2.41), we
have

p(x, x, t) =

∥∥∥∥p(x, ·,
t

2
)

∥∥∥∥
2

L2

= ‖e−(t/2−1/2)Ap(x, ·, 1/2)‖2
L2

≤ e−λ1(t−1)‖p(x, ·, 1/2)‖2
L2 = Ce−λ1tp(x, x, 1).

Estimating p(x, x, 1) as in Propositions 2.2.8, 2.2.9, 2.2.10 and 2.2.11, the proof
follows.
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Remark 2.2.15. Off-diagonal estimates for large times can be deduced from
on-diagonal bounds by the following computation

|p(x, y, t)| =

∣∣∣∣
∫
p(x, z, t/2)p(z, y, t/2)

∣∣∣∣dz ≤ ‖p(x, ·, t/2)‖2‖p(y, ·, t/2)‖2

= p(x, x, t)
1
2 p(y, y, t)

1
2 .

As in Remark 2.2.12, a Gaussian factor can be added to all the estimates of this
section.



Chapter 3

Kernel estimates for a class

of Schrödinger semigroups

3.1 Introduction

We consider again a Schrödinger operator A = −∆ + V with a nonnegative
potential V ∈ L1

loc(R
N ) and we look for some sharp estimates for the kernel p

of the semigroup e−tA generated by the operator −A in Lp(RN ). As previously
observed, the kernel is pointwise dominated by the heat kernel of the Laplacian
in RN .
In the case V (x) = |x|α, α > 0, Sikora proves precise on-diagonal bounds of
the form p(x, x, t) ≤ h(x, t) and then he deduces off-diagonal bounds from the
semigroup law, see [45]. Estimates of the same forme have been deduced in the
previous chapter and will be improved here.
In Section 2 we prove Sikora-type bounds for radial increasing potentials and
we treat also the case of potentials consisting of a radial part and lower order
terms.
In Section 3, we report on some upper and lower bounds obtained by Sikora in
suitable space-time regions to show the sharpness of our estimates.
In Section 4, we study the asymptotic distribution of eigenvalues of A using the
bounds on the heat kernel of e−tA and a Tauberian theorem due to Karamata.
When V has a polynomial behaviour, these results have been proved by Titch-
marsh (see [51] or [40, Section XIII]) using cube-decomposition methods. Our
approach allows us to treat also non polynomial type potential and this seems
to be new.
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3.2 Pointwise estimates of kernels

Given a positive potential V ∈ L1
loc(R

N ), for each s > 0 we consider the level
set

Es = {x ∈ RN : V (x) ≤ s}.
We introduce a new potential Vs

Vs(x) =

{
s in Es
V (x) in RN \ Es

and the heat kernel ps of the Schrödinger operator As = −∆ + Vs.
Let us observe that Vs ≥ s and Vs ≥ V . Therefore by Remark 1.3.21 it follows
that

0 ≤ ps(x, y, t) ≤
1

(4πt)
N
2

exp

{
−|x− y|2

4t

}
exp{−ts} (3.1)

and

0 ≤ p(x, y, t) ≤ 1

(4πt)
N
2

exp

{
−|x− y|2

4t

}
(3.2)

for all x, y ∈ RN and t > 0. To improve the bound for p, as in [45], we
estimate the difference between the kernels p and ps and then we use the triangle
inequality. Sikora used the functional calculus to estimate such a difference. Our
approach, though more elementary, yields more precise bounds.

Lemma 3.2.1. Let ps, Es as above. Then there exists a positive constant
C = C(N) such that for all x ∈ RN , t > 0

|ps(x, x, t) − p(x, x, t)| ≤ C

t
N
2

∫

Es

exp
{
− |x−y|2

4t

}

|x− y|N dy. (3.3)

Remark 3.2.2. Let us observe that the integral in the right hand side above
is divergent whenever x ∈ Es. Therefore (3.3) is meaningful only if x 6∈ Es.

Proof. Let u, w respectively the solutions of

{
ut = ∆u− V u
u(0) = f

and {
wt = ∆w − Vsw
w(0) = f.

Then the difference z = u − w satisfies zt = ∆z − Vsz − (V − Vs)u, z(0) = 0
and, by the variation of constants formula,

z(t) = −
∫ t

0

e−(t−r)As(V − Vs)u(r)dr.
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Representing the semigroup generated by −As in the integral form through the
kernel ps we get

z(x, t) = −
∫ t

0

dr

∫

RN

ps(x, y, t− r)(V (y) − Vs(y))u(y, r) dy.

Representing now u through the kernel p and using (3.1) and (3.2) we obtain

|z(x, t)| ≤
∫ t

0

dr

∫

RN

dy

∫

RN

ps(x, y, t− r)|V (y) − Vs(y)|p(y, l, r)|f(l)| dl

≤ 1

(4π)N

∫ t

0

dr

∫

RN

dy

∫

RN

1

(r(t− r))
N
2

exp

{
−|x− y|2

4(t− r)

}
exp{−(t− r)s}×

|V (y) − Vs(y)| exp

{
−|y − l|2

4r

}
|f(l)| dl.

By definition V − Vs = 0 in RN \ Es and |V − Vs| ≤ s in Es , then

|z(x, t)| ≤ s

(4π)
N

∫ t

0

dr

∫

Es

dy

∫

RN

1

(r(t − r))
N
2

exp

{
−|x− y|2

4(t− r)

}

× exp{−(t− r)s} exp

{
−|y − l|2

4r

}
|f(l)| dl.

On the other hand

z(x, t) = u(x, t) − w(x, t) =

∫

RN

[p(x, l, t) − ps(x, l, t)]f(l)dl.

Comparing this representation and the estimate above we deduce a bound for
the difference of the kernels

|p(x, x, t) − ps(x, x, t)| ≤
s

(4π)
N

∫

Es

dy

∫ t

0

1

(r(t − r))
N
2

exp

{
−|x− y|2

4(t− r)

}

× exp{−(t− r)s} exp

{
−|x− y|2

4r

}
dr.

We split the integral over [0, t] as the sum of the integrals over [0, t/2] and

[t/2, t]. Let us consider the first one. In [0, t/2], (t− r)
N
2 ≥

(
t
2

)N
2 and t− r ≤ t,

therefore exp
{
− |x−y|2

4(t−r)

}
≤ exp

{
− |x−y|2

4t

}
and

∫ t
2

0

1

(r(t − r))
N
2

exp

{
−|x− y|2

4(t− r)

}
s exp{−(t− r)s} exp

{
−|x− y|2

4r

}
dr

≤
(

2

t

)N
2

exp

{
−|x− y|2

4t

}∫ t
2

0

1

r
N
2

s exp{−(t− r)s} exp

{
−|x− y|2

4r

}
dr.
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Similarly

∫ t

t
2

1

(r(t − r))
N
2

exp

{
−|x− y|2

4(t− r)

}
s exp{−(t− r)s} exp

{
−|x− y|2

4r

}
dr

≤
(

2

t

)N
2

exp

{
−|x− y|2

4t

}∫ t

t
2

1

(t− r)
N
2

s exp{−(t− r)s}

× exp

{
−|x− y|2

4(t− r)

}
dr.

The function g(r) =
1

r
N
2

exp

{
−|x− y|2

4r

}
attaints its maximum at

r =
|x− y|2

2N
,

so g(r) ≤
(

2N

e

)N
2 1

|x− y|N . Therefore

s

(4π)
N

∫

Es

dy

∫ t
2

0

1

(r(t − r))
N
2

exp

{
−|x− y|2

4(t− r)

}
exp{−(t− r)s}

× exp

{
−|x− y|2

4r

}
≤ 1

(4π)
N

(
4N

e

1

t

)N
2
∫

Es

exp

{
−|x− y|2

4t

}

× 1

|x− y|N
∫ t

2

0

s exp{−(t− r)s} dr dy

= C(N)
1

t
N
2

exp{−ts}
(

exp

{
t

2
s

}
− 1

)∫

Es

exp

{
−|x− y|2

4t

}
1

|x− y|N dy

≤ C(N)
1

t
N
2

∫

Es

exp

{
−|x− y|2

4t

}
1

|x− y|N dy.

Similar computations yield

s

(4π)N

∫

Es

dy

∫ t

t
2

1

(r(t− r))
N
2

exp

{
−|x− y|2

4(t− r)

}
exp{−(t− r)s}

exp

{
−|x− y|2

4r

}
dr ≤ C(N)

1

t
N
2

∫

Es

exp

{
−|x− y|2

4t

}
1

|x− y|N dy

and the proof is complete.

Theorem 3.2.3. There exists a positive constant C = C(N) such that for all
s > 0, x ∈ RN , t > 0

p(x, x, t) ≤ 1

(4πt)
N
2

exp{−ts} +
C

t
N
2

∫

Es

exp
{
− |x−y|2

4t

}

|x− y|N dy. (3.4)
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Proof. The proof easily follows from (3.1) and Lemma 3.2.1.
Assuming that the Lebesgue measure of the level sets Es is finite, we deduce

the following result.

Corollary 3.2.4. There exists a positive constant C = C(N) such that for all
s > 0, x ∈ RN \ Es and t > 0

p(x, x, t) ≤ 1

(4πt)
N
2

exp{−ts} +
C

t
N
2

|Es|
exp

{
− d(x,Es)

2

4t

}

d(x,Es)N
dy. (3.5)

The estimate just obtained can be more explicitly written if we ask further
assumptions on the potential. In particular, for radial, increasing potentials we
have the upper bound stated in the following corollary.

Corollary 3.2.5. If V is radial and increasing (|x| < |y| implies V (x) < V (y)),
then for all x ∈ RN , t > 0, 0 < c < 1

p(x, x, t) ≤ 1

(4πt)
N
2

exp{−tV (cx)} +
C(N)

t
N
2

cNωN
(1 − c)N

exp

{
− (1 − c)2|x|2

4t

}
.

Proof. Let x ∈ RN . If we choose s = V (cx), from the assumptions on V
we deduce that the level set Es coincides whit the ball B(0, c|x|). Moreover,
since 0 < c < 1, x 6∈ Es. Then (3.5) holds and the bound easily follows.

Potentials like |x|α, α > 0, belong to the class of radial, increasing potentials,
so from Corollary 3.2.5 we deduce the following upper bound which improves
that of [45].

Example 3.2.6. Let V (x) = M |x|α with α > 0, then for all 0 < c < 1, x ∈ RN

and t > 0

p(x, x, t) ≤ 1

(4πt)
N
2

exp{−tMcα|x|α} +
C(N)

t
N
2

cNωN
(1 − c)N

exp

{
− (1 − c)2|x|2

4t

}

where ωN is the measure of the unitary ball in RN .

Remark 3.2.7. Similar bounds can be obtained for low-order perturbation of
the potentials above, that is if V (x) = |x|α + o(|x|α), as |x| → ∞. In fact for
every ε > 0 there exist Cε, C

′
ε > 0 such that

(1 − ε)|x|α + Cε ≤ V (x) ≤ (1 + ε)|x|α + C′
ε

and then, by Corollary 1.3.21,

p(x, x, t) ≤ e−Cεtpε(x, x, t),

where pε is the heat kernel of the Schrödinger operator with potential (1−ε)|x|α.
By Example 3.2.6, for every 0 < c < 1,

p(x, x, t) ≤ e−Cεt

{
1

(4πt)
N
2

exp{−t(1 − ε)cα|x|α}

+
C(N)

t
N
2

cNωN
(1 − c)N

exp

{
− (1 − c)2|x|2

4t

}}
.
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Therefore, given 0 < c̃ < 1, it is sufficient to choose ε > 0 such that c =
ec

(1−ε)
1
α

< 1 to obtain

p(x, x, t) ≤ e−Cεt

{
1

(4πt)
N
2

exp{−tc̃α|x|α}

+
C(N)

t
N
2

cNωN
(1 − c)N

exp

{
− (1 − c)2|x|2

4t

}}
.

Remark 3.2.8. Estimate for potentials going to infinity in a different way in
different directions can be, sometimes, easily obtained from the previous results.
For example, if V (x, y) = x2 + y4 in R2, then the heat kernel is the product
of the heat kernels of the two one-dimensional operators −D2 + x2, −D2 + y4

which follow into the range of application of Example 3.2.6.

Remark 3.2.9. Using the semigroup law it is possible to deduce from the on-
diagonal estimates just obtained some off-diagonal estimates. It is sufficient to
recall that

p(x, y, t) =

∫

RN

p(x, z,
t

2
)p(z, y,

t

2
)dz. (3.6)

In particular

p(x, x, t) = ‖p(x, ·, t
2
)‖2
L2 .

Therefore
p(x, y, t) ≤ p(x, x, t)

1
2 p(y, y, t)

1
2 ,

and applying the on-diagonal bounds one can estimate the right hand side.

3.3 Estimates in space-time regions

Considering suitable space-time regions, one can control the gaussian term in
Theorem 3.2.3 and its corollaries with the first addendum. In what follows we
consider the operator A = −∆+V with V (x) = |x|α but in a similar way bounds
in regions can be obtained for other radial, increasing potentials. Moreover it is
possible to prove that in these regions similar lower estimates hold and so the
estimates are sharp. We refer to [45] for the next results which, however, we
recall and prove here for a future discussion in the next section (see Remark
3.4.3).

In the next result, λ1 is the first eigenvalue of A.

Proposition 3.3.1. There exist positive constant c1, c2, c3, c4, C1, C2, C3,
C4 such that, if t ≤ (1 + |x|)1− α

2 ,

C1

t
N
2

exp{−c1t|x|α} ≤ p(x, x, t) ≤ C2

t
N
2

exp{−c2t|x|α}

and, if t > (1 + |x|)1− α
2 ,

C3e
−λ1t exp{−c3|x|1+

α
2 } ≤ p(x, x, t) ≤ C4e

−λ1t exp{−c4|x|1+
α
2 }.
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Proof. Suppose first t ≤ (1 + |x|)1−α
2 .

The upper bound easily follows observing that the gaussian term in Theorem
3.2.3 can be controlled with the first addendum. Indeed for α ≤ 2 we have

t|x|α ≤ (1 + |x|)1−α
2 |x|α ≤ (1 + |x|)1− α

2 (1 + |x|)α
= (1 + |x|)1−α

2 (1 + |x|)α−2(1 + |x|)2

=
(1 + |x|)2

(1 + |x|)1−α
2
≤ 2

(1 + |x|)1− α
2

+
2|x|2

(1 + |x|)1− α
2
≤ 2 +

2|x|2
t

and for α > 2

t|x|α = t|x|α−2|x|2 ≤ (1 + |x|)1− α
2 |x|α−2|x|2

≤ (1 + |x|)1−α
2 (1 + |x|)α−2|x|2 ≤ |x|2

t
.

Concerning the lower bound we refer to [45, Proposition 6.1].
If t > (1 + |x|)1−α

2 , the lower bound follows as in Remark 2.2.13 and the upper
bound as in the proof of Proposition 2.2.14.

Let us now consider small times, say 0 < t ≤ 1. We need also to distinguish
between the cases α < 2 and α ≥ 2.

Proposition 3.3.2. If p is the heat kernel corresponding to the operator −∆+
|x|α with α < 2 then for every ε > 0 there exist positive constants Cε and C′

ε

such that for t ≤ 1

Cε

t
N
2

exp{−(1 + ε)t|x|α} ≤ p(x, x, t) ≤ C′
ε

t
N
2

exp{−(1 − ε)t|x|α}.

Proof. By Remark 2.2.13 we know that

p(x, x, t) ≥ C

t
N
2

exp{−t(|x| + 1)α}.

Observe that, given ε > 0, there exists Mε > 0 such that

(|x| + 1)α = |x|α + 1 + o(|x|α) ≤ (1 + ε)|x|α +Mε ≤ (1 + ε)|x|α +
Mε

t

and so the lower bound follows. Concerning the upper bound it is sufficient to
choose cε = (1− ε)

1
α in Example 3.2.6 and to observe that for every ε > 0 there

exists Cε > 0 such that

(1 − cε)
2

4
|x|2 ≥ (1 − ε)|x|α + Cε.

On the other hand, if α ≥ 2, 1 − α
2 ≤ 0 and (1 + |x|)1− α

2 ≤ 1. So, by
Proposition 3.3.1, for 0 < t ≤ (1 + |x|)1− α

2 ,

p(x, x, t) ≤ C

t
N
2

exp{−ct|x|α}
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and, for (1 + |x|)1− α
2 < t ≤ 1,

p(x, x, t) ≤ Ce−λ1t exp{−c|x|1+ α
2 }.

In any case, if 0 < t ≤ 1, α ≥ 2, we have

p(x, x, t) ≤ C

t
N
2

exp{−ct|x|1+ α
2 }

for suitable positive constants C, c.
In the next section we will see that a similar lower bound cannot be true.

We observe that the results just proved improve the ones obtained in the
previous chapter.

3.4 The asymptotic distribution of the eigenval-

ues

In this section we investigate the asymptotic distribution of the eigenvalues of
−∆+V , when V (x) = |x|α or V (x) = exp{|x|α}. Theorem 3.4.2 and Proposition
3.4.4 can be deduced from [51, Section 17.8] or [40, Section XIII], where the proof
is different. Instead of using cube decompositions or pointwise estimates on
the resolvent we apply the bounds on the heat kernels obtained in the previous
sections. This allows us to treat potentials having more than polynomial growth,
see Proposition 3.4.5 which seems to be new.
Denote by

0 < λ1 ≤ λ2 ≤ ...

the eigenvalues of A and, for λ > 0, let N(λ) be the number of λj such that
λj ≤ λ. From the Spectral Theorem it follows that the eigenvalues of e−tA

are e−λnt, n ∈ N. The following well-known Proposition is usually obtained as
a corollary of the classical Mercer’s Theorem. For completeness, we provide a
simple proof based on the semigroup property of the kernel.

Proposition 3.4.1. Let t > 0. Then

∫

RN

p(x, x, t) dx =
∞∑

n=1

e−λnt.

Proof. By the estimates in the previous sections it follows p(x, x, t) ∈
L1(RN ). By the semigroup law and the symmetry of p

p(x, y, t) =

∫

RN

p(x, z,
t

2
)p(y, z,

t

2
) dz,

in particular

p(x, x, t) =

∫

RN

p(x, z,
t

2
)2 dz
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and ∫

RN

p(x, x, t) dx =

∫ ∫

RN×RN

p(x, z,
t

2
)2 dx dz.

Therefore p(·, ·, t2 ) ∈ L2(RN × RN ) and the operator

T (
t

2
)f(x) = e−

t
2Af(x) =

∫

RN

p(x, y,
t

2
)f(y) dy

is a Hilbert-Schmidt operator on L2(RN ). It follows that

∫

RN

p(x, x, t) dx = ‖p(·, ·, t
2
)‖2
L2(RN×RN ) =

∞∑

n=1

e−λnt.

Let us now define the discrete measure µ on R+ by µ(λ) = |{n : λ = λn}|.
Then µ([0, λ]) = N(λ) and

µ̂(t) =

∫ ∞

0

e−λtdµ(λ) =
∞∑

n=1

e−λnt =

∫

RN

p(x, x, t) dx.

Theorem 3.4.2. Let V (x) = |x|α and N(λ) as before. Then

lim
λ→∞

N(λ)

λN( 1
2+ 1

α
)

=
NωN

(4π)
N
2

1

Γ(N( 1
α + 1

2 ) + 1)

1

α
Γ

(
N

α

)
.

Proof. By Proposition 3.4.1

∞∑

n=1

e−λnt =

∫

RN

p(x, x, t) dx.

By Example 3.2.6 there exists C(N) such that for all 0 < c < 1 and t > 0

∫

RN

p(x, x, t) dx ≤ 1

(4πt)
N
2

∫

RN

exp{−tcα|x|α} dx

+
C(N)

t
N
2

cN

(1 − c)N

∫

RN

exp

{
− (1 − c)2|x|2

4t
dx

}

=
1

(4πt)
N
2

1

t
N
α

∫

RN

exp{−cα|y|α} dy

+ C(N)
cN

(1 − c)N

∫

RN

exp
{
−(1 − c)2|y|2 dy

}
.

Therefore for all 0 < c < 1

lim sup
t→0

tN( 1
2+ 1

α
)

∫

RN

p(x, x, t) dx ≤ 1

(4π)
N
2

∫

RN

exp{−cα|x|α} dx
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and, letting c to 1,

lim sup
t→0

tN( 1
2+ 1

α
)

∫

RN

p(x, x, t) dx ≤ 1

(4π)
N
2

∫

RN

exp{−|x|α} dx. (3.7)

In order to obtain a lower bound we proceed as in [13, Lemma 4.5.9].
If AD is the operator obtained from A by imposing Dirichlet boundary condi-
tions on the surface of the ball B with center x and radius r then

p(x, x, t) ≥ pD(x, x, t).

Moreover V (x) ≤ (|x| + r)α in B(x, r), so

p(x, x, t) ≥ exp{−t(|x| + r)α}p∆(x, x, t)

where p∆ is the heat kernel for the Laplacian on B with Dirichlet boundary
conditions. By Kac’s principle (see [15])

p∆(x, x, t) ≥ c(r, t) =
1

(4πt)
N
2

(
1 − e−

r2

4t

)

for t ≤ r2

2N . Therefore

∫

RN

p(x,x, t) dx ≥ c(r, t)

∫

RN

exp{−t(|x| + r)α} dx

= c(r, t)|SN−1|
∫ ∞

0

exp{−t(ρ+ r)α}ρN−1dρ

= c(r, t)|SN−1|
∫ ∞

rt
1
α

exp{−sα}
(
s

t
1
α

− r

)N−1
ds

t
1
α

=
1

(4π)
N
2

1

tN( 1
2+ 1

α
)

(
1 − e−

r2

4t

)
|SN−1|

∫ ∞

rt
1
α

exp{−sα}
(
s− t

1
α r
)N−1

ds

where |SN−1| is the measure of the unitary sphere in RN . Finally

lim inf
t→0

tN( 1
2+ 1

α
)

∫

RN

p(x, x, t) dx ≥ 1

(4π)
N
2

|SN−1|
∫ ∞

0

exp{−sα}sN−1ds (3.8)

=
1

(4π)
N
2

∫

RN

exp{−|x|α} dx.

From (3.7) and (3.8) it follows that

lim
t→0

tN( 1
2+ 1

α
)

∫

RN

p(x, x, t) dx =
1

(4π)
N
2

∫

RN

exp{−|x|α} dx

and so, by Karamata’s Theorem (see the Appendix)

lim
λ→∞

N(λ)

λN( 1
2+ 1

α
)

=
1

(4π)
N
2

1

Γ(N( 1
α + 1

2 ) + 1)

∫

RN

exp{−|x|α} dx.
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Finally, observing that
∫

RN

exp{−|x|α} dx =
NωN
α

∫ ∞

0

e−zz
N
α
−1 dz =

1

α
Γ

(
N

α

)
,

the proof follows.

Remark 3.4.3. The last result allows us to deduce some information on the
lower bound of the heat kernel relative to the potential V = |x|α, for t ≤ 1 and
α > 2. We recall that, under these assumptions on t and α, the following upper
bound holds

p(x, x, t) ≤ C

t
N
2

exp{−ct|x|1+ α
2 }.

If a similar lower bound were true, following the proof of Theorem 3.4.2 and
applying Proposition B.0.12, we would deduce

lim inf
λ→∞

λ−N( 1
2+ 2

2+α
)N(λ) ≥ C

for some positive constant C. Since this contradicts Theorem 3.4.2, we conclude
that a similar lower bound cannot be true.

Adding a term of the form o(|x|α) to the previous potential does not affect
too much the asymptotic distribution of eigenvalues. In fact the following holds.

Proposition 3.4.4. Let V (x) = |x|α + o(|x|α) (as |x| → ∞). Then

lim
λ→∞

N(λ)

λN( 1
2+ 1

α
)

=
Nωn

(4π)
N
2

1

Γ(N( 1
α + 1

2 ) + 1)

1

α
Γ

(
N

α

)
.

Proof. It is sufficient to observe that, given ε > 0, there exist C′
ε, Cε > 0

such that
(1 − ε)|x|α + Cε ≤ V (x) ≤ (1 + ε)|x|α + C′

ε

and, by the maximum principle,

p(x, x, t) ≤ e−Cεtpε(x, x, t)

where pε is the kernel corresponding to the potential (1−ε)|x|α. As in the proof
of Theorem 3.4.2, it follows that for all ε > 0

lim sup
t→0

tN( 1
2 + 1

α
)

∫

RN

p(x, x, t) dx ≤ 1

(4π)
N
2

∫

RN

exp{−(1 − ε)|x|α} dx

and, letting ε to 0,

lim sup
t→0

tN( 1
2+ 1

α
)

∫

RN

p(x, x, t) dx ≤ 1

(4π)
N
2

∫

RN

exp{−|x|α} dx.

In a similar way one obtains the bound for the lim inf and the proof follows.
From the bound on the kernel proved in the previous section we can deduce

the asymptotic behavior of N(λ) for other radial potentials.
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Proposition 3.4.5. Let V (x) = exp{|x|α} with α > 0. Then there exist
C1, C2 > 0 such that

lim sup
λ→∞

N(λ)

λ
N
2 (logλ)

N
α

≤ C1

and

lim inf
λ→∞

N(λ)

λ
N
2 (logλ)

N
α

≥ C2.

Lemma 3.4.6. Let g be measurable and positive in RN and let Es = {x ∈ RN :
g(x) ≤ s}. Then ∫

RN

e−tg(x)dx =

∫ ∞

0

|E z
t
|e−zdz.

Proof. The proof easily follows by observing that
∫

RN

exp{−tg(x)}dx =

∫ ∞

0

|{x ∈ RN : exp{−tg(x)} > s}| ds. (3.9)

Proof (Proposition 3.4.5.) By Corollary 3.2.5 there exists C = C(N) such
that for all 0 < c < 1 and t > 0

∫

RN

p(x, x, t) dx ≤ 1

(4πt)
N
2

∫

RN

exp{−t exp{cα|x|α}} dx

+ C
cNωN

(1 − c)N

∫

RN

exp
{
−(1 − c)2|x|2

}
dx.

By Lemma 3.4.6
∫

RN

exp{−t exp{cα|x|α}} dx =

∫ ∞

0

e−z|{x : exp{cα|x|α} ≤ z

t
}|dz

=
ωN
cN

∫ ∞

t

e−z(log z − log t)
N
α dz.

Taking the lim sup as t→ 0 and letting c→ 1 we obtain

lim sup
t→0

t
N
2

(− log t)
N
α

∫

RN

p(x, x, t) dx ≤ 1

(4π)
N
2

ωN

∫ ∞

0

e−zdz =
ωN

(4π)
N
2

. (3.10)

To prove a lower bound for the lim inf of the same quantity we proceed as in
the proof of Theorem 3.4.2. If AD is the operator obtained from A by imposing
Dirichlet boundary conditions on the surface of the ball B with center x and
radius r then p(x, x, t) ≥ pD(x, x, t). Moreover V ≤ exp{(|x| + r)α} in B(x, r),
so p(x, x, t) ≥ exp{−t exp{(|x|+ r)α}}p∆(x, x, t) where p∆ is the heat kernel for
the Laplacian on B with Dirichlet boundary conditions. By Kac’s principle (see
[15])

p∆(x, x, t) ≥ c(r, t) =
1

(4πt)
N
2

(
1 − e−

r2

4t

)
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for t ≤ r2

2N . Therefore, from Lemma 3.4.6,

∫

RN

p(x, x, t) dx ≥ c(r, t)

∫

RN

exp{−t exp{(|x| + r)α}} dx

= c(r, t)ωN

∫ ∞

t

[(log z − log t)
1
α − r]Ne−zdz.

As above

lim inf
t→0

t
N
2

(− log t)
N
α

∫

RN

p(x, x, t) dx ≥ 1

(4π)
N
2

ωN

∫ ∞

0

e−zdz =
ωN

(4π)
N
2

. (3.11)

From (3.10) and (3.11) it follows that

lim
t→0

t
N
2

(− log t)
N
α

∫

RN

p(x, x, t) dx =
ωN

(4π)
N
2

.

By Proposition B.0.13, we find C1, C2 > 0 such that

lim sup
λ→∞

N(λ)

λ
N
2 (logλ)

N
α

≤ C1, lim inf
λ→∞

N(λ)

λ
N
2 (log λ)

N
α

≥ C2.
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Chapter 4

Ultracontractivity of

Schrödinger semigroups

In this chapter we consider again a Schrödinger operator H = −∆ + V with
a nonnegative potential V ∈ L1

loc(R
N ). If V (x) = |x|α, α > 2, an estimate of

the form p(x, y, t) ≤ c(t)ψ(x)ψ(y) holds, where ψ is the ground state of H and
c(t) has an explicit behavior near 0 (see [13, Section 4.5 ]). We consider the
Davies-Simon estimates and we obtain bounds on Schrödinger kernels using the
similarity between Schrödinger and Kolmogorov operators. Even though this
similarity is well-known, see [13, Section 4.7], we reverse the usual order, i.e.
we deduce bounds on Schrödinger kernels from those for Kolmogorov’s kernels
rather than the converse and this allows us to improve the estimates obtained
by Davies and Simon. It is also shown how the same technique works for other
potentials, for example heat kernel bounds are obtained for V (x) = exp{|x|α},
α > 0.

4.1 Kernel estimates for a class of Kolmogorov

operators

In this section we prove estimates of the form p(x, y, t) ≤ c(t)ω(x)ω(y) for
Kolmogorov operators of the form

A = ∆ −∇φ · ∇

with φ ∈ C2(RN ). The operator A can be easily defined, through form methods,
as a self-adjoint, nonpositive operator in L2(RN , µ), where dµ is the measure
with density exp{−φ}. If the function |∇φ|2 − 2∆φ is bounded from below in
RN , then the operator A in L2(RN , µ) is unitarily equivalent to the Schrödinger
operator −H with potential V = 1

4 |∇φ|2 − 1
2∆φ in L2(RN ) (with respect to

the Lebesgue measure), see [26, Proposition 2.2]. In particular A = −THT−1

71
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where T is the multiplication operator Tu = e
φ
2 u. Moreover etA = Te−tHT−1

and consequently for all x, y ∈ RN and t > 0

pA(x, y, t) = e
φ(x)

2 p(x, y, t)e−
φ(y)

2 (4.1)

where pA and p are the heat kernels corresponding to the operators A and
−H . This equality shows that the problems of finding estimates for pA and
p are equivalent and, in [13, Section 4.7], this fact is used to deduce bounds
for pA from deep estimates on p based on log-Sobolev inequalities leading to
the intrinsic ultracontractivity of the Schrödinger semigroup. We reverse the
approach and show bounds on pA based on subsolution estimates. Then we
deduce bounds on p. This method has the advantage to give more precise
information on the function c(t) quoted at the beginning of this section and
allows us to improve some kernel estimates on Schrödinger operators, as shown
in the next section.

As first step we prove L1 bounds for some Lyapunov functions (or subsolu-
tions) for A. For all 0 < c < 1, let Wc = ecφ. It is easy to check that

AWc = ecφ[c∆φ+ (c2 − c)|∇φ|2].

Under suitable assumptions on φ, Wc is a Lyapunov function for A that is a
C2-function W : RN → [0,∞) such that lim|x|→∞W (x) = +∞ and AW ≤ λW
for some λ > 0.
We need some preliminary lemmas (see [30, Lemma 3.8, Lemma 3.9]).
Let W be a Lyapunov function. For α ≥ 0 set Wα = W ∧ α and uα(x, t) =
T (t)Wα(x).

Lemma 4.1.1. With the notation above, the inequality

∂tuα(x, t) ≤
∫

{W≤α}
p(x, y, t)AW (y) dy

holds for every t ≥ 0 and x ∈ RN .

Proof. For every ε > 0 let ψα ∈ C∞(R) be such that ψε(t) = t for t ≤ α,
ψε is constant in [α + ε,∞[, ψ′

ε ≥ 0, ψ′′
ε ≤ 0. Observe that ψε(t) → t ∧ α and

ψ′
ε(t) → χ]−∞,α](t) pointwise as ε → 0. Since the function ψε ◦ V belongs to
Dmax(A), we have

∂tT (t)(ψε ◦W )(x) =

∫

RN

p(x, y, t)A(ψε ◦W )(y) dy.

On the other hand, by the assumptions on ψε,

A(ψε ◦W )(x) = ψ′
ε(W (x))AW (x) + ψ′′

ε (W (x))

N∑

i,j=1

aij(x)DiW (x)DjW (x)

≤ ψ′
ε(W (x))AW (x)
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and then

∂tT (t)(ψε ◦W )(x) ≤
∫

RN

p(x, y, t)ψ′
ε(W (y))AW (y) dy (4.2)

=

∫

0≤W≤α+ε

p(x, y, t)ψ′
ε(W (y))AW (y) dy.

Observe that ψε ◦ W ≤ α + 1 and ψε ◦ W → Wα pointwise as ε → 0. By
Proposition 1.1.3 we deduce that T (t)(ψε ◦ W ) → uα uniformly on compact
sets of ]0,∞[×RN , then by the interior Schauder estimates (see [17, Chapter 3,
Section 2]) ∂tT (t)(ψε ◦W ) → ∂tuα pointwise as ε → 0. Letting ε to zero in
(4.2) we obtain the claim by dominated convergence.

The next result has been partially obtained in Chapter 2 in the more general
case of Lyapunov functions depending also on the variable t.

Lemma 4.1.2. Suppose that AW ≤ λW for some positive λ. Then for every
t > 0, x ∈ RN the functions W and |AW | are integrable with respect to the
measure p(x, ·, t). If we set

u(x, t) =

∫

RN

p(x, y, t)W (y) dy,

the function u belongs to C1,2(RN×]0,∞[) ∩ C(RN × [0,∞[) and satisfies the
inequalities u(x, t) ≤ eλtW (x), ∂tu(x, t) ≤

∫
RN p(x, y, t)AW (y) dy.

Proof. By Lemma 4.1.1 and by assumption we have

∂tuα(x, t) ≤
∫

{W≤α}
p(x, y, t)AW (y) dy ≤ λuα(x, t). (4.3)

By Gronwall’s lemma we deduce uα(x, t) ≤ eλtWα(x). Letting α to infinity
we obtain u(x, t) ≤ eλtW (x) by monotone convergence. This implies that W
is integrable with respect to the measure p(x, ·, t). The inequality 0 ≤ uα ≤
u and the interior Schauder estimates show that (uα) is relatively compact
in C1,2(RN × (0,∞)). Since uα → u pointwise as α → ∞ it follows that
u ∈ C1,2(RN × (0,∞)). Moreover the inequality uα(x, t) ≤ u(x, t) ≤ eλtW (x)
implies that u(·, t) → W (·) as t → 0 uniformly on compact sets. Set E = {x ∈
RN : AW (x) ≥ 0}, clearly

∫

E

p(x, y, t)AW (y) dy ≤ λ

∫

E

p(x, y, t)W (y) dy ≤ λu(x, t) <∞. (4.4)

Letting α to infinity in (4.3) we obtain

∂tu(x, t) ≤ lim inf
α→∞

∫

{W≤α}
p(x, y, t)AW (y) dy.

The last inequality and (4.4) imply that

−
∫

{AW≤0}
p(x, y, t)AW (y) dy <∞,
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then |AW | is integrable with respect to the measure p(x, ·, t) and so the above
lim inf is a limit and the claim follows.

Proposition 4.1.3. Let φ ≥ 0 such that lim|x|→∞ φ(x) = +∞ and let 0 < c <
1. Suppose that for some 0 < ε < 1 − c there exists Cε > 0 such that

∆φ ≤ ε|∇φ|2 + Cε (4.5)

and suppose that
|∇φ| ≥ C1φ

γ − C2 (4.6)

for some positive constant C1, C2 and some γ > 1
2 . Then the function Wc

defined above is a Lyapunov function. Moreover, setting

ξc(x, t) =

∫

RN

pA(x, y, t)Wc(y) dy,

we have
ξc(x, t) ≤ C3 exp{C4t

1
1−2γ } (4.7)

for some positive constants C3, C4.

Proof. By (4.5) and (4.6) for |x| large enough

AWc = ecφ[c∆φ+ (c2 − c)|∇φ|2] ≤ ecφ[(cε+ c2 − c)|∇φ|2 + Cεc]

≤ ecφ(−C1|∇φ|2 + C2) ≤ −ecφ(C̃1φ
2γ − C̃2).

This proves that, for |x| large enough, AWc is negative. By the regularity of Wc,
for |x| small AWc ≤ λ ≤ λWc for some positive λ. Therefore Wc is a Lyapunov
function. Moreover, setting g(s) = c1s(log s)2γ+ − c2 for suitable constants c1
and c2, we have

AWc ≤ −g(Wc)

for |x| sufficiently large. Observe that the existence of a Lyapunov function for
A implies the uniqueness for the solution of problem (1.1), hence 1 = T (t)1 =∫

RN pA(x, y, t) dy. Since g is convex, by Jensen’s inequality

∫

RN

pA(x, y, t)g(Wc(y)) dy ≥ g(ξc(x, t)).

By Lemma 4.1.2 and the previous inequalities we have

∂tξc(x, t) ≤
∫

RN

pA(x, y, t)AWc(y) dy ≤ −
∫

RN

pA(x, y, t)g(Wc(y)) dy

≤ −g(ξc(x, t))

and then ξc(x, t) ≤ z(x, t) where z is the solution of the ordinary Cauchy prob-
lem {

z′ = −g(z)
z(x, 0) = Wc(x).
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Let l be the greatest zero of g. Then z(x, t) ≤ l if Wc(x) ≤ l. If Wc(x) > l, z is
decreasing and satisfies

t =

∫ Wc(x)

z(x,t)

ds

g(s)
≤
∫ ∞

z(x,t)

ds

g(s)
.

Choosing suitable constants C3 and C4, we finally obtain

ξc(x, t) ≤ z(x, t) ≤ C3 exp{C4t
1

1−2γ }.

Now we are able to deduce bounds on the kernel pA from the bound on the
function ξWc

proved above.

Proposition 4.1.4. Let φ as in the previous proposition and suppose moreover
that

exp{−φ
4
} ∈ L1(RN ), |∇φ| ≤ Cφβ , (4.8)

for some positive C, β. Then

pA(x, y, t) ≤ C1 exp
{
C2t

1
1−2γ

}
exp {−φ(y)} (4.9)

and

p(x, y, t) ≤ C1 exp
{
C2t

1
1−2γ

}
exp

{
−φ(y)

2

}
exp

{
−φ(x)

2

}
(4.10)

for all x, y ∈ RN and 0 < t ≤ 1 and suitable C1, C2 > 0.

Proof. Let ω = W 1
2

and 1
2 < c < 1. Then, if k > N+2, by the assumptions

on φ it follows that

ω ≤Wc,

|∇ω| =
1

2
e

φ
2 |∇φ| ≤ Cω

k−1
k W

1
k
c = C exp

{
φ

2

k − 1

k

}
exp

{
1

k
cφ

}
,

|D2ω| ≤ Cω
k−2

k W
2
k
c ,

ω|∇φ|k ≤ CWc

for some positive constant C. By Remark 2.1.17 or [27, Theorem 4.1] it follows
that

exp

{
φ(y)

2

}
pA(x, y, t) ≤ C

t
k
2

∫ t

t
2

ξc(x, s) ds

for all x, y ∈ RN , 0 < t ≤ 1 and by (4.7)

pA(x, y, t) ≤ C3 exp
{
C4t

1
1−2γ

}
exp

{
−φ(y)

2

}



76

for suitable C3, C4 (we can neglect negative powers of t which can be included
in the exponential changing the constant). By (4.1),

p(x, y, t) ≤ C3 exp
{
C4t

1
1−2γ

}
exp

{
−φ(x)

2

}
= c(t) exp

{
−φ(x)

2

}
.

Using the symmetry of p−H with respect to the variables x, y we have

p(x, y, t) ≤ c(t) exp

{
−φ(y)

2

}
.

Then we get

p(z, y, t) ≤ c(t) exp

{
−φ(z)

4

}
exp

{
−φ(y)

4

}

and, by the semigroup law,

p(x, y, t) =

∫

RN

p(x, z,
t

2
)p(z, y,

t

2
) dz

≤ c(
t

2
)2 exp

{
−φ(x)

2

}
exp

{
−φ(y)

4

}∫

RN

exp

{
−φ(z)

4

}
dz

= K1c(
t

2
)2 exp

{
−φ(x)

2

}
exp

{
−φ(y)

4

}
.

As in the estimate above we deduce

p(x, y, t) ≤ K1c(
t

2
)c(

t

4
)2 exp

{
−φ(y)

2

}
exp

{
−φ(x)

2

}∫

RN

exp

{
−φ(z)

4

}
dz

= c1(t) exp

{
−φ(x)

2

}
exp

{
−φ(y)

2

}
.

Therefore

p(x, y, t) ≤ C1 exp
{
C2t

1
1−2γ

}
exp

{
−φ(y)

2

}
exp

{
−φ(x)

2

}

and
pA(x, y, t) ≤ C1 exp

{
C2t

1
1−2γ

}
exp {−φ(y)} .

4.2 Intrinsic ultracontractivity for e
−tH

Let us consider the Schrödinger operator H = −∆+V where 0 ≤ V (x) → ∞ as
|x| → ∞. Let E > 0 be the first eigenvalue of H and ψ > 0 be the correspond-
ing eigenfunction. Then ∆ψ = (V − E)ψ. As observed in the previous section,
−H + E is unitarily equivalent to the Kolmogorov operator A = ∆ + 2∇ψ

ψ · ∇,

namely −H + E = T−1AT where T is the multiplication operator Tu = ψ−1u.
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If φ = −2 logψ, then A = ∆−∇φ·∇ and Tu = e
φ
2 u. If φ satisfies the hypotheses

of the Proposition 4.1.4 then we obtain upper bounds for the kernel of the semi-
group generated by −H+E. Let us also observe that, if pE and p are the kernels
corresponding respectively to −H +E and −H , then p = pEe

−tE ≤ pE(x, y, t).

We start with V (x) = |x|α, α > 2 and improve [13, Corollary 4.5.5]. In what
follows the knowledge of the asymptotic behavior of the first eigenfunction ψ of
H will play a major role. We recall that there exist c1, c2 > 0 such that

c1|x|−
α
4 −N−1

2 exp

{
− 2

2 + α
|x|1+ α

2

}
≤ ψ(x) (4.11)

≤ c2|x|−
α
4 −N−1

2 exp

{
− 2

2 + α
|x|1+ α

2

}

for large |x|, see [13, Corollary 4.5.8]. Our methods, however, need also a
precise asymptotic behavior of ∇ψ. This can be obtained from [36, Chapter
6, Theorem 2.1] (as we shall do for other potentials) or using the following
qualitative arguments for ODE’s which we prefer to present in the following
lemma.

Lemma 4.2.1. Let ψ be the first eigenfunction of −∆ + V with V (x) = |x|α,
α > 2. Then

lim
|x|→∞

|∇ψ|2
ψ2

· 1

|x|α = 1.

Proof. Since the potential is radial, the first eigenfunction is radial too, so,
writing the Laplacian in polar coordinates, we have

ψ′′ +
N − 1

r
ψ′ = (rα − E)ψ.

Setting v = −ψ′

ψ , the previous differential equation becomes

v′ = v2 − N − 1

r
v − (rα − E).

The right hand side of the previous equals 0 if

v =
N − 1

2r
± 1

2

√
(N − 1)2

r2
+ 4(rα − E).

Now we prove that there exists r0 > 0 such that for r ≥ r0

v ≥ N − 1

2r
+

1

2

√
(N − 1)2

r2
+ 4(rα − E).

Since
d

dr
(rN−1ψ′) = rN−1(rα − E)ψ,
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the asymptotic behavior of ψ (see (4.11)) shows that rN−1(rα−E)ψ is integrable
in neighborhood of +∞. This implies that there exists limr→∞ rN−1ψ′ and it
is equal to 0, by the asymptotic behavior of ψ, again. Moreover, if r ≥ E

1
α ,

d
dr (r

N−1ψ′) > 0 and

rN−1ψ′ ≤ lim
r→∞

rN−1ψ′ = 0.

This means that, for r large enough, ψ′ ≤ 0 and v = −ψ′

ψ > 0. From this we

deduce that for r large enough v is in the region where v′ > 0 and

v ≥ N − 1

2r
+

1

2

√
(N − 1)2

r2
+ 4(rα − E). (4.12)

We are now interested in the asymptotic behavior of v. Let δ, k > 0. Suppose
that there exists a sequence (rn)n∈N such that rn → ∞ and

v(rn) ≥ N − 1

2r
+

1

2

√
(N − 1)2

r2
+ 4[(k + 2δ)α − E]. (4.13)

Consider the following Cauchy problem in the interval [k, k + δ]:

{
z′ = z2 − N−1

k z − [(k + δ)α − E]

z(k) = N−1
2k + 1

2

√
(N−1)2

k2 + 4[(k + 2δ)α − E].

In [k, k + δ],

v′ ≥ v2 − N − 1

k
v − [(k + δ)α − E]. (4.14)

Let us observe that z(k) > N−1
2k + 1

2

√
(N−1)2

k2 + 4[(k + δ)α − E], i.e. z(k) is

greater than the largest zero of z2 − N−1
k z − [(k + δ)α − E]. Integrating the

differential equation satisfied by z, we obtain

∫ z(r)

z(k)

dw

w2 − N−1
k w − [(k + δ)α − E]

= r − k

and, taking r = k + δ,

δ ≤
∫ ∞

z(k)

dw

w2 − N−1
k w − [(k + δ)α − E]

.

After a simple change of variable in the integral above,

δ ≤
∫ ∞

0

ds

s2 + 2sz(k) − N−1
k s+ (k + 2δ)α − (k + δ)α

.

The right hand side in the previous inequality goes to 0 for k tending to +∞ by
dominated convergence. This means that, if k is large enough, the solution z of
the Cauchy problem in [k, k + δ] blows up before the point k + δ. So, choosing
k = rn, for rn large enough zrn

blows up. By (4.13) and (4.14), v(r) ≥ zrn
and
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so v blows up too. Since this is a contradiction, there exists r (depending on δ)
such that, for r ≥ r,

v(r) ≤ N − 1

r
+

1

2

√
(N − 1)2

r2
+ 4[(r + 2δ)α − E]. (4.15)

Finally, from (4.12), (4.15) and the arbitrariness of δ > 0

lim
r→∞

v(r)

r
α
2

= 1.

Theorem 4.2.2. Let p be the kernel of the semigroup generated by ∆−V with
V (x) = |x|α for some α > 2. Then

p(x, y, t) ≤ C exp
{
ct−

α+2
α−2

}
ψ(x)ψ(y)

for x, y ∈ RN and 0 < t ≤ 1.

Proof. Let φ = −2 logψ, as before. Then φ satisfies (4.5), (4.6) with
γ = α

2+α and (4.8).
In fact, rewriting (4.5) in terms of ψ, we can prove that for all ε > 0 there

exists Cε > 0 such that

div

(
−2

∇ψ
ψ

)
= −2

∆ψ

ψ
+ 2

|∇ψ|2
ψ2

≤ 4ε
|∇ψ|2
ψ2

+ Cε

or, equivalently, since ψ is an eigenfunction with eigenvalue E,

(1 − ε)
|∇ψ|2
ψ2

≤ (V − E) + Cε.

This follows immediately from Lemma 4.2.1. Moreover (4.6) and (4.8) follow
by Lemma 4.2.1 too. For example observe that (4.6) is equivalent to

|∇ψ|
ψ

≥ C1 logγ ψ−2 − C2

for some γ > 1
2 and positive C1, C2. The last is true for γ = α

2+α and in virtue
of (4.11) and Lemma 4.2.1. Arguing in similar way (4.8) also follows.

At this point Proposition 4.1.4 gives

p(x, y, t) ≤ C exp
{
ct−

α+2
α−2

}
exp

{
−φ(y)

2

}
exp

{
−φ(x)

2

}

for all x, y ∈ RN and this concludes the proof.
Comparing the last theorem with [13, Corollary 4.5.5] we conclude that the

limit value b = α+2
α−2 is allowed.

Proceeding in a similar way we prove the following bound when the potential is
exp{|x|α}.
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Theorem 4.2.3. Let p the kernel of the semigroup generated by ∆ − V with
V (x) = exp{|x|α} for some positive α. Then for x, y ∈ RN and 0 < t ≤ 1

p(x, y, t) ≤ C exp
{
ct

1
1−2γ

}
ψ(x)ψ(y)

with γ = 1 if α ≥ 1 and for any 1
2 < γ < 1 if α < 1. Here ψ is the first

eigenfunction of ∆ − V and

ψ(r) = Cr−
N−1

2 exp

{
−r

α

4

}
exp

{
−
∫ r

0

exp

{
sα

2

}
ds

}
{1 + ε(r)}

with ε(r) → 0 for r → ∞.

Proof. Let ψ > 0 the first eigenfunction of the operator−∆+V correspond-
ing to the eigenvalue E. Since the potential is radial, the first eigenfunction is
radial too, therefore, writing the Laplacian in polar coordinates, we have

ψ′′(r) +
N − 1

r
ψ′(r) = (exp{rα} − E)ψ(r).

The function v(r) = r
N−1

2 ψ(r) satisfies the differential equation

v′′(r) = v(r)

(
exp{rα} − E +

N − 1

2

N − 3

2

1

r2

)
.

By [36, Theorem 2.1, Chapter 6], a solution of the previous differential equation
is given by

v(r) = exp

{
−r

α

4

}
exp

{
−
∫ r

0

exp

{
sα

2

}
ds

}
{1 + ε(r)}

where ε(r) is a function such that |ε(r)|, 1
2 exp{− rα

2 }|ε′(r)| goes to 0 if r goes
to ∞. Then

ψ(r) = r−
N−1

2 v(r) = r−
N−1

2 exp

{
−r

α

4

}
exp

{
−
∫ r

0

exp

{
sα

2

}
ds

}
{1 + ε(r)}.

After simple computations we obtain

ψ′(r) = ψ(r)

(
−N − 1

2r
− α

4
rα−1 − exp

{
rα

2

}
+

ε′(r)

1 + ε(r)

)
.

It follows that φ = logψ−2 satisfies the hypothesis in Proposition 4.1.4. In
particular, choosing γ = 1 if α ≥ 1 and any 1

2 < γ < 1 if α < 1, (4.6) is verified
and the claim follows.



Chapter 5

Parabolic Schrödinger

operators

In this chapter we consider the parabolic Schrödinger operator

A = ∂t − ∆ + V on RN+1

where V = V (x, t) is a nonnegative potential which belongs to the parabolic
Reverse Hölder class Bp for some p > 1. Examples of such potentials are all

polynomials but also singular functions like max{|x|, t 1
2 }α for α > −N+2

p . We

prove the Lp boundedness of the operators D2(∂t−∆+V )−1, V (∂t−∆+V )−1

and ∂t(∂t − ∆ + V )−1, thus characterizing the domain of the operator A on
Lp(RN+1).
The wide literature on the characterization of the domain of (elliptic) Schrö-
dinger operator can be divided in two classes, concerning the assumptions on
the potential V . The equality D(−∆ + V ) = D(−∆) ∩D(V ) holds in Lp(RN ),
1 < p < ∞ either assuming an oscillation condition like |∇V | ≤ cV 3/2, see
[37], or assuming that V belongs to suitable Reverse Hölder classes. The two
conditions are incomparable but one find easily examples of polynomials (which
satisfy a reverse Hölder inequality) for which the oscillation condition above
fails.
In [41] Shen proved the Lp boundedness of D2(−∆+V )−1 on RN for 1 < p <∞,
assuming V ∈ Bp and under the restrictions N ≥ 3, p ≥ N

2 , introducing an aux-

iliary function m(x, V ), which is well defined for p ≥ N
2 and allows to estimate

the fundamental solution.
In a recent work, P. Auscher and B. Ali , see [3], extended Shen’s result remov-
ing the original restrictions on the space dimension and on p. In their proof
they use a criterion to prove Lp boundedness of operators in absence of kernels,
see [42, Theorem 3.1], [2, Theorem 3.14], and weighted mean value inequalities
for nonnegative subharmonic functions, with respect to Muckenhoupt weights.
Following Shen’s approach, W. Gao and Y. Jiang extended the results to the
parabolic case. In [18], they consider the parabolic operator ∂t − ∆ + V where

81



82

V ∈ Bp is a nonnegative potential depending only on the space variables and,
under the assumptions N ≥ 3 and p > (N + 2)/2, they prove the boundedness
of V (∂t − ∆ + V )−1 in Lp.
We obtain the Lp boundedness of VA−1 (and consequently of ∂tA−1 andD2A−1)
if 0 ≤ V ∈ Bp for 1 < p < ∞, without any restriction on the space dimension;
moreover, our potentials may also depend on the time variable. Our approach
is similar to that of [3]. We use a more general version of the boundedness
criterion in absence of kernels in homogeneous spaces (see Theorem D.1.1) and
the Harnack inequality for subsolutions of the heat equation. A crucial role is
played by some properties of the Bp weights, originally proved in the classical
case when RN is equipped with the Lebesgue measure and the Euclidean dis-
tance. Since we need parabolic cylinders instead of balls of RN , we use the more
general theory of Bp weights in homogeneous spaces, as treated in [48, Chapter
I].
The chapter is organized as follows.
In Section 5.1 we introduce the reverse Hölder classes Bp and the Muckenhoupt
classes Ap. We state some properties satisfied by these weights and we establish
a relation between the two classes.
In Section 5.2 we define the parabolic Schrödinger operator in Lp(RN+1) and
we prove some properties, in particular invertibility and consistency of the re-
solvent operators.
We start the last section by observing that VA−1 is always bounded in L1.
Then, using the Harnack inequality for subsolutions of the heat equation and
an approximation procedure, we prove a weighted mean value inequality for
positive solutions of the equation Au = 0 with respect to Bp weights which
allows us to apply Shen’s interpolation theorem and deduce the boundedness of
VA−1 in Lp.

For the whole chapter we fix the following notation.
Notation

Given X0 = (x1
0, ...., x

N
0 , t0), R > 0, with parabolic cylinder of center X0 =

(x0, t0) and radius R we mean the set

K = K(X0, R) = {(x1, ..., xN , t) ∈ RN+1 : |xi − xi0| < R, |t− t0| < R2}.

5.1 The parabolic reverse Hölder classes

The classical theory about Muckenhoupt and reverse Hölder classes has been
originately formulated for weights in RN endowed with the euclidean distance,
see for example [47, Chapter V]. We will consider however potentials satisfying
the ”Reverse Hölder Property” with respect to cylinders rather than Euclidean
balls. Many properties remain true in this setting. A theory on these classes
of weights in homogeneous spaces (like RN+1 with the parabolic distance) is
presented for example in [48, Chapter I] to which we refer for the proofs of the
results stated in this Section and needed in what follows.
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Definition 5.1.1. Let 1 < p ≤ ∞. We say that ω ∈ Bp, the class of the reverse
Hölder weights of order p, if ω ∈ Lploc, ω > 0 a.e. and there exists a positive
constant C such the inequality

(
1

|K|

∫

K

ω(x, t)p dx dt

) 1
p

≤ C

|K|

∫

K

ω(x, t) dx dt (5.1)

holds, for every parabolic cylinder K. If p = ∞, the left hand side of the
inequality above has to be replaced by the essential supremum of ω on K. The
smallest positive constant C such that (5.1) holds is the Bp constant of ω.

Observe that Bq ⊂ Bp if p < q. An important feature of the Bp weights is
the following self improvement property due to Gehring.

Proposition 5.1.2. Assume that ω ∈ Bp for some p < ∞. Then there exists
ε > 0, depending on the Bp constant of ω, such that ω ∈ Bp+ε.

The following property connects Bp weights with Muckenhoupt classes. In
particular it implies that Bp weights induce doubling measures.

Definition 5.1.3. Let 1 < p <∞. We say that ω ∈ Ap if it is nonnegative and
it satisfies the inequality

1

|K|

∫

K

ω(x, t)dx dt

[
1

|K|

∫

K

ω(x, t)−
p′

p

]
≤ A <∞

for all K parabolic cylinders and some positive constant A.
The space A1 consists of nonnegative functions ω such that

1

|K|

∫

K

ω(x, t)dx dt ≤ Aω(x, t)

for almost every (x, t) ∈ K, for all K parabolic cylinders and some positive
constant A.
In both cases, the smallest constant for which the inequality holds is called the
Ap bound of ω.

Proposition 5.1.4. If ω ∈ Bp for some p > 1, then there exists 1 ≤ t < ∞
and c > 0, depending on p and the Bp constant of ω, such that the inequality

(
1

|K|

∫

K

g

)t
≤ c

ω(K)

∫

K

gtω (5.2)

holds for all nonnegative functions g and all parabolic cylinders K. Here ω(K) =∫

K

ω.

Remark 5.1.5. It is possible to prove that ω satisfies (5.2) is equivalent to say
that ω ∈ At (see [47, Chapter V, 1.4]).
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It is not hard to see that all polynomials belong to the reverse Hölder classes.
The idea is that the space of all polynolmials of a fixed degree is a finite di-
mension space. Therefore all the norms are equivalent and the reverse Hölder
inequality holds with a constant depending only on the degree of the polynomial
and on N for all the cylinders with unitary radius. Up a rescaling the inequality
follows for all the cylinders in RN+1. Also singular functions like max{|x|, t 1

2 }α
for α > −N+2

p belong to Bp. Here we give a proof.

Example 5.1.6. The functions max{|x|, t 1
2 }α belong to Bp for α > −N+2

p .

Proof. Observe that it is sufficient to prove the inequality for parabolic
cylinders of unitary radius. A change of variables provides the estimate in the
general case.
The hypothesis α > −N+2

p insures integrability near 0. Note that f(x, t) =

max{|x|, t 1
2 }α = d(x, 0)α where d is the parabolic distance. Let K(X0, 1) be a

parabolic cylinder of center X0 and radius 1. Set

M = max





(∫

K(X0,1)

f(X)p

) 1
p
(∫

K(X0,1)

f(X)

)−1

, X0 : d(X0, 0) ≤ 2



 .

Suppose d(X0, 0) > 2. If X ∈ K(X0, 1) we have

d(X, 0)

d(X0, 0)
≤ d(X −X0, 0)

d(X0, 0)
+
d(X0, 0)

d(X0, 0)
≤ 1 +

1

d(X0, 0)
≤ 3

2

and
d(X, 0)

d(X0, 0)
≥ d(X0, 0)

d(X0, 0)
− d(X −X0, 0)

d(X0, 0)
≥ 1 − 1

2
=

1

2
.

Therefore if d(X0, 0) > 2
1

2
≤ d(X, 0)

d(X0, 0)
≤ 3

2

and
(∫

K(X0,1)

f(X)p

) 1
p

≤
(

3

2
d(X0, 0)

)α
=

(
3

2

)α ∫

K(X0,1)

f(X0)

≤ 3α
∫

K(X0,1)

f(X).

The reverse Hölder inequality is true with Bp constant given by the maximum
between M and 3α.

5.2 Definition of the operator and some proper-

ties

In this section we assume that 0 ≤ V ∈ Lploc for some 1 ≤ p ≤ ∞ and consider
the parabolic operator

A = ∂t − ∆ + V
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in Lp, endowed with the maximal domain

Dp(A) = {u ∈ Lp : V u ∈ L1
loc, Au ∈ Lp}.

Observe that C∞
c is contained in Dp(A), since V ∈ Lploc. In some results,

however, we shall only assume 0 ≤ V ∈ L1
loc.

We shall prove that Ap := (A, Dp(A)) is a closed operator, that C∞
c is a core

and that λ+ A is invertible for positive λ. We follow Kato’s strategy, see [19],
where these results are obtained in the elliptic case.
Our main result is the following.

Theorem 5.2.1. For every λ > 0 the operator λ + Ap is invertible and ‖(λ+
A)−1‖p ≤ 1

λ . Moreover, if 1 ≤ p <∞, C∞
c is a core for Ap

The basic tool is a distributional inequality proved by Kato for the laplacian
(see [39, Theorem X.2]). For completeness we provide here a short proof in the
parabolic case.

Lemma 5.2.2 (Parabolic Kato’s inequality). Let u ∈ L1
loc be such that (∂t −

∆)u ∈ L1
loc. Define

sign(u) =

{
0 if u(x) = 0

u(x)/|u(x)| if u(x) 6= 0.

Then |u| satisfies the following distributional inequality

(∂t − ∆)|u| ≤ Re [sign(u)(∂t − ∆)u].

Proof. We first suppose that u ∈ C∞. Define

uε(x) =
√
|u|2 + ε2 (5.3)

so that uε ∈ C∞. Since

uε∇uε = Re[u∇u]. (5.4)

and uε ≥ |u|, then (5.4) implies that

|∇uε| ≤ |u||uε|−1|∇u| ≤ |∇u|. (5.5)

Taking the divergence of (5.4) we obtain

uε∆uε + |∇uε|2 = Re(u∆u) + |∇u|2

so by (5.5)

∆uε ≥ Re[signε(u)∆u], (5.6)

where signε(u) = u/uε. Differentiating (5.3) with respect to t we obtain

∂tuε = Re[signε(u)∂tu] (5.7)
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and, combining (5.6) and (5.7),

(∂t − ∆)uε ≤ Re[signε(u)(∂t − ∆)u]. (5.8)

Let now u ∈ L1
loc be such that (∆ − ∂t)u ∈ L1

loc and let φn be an approximate
identity. Since un = u ∗ φn ∈ C∞, then by (5.8)

(∂t − ∆)(un)ε ≤ Re[signε(u
n)(∂t − ∆)un]. (5.9)

Fix ε > 0 and let n → ∞. Then un → u in L1
loc and a.e. (passing to a

subsequence, if necessary). Thus signε(u
n) → signε(u) a.e. Since (∂t − ∆)un =

((∂t − ∆)u) ∗ φn and (∂t − ∆)u ∈ L1
loc, then (∂t − ∆)un → (∂t − ∆)u in L1

loc,
too. It is now easy to see that signε(u

n)(∂t − ∆)un converges in the sense of
distributions to signε(u)(∂t − ∆)u. Thus, letting n → ∞ in (5.8) we conclude
that

(∂t − ∆)uε ≤ Re[signε(u)(∂t − ∆)u].

Now taking ε → 0 we obtain the desired inequality for u, since signε(u) →
sign(u) and |signε(u)| ≤ 1.

Remark 5.2.3. Changing t with −t one obtains that if u, (∂t + ∆)u ∈ L1
loc,

then

(∂t + ∆)|u| ≤ Re[sign(u)(∂t + ∆)u].

The following results are easy consequences of Kato’s inequality.

Lemma 5.2.4. Let 0 ≤ V ∈ L1
loc. Assume that u, (∂t − ∆)u, V u ∈ L1

loc and
set, for λ ≥ 0, f = (λ + A)u. Then

(λ+ ∂t − ∆ + V )|u| ≤ |f |. (5.10)

Proof. The claim immediately follows by Lemma 5.2.2. Indeed

(λ+ ∂t − ∆ + V )|u| ≤ Re[sign(u)((∂t − ∆)u + λu+ V u)] = Re[f sign(u)] ≤ |f |.

Lemma 5.2.5. For every positive λ > 0 the operator (λ+∂t−∆)−1 is a positive
map of S′ onto itself.

Proof. Since λ − ∂t − ∆ is invertible from S onto S, its adjoint operator
λ + ∂t − ∆ is invertible from S′ into itself. Let now 0 ≤ ψ ∈ S′ and let φ ∈ S′

be such that 0 ≤ ψ = (λ+ ∂t − ∆)φ. If 0 ≤ u ∈ S, then

〈φ, u〉 = 〈(λ+∂t−∆)−1(λ+∂t−∆)φ, u〉 = 〈(λ+∂t−∆)φ, (λ−∂t−∆)−1u〉 ≥ 0

since (λ − ∂t − ∆)−1 is positive on S, by the maximum principle. This proves
that φ = (λ+ ∂t − ∆)−1ψ is positive.

An estimate for the resolvent operator easily follows.
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Proposition 5.2.6. Let 1 ≤ p ≤ ∞, λ > 0. Then, if u ∈ Dp(A),

λ‖u‖p ≤ ‖(λ+ A)u‖p. (5.11)

Proof. Let u ∈ Dp(A), set f = (λ+ A)u ∈ Lp. By (5.10)

(λ+ ∂t − ∆)|u| ≤ (λ+ A)|u| ≤ |f |

and Lemma 5.2.5 yields

|u| ≤ (λ+ ∂t − ∆)−1|f |. (5.12)

Then

‖u‖p ≤ ‖(λ+ ∂t − ∆)−1|f |‖p ≤
1

λ
‖f‖p.

The positivity of the resolvent is proved along the same way.

Proposition 5.2.7. Let 0 ≤ V ∈ L1
loc and λ > 0. If u, (∂t − ∆)u, V u ∈ L1

loc

and f = (λ+ A)u ≥ 0, then u ≥ 0.

Proof. Subtracting the equality f = (λ + A)u ≥ 0 from (5.10) we obtain
(λ + ∂t − ∆ + V )(|u| − u) ≤ 0, hence (λ + ∂t − ∆)(|u| − u) ≤ 0. Lemma 5.2.5
implies |u| − u ≤ 0 so that u = |u|.
Proposition 5.2.8. For every 1 ≤ p ≤ ∞, the operator Ap is closed. Moreover,
if λ > 0, λ+ Ap has closed range.

Proof. Let (un) ⊂ Dp(A) such that

un → u, Aun = (∂t − ∆)un + V un = fn → f in Lp.

We apply (5.10) to u = un − um, f = fn − fm and λ = 0 obtaining

(∂t − ∆ + V )|un − um| ≤ |fn − fm|.

Then, for every 0 ≤ φ ∈ C∞
c

0 ≤ 〈V |un − um|, φ〉 ≤ 〈|fn − fm|, φ〉 + 〈|un − um|, (∆ + ∂t)φ〉.

Letting n, m to infinity, the right hand side of the previous inequality tends to 0
and this shows that V unφ is a Cauchy sequence in L1. Since its limit is V uφ we
conclude (by the arbitrariness of φ) that V u ∈ L1

loc and that V un → V u in L1
loc.

Then fn = (∂t − ∆ + V )un → (∂t − ∆ + V )u in the sense of distributions. On
the other hand fn → f in Lp, therefore u ∈ Dp(A) and f = (∂t−∆+V )u ∈ Lp.
This proves the closedness of A.
Finally, λ+ A has closed range, by (5.11).

Proof (Theorem 5.2.1). Assume first that 1 ≤ p < ∞. Since Ap is closed
and has closed range, we have only to prove that (λ + A)(C∞

c ) is dense in Lp.
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Let u ∈ Lp
′

such that
∫
(λ+ ∂t − ∆ + V )φu = 0 for every φ ∈ C∞

c . We have to
show that u = 0. Evidently u satisfies λu − ∂tu − ∆u + V u = 0 in the sense of
distributions and, since V ∈ Lploc and u ∈ Lp

′

, V u ∈ L1
loc. Thus u ∈ Dp′(B) and

(λ + B)u = 0, where B = −∂t − ∆ + V . The injectivity of λ + B (that follows
from Proposition 5.2.6 changing t to −t) implies u = 0 and proves the density
of (λ + A)(C∞

c ) in Lp.

Next we consider the case where p = ∞. Let 0 ≤ f ∈ L∞ and consider
a sequence fn ∈ L∞ ∩ L1 such that 0 ≤ fn ր f . By the first part of the
proof, there are un ∈ D1(A) such that (λ + A)un = fn. By Proposition 5.2.7
the sequence (un) is increasing and consists of nonnegative functions and, since
λ‖un‖∞ ≤ ‖fn‖∞ ≤ ‖f‖∞, its (pointwise) limit u belongs to L∞. Moreover
V un → V u in L1

loc because V ∈ L∞
loc and un → u, 0 ≤ un ≤ u. Hence

fn = (λ + A)un → (λ + ∂t − ∆)u + V u in the sense of distributions. But
fn → f monotonically and then (λ + A)u = f . This means that u ∈ D∞(A)
and (λ + A)u = f . Since a general f ∈ L∞ is a linear combination of positive
elements, the proof is complete.

Finally, we prove the consistency of the resolvent operators.

Proposition 5.2.9. Let 1 ≤ p ≤ q and 0 ≤ V ∈ Lqloc. If λ > 0 and f ∈ Lp∩Lq,
then (λ + Ap)

−1f = (λ+ Aq)
−1f .

Proof. Let u = (λ + Ap)
−1f , v = (λ + Aq)

−1f and w = u − v. Then
w, V w ∈ L1

loc and (∂t − ∆)w = −(λ + V )w ∈ L1
loc. Since (λ + A)w = 0, by

Proposition 5.2.7 we deduce that w = 0.

5.3 Characterization of the domain of A
In this section we assume that all functions are real-valued.

5.3.1 The operator A on L
1.

It is easy to obtain a-priori estimates for p = 1, leading to a (partial) description
of D1(A). They will also play a key role in the proof of the a-priori estimates
in Lp.

Lemma 5.3.1. Assume that 0 ≤ V ∈ L1
loc. For every u ∈ D1(A) we have

‖V u‖1 ≤ ‖Au‖1, ‖(∂t − ∆)u‖1 ≤ 2‖Au‖1. (5.13)

Proof. Let hn : R → R be a sequence of smooth functions such that
|hn| ≤ C, h′n(s) ≥ 0 and hn(s) → sign(s) for n → ∞ and for every s ∈ R. Let
Hn be such that H ′

n = hn and Hn(0) = 0. If u ∈ C∞
c then, by the Lebesgue

convergence Theorem, we have

∫

RN+1

sign(u)∂tu = lim
n

∫

RN+1

hn(u)∂tu = lim
n

∫

RN+1

∂t(Hn(u)) = 0, (5.14)
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−
∫

RN+1

sign(u)∆u = − lim
n

∫

RN+1

hn(u)∆u = lim
n

∫

RN+1

|∇u|2h′n(u) ≥ 0.

(5.15)
Therefore, if Au = f we obtain
∫

RN+1

V |u| ≤
∫

RN+1

sign(u)(∂t − ∆ + V )u =

∫

RN+1

f sign(u) ≤
∫

RN+1

|f |

and the first inequality is proved for u ∈ C∞
c . Since C∞

c is a core for A1 it is
easily seen that it extends to every u ∈ D1(A).

The second inequality follows from the first, since (∂t − ∆) = A− V.
The characterization of the domain of A1 is an immediate consequence of

the lemma above. We refer to [50] for similar results in the elliptic case.

Proposition 5.3.2. If 0 ≤ V ∈ L1
loc, then

D1(A) = {u ∈ L1 : V u ∈ L1, (∂t − ∆)u ∈ L1}.

5.3.2 A priori estimates in L
p(RN+1).

We investigate when (5.13) holds for other values of p. We remark that (5.13)
can fail even for p = 2 and in the elliptic case, see e.g. [31, Example 3.7].
The Bp property of the potential is a sufficient condition to characterize the
domain of the operator. In fact we prove the following result.

Theorem 5.3.3. Let 1 < p < ∞. If 0 ≤ V ∈ Bp then there exists a positive
constant C depending only on p and the Bp constant of V , such that

‖V u‖p ≤ C‖∂tu− ∆u+ V u‖p (5.16)

for all u ∈ Dp(A). In particular,

Dp(A) = {u ∈W 2,1
p : V u ∈ Lp}.

We will apply Theorem D.1.1 to the operator T = VA−1| · | with p0 = 1, a
suitable q0 > p and α1 = 3, α2 = 4. Therefore we have to prove that, if K is a
parabolic cylinder and f ∈ L∞

c has support in RN+1 \ 4K, u = A−1f satisfies

(
1

|K|

∫

K

(V |u|)q0
) 1

q0

≤ C

|3K|

∫

3K

V |u|

for some positive C independent of f . Observe that u satisfies the homogeneous
equation

Au = (∂t − ∆ + V )u = 0

in 4K. As first step we prove a mean value inequality for functions u as above.

Lemma 5.3.4. Assume that 0 < ε ≤ V ∈ Lploc. For every r > 0 there exists a
positive constant C = C(r) (hence independent of ε) such that

sup
K
u ≤ C

(
1

|3K|

∫

3K

ur
) 1

r
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for all parabolic cylinders K, 0 ≤ f ∈ L∞
c (RN+1) with support in RN+1 \ 4K

and u = A−1f .

Proof. Let K = K((x0, t0), R) a parabolic cylinder and 0 ≤ f ∈ L∞
c (RN+1)

with support in RN+1 \4K. By Theorem 5.2.1 there exists u ∈ Dp(A) such that

Au = f in RN+1.

By Proposition 5.2.7 u ≥ 0. We are going to use Harnack’s inequality where,
however, more regularity on the solutions is required and then an approximation
procedure is needed. Let Ak be the operators with bounded potentials Vk =
V ∧ k. For every k let 0 ≤ uk be such that (∂t −∆ + Vk)uk = f . The functions
uk are solutions of parabolic equations with bounded coefficients, then for all
k ∈ N uk ∈ W 2,1

q (RN+1) for all 1 < q <∞. Since f has support in RN+1 \ 4K,

(∂t − ∆)uk = −Vkuk ≤ 0 in 4K.

Given a parabolic cylinder K = K((x0, t0), R) and a positive constant c > 0,
we denote by cK the cylinder with the same center as K and radius cR and by
K̃ the set K ∩ {t < t0}.
Let K1 be the cylinder of center (x0, t0 + R2) and radius

√
2R. Obviously

K ⊂ K̃1 and 2̃K1 ⊂ 2K1 ⊂ 3K ⊂ 4K. It follows that

(∂t − ∆)uk = −Vkuk ≤ 0 in 2̃K1.

By [24, Theorem 7.21] or see [35], for any r > 0 there exists C = C(r) > 0 such
that

sup
fK1

uk ≤ C

(
1

Rn+2

∫

g2K1

urk

) 1
r

and hence

sup
K
uk ≤ sup

fK1

uk ≤ C

(
1

Rn+2

∫

g2K1

urk

) 1
r

≤ C

(
1

Rn+2

∫

3K

urk

) 1
r

(5.17)

= C

(
1

|3K|

∫

3K

urk

) 1
r

.

Let us observe that the constant C is independent of the potential Vk. This
allows us to let k → ∞ in the above inequality.
Let k, m ∈ N with k > m. Then

∂t(uk − um) − ∆(uk − um) + Vk(uk − um) = (Vm − Vk)um ≤ 0

and by Proposition 5.2.7 (or simply by the maximum principle) uk − um ≤
0. Therefore (uk) is decreasing and converges pointwise to a function w ≥ 0.
Moreover, by Lemma 5.3.1, ‖Vkuk‖1 ≤ ‖f‖1 for every k ∈ N and then, by
Fatou’s Lemma, V w ∈ L1. By Proposition 5.2.6, ‖uk‖q ≤ C‖f‖q for all 1 ≤
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q ≤ ∞ and, since uk → w pointwise, w ∈ Lq for all 1 ≤ q ≤ ∞.
Since for every φ ∈ C∞

c

∫

RN+1

uk(−∂tφ− ∆φ + Vkφ) =

∫

RN+1

fφ,

letting k to infinity we get
∫

RN+1

w(−∂tφ− ∆φ+ V φ) =

∫

RN+1

fφ

and therefore Aw = f in the sense of distributions. This shows that w belongs
to Dp(A) and, by Theorem 5.2.1, w = u, that is uk converges to u pointwise.
Since uk is decreasing, (5.17) yields

sup
K
u ≤ sup

K
uk ≤ C

(
1

|3K|

∫

3K

(uk)
r

) 1
r

. (5.18)

Finally, uk is decreasing, therefore urk ≤ ur1 ∈ L1 and letting k → ∞ in (5.18)
we obtain the thesis by dominated convergence.

Now we prove that Lemma 5.3.4 holds if we replace the Lebesgue measure
with that induced by the density V .

Lemma 5.3.5. Suppose 0 < ε ≤ V ∈ Bp and fix 0 < s <∞ and u as in Lemma
5.3.4. Then for every cylinder K

sup
K
u ≤

(
C

V (3K)

∫

3K

V us
) 1

s

where C depends only on s, p and the Bp constant of V and

V (3K) =

∫

3K

V.

Proof. Let 0 < s <∞ and K be a parabolic cylinder of RN+1. We fix t as
in Proposition 5.1.4. By using Lemma 5.3.4 with r = s

t and (5.2) we obtain

sup
K
u ≤ C

(
1

|3K|

∫

3K

u
s
t

) t
s

≤ C

(
1

V (3K)

∫

3K

V us
) 1

s

.

By combining the estimate in Lemma 5.3.5 and the Bq property we deduce
the following.

Corollary 5.3.6. Let 0 < ε ≤ V ∈ Bp, 0 < s < ∞ and u as in Lemma 5.3.4.
Then for every cylinder K

(
1

|K|

∫

K

(V us)p
) 1

p

≤ C

|3K|

∫

3K

V us,

where C depends only on s, p and the Bp constant of V .
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Proof. By using the Bp property of V and Lemma 5.3.5 we obtain

(
1

|K|

∫

K

(V us)p
) 1

p

≤
(

1

|K|

∫

K

V p
) 1

p

sup
K
us ≤ C

(
1

|K|

∫

K

V

)
sup
K
us

≤ C

|3K|

∫

3K

V us.

We can now prove our main result.
Proof (Theorem 5.3.3). Suppose first that 0 < ε ≤ V ∈ Bp for some ε. By
Proposition 5.1.2 there exists q0 > p such that V ∈ Bq0 .
Let K be a parabolic cylinder in RN+1 and f ∈ L∞

c (RN+1) with support in
RN+1 \ 4K. We set T = VA−1| · |. Then Tf = V u and u ≥ 0 by Proposition
5.2.7. Note that, since V ≥ ε > 0, Proposition 5.2.9 shows that T acts in a
consistent way in the Lq scale. By Corollary 5.3.6 with s = 1,

(
1

|K|

∫

K

(Tf)q0
) 1

q0

=

(
1

|K|

∫

K

(V u)q0
) 1

q0

≤ C

|3K|

∫

3K

V u =
C

|3K|

∫

3K

|Tf |.

By Lemma 5.3.1 T is bounded on L1 and, by Proposition 5.2.7, it is also sub-
linear. Choosing p0 = 1 and q0 as above in Theorem D.1.1, we deduce that

‖V u‖p = ‖Tf‖p ≤ C‖f‖p (5.19)

for every f ∈ L∞
c , where C depends only on p and the Bp constant of V . Since,

by Proposition 5.2.7 again, the operator VA−1 preserves positivity, we have
that |VA−1f | ≤ Tf . Therefore by 5.19 we deduce that

‖VA−1f‖p ≤ C‖f‖p
for every f ∈ L∞

c and finally, by approximation, for every f ∈ Lp. Then the
identity

(∂t − ∆)u = f − V u ∈ Lp

proves, by parabolic regularity, that the distribution u belongs to W 2,1
p . Then

Dp(A) ⊂ {u ∈ W 2,1
p : V u ∈ Lp}

and, since the opposite inclusion is obvious, the characterization of the domain
is proved. Now we prove (5.16) in the general case when V ≥ 0. Let u ∈ Dp(A).
then for every ε > 0 we have

‖(V + ε)u‖p ≤ C‖∂tu− ∆u+ (V + ε)u‖p.

Since C depends only on p and the Bp constant of V + ε which is independent
of 0 < ε ≤ 1, letting ε→ 0 the proof is complete.

Finally we show that the results of this section hold when the time variable
varies in an interval, rather than in the whole space. We fix −∞ ≤ S < T ≤ ∞
and consider the set

Q(S, T ) = RN × (S, T )
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and the operator A endowed with the domain

DS,T
p =

{
u ∈W 2,1

p (Q(S, T )) : V u ∈ Lp (Q(S, T )) , u(·, S) = 0
}
.

Clearly the initial condition u(·, S) = 0 makes sense only when S > −∞.

Proposition 5.3.7. If 1 < p < ∞, 0 ≤ V ∈ Bp and λ > 0, then the operator
λ+ A is invertible from DS,T

p to Lp (Q(S, T )).

Proof. Given f ∈ Lp (Q(S, T )), let g ∈ Lp be its extension by 0 outside
the time interval (S, T ) and u ∈ Dp(A) such that λu+Au = g in RN+1 (hence
in Q(S, T )). Since λu + Au = 0 for t ≤ S (when S > −∞), multiplying this
identity by u|u|p−2 and integrating by parts we get u = 0 for t ≤ S, hence
u(·, S) = 0 and u ∈ DS,T

p . Infact we have

∫

Q(−∞,S)

(λ+ V )|u|p +
1

p

∫

Q(−∞,S)

∂t(|u|p) −
∫

Q(−∞,S)

u|u|p−2∆u = 0,

which implies, since
∫
Q(−∞,S)

u|u|p−2∆u ≤ 0 (see Appendix C),

∫

Q(−∞,S)

(λ+ V )|u|p +
1

p

∫

RN

∫ S

−∞
∂t(|u|p) ≤ 0

and then u = 0 for t ≤ S. This proves the existence part. Concerning unique-
ness, assume that v ∈ DS,T

p satisfies λv + Av = 0 in QS,T . Multiplying by
v|v|p−2, integrating by parts as above and using the initial condition one easily
shows that v = 0.
As usual, if the interval (S, T ) is finite, the condition λ > 0 in not needed.
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Appendix A

Embedding Theorems and

Solvability of Cauchy

problems

In this appendix we only state some results about embeddings of parabolic
Sobolev spaces and solvability of Cauchy problems in the same spaces useful to
prove integrability and regularity of kernels in Section 2.1.2.
For their proofs we refer to [23, Lemma II.3.3, Theorem IV.9.1] and [20, Theorem
9.2.3].

According to notation used in [23], we introduce the norm

‖f‖locr,qT
= sup

qT

‖f‖Lr(qT )

where the supremum is taken over all the cylinders qT = ω × (0, T ), the bases
ω of which are some domain of unit measure, for examples cubes of RN . We
consider the elliptic operator A given by Au(x, t) =

∑N
i,j=1 aij(x)Diju(x, t) +∑N

i=1 Fi(x)Diu(x, t) − V (x)u(x, t) with V positive.

We recall that the parabolic distance between the points X1 = (x1, t1) and
X2 = (x2, t2) is defined as

d(X1, X2) = max{|xi − xi0|, 1 ≤ i ≤ N, |t− t0|
1
2 }.

If u is a function defined on RN+1, given δ ∈ (0, 1), we denote

[u]δ, δ
2 ;QT

= sup
X1 6=X2,Xi∈QT

|u(X1) − u(X2)|
d(X1, X2)δ

;
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|u|δ, δ
2 ;QT

= sup ‖u‖∞,QT
+ [u]δ, δ

2 ;QT
.

By Cδ,
δ
2 (QT ) we denote the space of the functions u for which |u|δ, δ

2 ;QT
is finite.

If u is a function depending only on the space variable we use the analogous
notation for the classical Hölder spaces.

Theorem A.0.8. Let q > 1. Suppose that the coefficients aij of the operator A
are bounded continuous functions in QT , while the coefficients Fi and V have
finite norms ‖Fi‖locr,qT

and ‖V ‖locs,qT
with

r =

{
max(q,N + 2) for q 6= N + 2
N + 2 + ε for q = N + 2.

.

s =

{
max(q, N+2

2 ) for q 6= N+2
2

N+2
2 + ε for q = N+2

2 .
.

and ε arbitrarily small positive number. Suppose moreover that the quantities
‖Fi‖locr,q(t,t+τ) and ‖V ‖locs,q(t,t+τ) tend to zero for τ → 0. Then, for any f ∈
Lq(QT ), φ ∈ W

2− 2
q

q (RN ), the problem

{
∂tu−Au = f in QT
u(x, 0) = φ

has a unique solution u ∈ W 2,1
q (QT ). It satisfies the estimate

‖u‖W 2,1
q (QT ) ≤ C(‖f‖Lq(QT ) + ‖φ‖

W
2− 2

q
q (RN )

).

Theorem A.0.9. For any function u ∈ W 2,1
q (QT ) the inequality

‖∂rtDs
xu‖p,QT

≤ C1(‖∂tu‖q,QT
+ ‖D2

xu‖q,QT
) + C2‖u‖q,QT

is valid under the condition p ≥ q, 2−2r−s−
(

1
q − 1

p

)
(N+2) ≥ 0 and for some

constants C1, C2 depending on r, s, N, q, p. In addition, if 2−2r−s−N+2
q > 0,

then for any 0 ≤ δ < 2 − 2r − s− N+2
q

[∂rtD
s
xu]δ,QT

≤ C3(‖∂tu‖q,QT
+ ‖D2

xu‖q,QT
) + C4‖u‖q,QT

for some constants C3, C4 depending on r, s, N, q, p.

Finally we state a solvability result in spaces of Hölder functions used in
Section 2.1.2. It can be found in [20, Theorem 9.2.3].

Theorem A.0.10. Let A be the second order elliptic operator above defined
and suppose that a, F, V are Hölder continuous for some δ ∈ (0, 1) and with

|a|δ;RN , |F |δ,RN , |V |δ,RN ≤ K. Then, for any f ∈ Cδ,
δ
2 (QT ), φ ∈ C2+δ(RN ),

the problem {
∂tu−Au = f in QT
u(x, 0) = φ
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has a unique solution u ∈ C2+δ,1+ δ
2 (QT ). It satisfies the estimate

|u|2+δ,1+ δ
2 ;QT

≤ C(|f |δ, δ
2 ;QT

+ |φ|2+δ;RN

for some positive constant C depending on N, δ,K, λ and the ellipticity constant
of A.



98



Appendix B

The Karamata Theorem

In Chapter 3, to obtain the asymptotic distribution of eigenvalues, we applied
the following Tauberian theorem due to Karamata. For the proof we refer to
[44, Theorem 10.3].
We prove also a weaker version which we have not been able to find in the
literature.

Let µ a positive Borel measure on [0,∞) such that

µ̂(t) =

∫ ∞

0

e−txdµ(x) <∞

for all t > 0. The function µ̂ : (0,∞) → R is called the Laplace Transform of
µ. The theorem relates the asymptotic behavior of µ([0, x]) as x → ∞ to the
asymptotic behavior of µ̂(t) as t→ 0.

Theorem B.0.11. Let r ≥ 0, a ∈ R. The following are equivalent:

(i) limt→0 t
rµ̂(t) = a;

(ii) limx→∞ x−rµ([0, x]) =
a

Γ(r + 1)

where Γ is the Euler’s Gamma Function.

We have also used the following weaker version of the previous theorem which
we have not been able to find in the literature. In the proposition below we fix
a nonnegative, nondecreasing sequence (λn)n∈N such that exp{−λnt} ∈ l1(R)
for every t > 0.

Proposition B.0.12. Let r > 0, C1 > 0 such that

lim sup
t→0

tr
∑

n∈N

e−λnt ≤ C1. (B.1)

Then

lim sup
λ→∞

λ−rN(λ) ≤ C1
er

rr
.
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Moreover if (B.1) holds and

lim inf
t→0

tr
∑

n∈N

e−λnt ≥ C2 (B.2)

for some C2 > 0 then
lim inf
λ→∞

λ−rN(λ) ≥ C3

for some positive C3.

Proof. Let us suppose that B.1 holds. Then, given ε > 0, there exists
δ > 0 such that if t ≤ δ ∑

n∈N

e−λnt ≤ C1 + ε

tr
.

This implies that for λ > 0

N(λ)e−λt =
∑

λn≤λ
e−λt ≤

∑

n∈N

e−λnt ≤ C1 + ε

tr
.

So

N(λ) ≤ (C1 + ε)
eλt

tr

in [0, δ]. Minimizing on t in such interval it follows

N(λ) ≤ (C1 + ε)λr
er

rr

for λ large enough.
Suppose now that (B.1) and (B.2) hold. Then, given ε > 0, for t small enough,
we have

C2 − ε

tr
≤
∑

n∈N

e−λnt =
∑

λn≤λ
e−λnt +

∑

λ≤λn≤2λ

e−λnt + . . . ≤
∞∑

k=1

e−λ(k−1)tN(kλ).

We have

sN(sλ) ≥
s∑

k=1

e−λ(k−1)tN(kλ)

and, using the upper bound obtained in the first part of the proof, for λ large
enough,

sN(sλ) ≥ C2 − ε

tr
− Cλr

∞∑

k=s+1

e−λ(k−1)tkr.

Setting t = 1
λ , then t is small when λ is large enough and one obtains

sN(sλ) ≥ (C2 − ε)λr − Cλr
∞∑

k=s+1

e−(k−1)kr.
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Choosing now s sufficiently large we obtain

sN(sλ) ≥ C3λ
r

and the proof follows.
Arguing as in the previous proposition, it is possible to prove the following

result.

Proposition B.0.13. Let C1 > 0 such that

lim sup
t→0

t
N
2

(− log t)
N
α

∑

n∈N

e−λnt ≤ C1. (B.3)

Then
lim sup
λ→∞

λ−
N
2 (logλ)−

N
α N(λ) ≤ C2

for some positive C2. Moreover if (B.3) holds and

lim inf
t→0

t
N
2

(− log t)
N
α

∑

n∈N

e−λnt ≥ C3 (B.4)

for some C3 > 0 then

lim inf
λ→∞

λ−
N
2 (logλ)−

N
α N(λ) ≥ C4

for some positive C4.
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Appendix C

An inequality in Sobolev

spaces

The aim of the Appendix is to study the validity of the inequality
∫

RN

u|u|p−2∆u ≤ 0

for functions u ∈ W 2,p(RN ), 1 < p < ∞. Actually a more precise result can
be proved, the following equality that one formally obtains integrating by parts
holds ∫

RN

u|u|p−2∆u = −(p− 1)

∫

RN

|u|p−2|∇u|2χ{u6=0}. (C.1)

If p ≥ 2 and u ∈ W 2,p(RN ), then the function u|u|p−2 belongs to W 2,p′(RN ),
where p′ is the conjugated exponent of p. Therefore integration by parts is
allowed in the left hand side of (C.1) and the stated equality follows, in particular
the inequality which we need is proved too. On the other hand, the situation is
more complicated for 1 < p < 2 due to the presence of the singularity of |u|p−2

near the zeros of u. An analogous result remains true for more general elliptic
operators in divergence form. Since in our proofs we need only the negativity of
the right hand side, here we deduce it by elementary computations.The proof of
the equality is more involved and requires a sectional characterization of Sobolev
spaces, we refer to [32] for a detailed study of the subject.
We focus our attention on the case 1 < p < 2 since, as observed, for p ≥ 2 the
equality immediately follows.

Proposition C.0.14. Let 1 < p < 2, u ∈ C2
0 (RN ), then u satisfies

∫

RN

u|u|p−2∆u = −(p− 1)

∫

RN

|u|p−2|∇u|2χ{u6=0}.

Proof. Given δ > 0, set

uδ := u(u2 + δ)
p−2
2 ∈ C2

0 (RN ).
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We can apply the integration by parts formula to the functions uδ to deduce

∫

RN

u(u2 + δ)
p−2
2 ∆u =

∫

RN

uδ∆u = −
∫

RN

∇u∇uδ

= −
∫

RN

|∇u|2(u2 + δ)
p−4
2 ((p− 1)u2 + δ). (C.2)

Observe that, for δ → 0,

uδ∆u→ u|u|p−2∆u

pointwise and, since p < 2,

|uδ∆u| ≤ |u|p−1|∆u| ∈ L1(RN ).

Moreover

(u2 + δ)
p−4
2 ((p− 1)u2 + δ)|∇u|2 → (p− 1)|u|p−2|∇u|2χ{u6=0}

for δ → 0 almost everywhere, since ∇u = 0 almost everywhere on {u = 0} by
Stampacchia’s Lemma. By Fatou’s Lemma and dominated convergence Theo-
rem, we obtain

(p− 1)

∫

RN

|∇u|2|u|p−2χ{u6=0} ≤ lim inf
δ→0

−
∫

RN

u(u2 + δ)
p−2
2 ∆u

= −
∫

RN

u|u|p−2∆u

and then |∇u|2|u|p−2χ{u6=0} ∈ L1(RN ). Recalling that 1 < p < 2, we have

(p− 1)u2(u2 + δ)
p−4
2 |∇u|2 ≤ (p− 1)|u|p−2|∇u|2χ{u6=0} ∈ L1(RN );

δ(u2 + δ)
p−4
2 |∇u|2 ≤ (u2 + δ)

p−2
2 |∇u|2 ≤ |u|p−2|∇u|2χ{u6=0} ∈ L1(RN ).

Applying the dominated convergence Theorem again in (C.2), the claim follows.

The desired inequality for functions in W 2,p(RN ) immediately follows by the
last proposition.

Corollary C.0.15. Let u ∈W 2,p(RN ), 1 < p < 2. Then

(p− 1)

∫

RN

|∇u|2|u|p−2χ{u6=0} ≤ −
∫

RN

u|u|p−2∆u <∞

and, in particular, ∫

RN

u|u|p−2∆u ≤ 0.
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Proof. Let (un) ⊂ C∞
0 (RN ) such that un → u in W 2,p(RN ), un → u,

∇un → ∇u almost everywhere in RN . Therefore

|∇un|2|un|p−2χ{un 6=0}χ{u6=0} → |∇u|2|u|p−2χ{u6=0}

almost everywhere. By Fatou’s Lemma, Proposition (C.0.14) and observing
that un|un|p−2 → u|u|p−2 in Lp

′

, we deduce

(p− 1)

∫

RN

|∇u|2|u|p−2χ{u6=0} ≤ − lim
n→∞

∫

RN

un|un|p−2∆un

= −
∫

RN

u|u|p−2∆u.
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Appendix D

A boundedness criterion

Here we give the proof of an improved version of the Lp boundedness criterion
mentioned above ([42, Theorem 3.1], Chapter 5) useful to obtain our a-priori
estimates in Chapter 5. As nice application we will deduce an alternative proof
of the well known a-priori estimates for the heat operator.

In this appendix, as in Chapter 5, we use the following notation.
Given X0 = (x1

0, ...., x
N
0 , t0), R > 0, with parabolic cylinder of center X0 =

(x0, t0) and radius R we mean the set

K = K(X0, R) = {(x1, ..., xN , t) ∈ RN+1 : |xi − xi0| < R, |t− t0| < R2}.

D.1 Shen’s Theorem

The main result of the section is the following Theorem.

Theorem D.1.1. Let 1 ≤ p0 < q0 ≤ ∞. Suppose that T is a bounded sublinear
operator on Lp0(RN+1). Suppose moreover that there exist α2 > α1 > 1, C > 0
such that

{
1

|K|

∫

K

|Tf |q0
} 1

q0

≤ C

{(
1

|α1K|

∫

α1K

|Tf |p0
) 1

p0

+ sup
K′⊃K

(
1

|K ′|

∫

K′

|f |p0
) 1

p0
}

for every K ⊂ RN+1 parabolic cylinder and every function f ∈ L∞
c (RN+1) with

compact support in RN+1 \ α2K. Then T is bounded in Lp(RN+1) for every
p0 ≤ p < q0.

We note that in [42, Theorem 3.1] p0 = 2 and the parabolic cylinders are
replaced by cubes of RN . We give a proof of the Theorem inspired by Shen’s
one.
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We recall some auxiliary classical results from harmonic analysis concerning the
Maximal Hardy-Littlewood function and the Lebesgue points. The proofs of
the results only stated here can be found in [47] for d euclidean distance but it
is possible to check that they are also true in the more general setting of the
homogeneous spaces (see for example [48, Chapter I]).

Let (Ω, µ) be a measure space and M(Ω) be the set of the measurable func-
tions in Ω. Let d be a distance on Ω. Through this section, we denote with
B(x, r) the ball of center x and radius r for the metric induced by the distance
d.
Let f ∈ M(Ω). For every α > 0 we set λ(α) = λf (α) = µ{|f | > α}. λ is a
decreasing function in (0,∞). In the next lemma we recall an easy property of
λ.

Lemma D.1.2. Let f ∈ M(Ω). Then

∫

Ω

|f |p dµ = p

∫ ∞

0

αp−1λ(α) dα.

Let f ∈ Lp(Ω) with p <∞, we recall the Chebychev inequality

λ(α) = µ{|f | > α} ≤ ‖f‖pp
αp

. (D.1)

Definition D.1.3. We say that µ is a doubling measure if there exists C0 > 0
such that, for every B in Ω

µ(2B) ≤ C0µ(B)

where 2B is the ball with same center of B and double radius.

Remark D.1.4. By the previous definition it easily follows that, if µ is a
doubling measure, for every λ ≥ 1 there exists C = C(C0, λ) such that

µ(λB) ≤ Cµ(B).

Definition D.1.5. Let f ∈ L1
loc(Ω). The maximal Hardy-Littlewood function

Mf : Ω → R is so defined

Mf(x) = sup
B∋x,B⊆Ω

1

µ(B)

∫

B

|f |dµ

for every x ∈ Ω.

Remark D.1.6. (1) If f, g ∈ L1
loc(Ω),

M(f + g) ≤Mf +Mg.

(2) If f ∈ L∞(Ω), then Mf ∈ L∞(Ω) and ‖Mf‖∞ ≤ ‖f‖∞.



109

For every 1 ≤ p ≤ ∞ we can define the operator

M : Lp(Ω) → M(Ω), f 7→ Mf.

By Remark D.1.6, M is sublinear and bounded from L∞ in L∞. The following
theorem provides us the so called maximal Hardy-Littlewood inequality, which,
with the L∞ boundedness and the Marcinkiewicz Theorem, gives that M :
Lp(Ω) → Lp(Ω) is bounded for every 1 < p ≤ ∞.
From now on we suppose that µ is a doubling measure.

Theorem D.1.7 (Maximal Hardy-Littlewood inequality). Let µ a doubling
measure. There exists C positive constant such that for every f ∈ L1(Ω) and
for every α > 0

µ({Mf > α}) ≤ C
‖f‖1

α
. (D.2)

Corollary D.1.8. Let 1 < p ≤ ∞. Then there exists Ap > 0 such that

‖Mf‖p ≤ Ap‖f‖p
for every f ∈ Lp(Ω).

Remark D.1.9. (Local maximal function.) Let Q ⊆ Ω, f ∈ L1(Q) . We
consider the local maximal function so defined

MQf(x) = sup
B⊆Q, x∈B

1

µ(B)

∫

B

|f |dµ

for every x ∈ Q. By considering the space Q equipped with the metric induced
by d, we obtain the existence of a positive constant C such that for every α > 0
and for every f ∈ L1(Q)

µ({MQf > α}) ≤ C
‖f‖L1(Q)

α
(D.3)

and, by the Marcinkiewicz Theorem, it follows that, for every 1 < p ≤ ∞, there
exists a positive constant Ap such that

‖MQf‖Lp(Q) ≤ Ap‖f‖Lp(Q) (D.4)

for every f ∈ Lp(Q).

Definition D.1.10. Let f ∈ L1
loc(Ω). We say that x ∈ Ω is a Lebesgue point

of f (we write x ∈ L(f)) if

lim
r→0

1

µ(B(x, r))

∫

B(x,r)

|f − f(x)| dµ = 0.

Remark D.1.11. (i) If x is a Lebesgue point of f then

f(x) = lim
r→0

1

µ(B(x, r))

∫

B(x,r)

f dµ

(ii) If f is continuous in x then x ∈ L(f).
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Theorem D.1.12 (Lebesgue Theorem). If f ∈ L1(Ω) then |Ω \ L(f)| = 0

Proof. Given r > 0 we set

Trf(x) =
1

µ(B(x, r))

∫

B(x,r)

|f − f(x)| dµ

and Tf(x) = lim supr→0+ Trf(x). We have to prove that Tf = 0 almost every-
where in Ω.
By the density of L1(Ω) ∩C(Ω) in L1(Ω), given ε > 0 there exists g ∈ L1(Ω) ∩
C(Ω) such that ‖f − g‖1 < ε. By Remark D.1.11(ii)

Tg = 0 in Ω. (D.5)

Set h = f − g,

Trh(x) =
1

µ(B(x, r))

∫

B(x,r)

|h− h(x)| dµ (D.6)

≤ 1

µ(B(x, r))

∫

B(x,r)

|h| dµ+ |h(x)| ≤Mh(x) + |h(x)|,

whereMh is the maximal Hardy-Littlewood function. Obviously Tr is sublinear,
therefore Trf ≤ Trg+Trh. Taking the limsup for r → 0, by (D.5) and (D.6) we
deduce that

Tf ≤ Tg + Th = Th ≤Mh+ |h|.
By the last inequality it follows that for every α > 0

{Tf ≥ α} ⊂
{
Mh ≥ α

2

}
∪
{
|h| ≥ α

2

}

and then by Theorem D.1.7 and by the Chebychev inequality

µ({Tf ≥ α}) ≤ µ
({
Mh ≥ α

2

})
+ µ

({
|h| ≥ α

2

})

≤ 2 C

α
‖h‖1 +

2

α
‖h‖1

≤
(

2 C

α
+

2

α

)
ε.

Letting ε to zero we deduce µ({Tf ≥ α}) = 0 for every α > 0. Therefore the
measure of the set {Tf > 0} =

⋃
n∈N

{Tf > 1
n} is zero, this means that Tf = 0

a.e. in Ω.
We finally state a consequence of the Lebesgue Theorem.

Definition D.1.13. Let {Eh}h≥0 a family of subsets of Ω and let x ∈ Ω. We
say that {Eh} converges to x for h → 0 if there exist α > 0 and rh → 0 such
that for every h ≥ 0

Eh ⊂ B(x, rh) and µ(Eh) ≥ αµ(B(x, rh)).
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Corollary D.1.14. Let f ∈ L1
loc(Ω), x ∈ L(f) and {Eh} → x, then

lim
h→0

1

µ(Eh)

∫

Eh

|f − f(x)| dµ = 0.

Proof. We have

1

µ(Eh)

∫

Eh

|f − f(x)| dµ ≤ 1

αµ(B(x, rh))

∫

B(x,rh)

|f − f(x)| dµ

and, since x is a Lebesgue point of f , the right and side of the last inequality
goes to zero for h→ 0.

Remark D.1.15. If, given X, X0 ∈ RN+1, we set

d(X,X0) = max{|xi − xi0|, 1 ≤ i ≤ N, |t− t0|
1
2 },

then the ball of center X0 and radius R is the parabolic cylinder K(X0, R).
This simple remark allows us to apply the general results about the maximal
Hardy-Littlewood function and the Lebesgue points stated before in the case
Ω = RN+1, µ Lebesgue measure and d parabolic distance in RN+1.

We will use the following version of the Calderón-Zygmund decomposition.
The proof is similar to that in [9, Lemma 1.1] where cubes of RN appear instead
of parabolic cylinders.

Proposition D.1.16 (Calderón-Zygmund decomposition). Let K a parabolic
cylinder of RN+1 and A ⊂ K a measurable set satisfying

0 < |A| < δ|K| for some 0 < δ < 1.

Then there is a sequence of disjoint dyadic parabolic cylinders {Kj}j∈N obtained
from K such that

1. |A \⋃j∈N
Kj| = 0;

2. |A ∩Kj| > δ|Kj | for every j ∈ N;

3. |A ∩Kj | ≤ δ|Kj | if Kj is a dyadic subdivision of Kj.

Proof. Divide K in 2N+2 dyadic cylinders K1,1, . . . ,K1,2N+2 as follows

K1,j =

{
(x, t) : |xi − xi1,j | <

R

2
, |t− t1,j | <

R2

4

}
.

Choose those for which |K1,j ∩ A| > δ|K1,j|. Divide each cylinder that has
not been chosen in 2N+2 dyadic cylinders {K2,j} and repeat the process above
iteratively. In this way we obtain a sequence of disjoint dyadic cylinders which
we denote {Kj}. If X 6∈ ⋃

j Kj, there exists a sequence of cylinders Ch =
K(Xh, Rh) containing X with diameter going to zero for h→ ∞ and such that

|Ch(X) ∩A| ≤ δ|Ch(X)| < |Ch(X)|. (D.7)



112

Observe that Ch(X) = K(Xh, Rh) ⊂ K(X, 2Rh) indeed if Y ∈ Ch(X) =
K(Xh, Rh) we have d(Y,Xh) < Rh, on the other hand, since X ∈ Ch, we
have d(X,Xh) < Rh, therefore

d(Y,X) < d(Y,Xh) + d(Xh, X) < 2Rh.

Moreover

|Ch(X)| = RN+2
h =

1

2N+2
(2Rh)

N+2 =
1

2N+2
|K(X, 2Rh)|.

Apply Corollary D.1.14 to the family {Ch} and f = χA ∈ L1(RN+1). By (D.7)
we obtain that, if X is a Lebesgue point for χA,

χA(X) = lim
h→∞

1

|Ch|

∫

Ch

χA(Y )dY =
|Ch(X) ∩A|
Ch(X)

< 1.

This means that χA(X) = 0, that is X 6∈ A. By the Lebesgue Theorem it
follows that almost everywhere if X 6∈ ∪jKj then X ∈ K \ A. This proves (1)
and concludes the proof.

Proof (Theorem D.1.1). Let p0 < p < q0. Let f ∈ L∞
c (RN+1). For λ > 0,

we consider the set

E(λ) = {(x, t) ∈ RN+1 : M(|Tf |p0)(x, t) > λ}

where M is the maximal operator. Since Tf ∈ Lp0 , by the maximal inequality

|E(λ)| ≤ C
‖Tf‖p0p0
λ

<∞. (D.8)

Let A = 1/(2δ
p0
p ) with 0 < δ < 1/2

p
p0 small constant to be determined. Observe

that A > 1. Divide RN+1 in parabolic cylinders {Kh} big enough such that

|Kh ∩ E(Aλ)| < δ|Kh|

and apply the Calderón-Zygmund decomposition to each Kh. For every h ∈ N
we obtain a family of parabolic cylinders {Kh,j} such that

|(Kh ∩ E(Aλ)) \⋃j Kh,j| = 0;

|(Kh ∩ E(Aλ)) ∩Kh,j | > δ|Kh,j|;

|(Kh ∩ E(Aλ)) ∩Kh,j| ≤ δ|Kh,j|.

Consider the family of cylinders {Kh,j} obtained for h and j running in N and
call it {Kj} again. In this way we have a family of cylinders {Kj} satisfying

1. |E(Aλ) \⋃j Kj | = 0;
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2. |E(Aλ) ∩Kj| > δ|Kj |;
3. |E(Aλ)) ∩Kj| ≤ δ|Kj |.

We split the proof in three steps.
Step 1

There exist 0 < δ < 1/2
p

p0 , 0 < γ < 1 such that if

Kj ∩ {(x, t) ∈ Rn+1 : M(|f |p0)(x, t) ≤ γλ} 6= ∅
then Kj ⊆ E(λ).
Proof (Step 1 ). Suppose by contradiction that for every 0 < γ < 1, 0 < δ <

1/2
p

p0 there exists Kj such that Kj ∩ {(x, t) ∈ Rn+1 : M(|f |p0)(x, t) ≤ γλ} 6= ∅
and Kj 6⊆ E(λ). In particular the previous property holds for δ small enough
such that A ≥ 5n+2. Fixed γ and δ, let Kj the corresponding cylinder as above
and let X ∈ Kj ∩ {(x, t) ∈ Rn+1 : M(|f |p0)(x, t) ≤ γλ} and X0 ∈ Kj \ E(λ).
Then

M(|Tf |p0)(X0) = sup
K∋X0

1

|K|

∫

K

|Tf |p0(Y )dY ≤ λ

and

M(|f |p0)(X) = sup
K∋X

1

|K|

∫

K

|f |p0(Y )dY ≤ γλ.

In particular, if K ⊇ Kj , then X0, X ∈ K and, consequently,

1

|K|

∫

K

|Tf |p0 ≤ λ and
1

|K|

∫

K

|f |p0 ≤ γλ. (D.9)

Let Kj a parabolic cylinder obtained by the dyadic division of Kj and prove
that if X ∈ Kj

M(|Tf |p0)(X) ≤ max{M2Kj
(|Tf |p0)(X), 5n+2λ} (D.10)

where M2Kj
is the local maximal function so defined:

M2Kj
(|Tf |p0)(X) = sup

K′∋X, K′⊂2Kj

1

|K ′|

∫

K′

|Tf |p0

for X ∈ 2Kj .
Let X ∈ Kj and K a parabolic cylinder containing X . If K ⊂ 2Kj

1

|K|

∫

K

|Tf |p0 ≤M2Kj
(|Tf |p0)(X)

and (D.10) holds. Suppose now K * 2Kj and let (Z, r) and (Z0, R) center and
radius respectively of K and Kj . We have r ≥ R

2 indeed, if r < R
2 and Y ∈ K,

we have

d(Y, Z0) ≤ d(Y, Z) + d(Z,Z0) < r + d(Z,X) + d(X,Z0)

< r + r +R <
R

2
+
R

2
+R = 2R



114

and then K ⊆ 2Kj which is a contradiction. It is easy to check that K̃(Z, 5r) ⊇
Kj(Z0, R). In fact, let Y ∈ Kj , then

d(Y, Z) ≤ d(Y,X) + d(X,Z) ≤ d(Y, Z0) + d(Z0, X) + d(X,Z)

< R+R+ r < 5r,

therefore Y ∈ K̃(Z, 5r). By (D.9) we have

1

|K̃|

∫

eK
|Tf |p0 ≤ λ

and, since (5r)n+2 = |K̃| = 5n+2|K|,

1

|K|

∫

K

|Tf |p0 ≤ 5n+2

|K̃|

∫

eK
|Tf |p0 ≤ 5n+2λ

which ends the proof of (D.10).
Let now X ∈ Kj ∩ E(Aλ), then

max{M2Kj
(|Tf |p0)(X), 5n+2λ} = M2Kj

(|Tf |p0)(X)

because if not, since A ≥ 5n+2, by (D.10) we have

5n+2λ = max{M2Kj
(|Tf |p0)(X), 5n+2λ} ≥M(|Tf |p0)(X) > Aλ ≥ 5n+2λ

and this is a contradiction. Then M2Kj
(|Tf |p0) = M(|Tf |p0) in Kj ∩ E(Aλ)

and

|Kj ∩ E(Aλ)| = |{X ∈ Kj : M(|Tf |p0)(X) > Aλ}|
= |{X ∈ Kj : M2Kj

(|Tf |p0)(X) > Aλ}|.

Let η ∈ C∞
c (Rn+1) such that 0 ≤ η ≤ 1, η = 1 in 2α2Kj e η = 0 in Rn+1\3α2Kj .

Split f as follows:

f = ηf + (1 − η)f.

The support of (1 − η)f is contained in Rn+1 \ 2α2Kj . Since T is sublinear,

|Tf |p0 ≤ 2p0−1 (|T (ηf)|p0 + |T ((1 − η)f)|p0)

and, since the maximal operator is sublinear,

M2Kj
(|Tf |p0) ≤ 2p0−1M2Kj

(|T (ηf)|p0) + 2M2Kj
(|T ((1 − η)f)|p0).
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It follows

|Kj ∩ E(Aλ)| = |{X ∈ Kj : M2Kj
(|Tf |p0)(X) > Aλ}|

≤ |{X ∈ Kj : M2Kj
(|T (ηf)|p0) +M2Kj

(|T ((1 − η)f)|p0 > Aλ

2p0−1
}|

≤ |{X ∈ Kj : M2Kj
(|T (ηf)|p0) > Aλ

2p0
}|

+ |{X ∈ Kj : M2Kj
(|T ((1 − η)f)|p0 ) > Aλ

2p0
}|

≤ C

Aλ

∫

2Kj

|T (ηf)|p0) +
C

(Aλ)
q0
p0

∫

2Kj

|M2Kj
(|T ((1 − η)f)|p0 )|

q0
p0

≤ C

Aλ

∫

2Kj

|T (ηf)|p0 +
C

(Aλ)
q0
p0

∫

2Kj

|T ((1 − η)f)|q0

with C depending on n, p0, q0. The last two addenda have been obtained esti-
mating the previous ones using respectively the local maximal Hardy-Littlewood
inequality (D.3) and the Chebychev inequality. Moreover the second addendum
has been estimated using the boundedness of the local maximal operator (see
(D.4)).
By the boundedness in Lp0 , the sublinearity of T and the hypothesis we obtain

|Kj ∩ E(Aλ)|

≤ C

Aλ

∫

3α2Kj

|f |p0 +
C|2Kj |
(Aλ)

q0
p0

N q0

{(
1

|α12Kj |

∫

2α1Kj

|T ((1 − η)f)|p0
) 1

p0

+ sup
K′⊃2Kj

(
1

|K ′|

∫

K′

|(1 − η)f |p0
) 1

p0
}q0

≤ C

Aλ

∫

3α2Kj

|f |p0

+
C|2Kj |
(Aλ)

q0
p0

N q0

{(
1

|α12Kj |

∫

2α1Kj

(|Tf |p0 + |T (ηf)|p0)
) 1

p0

+ sup
K′⊃2Kj

(
1

|K ′|

∫

K′

|(1 − η)f |p0
) 1

p0
}q0

≤ C

Aλ

|3α2Kj |
|3α2Kj |

∫

3α2Kj

|f |p0

+
C|2Kj |
(Aλ)

q0
p0

N q0

{(
1

|3α2Kj |

∫

3α2Kj

|f |p0 +
1

|α12Kj |

∫

2α1Kj

|Tf |p0
) 1

p0

+ sup
K′⊃2Kj

(
1

|K ′|

∫

K′

|f |p0
) 1

p0
}q0

.
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Observe that, since αi > 1, αiKj ⊃ Kj , then by (D.9)

|Kj∩E(Aλ)| ≤ C|Kj |
{
γλ

Aλ
+

(
γλ+ λ

Aλ

) q0
p0

}
≤ C|Kj |

{
γ

A
+

(
1

A

) q0
p0

}

= C|Kj |
{

2γδ
p0
p +

(
2δ

p0
p

) q0
p0

}
= δ|Kj|C

{
2γδ

p0
p
−1 + 2

q0
p0 δ

q0
p
−1
}

where C = C(n, p0, q0, α1, α2). If we choose δ small enough such that

C2
q0
p0 δ

q0
p
−1 ≤ 1

2

(this is possible since
q0
p
> 1) and A =

1

2δ
p0
p

≥ 5n+2 and γ such that

2Cγδ
q0
p
−1 ≤ 1

p0

we obtain
|Kj ∩ E(Aλ)| ≤ δ|Kj|.

This contradicts the properties of the Calderón-Zygmund decomposition and
proves the assertion in Step 1.
Step 2

There exist 0 < γ < 1, 0 < δ < 1/2
p

p0 such that

|E(Aλ)| ≤ δ|E(λ)| + |{(x, t) ∈ Rn+1 : M(|f |p0)(x, t) > γλ}| (D.11)

for every λ > 0.
Proof (Step 2 ). Let {Kj} a disjoint subcover of E(Aλ) ∩ {(x, t) ∈ Rn+1 :
M(|f |p0)(x, t) ≤ γλ} with the property that

Kj ∩ {(x, t) ∈ Rn+1 : M(|f |p0)(x, t) ≤ γλ} 6= ∅.

A such subcover exists in fact by property (1) of the Calderön-Zygmund decom-
position there exists a family Kj of disjoint cylinders such that tale che

|E(Aλ) \ ∪jKj | = 0

and each Kj is obtained by the dyadic division of a cylinder Kj . Therefore we
can cover E(Aλ) with the dyadic parents of each Kj. In order to have disjoint
cylinders Kj , if Kr, Ks have the same parent, we include it only one time,
if Kr ⊂ Ks we take Ks. Reject finally all the cylinders that don’t intersect
{(x, t) ∈ Rn+1 : M(|f |p0)(x, t) ≤ γλ}.
By Step 1,

|E(Aλ) ∩ {(x, t) ∈ Rn+1 : M(|f |p0)(x, t)| ≤ γλ} ≤
∑

j

|E(Aλ) ∩Kj |

≤ δ
∑

j

|Kj | ≤ δ|E(λ)|.
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Hence

|E(Aλ)| ≤ |E(Aλ) ∩ {(x, t) ∈ Rn+1 : M(|f |p0)(x, t)| ≤ γλ}|
+ |E(Aλ) ∩ {(x, t) ∈ Rn+1 : M(|f |p0)(x, t)| > γλ}|
≤ δ|E(λ)| + |E(Aλ) ∩ {(x, t) ∈ Rn+1 : M(|f |p0)(x, t)| > γλ}|

and the statement in Step 2 is proved.
Step 3

We finally deduce the Lp boundedness of T from the results proved in the
previous steps.
For every λ0 > 0

∫ Aλ0

0

λ
p

p0
−1|E(λ)|dλ ≤

∫ Aλ0

0

λ
p

p0
−1[δ

∣∣E
( λ
A

)∣∣

+
∣∣{(x, t) ∈ Rn+1 : M(|f |p0)(x, t) > γλ

A

}∣∣dλ
]

= δ

∫ Aλ0

0

λ
p

p0
−1∣∣E

( λ
A

)∣∣dλ

+

∫ Aλ0

0

λ
p

p0
−1∣∣{(x, t) ∈ Rn+1 : M(|f |p0)(x, t) > γλ

A

}∣∣dλ

= δA
p

p0

∫ λ0

0

λ
p

p0
−1|E(λ)|dλ

+

(
A

γ

) p
p0
∫ λ0γ

0

λ
p

p0
−1∣∣{(x, t) ∈ Rn+1 : M(|f |p0)(x, t) > λ

}∣∣dλ

≤ δA
p

p0

∫ λ0

0

λ
p

p0
−1|E(λ)|dλ

+

(
A

γ

) p
p0
∫ ∞

0

λ
p

p0
−1∣∣{(x, t) ∈ Rn+1 : M(|f |p0)(x, t) > λ

}∣∣dλ

= δA
p

p0

∫ λ0

0

λ
p

p0
−1|E(λ)|dλ + C(γ, δ)

∫

Rn+1

|M(|f |p0)|
p

p0

≤ δA
p

p0

∫ λ0

0

λ
p

p0
−1|E(λ)|dλ + C(γ, δ)

∫

Rn+1

|f |p

where we used (D.11), Lemma D.1.2 and Corollary D.1.8 (observe that p
p0
> 1).

Recall that A =
1

2δ
p0
p

> 1 and δA
p

p0 =
1

2
p

p0

< 1. By the inequalities above

∫ λ0

0

λ
p

p0
−1|E(λ)|dλ ≤ 1

2
p

p0

∫ λ0

0

λ
p

p0
−1|E(λ)|dλ + C(γ, δ)

∫

Rn+1

|f |p

which implies

(
1 − 1

2
p

p0

)∫ λ0

0

λ
p

p0
−1|E(λ)|dλ ≤ C(γ, δ)

∫

Rn+1

|f |p
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and, changing the constant C,

∫ λ0

0

λ
p

p0
−1|E(λ)|dλ ≤ C(γ, δ)

∫

Rn+1

|f |p.

Almost everywhere it holds

|Tf |p0(x, t) > λ⇒ M(|Tf |p0)(x, t) > λ

because

M(|Tf |p0)(x, t) = sup
K∋(x,t)=X

1

|K|

∫

K

|Tf |p0(Y )dY

≥ 1

|K(X,R)|

∫

K

|Tf |p0(Y )dY

for every R > 0 and

1

|K(X,R)|

∫

K

|Tf |p0(Y )dY → |Tf |p0(X)

almost everywhere by the Lebesgue Theorem. Therefore we have

∫ λ0

0

λ
p

p0
−1|{|Tf |p0 > λ}|dλ ≤

∫ λ0

0

λ
p

p0
−1|E(λ)|dλ ≤ C(γ, δ)

∫

Rn+1

|f |p.
(D.12)

Moreover
∫ λ0

0 λ
p

p0
−1|E(λ)|dλ is finite indeed, by the maximal Hardy-Littlewood

inequality, B = supλ>0 λ|E(λ)| <∞, this implies λ
p

p0
−1|E(λ)| ≤ Bλ

p
p0

−2
which

is integrable near zero for 2 − p

p0
< 1 ⇔ p > p0. Letting λ0 to +∞ in (D.12)

we obtain ∫ ∞

0

λ
p

p0
−1|{|Tf |p0 > λ}|dλ ≤ C(γ, δ)

∫

Rn+1

|f |p

and, by Lemma D.1.2,
∫

Rn+1

|Tf |p ≤ C

∫

Rn+1

|f |p.

Remark D.1.17. By the proof, it follows that it is sufficient to require that the
inequality in the assumption of Theorem D.1.1 is verified for all f ∈ C∞

c (RN+1)
with compact support in RN+1 \ α2K.

D.2 An application of Shen’s Theorem

The boundeness result for operators just proved allows us to give an alternative
proof of the classical a-priori estimates for the operator ∂t − ∆.
In this Section we will denote by X the space (∂t − ∆)C∞

c (RN+1).



119

Proposition D.2.1. Let 1 < p <∞. There exist C1, C2 > 0 such that

‖Dij(∂t − ∆)−1g‖p ≤ C1‖g‖p

and
‖∂t(∂t − ∆)−1g‖p ≤ C2‖g‖p

for all 1 ≤ i, j ≤ N and for all g ∈ X.

Theorem D.2.2. Let 1 < p <∞. Then there exists C > 0 such that

‖D2u‖p + ‖∂tu‖p ≤ C‖∂tu− ∆u‖p (D.13)

for all u ∈W 2,1
p (RN+1).

Proof. Let u ∈ C∞
c (RN+1), then u = (∂t − ∆)−1(∂t − ∆)u and g =

(∂t − ∆)u ∈ X . By proposition D.2.1 we obtain the claimed inequality for test
functions. By density the estimate follows for the functions in W 2,1

p (RN+1).

Lemma D.2.3. The space X is dense in L2(RN+1).

Proof. Denote by S(RN+1) the Schwartz space and by ĝ the Fourier trans-
form of a function g. First let us prove that (∂t − ∆)S(RN+1) is dense in
L2(RN+1). Let v ∈ L2(RN+1) orthogonal to (∂t − ∆)u for all u in S(RN+1).
We claim that v ≡ 0. We have

∫

RN+1

v̂(ξ, τ)(iτ + |ξ|2)û(ξ, τ) = 0

for all u ∈ S(RN+1) and then

∫

RN+1

v̂(ξ, τ)
iτ + |ξ|2

1 + iτ + |ξ|2 (1 + iτ + |ξ|2)û(ξ, τ) = 0

for all u ∈ S(RN+1). The operator I + ∂t − ∆ : S(RN+1) → S(RN+1) is
surjective, therefore by the previous equality we deduce

∫

RN+1

v̂(ξ, τ)
iτ + |ξ|2

1 + iτ + |ξ|2w(ξ, τ) = 0

for all w ∈ S(RN+1) and then

v̂(ξ, τ)
iτ + |ξ|2

1 + iτ + |ξ|2 ≡ 0

almost everywhere in RN+1. This implies v ≡ 0. Observe now that X is dense
in (∂t − ∆)S(RN+1) indeed if f = ∂tu − ∆u with u ∈ S(RN+1) then it can
be approximated in the L2 norm by the sequence (∂t(ηnu) − ∆(ηnu)) where
ηn(x, t) = η

(
x
n ,

t
n

)
with η ∈ C∞

c (RN+1), 0 ≤ η ≤ 1, η = 1 if |(x, t)| ≤ 1 and
η = 0 if |(x, t)| ≥ 2.
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Proof (Proposition D.2.1). Let 1 ≤ i, j ≤ N . Consider the operators
T1 = Dij(∂t − ∆)−1 and T2 = ∂t(∂t − ∆)−1 from X to C∞

c (RN+1). By Lemma
D.2.3, T1 and T2 extend by density to L2(RN+1) and in particular they are
defined onC∞

c (RN+1). By Shen’s Theorem, applied in correspondence of p0 = 2,
we will deduce the boundedness of these operators in Lp, for 2 ≤ p < ∞ and
then, by duality, the boundedness for 1 < p ≤ 2.
Let us prove now the boundedness in L2 of T1 and T2. Let f ∈ X . We have

T̂1f = − ξiξj
iτ + |ξ|2 f̂

and then

‖T1f‖2 = ‖T̂1f‖2 ≤ ‖f̂‖2 = ‖f‖2.

Similarly the T2 boundedness in L2 follows. Prove now the inequality in the
assumptions of Shen’s Theorem.
Let α2 > α1 > 1, K ⊂ RN+1 parabolic cylinder and f ∈ C∞

c (RN+1) with
compact support in RN+1 \ α2K. We have

T̂1f = − ξiξj
iτ + |ξ|2 f̂ .

Set v = T1f . Since f ∈ C∞
c (Rn+1), f and f̂ ∈ S(RN+1), it follows that

−(1 + |(ξ, τ)|2)k ξiξj
iτ + |ξ|2 f̂ = (1 + |(ξ, τ)|2)kv̂ ∈ L2(RN+1)

for all k ∈ N and then v ∈ Hk(RN+1) for all k ∈ N. This proves that v ∈
C∞(RN+1). Moreover ∂tv − ∆v = Dijf and ∂tv − ∆v = 0 in α2K since f = 0
in α2K. In the same way one can prove that T2f satisfies the same equation.
Let K be a parabolic cylinder with center (x0, t0) and radius R. We will prove
that, for all p ≥ 2, there exists C > 0 such that , if v ∈ C∞ solves ∂tv−∆v = 0
in α2K, then (

1

|K|

∫

K

|v|p
) 1

p

≤ C

(
1

|α1K|

∫

α1K

|v|2
) 1

2

.

Observe that it is sufficient to prove

(∫

K1

|w|p
) 1

p

≤ C

(∫

α1K1

|w|2
) 1

2

for w smooth solution of ∂tw − ∆w = 0 in α2K1 with K1 = K1((x0, t0), 1)
cylinder with unitary radius. Infact let v such that ∂tv − ∆v = 0 in α2K and
set w(x, t) = v(Rx− (R−1)x0, R

2t− (R2−1)t0). Then ∂tw−∆w = 0 in α2K1.
Moreover (∫

K1

|w(x, t)|p
) 1

p

≤ C

(∫

α1K1

|w(x, t)|2
) 1

2
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implies

(∫

K1

|v(Rx− (R − 1)x0,R
2t− (R2 − 1)t0)|p

) 1
p

≤

C

(∫

α1K1

|v(Rx − (R− 1)x0, R
2t− (R2 − 1)t0)|2

) 1
2

and, setting τ = R2t− (R2 − 1)t0, ξ = Rx− (R − 1)x0,

(
1

Rn+2

∫

K

|v|p
) 1

p

≤ C

(
1

Rn+2

∫

α1K

|v|2
) 1

2

which is the estimate for general cylinders.
Let K be a parabolic cylinder of radius 1, w such that ∂tw − ∆w = 0 in α2K
and 1 ≤ a < b ≤ α1 < α2. Let 0 ≤ η ≤ 1 be a smooth function such that η = 1
in aK and η = 0 in RN+1 \ bK. We write K as Q × I where Q is the cube in
the space RN and I the time interval, we multiply the equation satisfied by w
times η2w and we integrate both members with respect to the space variable x
on bQ. We obtain

∫

bQ

wtη
2w +

∫

bQ

η2|∇w|2 + 2

∫

bQ

w(∇w)η∇η = 0

and, writing the first integral in different way,

1

2

d

dt

∫

bQ

η2w2 −
∫

bQ

w2ηηt +

∫

bQ

η2|∇w|2 + 2

∫

bQ

w(∇w)η∇η = 0.

Integrate now with respect to the time variable on I. For all ε > 0, we hawe

∫

bK

η2|∇w|2 ≤
∫

bK

|w2ηηt| + 2

(∫

bK

η2|∇w|2
) 1

2
(∫

bK

w2|∇η|2
) 1

2

≤ C

∫

bK

|w|2 + ε2
∫

bK

η2|∇w|2 +
1

ε2

∫

bK

w2|∇η|2.

Choosing ε small enough,
∫

bK

η2|∇w|2 ≤ C

∫

bK

|w|2

and, since η = 1 on aK,
∫

aK

|∇w|2 ≤ C

∫

bK

|w|2.

Note that, for every β multi-index,

∂t(D
βw) − ∆(Dβw) = 0
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in α2K and, by the previous computations,

∫

aK

|Dγw|2 ≤ C

∫

bK

|Dβw|2 (D.14)

for γ multi-index of lenght |γ| = |β| + 1 (with Dγ we mean the derivatives of
order γ with respect to the space variable). Choose α multi-index of lenght
m = |α| > N + 1 and divide the interval [1, α1] in m intervals [ai, bi] with
1 = a1 < b1 < a2 < . . . < am < bm = α1. Applying (D.14) iteratively to [ai, bi],
we obtain ∫

K

|Dαw|2 ≤ C

∫

α1K

|w|2

and ∫

K

|Dµw|2 ≤ C

∫

α1K

|w|2

for all µ multi-index of lenght less than m. Moreover, since

∂
α
2
t w = ∆αw,

∫

K

|∂αt w|2 ≤ C

∫

α1K

|w|2.

We obtained

‖w‖
W

N+1
2

2 (K)
≤ ‖w‖L2(α1K).

By the Sobolev embedding Theorem, W
N+1

2
2 (K) ⊂ L∞(K), it follows that

‖w‖L∞(K) ≤ ‖w‖L2(α1K)

and

‖w‖Lp(K) ≤ ‖w‖L∞(K) ≤ ‖w‖L2(α1K)

for all 1 ≤ p ≤ ∞. By Theorem D.1.1, T1 and T2 are bounded in Lp(RN+1) for
all 2 ≤ p <∞.

Let 1 < p ≤ 2 and p′ such that
1

p
+

1

p′
= 1. Consider

T1 : L2(RN+1) → L2(RN+1)

so defined

T̂1f = − ξiξj
iτ + |ξ|2 f̂ .

T1 = F−1MqF where Mq is the multiplication operator with

q(ξ, τ) = − ξiξj
iτ + |ξ|2
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and F is the unitary operator that to f ∈ L2(RN+1) associates its Fourier
transform. Denoted by T ∗

1 the adjoint operator of T1, we have

T ∗
1 = F−1MqF

with Mq multiplication operator and q(ξ, τ) = − ξiξj
−iτ + |ξ|2 . Observe that, if

f ∈ X , T ∗
1 f = Dij(−∂t−∆)−1f and, since we are considering the heat operator

all over RN+1, T ∗
1 enjoies the same properties of T1. Let f, g ∈ C∞

c (RN+1).
Obvioulsy 2 ≤ p′ < ∞. By the first part of the proof, there exists C > 0 such
that ∣∣∣∣

∫

RN+1

(T1f)g

∣∣∣∣ =
∣∣∣∣
∫

RN+1

f(T ∗
1 g)

∣∣∣∣ ≤ C‖f‖p‖g‖p′ .

It follows that ‖T1f‖p ≤ ‖f‖p. In similar way one can prove the same result for
T2.

If u does not depend on the time variable, the following elliptic version of
the Calderón- Zygmund Theorem immediately follows.

Theorem D.2.4. Let 1 < p <∞. There exists C positive constant such that

‖D2u‖p ≤ C‖∆u‖p

for all u ∈W 2,p(RN ).

Anyway, by means of the mean value Theorem for harmonic functions, an
alternative direct proof gives the same result.

Proposition D.2.5. Let 1 < p <∞. There exists C > 0 such that

‖Dij(∆)−1g‖p ≤ C‖g‖p

for all 1 ≤ i, j ≤ N and for all g ∈ ∆(C∞
c (RN )).

As before, the following lemma can be proved.

Lemma D.2.6. The space ∆(C∞
c (RN )) is dense in L2(RN ).

Proof (Proposition D.2.5). Let 1 ≤ i, j ≤ N . Consider the operator
T = Dij(∆)−1 from ∆(C∞

c (RN )) to C∞
c (RN ). By Lemma D.2.6, T extends by

density to all L2(RN ).
As in the parabolic case the L2 boundedness follows by using the Fourier trans-
form. Let us prove the assumption in Shen’s Theorem.
Choose α2 = 4, α1 = 2. Let Q ⊂ RN and f ∈ C∞

c (RN ) with compact support
in RN \ 4Q. Set v = Tf . As in the parabolic case we have v ∈ C∞(RN ) and
∆v = Dijf . Since f = 0 in 4Q, ∆v = 0 in 4Q. Suppose Q = Q(y,R), consider
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the ball B(y,R). Obviously B(y,R) ⊂ Q(y,R) and ∆v = 0 in 4B(y,R). By the
mean value Theorem for harmonic functions

v(x) =
1

|B(x, r)|

∫

B(x,r)

v(z)dz

for all x ∈ 4B(y,R), r > 0 such that B(x, r) ⊂ 4B(y,R). Note that if x ∈
B(y,R) then B(x,R) ⊂ B(y, 2R) and

v(x) =
1

|B(x,R)|

∫

B(x,R)

v(z)dz ≤ C

|BR| 12

(∫

B(x,R)

|v|2
) 1

2

≤ C

|BR| 12

(∫

B(y,2R)

|v|2
) 1

2

.

Let p > 2. By taking the p-power and integrating over B(y,R),

1

|BR|

∫

B(y,R)

|v|p ≤ C

|BR|
p
2

(∫

B(y,2R)

|v|2
) p

2

.

By Theorem D.1.1 the boundedness of T in Lp for 2 ≤ p <∞ follows and then
by duality we deduce the boundedness in Lp for 1 < p ≤ 2.
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List of symbols

Let 1 ≤ k ≤ ∞, N ∈ N, 0 < α < 1, T > 0, a < b, u real valued function.

RN euclidean N -dimensional space
Q(a, b) RN × (a, b)
QT Q(0, T )
(X, d) a metric space X endowed with the distance d
(·|·) scalar product or, in general, duality
|x| euclidean norm of x ∈ RN

Bρ(x) open ball for the euclidean distance with centre x
and radius ρ

|E| Lebesgue measure of a given set E
χE characteristic function of e set E
supp u support of a given function u
Diu partial derivative with respect to xi
∂tu partial derivative with respect to t
Diju DiDju
Du (D1u, ......, DNu)
D2u hessian matrix (Diju)i,j=1,...,N

|Du|2 ∑N
j=1 |Diu|2

|D2u|2 ∑N
i,j=1 |Diju|2

f+, f− positive part f ∨ 0 and negative part −(f ∧ 0) of f
1 function identically equal to 1 everywhere
L(X) space of bounded linear operators from X to X
Cb(RN ) space of bounded continuous functions in RN

Cjb (R
N ) space of real functions with derivatives up to the order

j in Cb(RN )
Cα(RN ) space of Hölder continuous functions
Cαloc(R

N ) space of Hölder continuous functions in Ω for all
bounded open set Ω ⊂ RN

Ck+α(RN ) space of functions such that the derivatives of order k
are α-Hölder continuous

C∞
c (RN ) space of test functions

Lp(RN ) usual Lebesgue space
L∞
c (RN ) space of all bounded measurable functions

on RN having compact support
S(RN ) Schwartz space
S′(RN ) space of tempered distributions
Bb(RN ) space of bounded Borel functions
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C0(R
N ) space of continuous functions tending to 0 for

|x| tending to +∞
C0(Bρ) space of continuous functions in Bρ

vanishing on the boundary
BUC(Q(a.b)) space of bounded and uniformly continuous

functions in Q(a.b)
C2,1(Q(a, b)) space of functions continuous with their indicated

derivatives

C2,1
b (Q(a, b)) space of functions having bounded time

derivative and bounded space derivatives
up to the second order

BUC2,1(Q(a, b)) subspace of C2,1
b (Q(a, b)) consisting of all

functions for which ut and Dα
xu,

|α| = 2 are uniformly continuous in Q(a, b)
C2+α,1+ α

2 (Q(a, b)) space of functions such that ∂tu and Diju are
α Hölder continuous with respect to the
parabolic distance

W j
k (RN ) space of functions u ∈ Lk(RN ) having weak

space derivatives up to the order j in Lk(RN )

W 2,1
k (Q(a, b)) space of functions u ∈ Lk(Q(a, b)) having

weak space derivatives Dαu ∈ Lk(Q(a, b))
for |α| ≤ 2 and weak time derivative
∂tu ∈ Lk(Q(a, b))

‖u‖W 2,1
k

(Q(a,b)) ‖u‖Lk(Q(a,b)) + ‖∂tu‖Lk(Q(a,b))

+
∑

1≤|α|≤2 ‖Dαu‖Lk(Q(a,b))

[u]α,α
2
;QT

sup(x,y)∈RN ,t∈(0,T )
|u(x,t)−u(y,t)|

|x−y|α

+ sups6=t,x∈RN
|u(x,t)−u(s,x)|

|t−s|
α
2

|u|α,α
2 ;QT

‖u‖∞ + [u]α,α
2 ;QT

|u|2+α,1+ α
2
;QT

‖u‖∞ + [∂tu]α,α
2
;QT

+ [D2u]α,α
2
;QT

W →֒ H the space W is continuously embedded in H .
l1(R) space of sequences (λn)n∈N such that∑

n∈N
|λn| <∞.
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